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Abstract

In our duopoly, an irreversible investment incorporates a signi�cant amount
of R&D, so that the improvement it introduces in production processes gen-
erates a spillover lowering the second comer�s investment cost. The presence
of the inter-�rm spillover substantially a¤ects the equilibrium of the dynamic
game: for low � and hence realistic � spillover values, the leader delays her
investment until the stochastic fundamental has reached a level such that the
follower�s optimal strategy is to invest as soon as he attains the spillover. This
bears several interesting implications. First, because the follower invests upon
bene�ting from the spillover, in our equilibrium the average time delay between
the two investments is short, which is realistic. Second, we show that in case of
a major innovation, an optimal public policy requires a substantial intervention
in favour of the investment activity; moreover, an increase in uncertainty �de-
laying the equilibrium �calls for higher subsidization rates. Third, we �nd, by
means of numerical simulations, that the spillover reduces the di¤erence in the
leader�s and in the follower�s maximum value function. Accordingly, our model
can help generating realistic market betas.
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1 Introduction

A substantial body of literature has investigated the importance of irreversibility for

investment decisions in stochastic environments. In particular, in the last few years,

the attention has focused on duopolistic market structures in which the optimal deci-

sion of a �rm depends not only on the value of the underlying stochastic fundamental,

usually pro�t, but also on the action undertaken by its competitor. Because large

investments rarely come without a signi�cant improvement in production methods,

in some recent contributions technical progress plays a signi�cant role.

We complement these streams of literature by analyzing a duopoly in which the

lump-sum investment incorporates a relevant amount of R&D. Accordingly, it gen-

erates a spillover, which lowers the second comer�s investment cost. In our duopoly

game, the occurrence of the information leakage from the leader to the follower is sto-

chastic, being governed by a Poisson variable. Because the actual attainment of the

informational spillover a¤ects the follower�s investment decision, the random process

of information leakage in�uences also the leader�s e¢ ciency advantage period.

We �nd that the presence of the spillover substantially a¤ects the equilibrium of

the dynamic game. In fact, in our model, for low �and hence realistic � spillover

sizes, the leader delays her investment until the stochastic fundamental is so high

that the follower �nds optimal to invest as soon as he bene�ts from the spillover.

This bears several interesting implications.

First, because the follower invests upon bene�ting from the spillover, in our equi-

librium the average time delay between the two investments is short, which �as we

shall argue �is realistic. In contrast, when one calibrates the existing models with

sensible parameters values, one �nds long time spans separating the leader�s and

the follower�s investments. For example, in the framework proposed by Grenadier

(1996) the median time between investments varies from four to eight years when

the percentage standard deviation of demand ranges between 0.05 and 0.125. While

these values are adequate for the construction sector, to which the model has been

originally applied by Grenadier, they seem excessive for the manufacturing one.

Second, we show that in case of a major innovation an optimal policy requires a

substantial public intervention in favour of the investment activity. In the previous

literature, a major innovation � inducing the fear of being preempted � triggers a

socially premature investment, which calls for some disincentive. The di¤erence in

results is to be ascribed to the signi�cant alteration of the equilibrium characteristics,

involved by the presence of a modest spillover.1 In our framework, an increase in

1The analysis developed in Femminis and Martini (2007) �who adopt a deterministic environ-
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uncertainty �delaying the equilibrium �calls for higher subsidization rates, a result

that applies independently of agents�risk aversion.

Third, the presence of a spillover weakens the dependence of the leader�s and

follower�s maximum value functions from the fundamental. Following Cooper (2006)

one can show that the di¤erences in the value functions a¤ect the heterogeneity in

the �rms�market betas. Accordingly, our model can help generating market betas

that � while di¤erent among �rms � do not vary excessively. This is interesting,

because some recent empirical evidence suggests that the market betas show a limited

dependence on the book to market ratios, and therefore on the value function (see

Ang and Chen (2007) for the US stock markets).

In our framework, the behavior of the follower depends on the information he has

about the new technology.

If the spillover has taken place, that is when the relevant information has already

leaked out, the follower�s optimal strategy is characterized by a trigger. In fact, when

pro�ts are low, the follower �nds it optimal to wait, when instead the stochastic

variable governing pro�ts is su¢ ciently high, it is convenient for him to invest as

soon as he has obtained the cost-reducing information.

When the spillover has not taken place yet, the follower �nds optimal to invest

paying the full cost, rather than waiting for the uncertain realization of the spillover,

only when pro�ts have reached high values. On the contrary, when pro�ts are low,

it is sensible for the follower to wait in the hope of bene�ting from the cost-reducing

spillover. Hence, it is natural to guess that a second threshold exists, determining

the value for the fundamental that calls for the follower�s investment if the spillover

has not materialized.

The innovation leader takes into account such a follower�s optimal behavior; as

already highlighted, for realistic spillover values, the leader rationally decides to delay

her investment until the stochastic fundamental reaches the threshold dictating to the

follower to invest as soon as he attains the spillover. This result is best understood

by considering separately an innovation granting a large cost reduction, and one

involving a small cost saving.

Consider �rst the equilibrium prevailing in the previous literature when a major

innovation is adopted. In contributions such as Smets (1991), Grenadier (1996), and

Nielsen (2002) (who build on Fudenberg and Tirole (1985)), two driving forces char-

acterize the equilibria: the length of the follower�s strategic delay, and the intensity

of the competitive pressure. These contributions identify a subgame perfect equilib-

rium, in which the second innovator delays for a long period his decision to invest.

ment � leads to similar implications.
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This choice is guided by the desire to grasp the increase in pro�t that is driven by

the drift in the stochastic fundamental. The follower�s optimal choice implies a long

competitive advantage period for the innovator leader, which favors the latter�s pay-

o¤ at the expenses of the former�s one. Hence, to avoid being preempted, the �rst

mover invests �very soon�, and the investment is socially premature. The preemp-

tion possibility also implies rent equalization. The above contributions suggest that

this �early�investment equilibrium is subgame perfect when the size of the innova-

tion is large, because the per-period �rst innovator pro�ts are considerable, which

triggers the preemptive behavior. In our model, an increase in the spillover reduces

the payo¤ the leader obtains investing early. In fact, it makes more convenient for

the follower the policy of investing upon information disclosure, reducing the corre-

sponding threshold. Such a decline shortens the expected cost advantage period of a

leader�s early investment, reducing its value. This e¤ect proves to be strong enough

to induce the leader to postpone her investment until the fundamental has gone past

the trigger prescribing to the follower to invest upon the realization of the spillover.

In this equilibrium the result concerning the social desirability of the investment is

overturned, since it is now too delayed, which calls for some incentive.

When the investment does not signi�cantly shrinks the unit production costs, the

existing literature �disregarding the possibility of inter-�rms spillovers � suggests

that both �rms invest simultaneously (see Pawlina and Kort (2006) for a recent and

clear exposition). This happens when the per period pro�t has become so high that a

leader cannot emerge, because the rival would immediately copy her decision. In this

case, any innovator �anticipating that there will be no leadership �waits until her

investment choice maximizes the joint discounted stream of net pro�ts. The collusive

�avour of this equilibrium is apparent: accordingly, it implies underinvestment with

respect to the social optimum. The simultaneous investment equilibrium is subgame

perfect when the size of the innovation is small, because the increase in per-period

�rst innovator pro�ts is not signi�cant, which avoids preemptive behaviors, ruling out

the equilibrium in which a leader invests early. When the possibility of spillovers is

considered, the simultaneous equilibrium is delayed, since it implies the forsaking of

the bene�ts stemming from the spillover. This reduces the present discounted value

of the simultaneous equilibrium; it turns out that such an e¤ect is strong enough that

low sizes of the inter-�rm spillover are su¢ cient to rule out this type of equilibrium.

Our contribution is related to several strands of literature.

Smets (1991) and Dixit and Pindyck (1994) use duopoly models to highlight the

tension between the option value of waiting � that delays the �rms� investment �
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and the fear of being preempted �that prompts for a quick action. They identify

the preemptive equilibrium with rent equalization that we have already discussed.

The follower�s investment is delayed by the presence of uncertainty, while the leader

invests as soon as her payo¤ is equal to the follower�s discounted one. Grenadier

(1996) applies this analysis to real estate markets; he also identi�es the possibility

of simultaneous entry, which however depends on a high initial condition for the

fundamental.

Weeds�(2002) considers irreversible investment in competing research projects,

in a framework where pro�ts evolve following a geometric brownian motion, and the

discovery takes place randomly according to a Poisson distribution with constant

hazard rate. She �nds that, depending on the parameter�s values, either an early

equilibrium or a simultaneous one is subgame perfect; in the absence of externalities,

she suggests that in the early (simultaneous) equilibrium �rms over(under)-invest;

however the simultaneous equilibrium is closer to the social optimum than the early

one.

Pawlina and Kort (2006) consider an asymmetry between the two �rms in the

�xed investment cost. Besides identifying the early and the simultaneous equilibria,

they �nd the possibility of a third type of subgame perfect equilibrium that they

label �sequential�. When the asymmetry in the investment costs is relevant, the

�rm bearing the highest cost has no incentive in moving �rst, rather it is willing

to invest only when the stochastic pro�t has already become high enough. This

gives to its opponent, that becomes the leader, the opportunity to invest at the

most of its expected discounted pro�ts. While bearing interesting positive (and

normative) implications, this equilibrium still implies long expected delays between

the competitors�investment dates.

Nielsen (2002) extends the standard analysis to the case of positive externalities.

Under this circumstance, e.g. due to network e¤ects, the demand, and hence the

instantaneous pro�ts for the second comer, are higher than for the �rst one. Hence,

the second mover investment threshold is smaller than the leaders�s one, so that the

two �rms invest simultaneously at the follower�s threshold.2 In a duopoly character-

ized by network e¤ect and asymmetric information on the investment cost, Moretto

(2000) highlights that for high spillovers a bandwagon strategy is adopted, so that

the (joint) adoption may signi�cantly be delayed.

