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Abstract

This paper addresses the problem of the strategic planning of an intermodal transporta-
tion chain, and analyses potential risk transfers between agents in the chain derived from the
real options embedded in the underlying agreements for the operations of the chain. A plan-
ning methodology is presented that enables the calculation of the Expanded Net Present Value
(ENPV) when the material resources necessary to carry out the project (fleets and terminals)
are not known a priori, and the choice of resources may change throughout the planning period.
Based on the results of such planning, we propose methods to assess the transfers of risk among
agents in the chain. Specifically, we focus on risks transfers arising from clauses regulating
the operation of a compensation fund that can refund those agents who are more exposed to
risk derived from uncertainty concerning demand for the service. The article also discusses the
terms of the mechanisms that regulate a possible departure of one of the agents. Such clauses
are stated in terms of partial or total put and call options.

1 Introduction

Over the last decade problems inherent in the road transportation system (congestion, envi-
ronmental impact, etc.) have prompted government authorities to consider the need to design
mixed transport chains as an alternative to the difficulties currently posed by the sustainability
of growth in road transportation over the short and medium-term ([3], [6], [7], [26]).

It is within this context that discussion has arisen about Motorways of the Sea (MoS). These
are rapid connections between two ports, and are alternatives to highly congested road networks

∗Corresponding author: m.carmen.juan@uv.es

1



that cross areas already suffering severe environmental externalities. An MoS is the result of
combined and interconnected operations managed by the following agents:

1. Two government authorities (of the same or different countries) responsible for efficient
border management and access;

2. Two Port Authorities (PAs) responsible for port management;

3. Two Terminal Operators (TOs) responsible for ground operations (loading and unloading);

4. One or more carriers responsible for maritime transportation (shipping companies);

5. One or more charter companies, which may participate in the formation of the fleet.

As an alternative mode of transport in competition with roads, an MoS must be competitive
in two key areas: time and cost for the user. This coupled with the fact that large investments in
infrastructure (port terminals) and superstructure (terminal equipment and fleet) are required
means that such a transport chain would be highly risky from a commercial point of view.

Moreover, taking into account the different risk borne by each agent, an MoS cannot be the
result of independent and uncoordinated activities by agents following their own business plans
– because the failure of any of the agents inevitably leads to the failure of the chain.

Therefore, the operation of an MoS requires strategic planning, as well as the design of
a strategic alliance (SA). Strategic planning is required in order to determine the necessary
resources (fleet and terminals) for the operation, and its growth over time including economic
profitability criteria. From the viewpoint of real options, planning will present the problem of
determining the Expanded Net Present Value(ENPV) when resources are not known a priori,
and may change at given moments during the planning period.

The purpose of the SA is to set a general framework that regulates sector agreements in
the land business and maritime business.1 The challenge is how to evaluate the strategic and
operational options included in these agreements, so that the transfer of risk among agents in
the chain can be quantified.

Specifically, this article focuses on risks transfers arising from clauses regulating the operation
of a compensation fund that can refund those agents who are more exposed to risk derived from
uncertainty concerning demand for the service. These funds can absorb some of the possible
shortfalls with respect to initial expectations, but agents benefiting from them must repay any
withdrawals after the business has been consolidated.

The article also discusses the terms of the mechanisms that regulate a possible departure of
one of the agents. Such clauses are stated in terms of partial or total put and call options. The
article explains the structure of these terms and a methodology for the quantitative analysis of
risk transfers by analyzing the embedded strategic real options.

The paper is structured as follows: section 2 discusses the methodology proposed for solving
the problem of strategic planning. Section 3 discusses the design of the terms, and proposes
algorithms that enable an evaluation of the real embedded options; and the risk transfers arising
from these options.

2 Strategic planning of the intermodal (land-maritime)

transportation chain

The determining factor in the strategic planning of a land-maritime transportation chain
is the determination of the fleet and its changes throughout the planning period. From this

1We understand the land operations business to include the ground operations, i.e. loading and unloading ships in
terminals and port related activities (access, customs, pilotage, etc). This activity involves Terminal Operators (TOs)
and Port Authorities (PAs) in the relevant sector agreement. The maritime business refers to the shipping operations
(fleet management) and includes several shippers if they jointly operate a single line, as well as chartering companies,
and/or government authorities.
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analysis, it is possible to also deduce the sequence of investment in port infrastructure and
superstructure.

Let us consider a long-term planning period and assume that, due to variations in uncertain
demand, this period can be divided into sub-periods. Let’s also assume that the ships operating
in each of the sub-periods are chartered, which provides flexibility when matching the composi-
tion of a fleet to an uncertain demand. The planning problem addressed in this section can be
stated as follows: for each of the sub-periods a fleet mix (number and type of vessels) will be
selected that meets demand and constraints frequency, and maximizes the NPV for the period.
Since the planning period is long-term, we assume that certain relevant inputs of the problem
(import and export demand and fuel prices) are stochastic and can be modelled using scenarios.

From the standpoint of operational research, the problem of planning is a scenarios opti-
mization problem with multiple interconnected decision dates. Due to flexibility concerning
the mix fleet, from the viewpoint of real options, the problem to be solved is the equivalent
to calculating an ENPV when the material resources necessary to carry out the project (fleets
and terminals) are unknown a priori. This requires the resolution of a series of optimization
problems in various scenarios.

Moreover, as the fleet operates under charter, the different costs of contracts in the short,
medium, and long-term requires that the decision regarding the composition of the fleet takes
into account future decisions. Therefore, planning should be made through a backward process.

The methodology proposed addresses the following points:

1. The generation of a multi-dimensional underlying scenarios tree for the problem. At each
decision date, the tree provides the full probability distribution of the scenarios for that
date. The tree also contains the corresponding transition probabilities between scenarios
at consecutive dates.

2. For each of these scenarios in the tree, an optimization problem will be solved that provides
the optimal fleet mix, as well as the optimal value of the profits. Optimization problems
solved in final nodes (at expiry date) are distinguished from those related to intermediate
nodes. For the latter, the objective function of the model incorporates the optimal solution
of the nodes related at a future consecutive date, as well as the corresponding transition
probabilities.

3. The resolution of these optimization problems is made backwards, modifying the objective
function as indicated previously. By combining the optimal profits associated with each
scenario at each of the decision dates with its probability of occurrence, the expected
profits of the business (ENPV) as well as the probability distribution of the ENPV are
obtained. Risk measures can be deduced from this result. The fleet mix for each scenario
of the tree is also obtained.2

The research in this section is structured as follows: Section 2.1 describes the general al-
gorithm for the generation of multinomial trees, both from the intuitive point of view found
in Section 2.1.1, and the formal approach found in Section 2.1.2. The implementation of this
algorithm with a numeric example is shown in 2.1.3. Section 2.2 discusses the complete strategic
planning process. Construction of the base optimization problem begins in 2.2.1 and continues
in 2.2.2 with the structure of the backward planning process. In 2.2.3 the strategic planning of
the fleet mix of an MoS.

