Skilled Workers, Immigration Options and Optimal Investment in Human Capital

Hamed Ghoddusi & Baran Siyahhan

Feb. 2009
Motivation

- Investment in human capital as a highly irreversible decision
- Uncertainties about the future pay-off of investment
- Human capital investment and real options: education as a multi stage growth option
- Skilled labor immigration as a global problem affecting both developed and developing countries
Forced vs selective immigration

Immigration possible only with human/financial capital (the US, Canada, Australia, Germany’s IT programme) or without this requirement (most of Europe)

Benefits/costs to both sender and host countries
Our Work

- Impact of immigration option on investing in human capital
- Innovation: two types of human capital, *local* and *global*
- Tradeoff between universal and local human capital
 - Full transferability of universal human capital
 - Only a portion $\alpha \in [0, 1]$ of local human capital can be put to productive use in the destination country
- Expected results: Immigration option affects the rate of investment in global human capital positively and the rate of investment in local one adversely
- Total effect?
- A partial not general equilibrium model, wage differential is exogenous
Real Options and Investment in Human Capital: Mainly discrete time

- Human capital and exit option: Katz and Rapoport (2005)
- Higher return on human capital due to the existence of option to wait: Jacobs (2007)
- Education and option to shutdown: Hogan and Walker (2007)

- **Immigration and Real Options**
 - Immigration quotas and option value: Moretto and Vergalli (2008)
 - Uncertainty and option to wait before immigration: Locher (2002)

- **Immigrants Human Capital**
 - Complementarity of language: Chiswick and Miller (2003), Berman et al. (2002)
 - No positive economic return from homeland education: Hartog and Zorlu (2007)
Variations in Modelling

- Finite vs. infinite time horizon
 - Likely to affect the optimal investment policy
 - May not be optimal to accumulate global human capital if "close" to the termination time
 - May not be optimal to migrate if close to the end of career
 - Acknowledge and start with the infinite horizon case

- Probability of immigration, e.g. Quotas
 - Aim is to capture the immigration policy of destination: friendly or hostile
 - Either add an exogenous probability, p of being able to immigrate or assume that there is some underlying process by which the destination becomes friendlier (e.g. a Poisson process)
 - Acknowledge and ignore for the moment

- Continue or stop accumulating global human capital after immigration
The Agent and Her Decision Problem

- A risk-neutral skilled person with an option to work abroad
 - Interim or original country
- Two types of skills accumulation
 - Stock of *universal* human capital, \(g(t) \)
 \[
 dg(t) = u(t)dt
 \] (1)
 - Stock of *local* human capital, \(k(t) \)
 \[
 dk(t) = q(t)dt
 \] (2)
- Investment in human capital is costly:
 \[
 c(u, q) = \frac{c_1}{2} u^2 + \frac{c_2}{2} q^2
 \] (3)
Normalize the wage in the host country to 1

Exercise of option leads to a wage gain (destination/host):

\[dw(t) = \mu w(t)dt + \sigma w(t)dz(t) \]

There is a lump-sum (opportunity) cost of moving of \(I \) due, for instance, to losing one’s social network, sentiments and memories, permanent residence, any current pension plans etc.
In the host country, before immigration, the agent’s payoff is:

\[\Pi^h(g, k, w) = \left[g(t) + k(t) - c(u, q) \right] \] \hspace{2cm} (5)

After immigration, the payoff is given by:

\[\Pi^d(g, k, w) = w \left[g(t) + \alpha \bar{k} \right] - c(u) \] \hspace{2cm} (6)

Note: after immigration, only investment in global human capital continues, that is:

\[\bar{k} = k_T \]
Statement of the Problem

- Before immigration:

\[\max_{u,q,\tau} Z(g, k, w) = E_0 \left\{ \int_0^\tau \Pi^h e^{-rt} dt + e^{-r\tau} [V(g, w) - l] \right\} \]

s.t. (1), (2), (4) \hspace{1cm} (7)

- After immigration:

\[\max_u V(g, w) = E \left\{ \int_0^\infty \Pi^d e^{-rt} dt \right\} \]

s.t. (1), (4) \hspace{1cm} (8)
Suppose the option to immigrate has been taken. The Bellman equation is:

\[V = \left[w(g + \alpha k) - \frac{c_3}{2} u^2 \right] dt + (1 - r dt) E[V(g', w + dw)] \]

(9)

Using Itô and optimizing over \(u \) yields:

\[u^* = \frac{V_g}{c_3} \]

(10)

