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Abstract

In this paper we study the expected time to invest in a new location. In particular we derive
expected values of the optimal timing regarding the decision of relocation of a company. We
address two classes of scenarios. In the first one we assume that new (and potentially more
efficient) spots become available according to a non-homogeneous Poisson process, whereas
in the second one we assume a conditional Poisson process. For both scenarios we derive
mathematical expressions for the expected value of the firm in specific situations, where the
intensity function is some particular function. We end up the paper presenting numerical
illustrations of the derived results.

Keywords: Relocation, non-homogeneous Poisson process, conditional Poisson process, hit-
ting time, expected value, gamma function.

1 Motivation

In this paper we study the expected time to invest in a new location, which is a key question
when it comes to the relocation problem that most companies face nowadays. For that reason
we start this paper by presenting the problem in a pure economical setting, before explaining the
mathematical formulation.

The analysis of the problem of production units relocation for third countries, supposedly
more competitive at the level of production factors and/or incentives to investment, has assumed



an increasing significance in western economies, when confronted with a full array of problems
induced by the fact of a growing number of companies resorting to this kind of solutions, in order
to improve their competitive edge in the market. In fact, the overall movement in the sense of the
growing abolition of protectionist barriers of technical and political nature has led to the creation
of a more accentuated competitive environment, where a great part of economies (mainly the most
industrialized) are subject to geo-economic insertion movements in widen spot. Scenarios like this,
marked by the emergence of new markets, by the free circulation of capital and investments at
a world scale,and by production conditions’ homogeneity calls forth a scenario favourable to the
production units’ relocation.

The overall conclusion in several studies about production units relocation is that it only
reveals to be attractive when the existent comparative advantages (different conditions) between
the destination and origin country overcompensate, significantly, the costs needed to support the
implementation of this relocation process.

The papers which emphasize the minimization of production costs have focused, mostly, on the
analysis of potential explicative factors regarding the relocation of production units’ phenomenon.
In some cases, the emphasis relies on factors external to companies and/or its markets (i.e. the
need of processes’ rationalization, deficiencies on the origin markets), while in some other cases
the emphasis is put upon factors of external or institutional nature (taxes, incentive policies,
market venture, etc.). In the first case, it’s worth of notice works like Kogut and Kulatilaka
(1994), Sleuwaegen and Pennings (2002) and Siegfried and Evans (1994). In the second, outstand
the papers of Black and Hoyt (1989), Belderbos and Sleuwaegen (1996), Haaparanta (1996),
G. Bekaert and Viskanda (1998), Devereux and Griffith (1998), Dunning (1998), C. Head and
Swenson (1999), Haufler and Wooton (1999), Chakrabarti (2001), Pantzalis (2001), and Berry
(2002).

Regarding the potential explicative internal factors two are worth of notice: the existence of
comparative advantages on the destination locations, and the possibility of increasing the op-
erational flexibility by means of creating a network of subsidiaries spread in several locations.
Siegfried and Evans (1994) have found that phenomena like low rate of return, scarce demand,
low capital intensity and small dimension companies in a given location have a significant impact
on the propensity of abandoning a certain location. Under these circumstances, companies are
naturally tempted to remove their production units to locations which offer them comparative
advantages (vidé Hymer (1960), quoted by Kogut and Kulatilaka (1994)). Also companies in
a restructuring process are more opened to relocation solutions (vidé Sleuwaegen and Pennings
(2002)).

The group of potential external explicative factors is wide: taxes, direct incentives to foreign
investment, level of development and wealth of each national location, level of venture of each
market, and nature of local culture and institutions. The level of economic development of each
country or region is also a potential factor of influence on the decision of relocating a production
unit (v.g., studies of Belderbos and Sleuwaegen (1996); Dunning (1998); and Pantzalis (2001)). In
general, the most developed countries offer the access to consumers with higher incomes and higher
levels of education, less risk, easiness on apprehending know-how and institutional protection for
investments. On the contrary, less developed countries offer great rate of return, low costs and



abundant resources (land, work and capital). In specific cases, like China and India, there is still
the access to big markets and elevated population growth rates. Complementary, Haufler and
Wooton (1999) show that whenever the transaction costs and productivity incomes are taken into
account, the country’s dimension is also a factor to consider on the attractiveness of multinational
companies.

An alternative approach has occurred from the need of getting the value of flexibility over
uncertainty. These works present as a common characterizing element the fact of using stochastic
models tendentious to value incrusted options. De-Meza and van der Ploeg (1987) present a
model with one period of production relocation. Subsequently, Kogut (1983) and Kogut (1985)
present and describe quantitatively multiperiod stochastic models which incorporate explicitly the
option’s valuation. Such model was formally analysed by Kogut and Kulatilaka (1988). Kogut
and Kulatilaka (1994) have used stochastic dynamic programming models for the treatment of
flexibility afforded by a portfolio of this kind of options. Their results suggest that location will be
decided taking into consideration the relative price of local inputs, and the value of the relocation
option may be affected by several sources of uncertainty, such as social conflicts, governmental
policies, local suppliers, interest rates, etc.