2Obtaining a ‘robust’ solution for the scenario optimization problem does not make sense in a planning process of
this type. This is because of the NPV associated with the ‘robust’ fleet for each period hides the risk of the project
provided by the tree of optimal solutions, which is key to the evaluation of risk transfer. At the same time, a ‘robust’
fleet has no meaning for the decision-maker, and hides valuable probabilistic information regarding the fleet mix.
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Figure 1: Generation of an one dimensional tree using simulation

2.1 Algorithm for generation of multi-dimensional scenario trees

The construction of one dimensional and multi-dimensional scenario trees has been widely
studied from different points of view and has been applied to various fields such as risk evaluation
and decision making. A partial list of works includes: [1], [2], [11], [27], [9], [12], [18], and [23].
The most important contribution to the field of proposed methodology is that it enables multi-
dimensional trees to be built for any type of dynamic followed by the underlying processes
because it does not use any of the specific characteristics of the stochastic processes involved.

2.1.1 An intuitive approach to the proposed design

The proposed algorithm can be defined as an algorithm for generating non recombining trees
with multiple underlying processes using Monte Carlo simulation. The one-dimensional case is
described below to illustrate intuitively it design and the key ideas on which it is based.

Suppose we have a unique underlying S, modelled by a stochastic process for a given time
horizon. A Monte Carlo simulation of the process enables us to obtain a significant number M of
paths with its behaviour over time (M is large enough so that the statistical criteria considered
are consistent). Suppose we have two possible decision dates: t = 1 y t = 2; as shown in Figure
1.

For each decision date, the simulation process gives us M outcomes of the underlying pro-
cesses (which we have denoted Sk(1) y Sk(2) respectively for k = 1, . . . , M y t = 1, 2). Using a
standard statistical treatment, we obtain the histogram associated with each of these datasets.
The representatives of each of the classes of histogram, together with their corresponding prob-
abilities of occurrence, will constitute the tree scenarios for each of the decision dates. Figure
2 shows this process, where the space scenarios at each decision date have been denoted as
(er(1), pr

1) y (er(2), pr
2).

The transition probability between two scenarios ei(1) and ej(2) at consecutive dates is
obtained by computing the relative frequency of paths that pass across the scenario at the first
date ei(1) and the scenario of the second date ej(2) with respect to all the paths that pass
through ei(1). This will complete the construction of a one-dimensional scenario tree using
Monte Carlo simulation.

When applying the methodology described above to a multi-dimensional case, we must solve
the problem of the additional computational cost resulting from the use of multiple underlying
processes, the so-called curse of multi-dimensionality. Next, we describe intuitively how the
algorithm proceeds and a mathematical formalization of the ideas described below can be found
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Figure 2: Scenario spaces in a one dimensional tree

in Section 2.1.2.
Suppose we have m underlying Si, and in the same way as the one dimensional case, we

set two possible decision dates. A Monte Carlo simulation of the m stochastic processes Si

enables us to obtain M outcomes for each of the decision dates. However, these outcomes will
be m-tuples (denoted (Sk

1 (1), . . . , Sk
m(1)) and (Sk

1 (2), . . . , Sk
m(2)) respectively) instead of real

numbers as in the one-dimensional case.
The statistical treatment of the m-tuples obtained requires the construction of an m-dimensional

histogram. To do this, we partition the (m-dimensional) space of outcomes in class, each one
of them will be an m-dimensional cube (hypercube) and having an associated m-tuple as a rep-
resentative (the geometric centre of the hypercube, in the same way as the one-dimensional
representative, is usually the geometric centre of the interval constituting the class). To make
the above information computable, a bijection is defined so that each m-dimensional cube is
uniquely determined by a scalar, termed its label. The multi-dimensional problem thus becomes
a one-dimensional problem and can be implemented using the methodology described above.

2.1.2 Analytical formulation of the algorithm for constructing multi-dimensional

trees

Let’s consider m discrete stochastic processes (correlated) denoted by Si, i = 1, ...,m. Sup-
pose a planning interval strategic [0, τ ] and denote by τ0 the initial decision date. We set N
sub-periods with a duration of T = τ/N . Then the set {τ1, ..., τN} of all the possible decision
dates is given by τj = j · T, j = 1, ...,N − 1, y τN = N · T = τ .

The algorithm proceeds as follows:

• STEP 1: Monte Carlo simulation of the processes Si (i = 1, ..., m) in the planning interval
[0, τ ].

We can see that the k-th outcome of the simulation provides an m-dimensional path given

by
˘`

Sk
1 (j), ..., Sk

m(j)
´¯N

j=1
, where Sk

i (j) denotes the k-th outcome of the process Si at the date
τj .

For each date τj , we consider that the set O(j) ⊆ R
m contains all the m-dimensional vectors

of the outcomes. If M denotes the total number of outcomes3 , then O(j) is the set of M elements

3The minimum adequate value for M can be determined by establishing a confidence interval for those statistics
considered in the probability distribution of each process Si, i = 1, . . . ,m at each date τj , j = 1, . . . , N .
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given by

O(j) =
n“

Sk
1 (j), ..., Sk

m(j)
”oM

k=1
.

Thus, each set O(j) needs for memory storage a matrix sized M × m. In what follows, O(j)
refers indiscriminately to all outcomes and their matrix representation. The three-dimensional
matrix sized M × m × N , and given by O = (O(j))N

j=1, contains the complete information for
the simulation performed.

• STEP 2: Construction at each date τj (j = 1, . . . , N), of an m-dimensional interval C(j)
containing the set of O(j) outcomes.

Let’s consider the interval given by C(j) = [a1(j), b1(j)] × · · · × [am(j), bm(j)], where

ai(j) = Min
n

Sk
i (j) | k = 1, . . . , M

o

∀i = 1, ...,m

bi(j) = Max
n

Sk
i (j) | k = 1, . . . , M

o

∀i = 1, ...,m

Therefore, C(j) satisfies O(j) ⊆ C(j).

• STEP 3: Generation at each date τj (j = 1, . . . , N) of a disjointed partition P (j) of the
m-dimensional interval C(j).

For each i (i = 1, ...,m), consider a disjointed partition of the interval [ai(j), bi(j)] in δi(j)
sub-intervals. An adequate value for δi(j) is determined establishing a 5% of acceptable discrep-
ancy for certain statistics, which are obtained simultaneously as a result of the simulation, and
in turn from the histogram of frequencies associated with the partition Pi(j) over [ai(j), bi(j)]
which we will build below.

Denote by

n

a0
i (j) = ai(j), a1

i (j), . . . , a
δi(j)
i (j) = bi(j)

o

i = 1, ...,m

all the points of the partition, and by Pi(j) (i = 1, ...,m) the corresponding set of parti-
tion sub-intervals. For the sake of simplicity, we identify the partition of an interval with the
set of generated sub-intervals. Thus, a multi-dimensional disjointed partition P (j) of an m-
dimensional cube C(j) is defined as the Cartesian product of the sets of δi(j) elements Pi(j).
An element of P (j) is an m-dimensional interval hr(j) given by

hr(j) =
h

a
nr

1
(j)−1

1 (j), a
nr

1
(j)

1 (j)
i

× · · · ×
h

a
nr

m
(j)−1

m (j), a
nr

m
(j)

m (j)
i

,

where r=1,. . . ,R(j), and R(j) =
Qm

i=1 δi(j) being the cardinal of P (j).

• STEP 4: For each date τj(j = 1, . . . , N), the scenarios of the tree are defined as the
corresponding space of scenarios .