Our contribution di¤ers from Nielsen�s and Moretto�s ones in that for us the

spillover a¤ects the investment cost, and not the demand side. Hence, it does not

2Recently, Moretto (2008) �nds that Nielsen�s result can be extended to free-entry oligopolistic
frameworks.
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apply only to network externalities or to complementary goods sectors. Moreover,

our approach leads to sequential entries, that are empirically more relevant than

simultaneous ones, provided that the delay is not too long.

Pereira and Armada (2004) study a duopoly in which the incumbent �rms may

be taken over by new entrants, which can seize the two slots in the market. They �nd

that the follower, fearing the competition of a potential new entrant, anticipates his

entry, while the leader may be induced to delay her investment trigger, because the

reduced length of the follower�s strategic delay lowers the intensity of the competitive

pressure. Despite the reduction in the follower�s expected entry lag, the average time

between investments is still high.

Among the duopoly games which do not take into account the uncertainty about

the fundamental, it is worth mentioning the ones by Stenbacka and Tombak (1994),

and by Hoppe (2000). Stenbacka and Tombak analyze the role of experience, which

implies that the probability of successful implementation of an innovation for a �rm

is an increasing function of the time distance from its own investment date. However,

the probability of success of any �rm is not a¤ected by the adoption of the rival, so

that there are no spillover e¤ects. Stenbacka and Tombak �nd that �in the (feed-

back) market equilibrium �the leader�s and the follower�s adoption dates are quite

dispersed. In Hoppe (2000), �rms are uncertain about the pro�tability of the inno-

vation, which induces an asymmetry between the leader and the follower. The latter

observes the leader�s outcome, and hence becomes aware of the actual pro�tability

characterizing the new technology. When it is likely to be unpro�table, the informa-

tional spillover brings about a second-mover advantage, both in the early and in the

late equilibrium. A late simultaneous adoption prevails when the probability of poor

performance for the new technology is particularly high, because this curtails the �rst

mover�s expected payo¤. When the late equilibrium is subgame perfect, Hoppe �nds

that an earlier simultaneous adoption would be welfare increasing, while the result

are less de�nite when the early equilibrium prevails. The equilibrium we describe

in this paper di¤ers from Hoppe�s ones in that ours � for the empirically relevant

portion of the parameters space �is characterized by a �rst mover advantage, that

leads to rent equalization.

Murto and Keppo (2002) present a model where several �rms compete for a single

investment opportunity, which becomes e¤ective only for the �rst �rm which triggers

the investment. When every �rm has no information about its rival evaluation of

the investment opportunity, the investment trigger is located between the monopoly

benchmark, and the simple marshallian case. A similar result has been obtained by
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Lambrecht and Perraudin (2003), in a model in which each �rm, observing that the

others have not invested, updates its beliefs about the distribution of its competitors�

investment costs. Hence, each �rm�s inaction provides some informational spillover

to its rivals. Both papers, in contrast to ours, analyze a strategic interaction that

ends as soon as one �rm invests.

Our modeling strategy is close to Weeds� (2002) one, since for us the random-

ness in pro�ts is modeled via a geometric brownian motion, while the informational

spillover takes place randomly according to a Poisson distribution with constant haz-

ard rate. From the technical standpoint, another in�uential contribution is Huisman

and Kort (2004). Partly building on Grenadier and Weiss (1997), they incorporate

into the duopoly model the possibility that a new technology becomes available at

an uncertain future date, which happens according to a constant hazard rate Poisson

process. The future availability of a better technique may turn the preemption game

into a second mover advantage game. The main result here is that an increase in

pro�t uncertainty tends to delay investment, so that there is an increase in the like-

lihood that a new technology is introduced before the occurrence of an investment

using the existing technique.

The paper proceeds in the standard way. In Section 2 we present our model,

and then (Section 3) we discuss the value functions and the trigger points they

imply. In Section 4 we discuss the equilibrium concept adopted in the analysis,

and we compute the subgame perfect equilibrium. In Section 5 we spell out the

welfare implications of our analysis, computing the optimal subsidization policy that

applies in the most interesting case, namely the one of large innovations. Concluding

comments in Section 6 end the paper. Three Appendixes present the analytical

details, the proofs of the propositions, and the derivations of the pro�ts and social

welfare levels for the case of Cournot competition.

2 The Model

Two risk-neutral �rms compete in the product market, and have the opportunity

to invest in a cost-reducing process to enhance their pro�t �ows. The cost of this

irreversible investment is I for the �rst mover; as for the second �rm introducing the

innovation, the cost is I if no information has �own out of the leader �rm, otherwise

the follower�s cost is (1 � �)I, with � 2 (0; 1) being the parameter capturing the

spillover e¤ect:

Several empirical studies suggest that it takes time to imitate an innovation.3

3Refer e.g. to Mans�eld (1985) or to Cohen et al. (2002).
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Accordingly, in our model, we assume that, from the time of the �rst investment,

the informational spillover takes place randomly according to a Poisson distribution

with constant hazard rate � > 0; implying that the expected delay between the

leader�s investment decision and the time of information leakage is 1=�: Notice that

our modeling assumption implies that 1=� is also the minimum expected time length

of the cost advantage period granted to the leader by the introduction of an improved

production process:4 Notice also that �; �; and I are identical for the two �rms.

It would have been preferable to consider a disclosure lag characterized by a prob-

ability of information di¤usion depending not only upon the time elapsed from the

introduction of the innovation, but also on the follower�s imitation e¤ort:5 nonethe-

less, the use of a constant hazard rate �which has been inspired by Weeds (2002),

and by Huisman and Kort (2004) � seems to be the optimal compromise between

analytical tractability and realism.6

The instantaneous pro�t of each �rm is stochastic, but it depends also on the

number of �rms that have already introduced the innovation. We assume that �

when no �rm has invested �the pro�t �ow for each �rm can be expressed as �0zt:

�0 is the deterministic part of the pro�t function: the subscript underscores the

dependence of this component from the number of �rms that have already invested;

zt captures the uncertainty about future pro�ts, and it will be assumed to evolve

following a geometric Brownian motion. When one �rm has sunk the cost, but the

other has not, the �rst �rm�s instantaneous pro�t is �h1zt; while the other obtains

�l1zt: The superscript highlights that � in this case � pro�t can be high (for the

�rm which has already innovated) or low (for the one which has not invested yet).

When both �rms have innovated, they get �2zt. We introduce the following standard

assumption

A1: �h1 > �2 > �0 > �
l
1:

�2 > �0 implies that the new technology is more pro�table than the older one;

�0 > �
l
1 expresses the fact that the �rst investment �improving the leader�s compet-

4The �rst movers cost advantage period is longer than 1=� whenever the follower does not �nd
optimal to invest as soon as he receives the informational spillover.

5Both � and � should be in�uenced by the imitation e¤ort. Jin and Troege (2006) suggest that
�rms can raise the spillover size, paying a convex imitation cost. We preferred not to pursue this
development of the model, because our framework is already fairly complex: any further extension
requires a much heavier use of numerical techniques to select the equilibrium.

6Modelling uncertainty by means of Brownian motions precludes what seems even simpler, i.e.
the use of a �xed lenght disclosure lag, as in Femminis and Martini (2007). In fact, this would add
an additional state variable to the model. Grenadier and Weiss (1997) model in a tractable way the
arrival rate of a new technology, which is governed by a Brownian motion. However, their pro�ts
are deterministic, which avoids the proliferation of the state variables.
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itive position �induces a deterioration of the pro�t for the �rm who has not sunk the

cost yet; when the �rm that is lagging behind undertakes the project, this damages

the �rst mover, so that �h1 > �2.
7

The geometric Brownian motion zt is described by the following expression:

dzt = �ztdt+ �ztd!;

where � 2 (0; r) is the constant drift parameter measuring the expected growth rate
of zt; � > 0 is the instantaneous standard deviation, and d! is the increment of a

standard Wiener process, where d! � N(0; dt): The constant riskless interest rate

is r. The restriction � < r is necessary to ensure that there is a strictly positive

opportunity cost of holding the option to invest, so that it will not be kept forever;

this restriction guarantees �nite valuations for the discounted streams of expected

pro�ts.

3 Value functions and investment thresholds

As it is standard, before presenting the equilibrium, we analyze the �rms�payo¤s.

Because we focus on the classic case of two ex-ante identical �rms, it is not decided

beforehand which �rm will be leader or follower. Nonetheless, precisely because �rms

are ex-ante identical, we can study their payo¤s as if their roles were pre-determined,

as it is done �with no loss of generality �by Weeds (2002), Huisman and Kort (2004),

and others.

For ease of exposition, we refer to the leader as if it were run by female CEO, and

to the follower as if it were headed by a male CEO.

3.1 The follower�s investment problem

Since the leader optimally reacts to his opponent decisions, it is easier to analyze

�rst the follower�s behavior.

Once the leader has invested, the follower behavior depends on the information

he has about the new technology. We start characterizing his conduct when the

relevant information has already leaked out. We proceed in this way because the

follower�s knowledge of the additional information is an �absorbing state�: once he

has obtained the information, he cannot (and he does not desire to) revert to the

previous situation of ignorance. Hence, when the information has been revealed,

the follower�s optimal behavior cannot be in�uenced by his optimal choices in the

�ignorance�state, while the converse is not true.

7The same assumptions are introduced, for example, in Pawlina and Kort (2006).
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For low realizations of the state variable zt, the follower�s optimal strategy dictates

to wait, while �when the state variable zt is su¢ ciently high �it is convenient for him

to invest as soon as he has obtained the additional information. This suggests the

existence of a threshold, z
¯
, such that, for zt < z¯

; the follower decides to postpone the

investment, sinking it at a future date, at which the expected discounted pro�ts will

be higher; while for zt � z
¯
, the follower �nds that the pro�t motive is high enough

to trigger an immediate investment.