Partisans of Real Options Analysis believe that companies may act pro-actively over uncer-
tainties, in a way to obtain advantages (v.g., Kogut (1983), Kogut (1989), D. Hurry and Bowman
(1992), Bowman and Hurry (1993), and Sanchez (1993); and McGrath (1997)). Reuer and Leiblein
(2000) have studied, in this context, the risk implications on the loss of international investment,
in a management flexibility context in multinationals and joint ventures. In their perspectives
these investments may enable the creation of real options which enable these companies to avoid
income losses, through the substitution of activity between countries, according to their own con-
texts. Also Buckley and Casson (1998) refer that the value of flexibility may encourage companies
to produce the same product in numerous locations, in order to allow the change of production
among them, according to circumstances. In this sense, Miller and Reuer (1998c) and Miller
and Reuer (1998a) empirical results suggest that international strategic options about production
location reduce the volatility of the stockholders’ rate of return.

The optimal timing regarding decision making is absolutely crucial in a volatile context. The
right decision may have quite little significance if taken in the wrong moment, Rivoli and Salorio
(1996). Thus, Campa (1994) refers that the more volatile is the context the most likely is the
change and the bigger will be the advantage of waiting until all imminent changes occur. This
strategy requires that the company defines in advance a set of possible locations, as referred in
Buckley and Casson (1998).

We end up this section presenting the remainder organization of the paper. In Section (2) we
present the mathematical formulation of the paper; we skip some technical details, as they are not
the key point in this paper. Next, in Section (3), we provide the first set of results concerning the
expected time to invest in a new location when information concerning new (and more efficient)
locations arrive according to a non-homogeneous Poisson process, whereas in Section (4) we tackle
the problem when the process is a conditional Poisson process. In Section (5) we show some
numerical results, in the form of 2D and 3D plots, and finally in Section (6) we present conclusions
concerning this work.



Finally, a word about notation used in this paper and notably concerning random variables. If
X is a random variable, we denote its distribution function by Fx(.) and its density function by
Ix(.). Moreover, IE[X]| = [udFx(u) denotes its expected value. We use the symbol O to denote
end of a proof of a lemma or a theorem, and i.i.d. means independent and identically distributed.

We also note that in order to improve the readability of the paper, we present all the mathe-
matical proofs in the appendix (see Section (7)).

2 Mathematical formulation

In this section we introduce the main concepts and notation that we use to tackle the problem
mathematically. We note, in addition, that although the main objective is the characterization of
the expected time to invest in a new location, the mathematical results that we derive are general
enough, and therefore can be applied to other frameworks.

As stated in the previous section, the efficiency of a company changes along its time life; let
us denote the efficiency of the company at time ¢ by 6(t). Thus © = {0(¢),t > 0} is a stochastic
process (in continuous time), and denotes the efficiency process. For example, 0(0) is simply the
initial efficiency. In addition, as the efficiency varies over time, we denote by {7T;,7 € IN} the
sequence of times when changes in the efficiency occur. For instance, T is the first time that there
is a change in the efficiency. We note that in this paper, as we are interested only in the relocation
issue, we assume that effiency can only change because a new spot has become available.

Furthermore, everytime that there is a change in the efficiency, its increment is denoted by
Ui. Therefore {U;,i € IN} is simply the sequence of jumps in the efficiency process, whereas
{T;,i € IN} is the sequence of jump times, such that

0(T:) = 0(T;") + Us.

Moreover, we assume that {7}, € IN} is also the sequence of events of a point process, that we
denote by N = {N(t),t > 0}. Thus, in the setting of relocation problems, the process N is simply
the process of arrival of information concerning new (and available) locations where the company
can produce in a more efficient way.

With the previous description, it follows that for each ¢ > 0, 6(¢) can be written as follows:

N(t)

0(t) = 0(0)+ > Ui

For example, if N is a Poisson process, then it follows that © is a compound Poisson process, Ross
(1996).

Now, for a given value a, we denote by T'(a) the following variable:

T(a) = inf{t > 0: () > a}. (1)



Note that in fact T'(a) is an hitting time, in the sense that it is the first time that the efficiency
process © hits the value a, where this a can be an arbitrary quantity.

This is the general definition of an hitting time. But in terms of the relocation problem we
can be more precise, as we explain next. We know from Dixit and Pindyck (1994) that for the
relocation problem there is a value, usually denoted by 6*, that triggers a relocation, so that if
0(t) > 0* the firm decides to invest in this new location, whereas if 6(t) < 6* the optimal decision
is to stay in its current site and wait for other locations to become available. In fact, the sequence
{T;,i € IN} is a sequence of decision times, as at each time T; the firm has to decide between
continuing in the present location or stop, and move to a new location. As we stated previously,
this decision strongly depends on the relationship between the current efficiency of the firm and
the efficiency that it will achieve in the new location. In order to justify a change in location, the
corresponding efficiency gains need to overcompensate the resultant relocation costs.

Thus, if the firm acts always optimally, the variable T'(6*), as defined in Equation (1), is
simply the optimal time of relocation. Following Dixit and Pindyck (1994), we call the value 6*
the optimal switching level.