For each hr(j) ∈ P (j), the m-dimensional vector er(j) ∈ hr(j) whose components are the
half-way points of each of the intervals of hr(j) is termed a scenario(or node)of the tree at

τj . The set E(j) = { er(j) }R(j)
r=1 of all the scenarios or nodes in τj are termed the space of

scenarios at τj .

• STEP 5: Construction of a simple representation of each multi-dimensional partition
P (j) (j = 1, . . . , N).

Note that each m-dimensional interval hr(j) is uniquely determined by the m-tupla (nr
1(j), . . . , n

r
m(j)) ∈

Zm and so:

hr(j) =
h

a
nr
1
(j)−1

1 (j), a
nr
1
(j)

1 (j)
i

× · · · ×
h

a
nr

m
(j)−1

m (j), a
nr

m
(j)

m (j)
i

.
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Therefore, we can establish a bijection4 so that each m-tupla (nr
1(j), . . . , n

r
m(j)) corresponds

to an integer lr(j) given by the expression

lr(j) =

m−1
X

i=1

nr
i (j) · δi+1(j) · . . . · δm(j) + nr

m(j).

Consequently, hr(j) is uniquely determined by lr(j). We will call lr(j) the label of hr(j). The

set { lr(j) }
R(j)
l=1 of all the labels constitues a simple representation of P (j), and this set can be

stored in a matrix sized 1 × R(j).

• STEP 6: Construction of a simpe representation of the matrix M × m O(j), as well
as the corresponding simple representation of the matrix M × m × N O = (O(j))N

j=1

(j = 1, . . . , N).

For each
`

Sk
1 (j), ..., Sk

m(j)
´

∈ O(j), there is a unique rk, 1 ≤ rk ≤ R(j), so that
`

Sk
1 (j), ..., Sk

m(j)
´

∈
hrk (j). In this way, it is possible to establish an injection so that each m-dimensional vector
`

Sk
1 (j), ..., Sk

m(j)
´

∈ O(j) corresponds to a label lrk (j) associated with the corresponding hrk (j).
Through this injection, the matrix M × m O(j) is replaced by the vector of integer numbers
M × 1 L(j) and the matrix M ×m×N O = (O(j))N

j=1 is also replaced by the matrix of integer

numbers M × N L = (L(j))N

j=1.

• STEP 7: Construction of a complete probability distribution for the scenario space E(j)
(j = 1, . . . , N).

For each date τj , let’s consider the discrete probability distribution where each er(j) ∈ E(j)
has a probability pr

j given by the ratio between number of times the label lr(j) of er(j) appears
as a component of vector L(j), and the total of outcomes in the simulation M. If we denote with
λs(j) (s = 1, . . . , M) the components of vector L(j), then pr

j is given by the expression:

pr
j =



0 si lr(j) /∈ Lj

| { s | λs(j)=lr(j), s=1,...M } |
M

si lr(j) ∈ Lj

• STEP 8: Calculation of the transition probabilities between consecutive scenarios on the
tree.

Suppose two consecutive decision dates τj y τj+1. Let’s consider the corresponding vectors
L(j) and L(j + 1). Let’s build the matrix M × 2 with columns L(j) and L(j + 1): L(j, j + 1) =
(L(j) |L(j + 1) ). For each er(j) ∈ E(j) and each et(j + 1) ∈ E(j +1), the transition probability
pr,t

j,j+1 between er(j) y et(j +1) is defined as the ratio between the number of rows of the matrix

L(j, j + 1) equal to
`

lr(j), lt(j + 1)
´

, and the number of rows of the matrix L(j, j + 1) whose
first element equals lr(j). In this way, if λsu(j, j + 1) (s = 1, . . . , M ; u = 1, 2) denotes a generic
element of the element L(j, j + 1), then pr,t

j,j+1 is given by the expression:

pr,t
j,j+1 =

(

0 si lr(j) /∈ L(j)
| { s | λs1(j,j+1)=lr (j), λs2(j,j+1)=lt(j), s=1,...M } |

| { s | λs1(j,j+1)=lr(j), s=1,...M } |
si lr(j) ∈ L(j)

4The bijection is established between the set {(nr
1(j), . . . , n

r
m(j))

˛

˛ 1 ≤ nr
i (j) ≤ δi(j), i = 1, . . . ,m } and the set

{l ∈ Z
˛

˛ L(j) ≤ l ≤ L(j) }, where L(j) =
Pm

i=2 δi · δi+1 · . . . · δm + 1 y L(j) =
Pm

i=1 δi · δi+1 · . . . · δm + δm .
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Figure 3: A section of the three-dimensional planning tree

2.1.3 Numerical example

The algorithm described in 2.1.1, and formalised in 2.1.2, has been implemented in Visual
Studio.NET and C#. The program allows the number of decision dates and the intermediate
periods between these dates to be selected, as well as the number and structure of the underlying
processes.

Note that flexibility in deciding the decision dates and the dates between sub-periods is
essential when applying this methodology to a real problem of strategic planning. Depending
on the behaviour of the underlying processes, it may be more advisable to shorten the time
between decision dates, and even make the time period vary within the planning horizon.

For the sake of simplicity in presentation, in our case, a time horizon of 15 years is established
with two possible decision dates: at year 5 and year 10 respectively. The stochastic processes
that model the evolution of export demand, import demand, and the price of fuel for ships
(bunker fuel)have been considered as underlying processes. These have been adjusted in the
same way as in models commonly used in studies of this type of demand ([5], [28], [29], [32])
and models used for studying commodity prices such as fuel ([17], [22], [24], [33]).

The final tree resulting from the implementation of the algorithm consists of 64 scenarios on
the first decision date at year 5, and 100 scenarios on the second decision date at year 10. A
matrix of 64 × 100 includes the transition probabilities between the two decision dates, where
each scenario has been replaced by its corresponding label.

Figure 3 illustrates a section of the tree which shows for each scenario (denoted by the label),
the three-dimensional vector with the complete information of the underlying processes, its
probability of occurrence, the transition probability of related scenarios, as well as the absolute
probabilities of occurrence of these latter.

2.2 The problem of strategically planning the fleet

This section discusses the modelling of the optimization problem for determining the optimal
fleet mix that should operate on the MoS for a certain planning period. Fleet mix and fleet
schedulingproblems in the maritime sector have been studied for the deterministic case ([25],[10],
[20], [21]). However, as noted in Section ??intro), the characteristics of the problem studied in
this article convert the problem into a stochastic problem with multiple and interrelated decision
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dates. Therefore, a specific methodology for its resolution is developed below.

2.2.1 Description of the optimization problem

This section describes the basic problem to be solved, how to model each of its elements,
and the peculiarities that require a specific approach. This problem will be properly modified
in Section 2.2.2 when it is used to implement comprehensive strategic planning on the scenario
tree.

The basic problem is to determine the mixed fleet of vessels for a container roro shipping
line that maximizes profits. This shipping line covers a distance of δ miles between a single
port and a single destination. The fleet should operate without changing its composition during
the period of T years between two consecutive decision dates. Therefore, capacity should be
sufficient to meet export and import demand generated during that period (indicated by Exl

and Iml respectively, for each year l of the period). For the shipping line to be competitive
with land transportation, it must offer a frequency of α sailings a day in both directions.