Formally, the follower solves the Bellman equation:8

~F (zt) = max

�
�l1ztdt+ Et

h
~F (zt+dt)e

�rdt
i
;
�2
r � �zt � (1� �)I

�
: (1)

In Appendix 1, we �nd that the follower�s maximum value function, ~F (zt), is:

~F (zt) =

8<:
�l1
r��zt +

(1��)I
�1

�
zt
z
¯

�
; zt 2 (0; z¯ )

�2
r��zt � (1� �)I ; zt 2 [z¯ ;1)

, (2)

The interpretation for ~F (zt) is standard, notice in particular that the second

addendum in the �rst line represents the follower�s option value of waiting until the

trigger point z
¯
is reached. This threshold is given by:

z
¯
=



 � 1
r � �
�2 ��l1

(1� �)I; (3)

The comparative statics on z
¯
gives sensible results: an increase in �2; and hence in

; enlarges the investment trigger, which is reduced by an increase in the investment

reward (�2 � �l1), and by an increase in the spillover parameter (which lowers the
follower�s investment cost). An increase in the e¤ective discount rate r � � induces
a larger investment trigger.

We now consider the follower�s choice when the information about the new tech-

nology has not been disclosed yet.

When zt has reached high values without the occurrence of any information leak-

age, it is optimal for the follower to invest paying the full cost I, instead of waiting

for an uncertain spillover. Hence, it is natural to guess that a second threshold, �z;

triggers the follower�s investment, and that �z is always larger than z
¯
. In fact, when

there is the possibility of obtaining a �discount�on the investment cost, the pro�t

8Throughout the paper a �twiddle�above a function means that it refers to a situation in which
the follower has already obtained the informational spillover.
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perspectives that convince a rational �rm to sink the full cost must be higher than

those that triggers the investment of the reduced amount of resources.

We consider �rst the follower�s optimal behavior for zt 2 [z¯ , 1): In this case the
Bellman equation is

F (zt) =max

�
�l1ztdt+ �

�
�2
r � �zt � (1� �)I

�
dt+ (1� �dt)Et

�
F (zt+dt)e

�rdt� ;
�2
r � �zt � I

�
: (4)

The second addendum on the right hand side of the equation above comes from the

fact that, with probability �dt; the follower bene�ts from the informational spillover,

which triggers an immediate investment.

When zt 2 (0; z¯ ]; if the information concerning the new technology are disclosed,
which happens with probability �dt; the follower does not invest. Nonetheless, his

maximum value function is positively a¤ected by his better knowledge. In fact, the

follower�s maximum value function jumps to the level prescribed by the �rst line in

(2). Accordingly, the maximum value function for the follower solves

F (zt) = �
l
1ztdt+ �

�
�l1
r � �zt +

(1� �)I
 � 1

�
zt
z
¯

��
dt+ (1� �dt)Et

�
F (zt+dt)e

�rdt� :
(5)

In Appendix 1, we show that the value of the follower is given by:

F (zt) =

8>><>>:
�l1
r��zt +

(1��)I
(�1)

�
zt
z
¯

�
+ E3z

�1
t ; zt 2 (0; z¯ )

� �
r+� (1� �)I +

(r��)�l1+��2
(r+���)(r��)zt + E2z

�1
t +G2z

�2
t ; zt 2 [z¯ ; �z)

�2
r��zt � I ; zt 2 [�z;1)

; (6)

where the parameters E3, E2, and G2 are:

G2 =

�
(r � �)

( � 1)(r + �� �) �
�1r

(�1 � 1)(r + �)

�
�1 � 1
�1 � �2

(1� �)I
z
¯
�2

E2 =
�2 ��l1

�1(r + �� �)
�z1��1 + (7)

�
�

(r � �)
( � 1)(r + �� �) �

�1r

(�1 � 1)(r + �)

�
�2(�1 � 1)
�1(�1 � �2)

�
�z

z
¯

��2 (1� �)I
�z�1

E3 =E2 �
r(1� �)I

(�1 � 1)(r + �)z¯
�1
+
�2 � 1
�1 � 1

G2z¯
�2��1 :

The threshold �z is determined by the nonlinear equation:
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�
�z

z
¯

��2
(1� �)I

�
(r � �)

( � 1)(r + �� �) �
�1r

(�1 � 1)(r + �)

�
= (8)

=
�2 ��l1
r + �� � �z �

�1(r + ��)

(�1 � 1)(r + �)
I

Notice that �when � = 0 �the solution for the above equation is �z = z
¯
.9 This is

not surprising: when there is no spillover, the follower�s decision boils down to the

traditional one, since he only has to decide whether he wants to invest or to keep his

option. The coincidence of the two thresholds re�ects this fact.

When � = 1 the solution is �z = �1(r+���)
(�1�1)(�2��l1)

I; while z
¯
= 0 (Eq. (3)): In this

particular case, because the technology adoption bears no cost to the follower, it is

always optimal for him to upgrade his technique as soon as the relevant �and indeed

precious �information leaks out of the leader �rm. This explains why z
¯
= 0: When

no information is revealed, the follower waits to invest until zt has reached a value

that is higher than the one characterizing the follower problem in a model with no

spillover.10

Before commenting upon the maximum value function, we need to prove some

results.

Lemma 1
h

(r��)
(�1)(r+���) �

�1r
(�1�1)(r+�)

i
> 0 for �2 2 (0;1); � 2 (0;1):

Proof. Refer to Appendix 2.

This allows to prove that:

Proposition 2 The threshold �z is unique; moreover �z > z
¯
for � 2 (0; 1); � 2 (0;1):

Proof. Refer to Appendix 2.

Hence, our guess according to which �z > z
¯
is veri�ed. Proposition 2 has an

interesting implication

Corollary 3 E2; G2 > 0, and E3 < 0; for �2 2 (0;1); � 2 (0;1).

Proof. Refer to Appendix 2.
9To check this, substitute z

¯
as given by Eq. (3) in Eq. (8), and let � ! 0:

10The fact that � in this case � the threshold �z is higher that the follower�s trigger in a model

with no spillovers,
�
that is 

�1
r��

�2��l1
I

�
, is guaranteed � for � 2 (0;1) � by Lemma 4, which

implies �1(r+���)
�1�1

>
(r��)
�1 .
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This Corollary is useful to interpret the maximum value function (6). For zt 2
(0;z
¯
]; the term E3z

�1
t re�ects the di¤erence between the maximum values of a follower

who has not obtained the spillover, and of one who has (compare the �rst line in Eq.

(6) with the �rst line in Eq. (2)). Accordingly this correction term is negative.

When zt 2 [z¯ ; �z]; the maximum value for a follower that has not enjoyed the spillover

is characterized by two option value terms, E2z
�1
t and G2z

�2
t ; that are both positive.

In fact, inaction grants two types of advantages to the follower. With instantaneous

probability �; he may obtain the spillover, moreover, he expects to be moved toward

the investment threshold �z; which increases his value. The �rst e¤ect is captured by

G2z
�2
t ; while the second boils down into E2z

�1
t (notice that G2 nulli�es as �! 0):

3.2 The leader�s investment decision

We now solve the leader�s optimal decision problem, determining her payo¤s.

The leader chooses her investment threshold, given that the follower will act

optimally in the future. Once the leader has invested, she has no further decision to

take, and her payo¤ is given by the present discounted value of her pro�ts. This payo¤

is a¤ected by the possibility that the follower obtains some information concerning

the leader�s technology. We already know that the follower�s behavior is di¤erent in

the two intervals zt 2 (0; z¯ ); and zt 2 [z¯ ; �z). This di¤erence in the follower�s behavior
in�uences the leader�s payo¤, because it a¤ects the length of her cost advantage

period. Therefore, the leader�s maximum value function has two di¤erent shapes in

the two intervals zt 2 (0; z¯ ); and zt 2 [z¯ ; �z):
As a preliminary to the determination of the leader�s value of investing, it is

convenient to analyze her value of having already invested, when the follower has

already obtained the spillover.

In Appendix 1, we show that the maximum value function for a leader that has

sunk the cost is:11

e�L(zt) =
8<:

�h1
r��zt +

�2��h1
r�� z

¯

�
zt
z
¯

�
; zt 2 (0; z¯ )

�2
r��zt; zt 2 [z¯ ;1)

: (9)

The interpretation for the value function above is straightforward. When zt �
z
¯
; the follower invests upon information revelation, and the leader�s payo¤ is given

by the �ows of future duopoly pro�ts, discounted at the growth-adjusted rate r �
�: If, instead, zt < z

¯
, the follower delays his investment, and the leader enjoys

11A bar above the maximum value function denotes that the leader has already sunk the in-
vestment cost; moreover, recall that the twiddle implies that the follower has already obtained the
informational spillover.
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�for a period of time of stochastic length �a cost advantage guaranteeing her the

instantaneous pro�t �h1zt. The second addendum in the �rst line of Eq. (9) �corrects�

the discounted pro�ts value �h1zt=(r � �); taking account of the future reduction of
instantaneous pro�ts to �2zt; that takes place at z¯

.

We now determine the leader�s maximum value of investing in state zt 2 (0; z¯ ).
In this interval, the leader knows that the follower � even when the informational

spillover has occurred � does not invest until zt has reached z¯
. Hence, the leader

enjoys the instantaneous pro�t �h1zt, which explains the �rst addendum on the right

hand side of the equation below. The second addendum comes from the fact that,

with probability �dt; the follower bene�ts from the informational spillover but not

invests, so that the leader�s maximum value function jumps to what is prescribed

by the �rst line in Eq. (9): The third addendum is explained by the fact that, with

probability (1��dt) there is no information revelation, and hence the leader obtains
�L(zt+dt).

Accordingly, the leader�s maximum value is the solution of

L(zt) = �
h
1ztdt+ �

he�L(zt)i dt+ (1� �dt)Et ��L(zt+dt)� e�rdt � I;
Having determined e�L(zt) as in the �rst line of Eq. (9); we exploit the fact that

the value of having invested is

�L(zt) = L(zt) + I; (10)

and �in Appendix 1 �we obtain the leader�s maximum value function as the solution

of

L(zt) = �
h
1ztdt+�

�
�h1
r � �zt +

�2 ��h1
r � � z

¯

�
zt
z
¯

��
dt+(1��dt)Et [L(zt+dt)� I] e�rdt�I:

(11)

Consider then the interval zt 2 [z¯ ; �z): In this case, the leader knows that the
market dimension is high enough to justify the immediate follower�s investment upon

information leakage.