In order to contemplate more general situations (where a is not necessarily the optimal switch-
ing level but an arbitrary level of efficiency), for the time being we let a be an arbitrary non-negative
value (we assume, without loss of generality, that the efficiency process takes only non-negative
values).

We note trivially that T'(a) is a non-negative random variable, and therefore it follows that
E[T(a)] = [° uFr@)(du) = [;° (1 = P(T(a) < 1)) du, Ross (1996), where (according to our nota-
tion) Frp() denotes the distribution function of T'(a). Therefore it follows that:

E[T(a)] = /Ooo (1—P(T(a) < t))dt = /Ooo P(0(t) < a)dt
- /Oo i P (Z Up < a— 9(0)) P(N(t) = k)dt

k=0 n=1
1 oo | a—0(a) e—At()\t)k
= +/0 ; (/0 Jsr Un(x)dx) - dt (2)
where fzk:1 Un() denotes the density function of the sum of i.i.d. random variables Uy, Us, ..., Uy.

The aim of this paper is to present results concerning properties of the hitting time T'(a) for
different characterizations of the counting process N. In particular we consider the following cases:

e N is a non-homogeneous Poisson process (NHPP);

e NN is a conditional Poisson process.

Note, trivially, that if the increments {U;} are deterministic, and equal to a certain value U,
then the number of jumps in the counting process until the process {6(t),¢ > 0} hits level a, n(a),



is given by:

a—6(0)
n(a) = |2
Note that in this case n(a) is deterministic, although T'(a) is random, as the arrival process is
regulated by a stochastic mechanism. Furthermore, the conditional distribution of T'(a), given
n(a), is such that

1+ 1

oC

P(T(a) < tln(a)) = Y P(N(t) = nln(a)).

n=n(a)

As this is not the main objective of the paper, we leave to the reader some important references,
where one can find a complete description of the mathematical formulation of the relocation
problem. The economic framework that we follow in this paper follows closely the one considered
by Farzin et al. (1998); Huisman (2000); Couto (2006). For instance, Huisman (2000) proved that
if the counting process N = {N(¢),t > 0} is a Poisson process with (constant) arrival rate A, then:

n(6*)
ETO7) [n(07)] = —— (3)
See also Couto (2006) for a complete description of the associated decision problem in the relocation
question, and the balance between inherent costs/losses in keeping the current location or changing
to a new one.

In the following sections we derive the expected value of the hitting times and, as we will see,
the main results involving gamma functions. For this reason we specify here the notation that we
use concerning these functions, namely:

400 +00 z
I'(z) = / tt Vet dt, T(a,2) = / t@ Vet dt. ~(a,z) = / AP
0 z 0

denote the gamma, upper gamma and lower gamma functions, respectively. In the appendix (at
the end of the paper) we recall the main properties of these functions and also an auxiliary result
that we have derived, that up to our knowledge is new (see Lemma (7.1)).

Finally in order to keep notation simply, instead of n(a) and T'(a) we use simply n and T.
Clearly that the main interest is in the relocation time, T'(#*), but in order to keep the results as
general as possible we let a denote a (non-negative) arbitrary level.

3 Non-Homogeneous Poisson Process

In the majoraty of the papers where the relocation problem is addressed, the Poisson process
(PP) is the usual choice. But in more realistic situations this is not the natural choice, as, like in
production units relocation, the intensity rate depend on striking time events. For modelling such
phenomenon the non-homogeneous Poisson process (NHPP) is the most appropriate. The choice

of the non-homogeneous Poisson process to model the shocks’ time events was first proposed by
J. Esary and Walkup (1967)



Let A(t) = [) A(s)ds, so that

e S [ a (A"
E[T|n]:/ P(T2t|n)dt:Z/ e gy, (4)
0 m=0"0 m'
In order to obtain formal expressions for the expected value of T', we assume particular forms of
the intensity function A(.), namely: linear function, polynomial type, and ladder type.

e Case 1: N ~ NHPP(A(t) = at).

In this case we assume that the intensity function is a linear (and continuous) function of time,
and a denotes the slop. Note, that the higher the value of parameter a, the more pronounced is
the increase in the intensity of the process.

As an example of this phenomenon we have multiple relocation cases on the contracting sector,
from the North and East of England to Poland, Czech Republic and Slovakia in a short term.
Similarly, although relocation has been operated in different destinations, we may present as
an example the case of the textile sector of the North and East of England which was virtually
eliminated on the last five years, face to the relocation of the manufacturing units for outer Europe
(namely to the North Africa and Middle-East), in response to the redirecting of demand from big
clients like Marks & Spencer, and to the disinvestment of major multinationals in order to open
new production units in new locations within European Union. At the same time, in the USA,
the McKinsey Global Institute foresees a growth of 30 to 40% on relocations, until 2009, and
the Forrester Research points out the loss of 3,3 million jobs until 2015, in result of this kind of
processes Drezner (2004).

In the following theorem we derive the expected value of T

Theorem 3.1 If N ~ NHPP(\(t) = at) then

BT |n] = (2>%F(”—+%)

a
Note that E[T|n] is a decreasing function of a, as it would be expected.
e Case 2: N ~ PPNH(A(t) = at’1), with b # 0.