The fleet manager responsible for planning must first decide how many ships of each type
will be required, chosen from appropriate ships available on the market. Assuming that the
choice is between m different types of ships that meet these characteristics, then we can set the
following family of variables:

xk = number of type k ships k = 1, . . . , m.

Additionally, for each year of operation, the plan should establish how many sailings each type
of ship will make and what type of cargo will be carried in each sailing. In this way, the following
sets of variables will be incorporated into the problem:

ykl = number of sailings of a type k ship in year l, k = 1, . . . , m, l = 1, . . . , T.

zkl = cargo carried on each sailing by a type k ship in year l, k = 1, . . . , m, l = 1, . . . , T.

Note that it is not possible to work with aggregate capacity of the fleet, nevertheless it is
necessary to handle this level of detail when modelling the variables of the problem for the
following reasons:

• As they must comply with frequency constraints, the shipping line must offer a minimum
number of sailings per year, regardless of demand.

• Fuel consumption is a significant share of the operating costs of a shipping line. Consump-
tion is shown in tons of fuel per hour of navigation, and therefore depends directly on the
number of sailings.

• The maximum number of annual sailings of a ship is a function of cargo. In fact, one of
the factors that most affects efficiency for shipping lines is the time taken in loading and
unloading. This, in turn, is determined by the technology of the ship and the terminal;
and the volume of cargo transported. This technical relationship between the variables ykl

and zkl will be incorporated in a block of constraints indicated below.

In order to correctly select the fleet mix a manager needs to know a set of specifications for
each ship. These specifications will determine the parameters of the constraints, the objective
function of the problem, and therefore, the optimal fleet mix. Tables 1 and 2 contain these
specifications, grouped into technical and financial aspects, respectively.

Taking into account the variables introduced earlier, as well as the inter-relationships between
the specifications in Tables 1 and 2, the constraints of the problem can be expressed as follows:

9



Technical specifications for a type-k ship

Capacity (standard cargo units) Ck

Speed (knots) vk

Number of maintenance days mdk

Fuel consumption (tons per navigation day) fk

Journey time (d́ıas) Tk = δ
24·vk

Loading/unloading ratio (movements per hour) hrk

Time to load/unload a full ship Tcdk = 2 ·

(

ρ·Ck

24·hrk

)

Annual minimum sailings (number of sailings full load) Lk =
[

365−mdk

Tk+γ+Tcdk

]

Maximum number of sailings (number of sailings empty load) Uk =
[

365−mdk

Tk+γ

]

Table 1: Specifications for a type-k ship

Financial parameters for a type-k ship

Construction costs Pk

Annual crew costs l ϑkl

Annual insurance costs l ιkl

Annual maintenance costs l χkl

Depreciated value of ship at end of planning period Ωk

Annual charter costs Λk

Long-term charter rate rk

Short-term charter premium πk

Annual bonus for long-term charter bk

Table 2: Financial parameters for a type-k ship
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Frequency constraints

m
X

k=1

xk · ykl ≥ 2 · α · 365 ∀l = 1, . . . , T.

Demand constraints
m
X

k=1

xk · ykl · zkl ≥ 2 · Max {Exl, Iml} ∀l = 1, . . . , T.

Technical relationship between number of sailings and cargo carried

ykl ≤
365 − mdk

2·zkl ·ρ
24·hrk

+ Tk + γ
∀k = 1, . . . , m ∀l = 1, . . . , T.

Presence, or otherwise, of type k ships in the fleet If there are no type k ships in
the fleet, then in each year l of the planning period, the number of sailings ykl and the cargo zkl

should logically be 0. These constraints are included in the following way in the model (where
M denotes a large arbitrarily natural number):

ykl ≤ M · xk ∀k = 1, . . . , m ∀l = 1, . . . , T.

zkl ≤ M · xk ∀k = 1, . . . , m ∀l = 1, . . . , T.

zkl ≤ M · ykl ∀k = 1, . . . , m ∀l = 1, . . . , T.

Upper bounds for the variables xk An upper limit for the number of type k ships that
can be part of the fleet is obtained assuming that only type k ships satisfy the shipping line
frequency and demand constraints. The relevant constraints would be expressed as follows:

xk ≤ Maxl {bkl}

where bkl is given by:

bkl = Max

»

2 · Max {Exl, Iml}

Lk · Ck

–

+ 1;

»

2 · α · 365

Lk

–

+ 1

ff

.

Upper bounds for the variables ykl

ykl ≤ Uk ∀k = 1, . . . , m ∀l = 1, . . . , T.

Upper bounds for the variables zkl

zkl ≤ Ck ∀k = 1, . . . , m ∀l = 1, . . . , T.

Once the constraints of the problem are established, the next step in modelling is to determine
the expression of the objective function. This function quantifies the profits arising from the
shipping line operations for the T years of planning. Suppose a adjusted risk discount rate of
η. The various blocks involved in the final expression of the profits are shown below:

Income Income for the shipping operators comes from payments made by the users and these
are determined by tariffs set for each unit of cargo (known as freight rate). If we denote Frl

as the freight rate in the year l, then the total income during the planning year (Rev) will be
given by:

Rev =
T
X

l=1

((Exl + Iml) · Frl) · (1 + η)−l+1.
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Operating costs Denote F ll as the price of fuel for the year l. From the financial parameters
given in Table 2, the expression of the operating costs (Cop) will be given by:

Cop =

T
X

l=1

 

m
X

k=1

(xk · ϑkl + xk · ykl · Tk · fk · F ll + xk · ιkl + xk · χkl)

!

· (1 + η)−l+1.

Charter costs For a short-term charter contract lasting the planning period of T years a
rate r′k is used. This is the the base rate for a long-term contract rk , plus a premium πk for a
short-term charter. Therefore, the annual charter sum for a k type ship, Λk, should satisy the
following equation:

Pk − Ωk =

T
X

l=1

Λk

(1 + r′k)l−1
= Λk

 

1

r′k
−

1

(1 + r′k)T · r′k

!

.

The total charter payments for the planning period (CΛ) can be shown as:

CΛ =

m
X

k=1

xkΛk

„

1

η
−

1

(1 + η)T η

«

.

To conclude the section, the complete synthesised mathematical formulation for the problem
is:

Max F = Rev − Cop − CΛ

s.a
Pm

k=1 xk · ykl ≥ 2 · α · 365 ∀l = 1, . . . , T.
m
P

k=1

xk · ykl · zkl ≥ 2 · Max {Exl, Iml} ∀l = 1, . . . , T.

ykl ≤ M · xk ∀k = 1, . . . , m ∀l = 1, . . . , T.
zkl ≤ M · xk ∀k = 1, . . . , m ∀l = 1, . . . , T.
zkl ≤ M · ykl ∀k = 1, . . . , m ∀l = 1, . . . , T.
xk ≤ Maxl {bkl}
ykl ≤ Uk ∀k = 1, . . . , m ∀l = 1, . . . , T.
zkl ≤ Ck ∀k = 1, . . . , m ∀l = 1, . . . , T.

xk, ykl zkl ≥ 0, integer ∀k = 1, . . . , m ∀l = 1, . . . , T.