Hence, we formulate the leader�s maximum value of investing in state zt as

L(zt) = �
h
1ztdt+ �

�
�2
r � �zt

�
dt+ (1� �dt)Et [L(zt+dt)� I] e�rdt � I: (12)

In the equation above, the second addendum on the right hand side comes from

the fact that, with probability �dt; the follower bene�ts from the spillover and invests,

so that the leader�s instantaneous pro�t falls to the duopoly level (and stays there
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forever). The third addendum expresses the fact that, with probability (1 � �dt)
there is no information revelation, and hence the leader investing at zt still enjoys

her cost advantage.

Collecting the results explained in Appendix 1, we �nd that the leader�s maximum

value function is:

L(zt) =

8>><>>:
�h1
r��zt +

�2��h1
r�� z

¯

�
zt
z
¯

�
+ E6z

�1
t � I; zt 2 (0; z¯ )

(r��)�h1+��2
(r+���)(r��)zt + E4z

�1
t +G4z

�2
t � I ; zt 2 [z¯ ; �z)

�2
r��zt � I ; zt 2 [�z;1)

; (13)

where E6, E4, and G4 are given by:

G4 =
�h1 ��2
�2 ��l1

(1� �)I
z
¯
�2



�1 � �2

�
1� (�1 � 1)(r � �)

( � 1)(r + �� �)

�
;

E4 =��z(��1)
�
G4�z

�2 +
�h1 ��2
r + �� � �z

�
; (14)

E6 =E4 + z¯
(��1)

�
G4z¯

�2 +
�h1 ��2
r + �� � z¯

�
:

For a better understanding of the economic meaning of the above parameters, it

is useful to prove the following

Lemma 4
h
1� (�1�1)(r��)

(�1)(r+���)

i
> 0 for �2 2 (0;1); � 2 (0;1):

Proof. Refer to Appendix 2.

Lemma 4 allows to conclude that G4; E6 > 0, while E4 < 0, which implies that

L(zt) needs not be monotonic neither in the interval zt 2 (0;z¯ ), nor in the interval
zt 2 [z¯ ; �z):
In fact, di¤erent forces contribute to shape the leader�s maximum value function.

When zt 2 (0;z
¯
); an increase in zt enhances the instantaneous pro�ts granted

by the investment; however, it also moves the leader closer to the point in which

the follower invests upon the information disclosure. The positive e¤ect on expected

pro�ts is captured by �h1
r��zt; while the second addendum in the maximum value

function re�ects the negative e¤ect caused by the investment carried out at z
¯
by a

follower that has already bene�ted from the spillover (this is the same e¤ect that

can be seen in (9)). The third addendum, E6z
�1
t > 0, measures the expected loss in

which a leader incurs when the follower obtains the spillover; this e¤ect is the less
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relevant the lower is �.12 As depicted in Figure 1, the �rst e¤ect tends to dominate

when zt is low, so that its e¤ects on pro�ts are more relevant.

[Figure 1 about here]

The interpretation of the maximum value function for zt 2 [z¯ ; �z) goes as follows.
The expected pro�t for a leader facing a constant probability of investment on behalf

of her competitor, (r��)�h1+��2
(r+���)(r��)zt; obviously grows with zt; E4z

�1
t and G4z

�2
t are

correction terms capturing the fact that an increase in zt makes closer �on average

�the attainment of the threshold �z that triggers the follower�s investment. Because

an increase in zt makes less likely the attainment of the spillover, the second of the

two correction terms is positive (and increasing in �).

To understand the role of the probability of information disclosure in shaping the

leader maximum value function, consider that, when zt is close to z¯
, it takes �quite a

long time�to reach �z: Accordingly, the average length of the cost advantage period is

close to 1=�, because the probability that �z is reached before the relevant information

are released is negligible. This suggests that, in the lower part of the interval [z
¯
; �z);

the leader�s maximum value function is �almost linear� in zt because the e¤ect of

zt on pro�ts does not change signi�cantly with zt itself. On the contrary, when zt

is close to �z, the extent of the cost advantage period is a¤ected by the evolution of

zt: Accordingly, in this case, an increase in zt enhances the instantaneous pro�ts for

the leader, but reduces the expected duration of her cost advantage period, which

explains the contraction in (the growth of) the leader maximum value.

Figure 1 �which is drawn for a realistic value of � � shows that the leader�s

maximum value function actually is �almost linear� for large parts of the interval

[z
¯
; �z).

Comparing Figure 1 with the pictures portraying the equilibrium for the no-

spillover case (see e.g. Dixit and Pindyck (1994), Nielsen (2002), Weeds (2002)) one

immediately realizes that the presence of a moderate spillover signi�cantly reduces the

di¤erence in the leader�s and in the follower�s maximum value functions, and their

dependence from the fundamental. Because the disparities in the value functions

a¤ects the heterogeneity in the �rms�market betas (as in Cooper (2006)), our model

bears the interesting implication of being able to generate betas that �while di¤erent

between oligopolistic �rms �do not vary excessively.

12When � ! 0; we have that
h
1� (�1�1)(r��)

(�1)(r+���)

i
= 0; since �1 =  (compare Eqs. (18) and

(20)). Because in this case G4 = 0; L(zt) =
�h1
r�� zt +

�2��h1
(r��) z¯

�
zt
z
¯

�
+ E6z

�1
t approaches �h1

r�� zt �
(�h1��2)
r�� �z1�zt ; which is the leader�s maximum value function in the traditional no-spillover model.
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3.3 The simultaneous investment problem

The above analysis suggests that, if the innovation leader decides to delay her in-

vestment until zt has reached high values (i.e. for zt 2 [�z;1)), the �xed cost is
so low in comparison to the expected pro�ts, that it is optimal for the second �rm

to immediately enter upon his rival�s investment, without exploiting the inter-�rm

spillover.

In this case, the �rst �rm is aware that �as soon as she innovates �the second �rm

will �immediately�follow and invest. Hence, each �rm takes her decision anticipating

such a follower�s behavior. This leads to a candidate equilibrium where the two �rms

maximize their joint payo¤: knowing that it will be immediately followed, each �rm

delays its innovation until it can get its maximum discounted sum of pro�ts. In this

context, �rms remain symmetric, and the maximization of each single �rm�s payo¤

coincides with their joint maximization.13 Notice that this solution implies that the

informational spillover is never exploited.

In this case the Bellman equation for both �rms is

S(zt) = max

�
�0ztdt+ Et

�
S(zt+dt)e

�rdt� ; �2
r � �zt � I

�
: (15)

At �rst sight, the solution for this optimization problem seems standard: one may

be inclined to think that the best strategy, for each �rm, is to wait until a thresh-

old, say zS ; is reached, and then to invest. Notice, however, that the simultaneous

investment threshold must satisfy the constraint zS � �z: In fact, if �z > zS , the si-

multaneous equilibrium cannot be sustained: if a �rm invests at zS ; her competitor

best strategy is not to follow immediately. Rather his best reply �given by F (zt) �

is to invest as soon as he bene�ts from the positive spillover, and to sink the cost at

�z > zS if no information �ows out of the rival.

In Appendix 1 we show that the solution is to invest at zS = maxfz0; �zg; where:14

z0 =


 � 1
r � �
�2 ��0

I; (16)

so that the cooperative maximum value function is:

13Weeds (2002) analyzes the case of cooperative investment decisions. When �rms cooperate, if
side payments are allowed, they may jointly select two di¤erent investment triggers (which of course
imply di¤erent expected pro�ts streams). If, instead, the two �rms can cooperate, but they are
constrained to invest at the same point, they opt for the trigger we identify in the main text. Hence
our approch is equivalent to allow for cooperation, excluding the possibility of side payments.
14 It is possible to show that, for � strictly positive, and � relatively high, �z > z0; while we have

that z0 > z
¯
, always.
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S(zt) =

8>>><>>>:
8<: if z

0 � �z �0
r��zt +

I
�1

�
zt
zS

�
if z0 < �z �0

r��zt +
�
�2��0
r�� zS � I

��
zt
zS

� for zt 2 (0; zS)

�2
r��zt � I for zt 2 [zS ;1)

: (17)

When z0 < �z, the value function is continuous, but not di¤erentiable, a conse-

quence of the constraint in the maximization process. Notice that, in this case, the

function S(zt) can be interpreted as the discounted expected value of investing at zS

conditional upon being in zt < zS :

4 The competitive equilibrium

4.1 The equilibrium concept

We now focus on subgame perfect equilibria, in which it is not decided beforehand

which �rm is be leader or follower. Hence we build on the tradition of Fudenberg

and Tirole (1985), a tradition that has been followed, among others, by Grenadier

(1996), Nielsen (2002), Weeds (2002), and Huisman and Kort (2004).

Subgame perfectness requires that the equilibrium must survive all the possible

o¤-equilibrium deviations. Hence, we need to compare the leader�s payo¤ at any

candidate equilibrium, with her payo¤ at any point lower than the one that is part of

the proposed equilibrium. Whenever we can �nd a point in which the leader�s payo¤

is higher than the discounted value of her payo¤ at the candidate equilibrium, the

leader prefers to invest at that point rather than to wait for the proposed equilibrium,

which therefore is not subgame perfect.

When the leader�s payo¤ is higher than the follower�s one, and hence there is a

�rst mover advantage, we need to take into account the possibility of preemption by

the follower. This follows from the fact that the roles of leader and follower are not

pre-assigned: if the follower�s payo¤ is lower than the leader�s one, the former has an

incentive to anticipate the latter�s decision, becoming the leader.