This case generalizes the previous one, setting b = 2; note, in addition, that if we set b = 1 then
we get the Poisson process. It follows trivially that:

¢ b
A(t) = /0 az"tdr = %. (6)

In this case the expected value is as follows:



Theorem 3.2 If N ~ PPNH(\(t) = at’™t) then

E[T |n] = <9>% r(;(_:)%) (7)

We note, once again, that E[T |n] is a decreasing function of a, with fixed b, and decreasing in b,
with fixed a. In addition, if we set b = 1 we end up with Equation (3), whereas if b = 2 we get
Equation (5).

Corollary 3.3
_ BT M) =" n]

a

E[T |X(t) = at®*,n] (8)

o=

The result expressed in this last corollary describes the relation between the expected value of the
hitting time 7', which intensity rate is a monomer, and the expected value of the hitting time of
a process which intensity rate is a monic monomial of the same degree. We skip the proof, as it
follows straightforward from Equation (7).

e Case 3: N~ PPNH(\t)), with \(.) given by:

+00
a, ifte U[23725+1[
A(t) = T : (9)
b, ifte|J2s+1,2542
s=0

Thus, in this case the intensity rate oscillates between two different values (a and b), changing
every time unit interval. This case is also a generalization of the Poisson process (setting a = b).

We note that this alternate behaviour of the intensity rate can be adequate to model the
covering of financial risk on the exposure to exchange risk, studied by Simkins and Laux (1996), and
Allayannis and Ofek (2001). Allayannis and Ofek (2001) have examined the combined influence
of the covering of financial and operational risk regarding the exchange risk, such as D. Carter
and Simkins (2003). The covering of operational risk functions as a real option, since that certain
companies are less exposed to downside risk and more exposed to upside risk. It is usually assumed
in the literature that research on the exchange rate effect on this domain has started with the work
of Jorion (1990), followed by Bodnar and Gentry (1993), Bartov and Bodnar (1994), E. Bartov and
Kaul (1996), E. Chow and Solt (1997a,b) and A. Martin and Akhigbe (1999). Are also included
here the works of Kogut and Kulatilaka (1994), Miller and Reuer (1998¢,b) and S. Martzoukos and
Trigeorgis (2002). Rangan (1998) refers to the management of operational flexibility in response
to changes on the currency parity, where is set the methodology of this model.

Let us start by assuming that b = 0, so that arrivals can only take place in unit intervals with
origin in even times. This case corresponds roughly to an on-off process, where the intervals on-off
are deterministically determined.



In this case !

+00
a(t —s), sete U[2s,2s+1[
A(t) = oo : (10)

a(s+1), sete U[23+ 1,25+ 2|
s=0

Note that it follows from Equation (10) that:

r +oo
a(t—s) T'(n, a(t—s)) 3
. ealt=s) Htlool i g e | J[2s, 25+ 1]
A(t)n s=0
_ ) (11)
s n! oo
pals+1) W if t € J[2s+ 1,25+ 2
L s=0
Theorem 3.4
B = 4 3 T (12
n|=— -
a s=1 F(TL)

Remark that the previous result can be extended to the case where a is not constant, i.e., suppose
that

Alt) = Zasl{t€[2s,25+l[} (13)
s=0

where {as,s € IN} is a sequence of real values. We note that this is a huge generalization when
compared to the cases that are usually studied, as this can accommodate many of the interesting
and real situations that we can find.

For this case we can also derive the expected value of T" as follows:
Theorem 3.5 If N ~ NHPP(\(t)), with \(.) given by Equation (13), then

E[T |n] = aﬁo n i K“s - as—l) (Zf;é a; T(n, S0 a) +T(n+1,3"0 a;)

A5 1 ['(n)

s=1

= F(”? Z?:O ai)
+) B T

s=0

Let us now consider the initial case (9), with b being an arbitrary value. In this case we have
the following result:

!Note that the symmetrical case (i.e., arrivals can only take place in unit intervals with origin in odd times) can
also be analysed in a similar way.



Theorem 3.6

b—a\ <[/ (b+a)(s+1)T(n, (b+a)(s+1)—=T(n+1, (b+a)(s+1)) B

) 2 a0 )

B ((b+(b+a)s I(n, b+ (b+a)s)) —T(n+1, b—l—(b—ira)s))}
I'(n) '

E[T|n]:%+(

(15)

4 Conditional Poisson Process

In this section we assume that the process N is a conditional Poisson process, which intensity is
a function of a random variable, that we denote by X, as follows:

NIX =2 ~ PPHN(\(t|z) = f(z)),

where f is a positive function.

In this section we assume the same intensity functions as we assumed in the previous section,
but for each case we derive results concerning different distributions for the random variable X.

e Case 1: N|X =2~ PPNH(\t|z)=x t*1)

In the next theorem we prove that the expected value of T' depends on the distribution of the
random variable X only through the expected value of a particular function of X.

Theorem 4.1 If E[|T)| |n] < oo, then E[T |n] depends on X through E[X~ #].

In order to incorporate the information on the intensity rate, we use next the notation F[T|A(t|X =
x),n] to denote the expected value of T', given n, when the intensity rate is {\(¢|X = z),t > 0}.