2.2.2 Backward planning on the scenario tree of a chartered fleet

For the three underlying processes considered in the problem (export demand, import de-
mand and the price of fuel), we have constructed a tree of scenarios according to the methodology
described in 2.1. We consider N decision dates in the tree separated T years. To incorporate
into the planning decisions the cost difference between a medium and long-term charter, we
have developed a backward methodology with sequential resolution of a series of optimization
problems resulting from adequate modifications to the basic problem shown in 2.2.1. The stages
in the process are shown below:

1. Optimization problem for final scenarios. Suppose we are in a final scenario of the
tree. The scenario gives values for export and import demand, and the price of fuel for
the year considered. Since we must resolve a plan for T years, we need the values for T for
the next T − 1 years until the end of the period. Using Monte Carlo simulation, and the
values given by the scenario as initial values, we can calculate the parameters Exl, Iml y
F ll, l = 1, . . . , T , as the mean of the outcomes from the simulation.

2. Optimization problem for intermediate scenarios. Consider a scenario r of an inter-
mediate decision date j. To modify the basic optimization problem, we must adequately
combine the following information in the new objective function for the problem:

12



• From the backward process we have obtained the optimal planning for each scenario s
of the next decision date j +1, i.e, we know how many ships of each type the line will
operate. Therefore, to determine the optimum fleet for the scenario r of j we know
how many of the selected ships will continue to the next period, and therefore would
be entitled to a bonus for a long-term charter. The following expression formally
models the bonus amount:

Bonus(r,s) =
m
X

k=1

Min {x∗
k(s), xk(r)} · bk ·

„

1

η
−

1

(1 + η)T η

«

,

where (x∗
1(s), . . . , x

∗
m(s)) denotes the optimal planning of ships obtained for s, bk

the annual bonus for each type k ship in the fleet that continues in the fleet, and
(x1(r), . . . , xm(r)) is the possible plan for r.

• From the tree information, we know the transition probabilities from each scenario r of
j to each scenario s of j +1 (denoted as pr,s

j,j+1). Thus the following expression, which
calculates the expected value of the bonus, must be incorporated in the objective
function:

Bonus(r) =

R(j+1)
X

s=1

pr,s
j,j+1 · Bonus(r,s).

Moreover, as was the case with the final nodes, it is necessary to determine the values of
the parameters Exl, Iml and F ll, l = 1, . . . , T. This is achieved in the same way described
for the final nodes.

3. Obtaining the final value of the profits associated with the MoS Suppose the
earlier process of backward planning is finished. Then, for each scenario r of the decision
date j, we have the optimum profits associated with the shipping line operations during the
subsequent planning T years(denoted as F ∗(r)). Moreover, from the information provided
by the tree, we know the probability of each of the R(j) scenarios of j. Denote by pr the
probability of occurrence of the scenario r of j. Therefore, we can calculate the expected
value of the profits of the shipping line during the T years of operations between the
decision dates j and j + 1 using the following expression:

Rent(j) =

R(j)
X

r=1

pr
j · F ∗r(j).

By discounting and accumulating the expected values for each of the possible N decision
dates, we obtain the expected profits for the planning period of (N + 1) · T years:

Rent =

N
X

j=0

Rent(j)(1 + η)−jT .

2.2.3 Numerical example of strategic planning for an MoS

To illustrate the methodology proposed in sections 2.2.1 and 2.2.2, we will consider the
tree obtained in 2.1.3, and an MoS with the characteristics described below. To develop this
example, industry benchmarks have been used, as well as data from various studies on short sea
shipping in various countries ([4], [19], [26]).

Let’s look at an MoS designed to cover a distance between the port of origin and destination
of 350 miles at a rate of 3 daily sailings in each direction. We will make a strategic plan for
operations over 15 years, while setting two decision dates for the renewal of the fleet mix – at year
5 and year 10 . A risk discount adjusted rate of 17% is set for the project. The charter market
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Figure 4: Caption for arbolpeque

is setting a rate of 19% for short-term contracts (5 years) and a bonus of 20% for long-term
contracts (10 years).

Five different types of ships are available that match the transport mode and expected
demand. The key differentiating characteristics are: ([19]):

1. Ship type 1: BGV C180. This is a fast, modern vessel with a capacity of 162 containers,
a speed of 35 knots, and a fuel consumption of 192 tons per day. Its cost is $86,400,000
and the 5-year charter cost is $10,013,440. It can handle 50 movements an hour loading
and unloading, and between 513 and 785 sailings a year, depending on the cargo.

2. Ship type 2: BGV C230. From the same family as the BGV C180. It has a capacity
of 460 containers, a speed of 35 knots and a fuel consumption of 192 tons per day. It
costs $174,171,563 and the cost of a 5-year charter amounts to $12,622,172. It can handle
50 movements an hour loading and unloading, and between 313 and 785 sailings a year,
depending on the cargo.

3. Ship type 3: Fast RORO. Conventional RORO ship - faster than anything in its class.
It has a capacity of 370 containers, a speed of 22 knots, and a fuel consumption of 110.4
tonnes per day. It costs $46,000,000, and the cost of an 5-year charter is $7,573,794. It can
handle 30 movements an hour in loading and unloading, and between 220 and 510 trips
per year, depending on the cargo.

4. Ship type 4: Very fast monohull RORO. A new trend in transport shipping. It has
a capacity of 200 containers, a speed of 25 knots, and a fuel consumption of 144 tons per
day. It costs $64,500,000 and the cost of a 5 year charter is $8,690,959. It can handle
30 movements an hour loading and unloading, and between 321 and 580 trips per year,
depending on the cargo.

5. Ship type 5: Tote 648. Very large and fast ship for high volumes of demand. It has
a capacity of 1296 containers, a speed of 25 knots, and a fuel consumption of 144 tons
per day. It costs $150,000,000 and 5-year charter amounts to $13,854,072. It can handle
80 movements an hour loading and unloading, and between 195 and 576 trips per year,
depending on the cargo.

As an illustration, let’s consider the section of the tree of scenarios built in 2.1.3 and shown
in Figure ??. Following the methodology presented in 2.2.2, we will proceed to resolve the
optimization problem for each of the final scenarios. The following table shows the composition
of the fleet, as well as the maximum profits associated with each of these scenarios:
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Figure 5: Caption for Solfin

Label node Maximum profits ($)) Optimum fleet

226 257,060,000 (0. 0. 6. 0. 3)

228 111,060,000 (0. 0. 6. 0. 3)

261 157,940,000 (0. 0. 7. 0. 2)

262 85,977,000 (0. 0. 7. 0. 2)

268 208,720,000 (0. 0. 8. 0. 2)

269 136,890,000 (0. 0. 8. 0. 2)

276 219,710,000 (0. 0. 6. 0. 3)

Using the previous solutions, let’s look at the problem of optimization for the intermediate
node 266, where the objective function incorporates the expexted charter bonus shown in 2.2.2.
The resolution of this problem provides us with an optimal fleet consisting of 1 type-1 ship, and
9 type-3 ships with maximum profits of $76, 482, 000. Figure ?? shows all the optimal solutions
obtained for this section of the tree.

The complete resolution on the tree of the corresponding optimization problems provides us
with a new scenario tree where, associated with each node, we have information on the optimal
composition of the fleet and its derived maximum profits. This tree of fleets and profits will be
key in the methodologies for evaluating the transfers of risk associated with the clauses studied
in Section 3.