When the spillover and the information leakage parameter are high, we have a

second-mover advantage.15 In this case, following Huisman and Kort (2004), we

assume that each �rm is assigned the task to move �rst with probability one half.16

15 In a second mover advantage game, if the task of moving �rst is exogenously assigned to one of
the two �rms, this player �behaving optimally �obtains the lower payo¤.
16This assumption (and therefore the equilibrium it implies) may seem arbitrary. In fact, it rules

out the mixed-strategies equilibrium often referred to as a war of attrition. In a war of attrition,
�rms would randomize obtaining, at every point, an expected payo¤ equal to the leader�s one. In
the cases we study, our assumption does not twist the selection process in favour of a candidate
equilibrium located in the interval zt 2 [z¯ ; z), simply because there is no second-mover advantage insuch interval for a parameter sub-space much wider than the one for which we present our results.
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As an example to clarify the equilibrium selection procedure, consider Figure 1.

For the chosen parameter constellation, we have that �z is the simultaneous investment

trigger (i.e. zS = �z; because z0 < �z); and hence a natural candidate equilibrium.

Notice that, for some zt 2 [zL; �z); the leader�s maximum value function L(zt) is

higher than S(zt), which represents in this case also the discounted value of L(�z):

Accordingly, the leader prefers to sink the investment cost in zt, rather than to

wait until �z is reached. This is su¢ cient to make the simultaneous investment at

�z not an equilibrium. In such a case, since L(zt) > F (zt); it is in the follower�s

interest to preempt the leader by investing at zt�dzt: Because the roles of innovation
leader and follower are not pre-assigned, by backward induction, we conclude that

the equilibrium strategy for the �rst innovator is to invest when the leader�s payo¤

is equal to the follower�s one (i.e. at zL). Accordingly one �rm, which becomes the

leader, invests at zL; while the other waits until z¯
, and then it invests as soon as it

has bene�ted from the spillover; of course, if the information has not been disclosed

before �z is reached, at that point the follower invests anyway. Notice that we have

rent equalization in the equilibrium, due to the possibility of preemption in this �rst-

mover advantage game. Notice also that S(zL) > L(zL) = F (zL); but the leader

cannot decide to wait, because, for some zt > zL; it is in the follower�s interest to

preempt the leader, which makes the outcome of investing simultaneously at �z not

subgame perfect.

In our set-up, the leader maximum value function may cross the follower�s one

more than once. This happens as the spillover parameter � increases. In fact, an in-

crease in � directly bene�ts the follower�s payo¤ by reducing his �xed cost; moreover,

a larger spillover makes more convenient to the follower the policy of immediately

investing upon information disclosure (in fact an increase in � reduces the thresh-

old z
¯
, refer to Eq. (3)). This shortens the leader�s expected cost advantage period

for zt 2 (0; z¯ ), reducing her value. For a su¢ ciently high �; these two combined
e¤ects induce L(zt) < F (zt) for some zt 2 [zL; �z): Hence, the leader�s maximum

value function crosses the follower�s one more than once. Notice that the fact that

L(zt) < F (zt) for some zt 2 [zL; �z) does not imply that the game we are considering
is of the second-mover advantage type: in the equilibrium we may still have rent

equalization, as it happens for the parameter set portrayed in Figure 2. .

[Figure 2 about here]

To select the subgame perfect equilibrium, we need to proceed backward, starting

from zS : If S(zt) > L(zt) for zt 2 [zL; �z); the subgame perfect equilibrium in the
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interval [zL; �z) prescribes simultaneous investment at zS : If not, as it is the case with

the parameters set used for Figure 2, we need to check if the �rst rent equalization

point that we �nd moving backward toward zL is the equilibrium. Suppose that

zS = �z �as it is in our speci�c case � and call ~z the �rst rent equalization point

at the left of �z: To verify whether this point actually represents a subgame perfect

equilibrium, one must check whether the discounted expected value of investing at

~z; conditional upon being in zt 2 [zL; ~z), is higher than L(zt). When this is the case,
the leader prefers to wait until ~z is reached, rather than to sink the investment cost

in zt. Hence ~z is the subgame perfect equilibrium. When this is not the case, we

need to move to the left to the next candidate equilibrium. Figure 2 depicts a case in

which ~z actually is the subgame perfect equilibrium. In general, this procedure must

be iterated until the subgame perfect equilibrium is found (which may well happen

for a leader investing at zL):

In our highly non linear model, the equilibrium can be selected only by means of

numerical techniques; before resorting to the use of computations, we prove that at

least one rent-equalization equilibrium exists in zt 2 (0; �z). This is accomplished by
means of

Theorem 5 L(zt) crosses F (zt) at least once for zt 2 (0; �z).

Proof. Refer to Appendix 2.

4.2 Equilibrium selection

The equilibrium cannot be identi�ed analytically, due to the high degree of non lin-

earity of our model. Hence, we now present some numerical results.17 In particular,

we shall highlight the portion of the parameter space in which the equilibrium in-

vestment trigger for the leader is higher than z
¯
. When this is the case, in fact, the

follower best strategy is to invest as soon as he gets the spillover, so that the average

time distance between the leader�s and the follower�s investment dates is close to 1=�;

which implies realistic investment lags for the follower. Hence, in what follows, we

will determine �for any given � �the value �(�) such that the spillover parameter

is high enough that the leader�s subgame perfect equilibrium investment trigger is

higher than z
¯
.

To limit the range of relevant values for �; consider that, in his classic study,

Mans�eld (1985) reports that in 41% of cases it takes less than twelve months to

17Our routine has been written in Matlab, and it is based on a discretization of the space [� x �];
for � 2 [0:03; 0:25] and � 2 [0:2; 0:6]: We have used 72.000 gridpoints, however, our results do not
appreciably change for any number of evaluation points larger than 4.500. This routine is available
upon request from the authors.
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the innovator�s rival to obtain the relevant information. More recently, Cohen et al.

(2002) compute that the average adoption lag for unpatented process innovation is

2.03 and 3.37 years in Japan, and in the US, respectively. These contributions leads

to think that � recasting the innovation lag in our terms �� should be comprised

between 0.3 and 0.5; accordingly, we simulate the model for � 2 [0:2; 0:6]:
In our analysis, we �x the discount rate r to 0.04, which is consistent with comput-

ing calendar time in years. Then we notice that the level of the irreversible investment

does not play any substantial role: the e¤ect of an higher I is to postpone all the

equilibria, without changing their relative convenience. Hence, we choose I = 100

with no loss of generality. As for �; we �x it at 0.02 simply because we have veri�ed

that �moving it in the interval [0:01; 0:03] �does not appreciably modify our result.

The role of uncertainty is much more signi�cant. An increase in the standard devia-

tion for dzt has relevant e¤ects on �(�): As we shall detail later, an higher uncertainty

increases the investment triggers, and the value of waiting, and hence plays a role in

the equilibrium selection process. Hence, we shall present the result for � 2 f0:03;
0:1g: While the second value may seem high, it has been adopted in various studies

to stylize the role of sector-speci�c uncertainty (see e.g. Grenadier (1996), Pawlina

and Kort (2006)). The �rst value has been chosen to portray the polar case of a

relatively stable sector.18

Another key element is given by the post-investment pro�t levels. In fact, a

signi�cant pro�t increase for the leader �in absence of spillovers �favours the pre-

emptive equilibrium, as originally suggested by Fudenberg and Tirole (1985), and

veri�ed in the stochastic settings by many contributions (see, in particular Nielsen

(2002), and Weeds (2002)). On the contrary, with no spillover, an investment yield-

ing only a modest pro�t increase to the front runner tends to induce the selection of

a simultaneous equilibrium (see Pawlina and Kort (2006), or, again, Weeds (2002)).

Accordingly, we analyze two di¤erent scenarios.

We �rst consider a major innovation, that is the introduction of a production

techniques yielding a signi�cant cost reduction. In this case, the leader �when she is

the unique innovator �grasps large pro�ts in comparison to the ones obtained by the

follower. In fact, the cost advantage she enjoys induces her to signi�cantly increase

her market share. To simulate this case, we normalize �0 to unity, and we assume:

�h1 = 4; �
l
1 = 0:25; and �2 = 2:25:

19

18The choice of the value for the low variance sector has been in�uenced by Guiso and Parigi
(1999), who � using a panel of Italian �rms � �nd a coe¢ cient of variation of one-year ahead
expected demand as low as 0.023.
19 In Appendix 3, we show that these values are coherent with Cournot competition in the �nal

product market when the innovation size, denoted by x, is 0:50 of the market dimension.
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Then we portray a minor innovation. In this case, the cost reduction is modest,

so that it is not convenient for the leader to sizably expand her production at the

follower�s expenses. Hence the leader �even when she is the unique innovator �does

not enjoy a pro�ts so much larger than the follower�s one. Accordingly, to depict

a minor innovation, besides normalizing �0 = 1 as before, we assume �h1 = 1:21;

�l1 = 0:9025; and �2 = 1:1025:
20

The case of an important innovation is depicted in Figure 3, which shows the

threshold �(�) for � 2 f0:03; 0:1g.

[Figure 3 about here]

For � � �(�); the leader�s subgame perfect equilibrium investment trigger is higher
than z

¯
, while, for � < �(�); the preemptive equilibrium with the leader investing at

zL prevails. To understand this behavior, notice that, for a given �; an increase in �

reduces the leader�s payo¤. In fact, an increase in � makes more convenient to the

follower the policy of immediately investing upon information disclosure, reducing the

threshold z
¯
. This shortens the leader�s expected cost advantage period for zt 2 [zL;z¯ ),

reducing her value. This �rst limits, and then eliminates, the range for zt 2 (0; z¯ )
such that L(zt) > F (zt); ruling out the possibility of an equilibrium in which the

leader invests at zL < z¯
(i.e. of a �rst mover advantage �early�equilibrium): Hence,

an increase in �, for a given �; favours the selection, as a subgame perfect equilibrium,

of a leader�s investment trigger higher than z
¯
:

The e¤ects of a larger � are subtler, but they need to be scrutinized to understand

why the threshold �(�) is decreasing in �. Notice that an increase in this parameter

does not a¤ect z
¯
(refer to Eq. (3)), and therefore does not signi�cantly reduce the cost

advantage period for a leader investing in the early stages of the game: Nonetheless, a

larger probability of information spillover does reduce the value of a leader investing

in zt 2 [z¯ ; �z); while obviously bene�ting the follower�s expected pro�ts. Accordingly,
the two payo¤ functions meet at a later ~z, which implies an higher current value

for the equilibrium. (Refer again to Figure 2, and consider that the process we

are describing shifts upward F (zt); and downward L(zt)). This higher value twists

the equilibrium selection process toward leader�s investment triggers that are higher

than z
¯
. Accordingly, a higher � requires a lower � for the early equilibrium to be

dominated.