In view of Theorem (4.1), we have the following corollary:
Corollary 4.2

E[T ANt|X =2) =2 ("', n] = E[T |\(t) ="', n] E[X~ 3]. (16)

Next we consider several instances of distributions for X. In view of Equation (16), in order to
compute the conditional expected value we have only to derive E[X~ 3].

e Let X be a discrete r.v., with probability function

D, ser=a
P(X=x2)=< 1—p, sex=c (17)
0, c.c.
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where a, ¢ # 0. Then
BT |n] = b} %(p(i) . (1)) (18)

e Let X ~Unif(a,c) (0<a<c). Ifb=1:

using Equation (16).

E[T |n] = n% (19)
whereas if b > 1:
n+ c(2)P —a(b)?
pir o =t (0 Y[l oy 0
o If X ~ Gama(m,a) (m > 3) then
EIT |n] = (ab)* <F(n 4;(%5((;1)— 5>). (21)

We note that if X ~ Ezponencial(1), then E[X ] does not exist, and therefore E[T |n] does
not exist either.

e Case 2: N|X =x~ PPNH(\t|x)), where

+o00
xr, selé€ U[23,23+1[
A(t|z) = 559 (22)
0, 36156U[23+1,23+2[
5=0

As before, we consider several situations for the r.v. X.
e If X has probability function given by Equation (17), then:

E[T |n]=p (Z + f F(&’na;))ﬂl —p) (% + joo F(F?;l(;‘s)). (23)

s=1 s=1

o If X ~Unif(a,c) (0<a<c), then

Bl ) = n' 2
cC—a

(24)

=1 cs I(n,cs) = T'(n+1,cs) — (as T'(n,as) — T'(n+ 1, as))
Z s(c—a) l ['(n) } .

s=1

11



5 Numerical Illustration

In this section we illustrate numerically the results that we derived in the previous two sections.

Assume that the arrival process is modelled by a NHPP, with linear arrival rate A(t) = at.
In Figure (1) we present the 3D plot of the conditional expected value of the relocation time T,
according to Equation (5), as a function of a and n.

Figure 1: Plot of E[T|n] for an NHPP with linear intensity function, as a function of a and n.

For example, if a = 2, then the plot of E[T|n] is the following:

E[Tx|n«]
14

n#

I7 50 100 150 200

Figure 2: Plot of E[T|n] for an NHPP with linear intensity function, as a function of n, with a = 2.

Using once again the value a = 2 as a reference value, we plot in Figure (3) the first derivative
of E[T|n] as a function of n. We conclude from the observation of the plot that the increase of
E[T|n] is larger with the increase of small values of n than with the increase of large values of n.
Therefore there is a larger increase in the expected relocation time for small values of n than for
larger values of n.

dE [T |n%

0.16
0.14
0.12]

50 100 150 200"
0.08
0.06] \
0.04

Figure 3: Plot of dE[T|n] as a function of n, with a = 2.

Suppose now that the intensity function is of monomial type, as in Equation (6). In this case,
setting a = 2, we get the following 3D picture (see Figure (4)).

12



Figure 4: Plot of E [T'|n] for an NHPP with monomial intensity function, as a function of b and n.

E[T*|nx_
5

4

20 20 60 8o 1007

Figure 5: Plot of E[T|n] for an NHPP with monomial intensity function, as a function of n.

For example, using the reference values a = 2 and b = 3 (quadratic type), we get the numerical
results illustrated in Figure (5).

If we consider the first derivative of E[T|n] in order to n, we conclude that the increase in E[T|n]
is larger for an increase in small values of n than in large values of n.

Next we consider a conditional Poisson process, also with monomial intensity rate but now
depending on a random variable, that we denote by X. If X has probability function given by
Equation (17), with p = 0.5, a = 1 and ¢ = 2, then the plot corresponding to F[T'|n] is as follows
(see Figure (6)):

Figure 6: Plot of E[T|n] for a conditional PP with monomial intensity function, as a function of b and n.
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6 Concluding Remarks

Nowadays, the problem of relocation production is especially relevant because we are facing a
period of globalization and market integration with multiple socio-economic implications. In this
work we focus on the perceived increase in efficiency needed to justify the decision to relocate
production units from one place to another, in a real options context.

In particular we considered the problem of the characterization of the time until (optimal)
relocation for different scenarios, with special emphasis in the non-homogeneous and the condi-
tional Poisson processes. For particular cases of rate functions we have been able to derive closed
mathematical expressions for the expected relocation times.

We note that the results that we have derived are in occurence with the economic rationale;
in particular the numerical illustrations show that there is a larger increase in the expected time
until relocation with small values of n(6*) (recall that n(6*) denotes the number of localizations
that become available until the optimal one, the one that triggers a relocation, becomes available)
than with larger values of n(6*).

The cases that we have dealt with in this paper (the particular instances of intensity functions
for the considered Poisson processes) can be extended to other situations. Therefore, other inten-
sity rates can be analysed in a similar way, but with different mathematical manipulations. In
addition, more moments of T' can be derived (namely, the variance), following the same kind of
analysis (but certainly with more tedious calculus).