Note that obtaining the final level of profits associated with the project, as well as the corre-
sponding optimal fleets for each scenario of the tree, has a high computational cost. Loops must
be implemented to sequentially resolve the various optimization problems and automatically
update the parameters. Therefore, the information provided by the algorithm for generating a
tree of scenarios described in 2.1, should be linked to the routine resolution of the corresponding
optimization problems.

The optimization problems in the example 2.2.3 have been resolved using the SBB solver
supplied as part of the GAMS program; and which develops a type of nonlinear Branch and
Bound. A non-linear problem is resolved at each node of the Branch and Bound tree. Specifically,
the SBB solver can use either the CONOPT or MINOS solvers and a combination of both has
been used to obtain the results of the numerical example.

2.2.4 Forward planning on the scenario tree of an owned fleet

For an owned fleet, planning must be done forward on the scenario tree, and the objective
function in the optimization problems associated with each node must be modified to incorporate
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possible gains/losses derived from selling a ship belonging to the fleet mix that will no longer
be used. The formal modifications of the objective functions are the following:

Repayment cost In this case, CΛ will denote the total repayment cost of the fleet during
the planning period and Λk the annual repayment cost of a type k ship. Then CΛ is given by
the expresion:

CΛ =

m
X

k=1

xkΛk

„

1

η
−

1

(1 + η)T η

«

,

where the repayment period is considered to be longer than the planning period considered.
Additionally, Λk can be obtained as follows:

Pk =
T
X

l=1

Λk

(1 + r′k)l−1
= Λk

 

1

r′k
−

1

(1 + r′k)T · r′k

!

,

being Pk the acquisition price of the ship at the beginning of the planning period and r′k the
repayment rate interest. We call Λk the base repayment.

On the other hand, if (x∗
1(s), . . . , x

∗
m(s)) denotes the optimal fleet associated with scenario s

in decision date i − 1, then the following expression quantifies, for a scenario r in decision date
i, the variation in the base repayment derived from the ulterior acquisition of ships at a price
that may be different from the price initially considered:

∆Amort(r, s) =

m
X

k=1

Max {xk(r) − x∗
k(s), 0} · ak ·

„

1

η
−

1

(1 + η)T η

«

where ak denotes the percentage of annual variation of the base repayment Λk.

Divestment cost Selling a ship at decision date i, implies potential gains or losses depending
on the behaviour and liquidity of the second hand ship market. Next expression quantifies this
fact:

∆Desinv(r, s) =

m
X

k=1

Max {x∗
k(s) − xk(r), 0} · dk ·

„

1

η
−

1

(1 + η)T η

«

where dk denotes the factor that models our expectations on the behaviour of the market at
date i.

3 Evaluation of risk transfers

This section deals with the evaluation of risk transfers between agents in the chain. We use
the results of strategic planning and discuss the options embedded in strategic and operational
clauses governing sector agreements. Note that these clauses must be framed within a design
that respects the traditional type of agreements used in the sectors involved. In particular, in
the land business the most common method for managing port terminals is the granting of a
build-operate-transfer (BOT) concession. This is a type of Private-Public Partnership (PPP)
between port authorities and terminal operators, where the terminal operator is responsible
for part of the construction and operation of the terminal for a certain period of time, after
which ownership of the infrastructure reverts to the port authority. In contrast, in the maritime
business, agreements often take the form of an Equity Joint Venture (EJV) among shipping
companies and/or ship charterers, and these can operate their own or chartered ships. Given
the high risk involved in such a chain, another type of possible partnership for the business is
a Public Private Partnership (PPP). Under this system, a public authority purchases the ships
and offers a form of soft charter to the shipping companies operating the line.
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3.1 Compensation clauses

The design of the compensation clauses under this section is based on the structure of
dynamic clauses for sharing profits and losses as used by joint ventures and strategic alliances
for regulating transitional periods – in which one partner has losses in excess of their percentage
of ownership in the joint venture, or over an amount stipulated in the agreement ([14], [15]). In
the particular case of land-maritime transportation chains, we distinguish between the design
of a compensation clause for the land business, and the corresponding clause for the maritime
business.

3.1.1 Compensation clauses for the land business

Structure of the clause The purpose of this clause is to prevent the failure of the trans-
portation chain. To this end, the consortium ensures a TO a minimum income while the business
is in a consolidation phase through a compensation fund. It also provides a mechanism for the
recovery of compensation funds paid when revenues of the TO are above the reference mini-
mum (for a review of this clause in the context of economic-financial equilibrium of concession
contracts for port terminals see [16]).

The system for determining the payment into a compensation fund or refunds will depend
on the following conditions:

• Condition 1: If the accumulated revenues plus the funds received, less refunds contribu-
tions made, is below the guaranteed minimum.

• Condition 2: If the compensation fund is exhausted.

• Condition 3: If the business is in a consolidation phase, or is already established.

• Condition 4: If the TO has outstanding debts with the consortium for funds previously
received.

Figure ?? shows the flow diagram with the basic structure of the compensation clause in
a given year j. We denote APVR(j) the current value of the accumulated present value of
revenues of the TO until the year j. A floor is then set for APVR(j), whose value of Bj in each
year j is established by the consortium (a certain percentage of the expected APVR(j) may be
suitable as the floor in the clause). Additionally, the consortium sets a maximum $ for the
compensation fund and a number η ∈ N to better define what is regarded consolidated business :
the TO business in the year j is assumed to be consolidated, if for η consecutive years prior to
j, the accumulated present value of revenues is above the established minimum. That is to say,
there is a year r < j that satisfies the following condition:

APVR(r + s) ≥ Br+s ∀s = 1, . . . , η.

Also, if we denote Φj as the amount of fund received in the year j and Ψj as the amount
of the corresponding payment for the possible refund, then the present value of accumulated
funds received by the TO in previous years will be denoted by APVΦ(j − 1) and, respectively,
the refunds will be denoted by APVΨ(j − 1).

If the accumulated present value of revenues of the TO, together with the accumulated
present value of funds received, minus the accumulated present value of refunds made during
previous years (APVR(j)+APVΦ(j-1)-APVΨ(j-1)) is below the floor Bj , then an evaluation
should be made as to whether the total compensation made exceeds the maximum amount $
set for the fund. If so, the TO cannot receive a fund, and therefore Φj = 0. Otherwise, it
must be determined if the business is already established. If yes, then again Φj = 0. However,
if the business is not established, the operator will receive a fund for the total deviation with
respect to the floor Bj : providing the fund does not exceed the amount of the balance of the
compensation fund at the date j given by $-APVΦ(j-1).
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Figure 6: Caption for diagram

If, by contrast, the accumulated present value of revenues of the TO, plus the present value of
the funds received, minus the present value of refunds made in previous years is above the floor
Bj , then the amount of outstanding debt must be computed as given by APVΦ(j-1)-APVΨ(j-1).
If there is outstanding debt, the value of the refund Ψj is calculated as a γ percentage of the
excess of APVR(j)+APVΦ(j-1)-APVΨ(j-1) on the minimum Bj . Notice that the refunds are
made regardless of whether the business is consolidated, and are only linked to the behaviour
of the accumulated revenues with respect to the set minimum.