In words, a large probability of releasing relevant information induces the leader

to delay her investment, in order to grasp large bene�ts from the increased market

20 In this case, the values in the main text are consistent with Cournot competition in the �nal
product market, when the innovation size amounts to 0:05 of the market dimension.
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dimension during her limited cost advantage period. This e¤ect proves to be strong

enough to sustain �even for a relatively small spillover size �the equilibrium in which

the leader invest after z
¯
.

A larger � enhances quite signi�cantly the threshold �(�). The intuition for this

result is simple: an increase in uncertainty has the usual e¤ects on the follower�s

optimal choices: it delays the thresholds z
¯
and �z.21 The increase in the follower�s

value of waiting, delaying his investment triggers, not only increases the follower�s

payo¤, but it also bene�ts the leader�s value. In particular, she enjoys, in the early

stages of the game, a longer cost advantage period, because the follower�s optimal

policy dictates him to invest �upon information disclosure �at z
¯
. This obviously

acts in favour of the subgame perfectness of the early equilibrium.

Figure 4 shows the threshold �(�) for a minor innovation, again for � 2 f0:03;
0:1g. While for � � �(�); the leader�s subgame perfect equilibrium investment trigger
is higher than z

¯
, when � is low it is the simultaneous investment that prevails.

[Figure 4 about here]

To understand this case, consider �rst that the simultaneous investment strategy

is optimal once the market dimension, and hence the potential increase in pro�ts

due to the innovation, have reached high values. In this case, an innovation leader

cannot emerge, because the rival would immediately copy her decision. The existing

literature suggests that the simultaneous investment equilibrium is subgame perfect

when the size of the innovation is small, because the per-period �rst innovator pro�ts

are not signi�cant, which avoids preemptive behaviors, and hence an equilibrium in

which a leader invests in zL < z¯
.

When the follower�s best reply is to invest immediately upon information disclo-

sure, (i.e. for zt 2 [z¯ ; �z)), an higher � reduces �for a given � �the di¤erence between
the leader�s and the follower�s payo¤s. While the negative e¤ect on the leader is lim-

ited, because the cost advantage period is essentially governed by � (unless zt is �very

close�to �z); the follower signi�cantly bene�ts from the lower investment cost. This

increases the follower�s value function, postponing the candidate equilibrium point

~z, which acts against the subgame perfectness of the simultaneous equilibrium.22

In words, in the interval zt 2 [z¯ ; �z); the presence of a spillover induces the leader
to delay her investment; in fact, she is aware that it is not in the follower�s interest to

21As for z
¯
, the e¤ect can be veri�ed analytically from Eqs (3), and (18), following the usual steps

expounded in Dixit and Pindyck (1994).
22Even if Figure 2 has been drawn for an high cost reduction, it may be helpful to visualize the

e¤ects of an higher � on the value functions.
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preempt her, because he knows that, waiting, he will obtain a reduction in the sunk

cost. This increases the �rms�expected values in this equilibrium, which therefore

tends to dominate the simultaneous solution.

An increase in � bene�ts the follower while harming the leader�s payo¤. Hence, it

acts in favour of the subgame perfectness of the equilibrium in [z
¯
; �z), which therefore

dominates for lower values of the spillover parameter.

In this case also, a larger � enhances appreciably the threshold �(�). The in-

tuition for this result is simple: an increase in uncertainty delays the threshold

zS = maxfz0; �zg:23 The increase in zS bene�ts both �rms�values, which obviously
acts in favour of the subgame perfectness of the simultaneous investment equilibrium.

The evaluation of our result involves a thorny issue, namely the assessment of the

actual size of the spillover parameter.

Some early literature (see Mans�eld et al. (1981)) suggests that the ratio of the

imitator�s cost to the one of the �rst innovator is 0.65; more recent contributions

estimate the role of technological externalities from production functions. Los and

Verspagen (2000), �nd the role of �external R&D�to be extremely important for U.S.

manufacturing �rms. Actually, they �nd an elasticity of output to external R&D of

the order of 0.5 - 0.6. Ornaghi (2006) estimates that, in Spain, the elasticity of

output with respect to �technological spillovers�is of the order of 0.2 of the elasticity

of output to own R&D.24

These data are suggestive of the fact that the role of inter-�rm spillovers is actually

relevant; they also support the view that there is quite a signi�cant inter-sectoral

variation of the importance of spillovers. Accordingly, we believe that our result apply

at least to the industrial sectors in which, due to the geographical or technological

proximity of the producers, the spillovers are likely to be relevant.

5 Optimal subsidization

To underscore the policy relevance of our results, we present an exercise in which

a benevolent planner chooses the optimal tax/subsidization rate of investment in a

duopoly characterized by the elements we have depicted so far.

In dealing with this issue, we have adopted a second best perspective: for us,

neither the number of �rms acting in the market nor the way they compete in the

second stage quantity game lies within the regulatory power of the benevolent plan-

23As for z0, the e¤ect can be veri�ed analytically from Eqs (16), and (18), following Dixit and
Pindyck (1994)
24 In both papers the technological spillover variable is a weighted sum of the R&D expenditures

of the �rms belonging to a speci�c sector.
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ner. Hence, what this non-omnipotent planner chooses is the timing of innovation,

which is a¤ected via the subsidy (or the tax) on investment.25 The planner deci-

sions are based on welfare; in particular for our simulation we use the welfare levels

�computed à la Marshall �that can be obtained under the Cournot decentralized

solution, for the market described in Appendix 3. The instantaneous welfare levels

are discounted at the same rate, r; that is used by �rms.

The details concerning the computation of the welfare function are provided in

Appendix 1. Here, we analyze the consequence of the changes in the investment

triggers that are induced by a proportional subsidization of the �xed investment

cost. In our exercises subsidy levels are decided upon at time 0, and left unchanged

thereafter. In particular, we focus on the case of a major innovation introduced

in a not very volatile sector (� = 0:03). Figure 5 shows the welfare maximizing

subsidization rates for � > �(�); the parameters con�guration being the one used to

generate Figure 3.

[Figure 5 about here]

Figure 6 is drawn for comparison: it shows the optimal subsidization rate called

for by a �preemptive equilibrium�. In other words, Figure 6 shows the optimal

subsidization rate that applies for � below the threshold �(�); it also shows the

optimal subsidization that would have applied, had the strategy of investing at zL

been subgame perfect for the leader, even for � > �(�):

[Figure 6 about here]

The fact that the optimal policy portrayed in Figure 6 implies the taxation of

the investment is not surprising: in such an equilibrium con�guration the �rst mover

invests �very soon� to avoid being preempted, and the R&D investment is socially

excessive, so that it must be delayed via taxation (see again Fudenberg and Tirole

(1985), but also Riordan (1992), and others). Notice that our result implies that the

optimal tax rate is virtually independent from �: This happens because �in the early

equilibrium �when the leader invest, she is �virtually sure�that the follower obtains

the spillover before z
¯
. Accordingly, also the trigger point zL is �almost independent�

from �; which makes this result.

25This approach is standard in the literature: see e.g. Hoppe (2000), and Weeds (2002). The �rst
best equilibrium for an omnipotent planner implies the presence of only one �rm: whenever there
are non-decreasing returns in the innovation size or probability, it is optimal to have only one �rm
to innovate and cover the entire market at the marginal (post-innovation) cost.
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Once the existence of the equilibrium in [z
¯
; �z) has been recognized, the picture

changes quite dramatically: an optimal policy requires a substantial public interven-

tion in favour of the investment activity.

We have also found that an increase in uncertainty �delaying the equilibrium �

calls for higher subsidization rates, a result that applies independently of agents�risk

aversion.

When one considers the case of a minor innovation, the results are less striking: in

this case, it is the simultaneous equilibrium than tends to prevail with low spillover.

The collusive �avour of this equilibrium implies underinvestment, which calls for

positive subsidization. In this case, our result implies that the policies aimed at

stimulating R&D have to be less sizeable than suggested before, because the under-

investing equilibrium in [z
¯
; �z) is closer to the social optimum than the simultaneous

equilibrium.

6 Concluding remarks

What drives the result in our model, is not the fact that an increasing spillover

progressively postpones the leader adoption date in the �early�equilibrium. While

this happens, the crucial aspect is that a di¤erent equilibrium of the dynamic game

emerges. In fact, for low �and hence realistic � spillover, we �nd a subgame per-

fect rent equalization equilibrium in which the leader invests much later. Actually,

she delays her investment until the stochastic fundamental is high enough that the

follower�s invests as soon as he obtains the spillover.

The model could be extended in various ways. First, the spillover size parameter,

and the probability of bene�ting from the spillover could be endogenized, while al-

ternative stochastic processes for pro�ts could be assumed, such as those exhibiting

mean reversion. These assumptions would generate similar qualitative results.

The paper has focused on the symmetric duopoly case. If �rms costs are instead

allowed to di¤er, the identities of the leader and of the follower could be de�ned, with

the more e¢ cient �rm receiving a greater payo¤. In this case, it would be interesting

to analyze how Pawlina and Kort (2006) sequential equilibrium a¤ects the selection

of the subgame perfect equilibrium. We leave this point for future research, our

conjecture being that it would be possible to obtain a sequential equilibrium in which

the leader invests after z
¯
.