Naturally, a simple framework as the one proposed here has some limits that could and should
be overcomed in another works.

References

A. Martin, J. M. and A. Akhigbe (1999). Economic exchange rate exposure of u.s.-based mnc’s
operating in europe. The Financial Review 34, 21-36.

Allayannis, G. and E. Ofek (2001). Exchange rate exposure, hedging, and the use of foreign
currency derivatives. Journal of International Money and Finance 20, 273-296.

Bartov, E. and G. Bodnar (1994). Firm valuation, earnings expectations, and the exchange rate
exposure effect. The Journal of Finance 44, 1755-1785.

Belderbos, R. and L. Sleuwaegen (1996). Japanese firms and the decision to invest abroad: Business
groups and regional core networks. Review of Economic and Statistics 78, 214—220.

Berry, H. (2002). The Influence of Location and Multinational Network Effects on Firm Value:
Evidence from US Manufacturing Firms, 1981-2000. Working Paper, Center for International
Business Education and Research at the UCLA Anderson Graduate School of Management.

Black, D. and W. Hoyt (1989). Bidding for firms. American Economic Review 79, 1249-1256.

14



Bodnar, G. and W. Gentry (1993). Exchange rate exposure and industry characteristics: Evidence
from canada, japan and u.s. Journal of International Money and Finance 12, 29-45.

Bowman, E. and D. Hurry (1993). Strategy through the options lens: An integrated view of
resource investments and the incremental-choice process. Academy of Management Review 18,
760-782.

Buckley, P. and M. Casson (1998). Models of the multinational enterprise. Journal of International
Business Studies 29(1), 21-44.

C. Head, J. R. and D. Swenson (1999). Attracting foreign manufacturing: Investment promotion
and agglomeration. Regional Science and Urban Economics 29, 197-218.

Campa, J. (1994). Multinational investment under uncertainty in the chemical processing indus-
tries. Journal of International Business Studies 25(3), 557-578.

Chakrabarti, A. (2001). The determinants of foreign direct investment: Sensitivity analyses of
cross-country regressions. Kyklos 54, 89-114.

Couto, G. (2006). Opg¢oes Reais e Decisao sob Incerteza no Processo de Relocaliza¢ao. Ph. D.
thesis, Instituto Superior de Economia e Gestao, Technical University of Lisbon, Portugal.

D. Carter, C. P. and B. Simkins (2003). Asymmetric Ezposure to Foreign-Exchange Risk : Finan-
cial and Real Option Hedges Implemented by U.S. Multinational Corporations. Working Paper,
Department of Finance, College of Business Administration, Oklahoma State University, 14
February.

D. Hurry, A. M. and E. Bowman (1992). Calls on high-technology: Japanese exploration of venture
capital investments in the united states. Strategic Management Journal 18, 85—101.

De-Meza, D. and F. van der Ploeg (1987). Production flexibility as a motive for multinationality.
Journal of Industrial Economy 35, 343—-352.

Devereux, M. and R. Griffith (1998). Taxes and the location of production: Evidence from a panel
of us multinationals. Journal of Public Economics 68, 335-367.

Dixit, A. and R. Pindyck (1994). Investment Under Uncertainty. Princeton University Press.

Drezner, D. (2004). The OQutsourcing Bogeyman. Working Paper, Foreign Affairs, May/June.
Published by Council on Foreign Affairs.

Dunning, J. (1998). Location and the multinational enterprise: A neglected factor? Journal of
International Business Studies 29(1), 45-66.

E. Bartov, G. B. and A. Kaul (1996). Exchange rate variability and the riskiness of u.s. multina-
tional firms: Evidence from the breakdown of the bretton woods system. Journal of Financial
Economics 42, 1056—132.

15



E. Chow, W. L. and M. Solt (1997a). The economic exposure of u.s. multinational firms. The
Journal of Financial Research 20, 1991-210.

E. Chow, W. L. and M. Solt (1997b). The exchange-rate risk exposure of asset returns. Journal
of Business 70, 105-123.

Farzin, Y., K. Huisman, and P. Kort (1998). Optimal timing of technology adoption. Journal of
Economic Dynamics and Control 22, 779-799.

G. Bekaert, C. Erb, C. H. and T. Viskanda (1998). Distributional characteristics of emerging
markets returns and asset allocation. Journal of Portfolio Management 21.

Haaparanta, P. (1996). Competition for foreign direct investments. Journal of Public Eco-
nomics 63, 141-153.

Haufler, A. and I. Wooton (1999). Country size and tax competition for foreign direct investment.
Journal of Public Economics 71, 121-139.

Huisman, K. (2000). Technology Investment: a Game Theoretic Real Options. Ph. D. thesis,
Tilburg University, Department of Econometrics, CentER Dissertation Series Centre for Quan-
titative Methods in Eindhoven, Tilburg, The Netherlands.

Hymer, S. (1960). The International Operations of National Firms. Ph. D. thesis, MIT, Cambridge,
MA.

J. Esary, F. P. and D. Walkup (1967). Association of random variables with applications. Ann.
Math. Statist. 38, 1466—1474.

Jorion, P. (1990). The exchange rate exposure of u.s. multinationals. Journal of Business 63,
331-345.