Embedded options This clause provides rights to the consortium and the TO. From the
standpoint of the methodology of real options, this can be considered as a sequence of European-
type, path-dependant options and whose number is uncertain because they are subject to com-
pliance with the above conditions. These are European-type options because they can only be
exercised on the dates considered in the plan. They are interrelated because either the TO has
the option to receive funds, or the consortium has a corresponding option to receive a payment
refund. These options are path-dependent because the amount of refund, and the determining
conditions, are depend on the record of receipts and payments previously made.

Risk transfer This clause establishes a transitional period of allocation of losses, so that the
consortium assumes 100% of the risk of deviations in the amount of the accumulated revenues of
the TO with respect to the minimum. Thus, the direct risk that the TO is exposed to because
of fluctuations in demand is transferred to the consortium. It also provides a transitional period
of allocation of profits, so the consortium can receive a percentage of the profits from the TO as
a refund for the compensations previously received. However, a full recovery by the consortium
of funds made is not riskless, and there are scenarios where the total fund is lost. Thus, it is
necessary to evaluate the transfer of risk associated with the special design of this clause.

For this, we simulate the probability distribution of the random variable APV Φ(τ)−APV Ψ(τ),
where APV Φ(τ) denotes the accumulated present value of funds received up to the termination
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of the agreement at τ , and APV Ψ(τ) denotes the corresponding value of the repayments made.
Once the probability distribution is known, the most appropriate risk measure can be cal-

culated (VAR, CVAR, ES).

Algorithm for risk evaluation

1. Monte Carlo simulation of the revenues of the TO to determine the values of Bj at each
decision date j. The expected value of accumulated revenues untill the year j, or a percentile
of its probability distribution, can be considered appropriate for the role of floor for the
activation of compensation rights.

2. Simulation of an m-dimensional path S̄(j) = (Sk
1 (j), . . . , Sk

m(j)) of the underlying processes
in the tree, and obtaining the corresponding path for accumulated revenues APVR(j),
j = 1, . . . , τ .

3. Proceed forward on the path APVR(j) following the flow chart above to obtain the values
of the variables Φj and Ψj in each of the decision dates j = 1, . . . , τ .

4. Calculate APVΦ(τ) y APVΨ(τ) and obtain the difference APVΦ(τ) − APVΨ(τ).

5. Repeat the process for each of the paths S̄(j) in the simulation, generating a complete
probability distribution of APVΦ(τ) − APVΨ(τ).

6. Calculate the most adequate risk measure (VAR, CVAR, ES).

Numerical example (In process)

3.1.2 Martime business compansation clauses

Note that the clause in 3.1.1 has been focussed on the revenues of the TO, and quantifies
deviations of demand with respect to the expectations initially established in the overall plan
for the MoS. The requirements of land operations do not make recommendable the wording of
the clause in terms of (net) flows – this is due to the risk of moral hazard and opportunistic
behaviour on the part of the TO ([31], [8], [30]). However, the maritime business is different
and the effect of the factor of efficiency of operations on business results is lesser. Moreover,
the uncertainty of price behaviour regarding the price of fuel must be taken into account when
determining entitlement to any compensation in combination with demand. The first significant
difference between the model of compensation clause in the land business when compared with
this type of clause for the maritime business is seen by the use of accumulated present value
of (net) flows APV F (j); instead of the corresponding accumulated present value of revenues
APV R(j).

Although the focus of the clause is the same as 3.1.1, the algorithm for the implementation
and subsequent risk evaluation is different because it is phrased in terms of flows, and it must
necessary look for information stored in the tree of scenarios so as to associate each simulated
path with a fleet for each decision date; and consequently, with optimal flows derived from the
operation of the fleet. The resulting algorithm is shown below:

Algorithm for risk evaluation

1. We use the scenario tree to calculate for each decision date j, the probability distribution
of the variable APV F (j). We establish the value of Bj which will act as a floor for the
compensation mechanism.

2. Simulate an m-dimensional path S̄(j) = (Sk
1 (j), . . . , Sk

m(j)) of the underlying processes in
the tree. Then, for each date j we identify a scenario er(j) nearest to S̄(j) (Euclidean
distance) and transform the original path S̄(j) into a path of nodes ē(j) so that we then
have the corresponding path of the business flows.
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3. Proceed forward on the path ē(j) following the sequence of steps described in the flow
diagram in ?? to obtain the values of the variables Φj and Ψj for each of decision dates
j = 1, . . . , τ and, finally, the value of the variable APVΦ(τ) − APVΨ(τ).

4. By repeating the process for each of the paths S̄(j) of the simulation, we generate the full
probability distribution APVΦ(τ) − APVΨ(τ).

5. Calculate the most adequate risk measure (VAR, CVAR, ES).

Numerical example (In process)

3.2 Restatement of ownership clauses and evaluation of associ-
ated risk transfers

To ensure the continuity of an MoS it is necessary to regulate the eventual departure from
the agreement of one of the agents through restatement of ownership clauses. Note that for land
businesses these agreements mainly take the form of a concession contract, and especially a BOT
contract, as discussed in Section 1. The final distribution of property is clearly established in
such agreements and mechanisms for the eventual departure of a private agent are regulated
in terms of the concession, so that, if it occurs, it will necessarily lead to a new tender for
the concession. Therefore, it makes no sense to discuss the design of restatement of ownership
mechanisms for these agreements.

In the case of maritime business we will study how to handle this kind of provision using put
and call options, and how to evaluate the associated risk in the following cases:

1. The maritime business adopts a form of an EJV in which one of the partners has a market
price call option on another partner’s share in the EJV.

2. The maritime business adopts a form of an EJV in which one of the partners has a market
price put option on another partner’s share in the EJV.

3. The maritime business adopts a form of PPP in which the public agent owns the ships
and also owns a market price put option on all, or part, of the fleet.

In the case of EJVs, when we discuss market price put and market price call options we are
referring to options whose exercise price is fixed as follows:

• The market price M of the shares is taken at the specified time after receiving a notification
from a partner who intends to exercise his rights.

• Three additional prices are obtained P1, P2 and P3 as determined by three independent
valuation companies (taken from a previously agreed list), as the result of an appraisal
process.

• The highest and lowest prices are eliminated. Let’s call the remaining price A. During the
subsequent development, we consider that A is a proxy of the real value of the business -
considering the resources available at the time of appraisal.

• For a call option, the price is set at max(M ; A). This ensures at least the market price of
the shares, and removes the possibility of opportunistic advantage being taken of market
in a downward trend. Otherwise, when the value of M is higher than A, we shall see how
– from the standpoint of risk assessment – the partner who has transferred his rights is
favoured.

• For a put option the price is set at min(M ; A). This will mean that the option will be
exercised when the two prices are similar. For example, if price M is less than value A,
then the holder of the put will receive for his part of the business a value less than the
proxy of the real value A; and so he will wait until both values are closer together. In the
opposite case, in which M is more than A, there is obviously no motivation for exercising
the put option at the value of A when a higher price could be obtained in the share market.
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3.2.1 Restatement of ownership clause with a market price call option

Structure of the clause Suppose one partner has a call option on the part α of another
partner in the EJV with an exercise price of max(M ; A) – as obtained using the above procedure.
The option holder may exercise his right during a certain period stipulated in the agreement
[τ1, τ2], and in each of the exercise dates covered by this planning period.

Embedded options Bermuda-type call option.