An increase in the number of �rms is problematic. As explained by Fudenberg and

Tirole (1985), with three or more identical �rms, equilibrium is made complicated

by the fact that rent equalization need not to hold.
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8 Appendix 1: Details on the value functions

8.1 The follower has obtained the spillover
We guess that the follower�s maximum value function is

~F (zt) = C1zt +D1z

t ;

where C1; D1; and  are undetermined coe¢ cients, while the threshold z¯
must of

course be determined endogenously.
Ito�s Lemma guarantees that, for zt < z¯

:

Et

h
~F (zt+dt)e

�rdt
i
= ~F (zt) +

@ ~F (zt)

@zt
�ztdt+

@2 ~F (zt)

@z2t

�2

2
z2t dt� r ~F (zt)dt:

Following the strategy commonly used in the literature, we now exploit the ex-
pression above into Eq. (1), and we use our guess to obtain that, for zt 2 (0;z¯ ];

0 = �l1zt +
�
C1 + D1z

�1
t

�
�zt + ( � 1)D1zt

�2

2
� r(C1zt +D1zt ):

The above equation implies that C1 =
�l1
r�� ; and that  is the positive root of:

26

�+ ( � 1)�
2

2
� r = 0: (18)

The usual value-matching and smooth pasting conditions determine D1, and z¯
:(

�l1
r��z¯

+D1z¯
 = �2

r��z¯
� (1� �)I

�l1
r�� + D1z¯

�1 = �2
r��

:

It is immediate to verify that the system above yields z
¯
as in (3), and D1 =

(1��)I
�1 z¯

� :

8.2 The follower has not obtained the spillover
For zt 2 [z¯ , �z); i.e. when the follower�s optimal strategy is to wait, we guess that hismaximum value function is

F (zt) = A2 + C2zt + E2z
�1
t +G2z

�2
t ; (19)

where A2; C2; E2; G2; �1; and �2 are undetermined coe¢ cients; the threshold �z must
be determined endogenously.
We apply Ito�s Lemma to E

�
F (zt+dt)e

�(r+�)dt�, we use the resulting expression
into Eq. (4), and we use (19) to obtain that, for zt 2 [z¯ , �z);
26The negative root of the quadratic equation must be discarded because its use would imply that

limzt!0
~F (zt) 6= 0:
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0 =�l1zt + �

�
�2
r � �zt � (1� �)I

�
+
�
C2 + �1E2z

�1�1
t + �2G2z

�2�1
t

�
�zt +

+
h
�1(�1 � 1)E2z

�1�2
t + �2(�2 � 1)G2z

�2�2
t

i
z2t
�2

2
+

�(r + �)(A2 + C2zt + E2z�1t +G2z
�2
t ):

The above equation implies: A2 = � �
r+� (1 � �)I; and C2 =

(r��)�l1+��2
(r+���)(r��) ; �1;

and �2 are the roots of:
27

��+ �(� � 1)�
2

2
� (r + �) = 0: (20)

To pin down the undetermined E2; G2, and the threshold �z, we can exploit the
value-matching and smooth pasting conditions at �z: This gives:8<:� �

r+� (1� �)I +
(r��)�l1+��2
(r+���)(r��) �z + E2�z

�1 +G2�z
�2 = �2

r�� �z � I
(r��)�l1+��2
(r+���)(r��) + �1E2�z

�1�1 + �2G2�z
�2�1 = �2

r��

: (21)

Of course, we need to postpone the determination of E2; G2, and �z; until when
we are able to identify a third equation, completing system (21).

Our tentative solution for the follower�s maximum value function in the interval
zt 2 (0; z¯ ] is

F (zt) = C3zt +D3z

t + E3z

�1
t ; (22)

where C3; D3; and E3 are undetermined coe¢ cients, while ; and �1 are pinned down
by the quadratic equations (18) and (20), respectively.28

Our guess (22) readily gives:

0 =�l1zt + �

�
�l1
r � �zt +

(1� �)I
 � 1

�
zt
z
¯

��
+
�
C3 + D3z

�1
t + �1E3z

�1�1
t

�
�zt +

+
h
( � 1)D3z�2t + �1(�1 � 1)E3z

�1�2
t

i
z2t
�2

2
� (r + �)

�
C3zt +D3z


t + E3z

�1
t

�
:

The above equation implies that C3 =
�l1
r�� ; and that D3 =

(1��)I
�1 z¯

� .
At z
¯
, due to the follower optimizing behavior, the value-matching and smooth

pasting conditions between the maximum value functions (19) and (22) must apply.
This yields:

27 In this case, the negative root of the quadratic equation cannot be discarded because we are
considering an interval, zt 2 [z¯ , �z]; that does not contain 0.28The negative roots of equation (20) must obviously be discarded, since the limit, for zt ! 0;
of the maximum value function de�ned by the Bellman equation (5) must be 0. It is easy to verify
that ; must actually ful�ll equation (18).
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8<:
�l1
r��z¯

+ (1��)I
�1 + E3z¯

�1 = � �
r+� (1� �)I +

(r��)�l1+��2
(r+���)(r��)z¯

+ E2z¯
�1 +G2z¯

�2

�l1
r�� + 

(1��)I
�1 z¯

(�1) + �1E3z¯
�1�1 =

(r��)�l1+��2
(r+���)(r��) + �1E2z¯

�1�1 + �2G2z¯
�2�1

:

(23)
The four equations in (21) and (23) determine E2; E3; G2, and the threshold �z.

8.3 Value of a leader who has invested
In the interval zt 2 (0; z¯ ) the maximum value function

e�L(zt); can be obtained starting
from its recursive form:e�L(zt) = �h1ztdt+ Et he�L(zt+dt)e�rdti : (24)

We then guess that

e�L(zt) = C5zt +D5zt ; (25)

where C5; and D5 are undetermined coe¢ cients, while  is the positive root of Equa-
tion (18).

Using a now familiar procedure, we apply Ito�s Lemma to E
he�L(zt+dt)e�rdti, we

use the resulting expression into Eq. (24), and we exploit the tentative solution (25)
to obtain

0 = �h1zt +
�
C5 + D5z

�1
t

�
�zt +

h
( � 1)D5z�2t

i
z2t
�2

2
� r(C5zt +D5zt );

which gives: C5 =
�h1
r�� : The still undetermined coe¢ cient D5 is obtained by means

of a value matching condition. In fact, at z
¯
, the value of being the leader given that

the informational spillover has occurred, is identical to the expected stream of pro�ts
obtained when both the �rms have sunk the �xed cost. In fact, there the follower is
investing.
Accordingly, at z

¯
, we have e�L(zt) = F (zt) + (1� �)I; and hence:

�h1
r � � z¯ +D5z¯

 =
�2
r � � z¯ ,

so that: D5 =
�2��h1
r�� z

¯
1� :

When zt 2 [z¯ ; �z]; we have thate�L(zt) = �2
r � �zt:

8.4 Maximum value function for the leader
Our tentative solution for the leader�s value of investing in the interval zt 2 (0; z¯ ) is

L(zt) = C6zt +D6z

t + E6z

�1
t � I; (26)

As usual, C6; D6; and E6 are undetermined coe¢ cients, while we shall verify that
; and �1 are the positive roots of the quadratic equations (18) and (20), respec-
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tively.29

Applying Ito�s Lemma to E
�
�L(zt+dt)e

�rdt�, using the resulting expression into
Eq. (11), and exploiting equations (9), (26), and (10), we obtain

0 =�l1zt + �

�
�h1
r � �zt +

�2 ��h1
r � � z

¯

�
zt
z
¯

��
+
�
C6 + D6z

�1
t + �1E6z

�1�1
t

�
�zt +

+
h
( � 1)D6z�2t + �1(�1 � 1)E6z

�1�2
t

i
z2t
�2

2
+

�(r + �)(C6zt +D6zt + E6z
�1
t );

which implies that C6 =
�h1
r�� ; and that D6 =

�2��h1
r�� z

¯
1� ; it is easy to verify that ;

and �1 ful�ll equations (18) and (20). Notice that E6 is still to be determined.
At z
¯
, due to the leader optimizing behavior, a value-matching, and a smooth

pasting conditions must apply between the maximum value functions (26), and the
one that shall be valid in [z

¯
; �z]:

Our tentative solution for the leader�s value of investing in the interval zt 2 [z¯ ; �z]is

L(zt) = C4zt + E4z
�1
t +G4z

�2
t � I; (27)

while the value of having invested is given by Equation (10).
C4; E4; and G4 are coe¢ cients to be determined, while �1; and �2 are the roots

of Equation (20).30

We apply Ito�s Lemma to E
�
�L(zt+dt)e

�rdt�, we use the resulting expression into
Eq. (12), and we use the tentative solutions (27)-(10) to obtain

0 =�l1zt + �

�
�2
r � �zt

�
+
�
C4 + �1E4z

�1�1
t + �2G4z

�2�1
t

�
�zt +

+
h
�1(�1 � 1)E4z

�1�2
t + �2(�2 � 1)G4z

�2�2
t

i
z2t
�2

2
+

�(r + �)(C4zt + E4z�1t +G4z
�2
t ):

The above equation implies that C4 =
(r��)�h1+��2
(r+���)(r��) ; and that �1; and �2 actually

are the roots of Equation (20).
Notice that, if the leader invests at �z, the follower immediately reacts by following

suit. Hence the two �rms value are the same: this provides the value matching
condition L(�z) = F (�z), that helps pinning down the undetermined coe¢ cients E4;
and G4.31 The value matching condition at �z is

(r � �)�h1 + ��2
(r + �� �)(r � �) �z + E4�z

�1 +G4�z
�2 � I = �2

r � � �z � I (28)

As already remarked, at z
¯
, a value-matching, and a smooth pasting conditions

between the maximum value functions (26), and (27) must apply. This yields:

29As before, we discard the negative roots of equation (20).
30Again, the negative root of the quadratic equation must not be discarded because we are con-

cerned with the interval, zt 2 [z¯ , �z].31Because at �z there is no optimal choice on the part of the leader, there is no corresponding
smooth pasting condition in this case (see Weeds, (2002)).
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8<:
�h1
r��z¯

+
�2��h1
r�� z

¯
+ E6z¯

�1 � I = (r��)�h1+��2
(r+���)(r��)z¯

+ E4z¯
�1 +G4z¯

�2 � I
�h1
r�� + 

�2��h1
r�� + �1E6z¯

�1�1 =
(r��)�h1+��2
(r+���)(r��) + �1E4z¯

�1�1 + �2G4z¯
�2�1

: (29)

The three equations in (28) and (29) determine E4; E6; and G4, as in (14).