Kogut, B. (1983). Foreign Direct Investment as a Sequential Process. In C.P. Kindleberger e D.B.
Audretsch (Ed.), The Multinational Corporation in the 1980’s. MIT Press, Cambridge, MA,
38-56.

Kogut, B. (1985). Designing global strategies: Profiting from operating flexibility. Sloan Manage-
ment Review 26, 27-38.

Kogut, B. (1989). A note on global strategies. Strategic Management Journal 10, 383-389.

Kogut, B. and N. Kulatilaka (1988). Multinational Flexibility and the Theory of Foreign Direct
Investment. Working Paper, 88-10, Reginald H. Jones Center for Management Policy, Strategy
and Organization, University of Pensylvania, July.

Kogut, B. and N. Kulatilaka (1994). Options thinking and platform investments: Investing in
opportunity. California Management Review 36(2), 52-71.

McGrath, R. (1997). A real options logic for initiating technology positioning investments.
Academy of Management Review 22(4), 974-996.

16



Miller, K. and J. Reuer (1998a). Asymmetric corporate exposures to foreign exchange rate changes.
Strategic Management Journal 19, 1183-1191.

Miller, K. and J. Reuer (1998b). Asymmetric corporate exposures to foreign exchange rate changes.
Strategic Management Journal 19, 1183-1191.

Miller, K. and J. Reuer (1998¢). Firm strategy and economic exposure to foreign exchange rate
movements. Journal of International Business Studies 29(3), 493-514.

Pantzalis, C. (2001). Does location matter? an empirical analysis of geographic scope and mnc
market valuation. Journal of International Business Studies 32(1), 133-155.

Rangan, S. (1998). Do multinationals operate flexibly? theory and evidence. Journal of Interna-
tional Business Studies 29(2), 217-237.

Reuer, J. and M. Leiblein (2000). Downside risk implications of multinationality and international
joint ventures. Academy of Management Journal 43(2), 203-214.

Rivoli, P. and E. Salorio (1996). Foreign direct investment under uncertainty. Journal of Interna-
tional Business Studies 27(2), 335-354.

Ross, S. (1996). Stochastic Processes. New York: Wiley.

S. Martzoukos, N. P. and L. Trigeorgis (2002). Capital Investment Decision Networks with Partial
Reversibility and Stochastic (Utilization-Dependent) Switching Costs. Working Paper, Septem-
ber, University of Cyprus.

Sanchez, R. (1993). Strategic Flexibility, Firm Organization, and Managerial Work in Dynamic
Markets: A Strategic-Options Perspective. In P. Shrivastava, A. Huff, J. Dutton (Eds.). Ad-
vances in Strategic Management, 9, 251-291. Greenwich, CT: JAI Press.

Siegfried, J. and L. Evans (1994). Empirical studies of entry and exit: A survey of the evidence.
Review of Industrial Organization 9, 121-155.

Simkins, B. and P. Laux (1996). Derivative use and the Exchange Rate Risk of Large U.S. Corpo-
rations. Conference Proceedings: The Second International Finance Conference, Georgia Tech
University.

Sleuwaegen, L. and E. Pennings (2002). New Empirical Evidence on the International Relocation
of Production. Working Paper, Erasmus University Rotterdam.

17



7 Appendix

Before we present the proofs of the theorems that we presented in the above sections, we make a
small interlude concerning main properties of the gamma functions, as many results that we have
derived use the gamma functions and respective properties.

We recall that such functions have the following known properties: for a € Z:

['(a)=(a—=1), T'(a)=T(a,z)+7(a,z) (25)
Q/F(a, 2) dz = 2T(a,2) — D(a+ 1, 2), w - —w = 2% le . (26)
Furthermore:
a—1 Zk
I'(a,2) =(a—1)e? Ik (27)

and if R(a 4+ b) > 0 and R(a) > 0:

+oo
/ t" I T(b, t) dt =
0

Next we present two results concerning the gamma function, that will be useful in the sequel. The
proof can be found in the appendix.

(28)

Lemma 7.1 Forn € N and a € R:
~D(k,a) T(n+1,a)—aT(n,a)

2T T) 29
—T(k+a) T(n+a)
; T(k+1)  aT(n) (30)

Proof of Lemma (7.1):

From the definition of the gamma and upper gamma functions, and from Equation (27), it follows
that

Fé?n;b) N ; e k:!a ' (31)
Thus -1 n—1
T oWl ) al s Caen)] @
and therefore -
e S



Now Equation (29) follows, in view of Equations (33) and (26).

In order to prove Equation (30) we note that in view of the definition of the gamma function,
it follows that:

n—1 F n—1 4o
o k+a—1 _—t
Zr _ZFkJrl(/ t ¢ dt)

k=0 =0

+00 tk
—t a—1
(S8
+o0o
—t a—1 <n t)
e (et ¢

- W(fo "1 D(n, 1) dt> (34)

where in Equation (34) we used Equation (27). Now the result follows, in view of the definition
of the gamma function.