Analogous arguments establish that before the immigration decision, the agent accumulates according to:

\[
\begin{align*}
& u^* = \frac{W_g}{c_1} \\
& q^* = \frac{W_k}{c_2}
\end{align*}
\]

(11)
Plugging the optimal policies into the Bellman equations we get

- After immigration

\[
\frac{1}{2} \sigma^2 w^2 V_{ww} + \mu w V_w + \frac{1}{2c_3} V_g^2 - rV + w(g + \alpha \bar{k}) = 0 \tag{12}
\]

- Before immigration

\[
\frac{1}{2} \sigma^2 w^2 Z_{ww} + \mu w Z_w + \frac{1}{2c_1} Z_g^2 + \frac{1}{2c_2} Z_k^2 - rZ + (g + k) = 0 \tag{13}
\]
An Attempt to Make the Model More Tractable

- Rewrite the motion of deterministic states

\[
\begin{align*}
\frac{dg(t)}{dt} &= ug(t)dt \\
\frac{dk(t)}{dt} &= qk(t)dt
\end{align*}
\]

(14)

- Also change the payoff functions. Assume, respectively, before and after immigration:

\[
\begin{align*}
\Pi^h &= p(g, k) - 0.5c_1u^2 - 0.5c_2q^2 \\
\Pi^d &= wg - 0.5u^2
\end{align*}
\]

(15)

with

\[
\frac{dy(t)}{dt} = (\mu + u)y(t)dt + \sigma y(t)dz(t)
\]

(16)
Recast of the Problem
Move backwards: suppose the option has been exercised

The problem is:

\[
\max_u \mathbb{E} \left\{ \int_0^\infty (y - 0.5u^2)e^{-rt} \, dt \right\} \quad \text{s.t. (16)}
\]

Optimization yields:

\[
 u^* = yV_y
\]

The HJB now satisfies:

\[
0.5\sigma^2 y^2 V_{yy} + \mu yV_y + \frac{y^2 V_y^2}{2} - rV + y = 0
\]

⇒ Second-order nonlinear ODE!
Before Immigration

- Separate value function into "assets-in-place" and the option:

\[Z(g, k, w) = f(g, k) + h(y) \] \hspace{1cm} (20)

- Assets-in-place have the following structure:

\[f(g, k) = p(g, k) - 0.5c_1 u^2 - 0.5c_2 q^2 \] \hspace{1cm} (21)

- Optimization yields:

\[
\begin{align*}
 u^* &= gf_g \\
 q^* &= kf_k
\end{align*}
\] \hspace{1cm} (22)
The solution depends on the form of \(p(g,k) \). Some alternatives:

1. **Multiplicative**
 \[
 p(g, k) = gk
 \]
 \[(23)\]

2. **Cobb-Douglas**
 \[
 p(g, k) = g^\theta k^\gamma, \theta, \gamma < 1, \theta + \gamma \leq 1
 \]
 \[(24)\]

3. **Additive**
 \[
 p(g, k) = g + k
 \]
 \[(25)\]

Then, conjecture \(f(g, k) = f_1(g) + f_2(k) \)

\[
\begin{cases}
0.5g^2\left(\frac{df_1}{dg}\right)^2 - rf_1 + g = 0 \\
0.5k^2\left(\frac{df_2}{dk}\right)^2 - rf_2 + k = 0
\end{cases}
\]
\[(26)\]
What about the Option Component?

Analogous to an investment option à la Dixit&Pindyck

\[
\begin{align*}
0.5\sigma^2 y^2 h_y y + (\mu + u^*) y h_y - rh &= 0 \\
\text{s.t.} \\
h(0) &= 0 \\
h(y^*) &= V(y^*) \\
h_y(y^*) &= V_y(y^*)
\end{align*}
\]

BUT: \(u^* = gf_g \Rightarrow \) Not so trivial to solve!
Policy Implications

- An individual immigrant is modeled. What drives her decision?
- Goal: How could countries attract more skilled labor? What are the tools to accomplish that?
 - Providing tax relief?
 - Subsidies (e.g. reducing cost) for integration to the country: ease local human capital investment
 - Pension plans
 - Ease of immigration/bureaucracy
 - Force immigrants to gain local human capital prior to immigration
 - Make labor market requirements (specially in highly skilled sectors) more international
- Effect of transferability of local human capital: France vs Denmark
Conclusion

- Option based model for skilled workers’ human capital investment decision

Comments on:
- Is the problem interesting enough?
- Any idea for analytical solutions?
- Further insights and policy analysis from the model?