Risk transfers In a prototypical case of a restatement of ownership clause through a call
option, the risk that a partner assumes by giving away option rights is the loss of profits arising
from the possible exercise of an underlying expansion option in the EJV.

To illustrate this idea, let’s take the real case of a joint venture signed in 2002 between
BMW and Brilliance for the construction of a plant in China for manufacturing and selling
limousines in the Chinese market. The agreement also stipulated that BMW was the holder of
a call option on the Brilliance part of the venture. In 2007, in view of the results, the venture
was expanded with the construction of a new manufacturing plant to produce limousines and
cars for the Chinese market. Thus, the risk assumed by Brilliance in agreeing such a call option
was the eventual loss of the flows arising from the planned expansion due to an exercise of the
option prior to the expansion.

Note that although the exercise is conducted at the proxy A of the true value of the company,
such valuation A would have been made on the resources available to the company at the moment
of exercise - meaning the current plant and the estimated current market, and not taking into
account new plant or new markets.

In the case we are examining, let’s consider as an estimation of A, the flows derived from the
fleet that the JV currently operates as if it continues operating unchanged, and as an option for
expansion, the possibility of replacing the fleet so as to take optimal advantage of an expansion
in demand. To quantify the risk assumed by a partner who gives away a call option, we will
compare this value A with the flows associated with the optimal fleet that could be operating
from the exercise date on.

To assess risk, we consider A as a reference value for the EJV because if M were greater
than A, meaning that the market over-value the EJV, then the potential losses from exercising
the call option would be less than if the price was A.

In a prototypical case, the risk borne by ceding the call lies in the difference that may exist
between the price received and the value of the venture when including the growth options (less
the investment required to implement these options). The decision on whether to make the
additional investments generally depends on internal business decisions. The price at which it
is exercised may be less than the value of the venture once additional investment decisions are
taken. In this case, the exercise of the call deprives the seller of the additional profits derived
from the growth options.

Algorithm for risk evaluation Let’s look at the planning tree for an owned fleet con-
structed in 2.2.4. For each possible exercise date j in [τ1, τ2] and for each scenario on the tree
er(j):

1. We take as a proxy of A, the profits made for the EJV with the assets which the venture
has at the time of the exercise of the option, i.e. the fleet currently operating from the
date j on. Denote this value Ār(j).

2. Consider the profit F ∗r(j) as earned by the EJV from the optimal fleet associated with
scenario er(j) as stated in the tree 2.2.4.

To obtain the probability distribution in τ1 which will enable us to quantify the risk from the
exercise, proceed as follows:
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1. In the final scenarios of τ2, we calculate max α(F ∗r(j) − Ār(j)), 0.

2. In the intermediate nodes, we calculate max α(F ∗r(j) − Ār(j)), continuation value

Calculation of Ār(j) Note that there is no a single fleet currently associated with the
scenario er(j). The tree provides us with a fleet operating in the period between j − 1 and j for
each scenario of j − 1 associated with er(j). Therefore, we must quantify the profits of using
each of these fleets in er(j), and then weigh the results using transition probabilities to derive
the value of Ār(j).

Numerical example (In process)

3.2.2 Restatemnt of ownership clause with a market price put option

Structure of the clause Suppose one partner owns a put option on his part of an EJV
with exercise price min(M ; A) obtained by the above procedure. During a period stipulated in
the agreement [τ1, τ2] and in each of the dates stipulated in this period, the option holder may
exercise the right.

Embedded options Bermuda-type put option.

Risk transfers In a prototypical situation, the risk borne by the partner who cedes a market
price put option results from the unfavourable position in which he may find himself after
the option is exercised (strategic risk). To illustrate this idea, let’s take the real case of the
joint venture signed in 2000 by General Motors Corporation (GM) and Fiat S.p.A. (Fiat). In
this alliance the two companies will partner in the European and South American automobile
markets. As part of the agreement, GM cedes Fiat a put option so that, between the third and
a half and the ninth year, on two occasions, Fiat may require a determination of the fair market
value of Fiat shares. Then Fiat may decide to exercise its option an sell its shares to GM.

Five years after the sighed of the agreement, Fiat announced GM its intention of exercising
its put option. The analysis of the different scenarios faced by GM led it to the conclusion that its
position after the exercise would be strongly financially adverse. Then GM regarded two financial
transactions carried out by Fiat to be a material breach of section 6 of their agreement regulating
transfers of shares with third parties. According to the termination provisions, General Motors
would have the legal right to terminate the agreement, prevailing the rules of liquidation over
the put option Fiat intended to exercise. This fact forced Fiat into negotiation to avoid a costly
and difficult legal process that would determine whether a material breach occurred. The result
of the negotiation was the payment by GM of 1.55 billion euros to Fiat in order to repurchase
the put option that was not finally exercised by Fiat.

As this example points out, a methodology for estimating the risk associated with this ty
of clauses should take into account the potential losses from adverse market reactions following
the exercise of the put (a reaction to the divestment), and the possible losses caused by the
continuing activity without the partner (with or without additional investments) ([14]).

In our case of an MoS, we must highlight the fact that the SA provides a compensation
mechanism that transfers the risk of the put option to the compensation clause described in ??.
This is an example of how SAs and JVs often include a hierarchical structure of clauses, which
interact among them. Therefore an evaluation of risk transfers associated with a given clause
can not be made by considering the clause as isolated but analyzing the complete agreement.
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3.3 Resatement of ownership clauses in a PPP for a maritime
business

Structure of the clause Suppose that the public agent has a market price put option on all
or part of the fleet. The exercise of the option is subject to a stability of demand, and therefore
to the consolidation of the business, and this stability will trigger the option. The exercise price
is set at the market value of the second-hand ships.

Embedded options European-type option with an uncertain exercise date depending on a
trigger, which is path-dependant.

Risk transfers Note that the risk borne by the private operator when ceding the put option
to the public partner results from having to sell with possible losses (due to limited market
liquidity) several ships of the current fleet mix, as this current fleet mix differs from the optimal
fleet able to handle future demand expectations.

If when the put option is exercised, a given ship is part of the optimal fleet, then there will
be no losses because the ship will continue operating. Otherwise, the ship must be sold and the
calculation of potential losses is a function of the sales strategy set by the private operator. For
example, the operator may choose to continue using the ship until finding a buyer prepared to
pay a price equal to, or higher than, the price paid as exercising price of the put option. The
operator may set a limit beyond which it should sell, even at a loss.

Algorithm for risk evaluation Let’s look at the planning tree for the case of a chartered
fleet built in 2.2.2.

1. Simulation of an m-dimensional path S̄(j) = (Sk
1 (j), . . . , Sk

m(j)) of the underlying processes
in the tree. Then, for each date j we identify the scenario er(j) closest to S̄(j) (Euclidean
distance) and transform the original path S̄(j) into a path of nodes ē(j), so that we have
associated with each node the corresponding maximum profits for the business.

2. We identify the first date j0 and the corresponding node of the tree on which the business
is consolidated.

3. Determine how many ships are not part of the optimal fleet for the following period.

4. Simulate the second-hand ship market.

5. Quantify the losses in terms of sales strategy. Consider the present value.

6. Repeating the process for each of the paths S̄(j) of the simulation, we generate the full
probability distribution of losses, on which we calculate the most appropriate measure of
risk (VAR, CVAR, ES).

Numerical example (In process)
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