Lo~ o~ T

O
Proof of Theorem (3.1):
It follows from Equation (4) that:
+oo 2 n
E[T |n] = Z =y ()mt
n! Jo
n—1
1 P e 1
— Z —'<9> / e 2 z”(—z_%> dz
“=nl\2 0 2
n—1
1 a® [T _.
=D ipm / % Yz (35)
- 0

Using Equation (30):




which proves Equation (5).

Proof of Theorem (3.2):

From Equation (4) it follows that:

= ([T ),

n=0

Performing a change of variable, z = “—btb, and using the gamma definition and the relation (30),
we end up with:

n—1 +oo n
E[T |n] = (/ e (b z) Ta dz>
—\Jo n!
n—1 % +00
_ Z((é) L/ e 71 dz)
“~\\a/ bnlJj
_(0) S (Rt )
~\a “~\bI(n+1)
O
Proof of Theorem (3.4):
It follows from Equation (4) that:
1 +00 2s5+1 25+2
E[T |n] = ——; Z (/ L(n,a(t —s)) dt +/ I'(n,a(s+1)) dt )
(n - 1)' s—0 2s 2s+1 (36)

_ ﬁij (/223+1F(n,a(t—s)) dt +T(n,als+1)) )

S

In view of the first relation of Equation (26), we have the following equality:

S

25+1 1
/2 L'(n,a(t—s)) dt = A (—as I'(n,as)+a(s+1) I'(n,a(s+1))+T(n+1,as)—T'(n+1, a(s+1))>
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and therefore

=
~
=
I
‘H
NgF
8
1
IS
/|\\
IS
&
=
=
IS
&
+
=
w
+
=
=
3
=
w
i
=
+
=
3
4
—_
IS}
&

C(n+1) f T(n, als + 1)) (37)
aT'(n) o I'(n)
+oo
n ['(n,as)
at ; T'(n)
[l
Proof of Theorem (3.5):
From Equation (4) it follows that:
1 +oo 2s5+1 s—1 2542 s
E[T |n]=——=)_ (/ P(n, Y a;+ a.(t —2s)) di +/ L(n, » a;) di >
I'(n) 0 \J2s o 2s+1 =0 (38)
1 +o00 2s+1 s—1 ]
- (/ I‘(n,Zai—i-as(t—Zs)) dt +T'(n, Zai)).
L(n) s=0 \/2s i=0 i=0
Now, using the integral property of the gamma function (26):
2s+1 s—1 1 s s s—1 s—1
/ ['(n, Zai +as(t —2s)) dt = — {Z a; I'(n, Zaj) - Zai I'(n, Zaj)—l—
2s i=0 s 1750 §=0 i=0 =0 (39)

s—1 s
I'(n+1, Zai) —T'(n+1, Zai)].
i=0 i=0

Plugging this last result in Equation(38), we get Equation(14), as

+o00 s—1 s—1 s—1
B = =3 ([t Zag X a Tl S+ T L -

e, St o)
e e
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Proof of Theorem (3.6):

Using (4), we conclude that:

E[T |n] =

2s+1

that

2s+1
! 'Z</ I'(n, b(t —s) 4+ as) dt +
2542
+ I'(n, b(s+1)+a(t—s—1)) dt)
23+11 .
b > (A(s) + B(s)).

2s8+2

where A(s) = /2 I'(n, b(t—s)+as) dt and B(s) = /2 I'(n, b(s+1)+a(t—s—1)) dt. Note

s+1

n—1

(n—l tS-i-aSZ t_8+a8) dt

n 1 1 2s+1
= (=1 y/ MR (bt — ) + as)" dt
k=0 2s
n! b(s+1)+as
1 1
= (n—1)! _'/ - e dz
k=0 K ra)s b
1 ' n—1 1
= b | D k41 (0t a)s +b) =k +1,(b+a)s)]
k=0 "
— 1) n—1 1
:(nb ) i [L(E+1.(b+a)s) =Dk + 1, (b+a)s +b)].
k=0
and, similarly,
(n . 1)' n—1

7 [T(k+1,(b+a)s+b) —T(k+1,(b+a)(s+1))].
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Therefore:

+o0o

_ ;%(%mﬁ - ;(b;ﬁ {r(m 1 (b+a)(s + 1)) — T(k + 1,<b+a>s+b>D

— Z%(%’ + m(b;ba) [F(k+1,(b+a)8+b) —T(k+1,(b+a)(s+ 1))])

Q_ b—a\ R~ [T(k+1, (b+a)s+b) —T(k+1, (b+a)(s+1))
b+( )Z{ NCERY }

Alternatively, from Equation (4) we conclude that:

A(s) = % {(b +(b+a)s) T(n,b+ (b+a)s) — (b+a)s T(n,(b+a)s)+T'(n+1,(b+a)s)—
—F(n+1,b+(b+a)s)}.

and

Bls)= [((b T+ a)(s+1) T(m, (b+a)(s + 1)) — (b+ (b -+ a)s) Tn,b+ (b+a)s)—

—T(n+1,(b+a)(s+1)+T(n+1,0+ (b+a)s)

and thus the result follows.

Proof of Theorem (4.1):

As
BT |n] = / BT X =] dF ()
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it follows that

o= [, (2)

B %F(n +3)
=b I'(n)
I'(n+ %)

=" T
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