8.5 Maximum value function for the simultaneous investment
problem

We now assume that no �rm has invested before the threshold �z has been reached,
and we guess that, for zt 2 [�z; zS); it is optimal for the �rms to delay their investment.
In this case the tentative solution for their maximum value function is

S(zt) = C7zt +D7z

t ;

where C7; D7; and  are undetermined coe¢ cients, while the threshold zS must be
determined endogenously, taking account of the constraint zS � �z:
Following our usual strategy, we exploit the Ito di¤erential for Et

�
S(zt+dt)e

�rdt�,
and our guess above, to reformulate Eq. (15) �for zt 2 [�z; zS) �as:

0 = �0zt +
�
C7 + D7z

�1
t

�
�zt + ( � 1)D7zt

�2

2
� r(C7zt +D7zt ):

The above equation implies that C7 =
�0
r�� ; and that  is the positive root of Eq.

(18) (as usual, the negative root of the quadratic equation must be discarded).
Assuming for the moment that z0 � �z; we determine D7, and zS = z0 by means

of the usual value-matching and smooth pasting conditions. These give:(
�0
r��z

0 +D7z
0 = �2

r��z
0 � I

�0
r�� + D7z

0�1 = �2
r��

:

It is immediate to verify that the system above determines zS = z0 as in Eq. (16),
and D7 = I

�1z
0(�): Notice that the maximum value function

S(zt) =
�0
r � �zt +

I

 � 1

�zt
z0

�
;

gives the expected present discounted value of investing at z0; conditional on being
at zt:(Refer to Dixit and Pindyck (1994).)
When z0 � �z; this quali�es the solution. When z0 < �z; the constraint zS � �z is

binding, and the two competitors are not free to choose when to invest. Accordingly,
the smooth-pasting condition does not apply, and the solution is determined by the
value matching condition:

�0
r � � �z +D7�z

 =
�2
r � � �z � I;

which gives: D7 =
�
�2��0
r�� �z � I

�
�z(�): In this case the maximum value function

is relevant for zt < �z, because it provides the expected present discounted value of
investing at �z:
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8.6 The Social Welfare function
The welfare levels depend on the number of �rms that have already sunk the cost.
Let Mizt be the instantaneous welfare level that is obtained when i = 0; 1; 2 �rms
have already invested, and the market dimension variable takes value zt:
First, we consider the case in which the leader has already invested, while the fol-

lower still needs to sink his cost. For zt 2 [z¯ ; �z); the follower shall invest immediatelyafter he enjoys the spillover (or he shall invest at �z if the fundamental gets there
before the information disclosure takes place). Hence, when one �rm has already
invested but the information leakage has not occurred, the welfare W (zt); for zt 2 [z¯ ;
�z); is given by:

W (zt) =M1ztdt+ �dt

�
M2

r � �zt � (1� �)I
�
+ (1� �dt)Et

�
W (zt+dt)e

�rdt� ; (30)

where the second addendum on the right hand side comes from the fact that, with
probability �dt; the follower bene�ts from the informational spillover and invests, be-
cause zt � z¯ , so that the instantaneous welfare jumps toM2=(r��):With probability
(1� �dt) there is no information revelation, and hence no investment.
In this case, our guess for Eq. (30) is:

W (zt) = F +Gzt +Hz
�1
t ;

where F; G, and H are undetermined coe¢ cients, while �1 is the positive root of Eq.
(20).
Using our standard procedure, we apply Ito�s Lemma to E

�
W (zt+dt)e

�rdt�, we
use the resulting expression into Eq. (30), and we exploit the tentative solution above
to obtain

0 =
(r � �)M1 + �M2

r � � zt � �(1� �)I + �Gzt + ��1Hz
�1
t +

+�1(�1 � 1)Hz
�1
t

�2

2
� (r + �)(F +Gzt +Hz�1t );

which gives: F = � �
r+� (1 � �)I; and G = (r��)M1+�M2

(r��)(r+���) The still undetermined
coe¢ cient H is obtained by means of a value matching condition. In fact, at �z,
the social value of the leader�s investment is identical to the value of the investment
performed by both �rms, net of its cost. Accordingly, we have:

W (�z) = � �

r + �
(1� �)I + (r � �)M1 + �M2

(r � �)(r + �� �) �z +H�z
�1 =

M2

r � � �z � I;

which yields: H = �z(��1)
h
M2�M1

r��+� �z �
r+��
r+� I

i
:

We now analyze the welfare e¤ects of the leader�s investment.
Suppose �rst that the leader optimal decision is to sink the R&D cost at ~z > z

¯
.

In this case, for zt 2 (0;z¯ ); i.e. when no �rm has invested, the welfare function is:

W (zt) =M0ztdt+ Et
�
W (zt+dt)e

�rdt� ; (31)
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and the solution we propose is:

W (zt) = Nzt + Pz

t :

From the above tentative solution, where N; and P; are undetermined coe¢ cients
and  is given by Eq. (18), we readily obtain:

0 =M0zt + �Nzt + �Pz

t + ( � 1)Pz


t

�2

2
� r(Nzt + Pzt );

which gives: N =M0=(r � �):
To pin down the coe¢ cient P; notice that, at ~z; the social value of the future

investments must be equal to the value of the �rst investment, net of its cost, which
implies:

N ~z + P ~z = F +G~z +H~z�1 � I;

and therefore,

P = ~z(�)
�
� (M2 �M0) + (r � �)(M1 �M0)

r + �� � ~z � r + �(2� �)
r + �

I +

+

�
� (M2 �M1)

r + �� � �z � r + ��
r + �

I

��
~z

�z

���1
:

Collecting the above result, one obtains the following welfare function,

W (zt) =

8><>:
M0

r��zt + Pz

t zt 2 (0; ~z)

� �
r+� (1� �)I +

(r��)M1+�M2

(r+���)(r��) zt +
h
�(M2�M1)
r+��� � r+��

r+� I
i �

zt
�z

��1 zt 2 [~z; �z)
M2

r��zt � I zt 2 [�z;1)
;

which has been used to generate Figure 5.

When the leader optimal decision of investing at zL < z
¯
is part of the subgame

perfect equilibrium, we need to determine the social value of the investment of the
leading �rm for zt 2 (zL;z¯ ):In this case, we may formulate the leader�s maximum value of investing in state
zt as

W (zt) =M1ztdt+ � ~W (zt)dt+ (1� �dt)Et
�
W (zt+dt)e

�rdt� ; (32)

where ~W (zt) is the social value of the investment performed by the leader when
the follower has bene�ted from the spillover, but he has not invested yet. Hence,
the second addendum on the right hand side comes from the very fact that, with
probability �dt; the follower bene�ts from the informational spillover but not invests.
It would now be easy to show that

~W (zt) =
M1

r � �zt +
�
M2 �M1

r � � z
¯
� (1� �)I

��
zt
z
¯

�
:

Our tentative solution for Eq. (32) is

W (zt) = Qzt +Rz
�1
t + Szt ;
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where obviously Q, R, and S, are undetermined coe¢ cients, and  and �1 are given,
respectively, by Eqs. (18), and (20). From the above tentative solution we readily

obtain Q = M1

r�� ; and S =
h
M2�M1

r�� z
¯
� (1� �)I

i
z
¯
� : As for R; we notice that, at z

¯
,

the value matching condition

Qz
¯
+Rz

¯
�1 + Sz

¯
 = F +Gz

¯
+Hz

¯
�1

must hold. This readily gives

R = z
¯
(��1)

��
M2 �M1

r + �� � �z �
r + ��

r + �
I

� �� z
¯
�z

��1
� z
¯
�z

�
� �I

�
:

Finally, we shall determine the social welfare when no �rm has invested, i.e. for
zt 2 (0; zL]: In this case the welfare function is given again by (31), and the solution
we propose is:

W (zt) = Tzt + Uz

t :

It is easy to see that T = M0=(r � �); as for U; we need to resort to the value
matching condition

TzL + Uz

L = QzL +Rz

�1
L + SzL � I

which requires that �at the leader�s investment trigger zL �the social value of the
future investments must be equal to the net value of the �rst investment.
Some calculation gives:

U = z�L

(
M1 �M0

r � �+ �zL +
��
M2 �M1

r � �+ � �z �
r + ��

r + �
I

� �� z
¯
�z

��1
� z
¯
�z

�
� �I

��
zL
z
¯

��1
+

+

�
M2 �M1

r � � z
¯
� (1� �)I

��
zL
z
¯

��
� I

)

In sum, when the leader optimal decision is to invest at zL < z¯
, the social welfare

function is

W (zt) =

8>>>>>>>><>>>>>>>>:

M0

r��zt + Uz

t zt 2 (0; zL)

M1

r�� +
nh

M2�M1

r��+� �z �
r+��
r+� I

i h� z
�̄z

��1 � z
�̄z

i
� �I

o�
zt
z
¯

��1
+

+
h
M2�M1

r�� z
¯
� (1� �)I

i �
zt
z
¯

� zt 2 [zL; z¯ )

(r��)M1+�M2

(r+���)(r��) zt +
h
�(M2�M1)
r+��� � r+��

r+� I
i �

zt
�z

��1 � �
r+� (1� �)I zt 2 [z¯ ; �z)

M2

r��zt � I zt 2 [�z;1)

;

which has been used to used to generate Figure 6.

9 Appendix 2: Proofs

Proof of Lemma 1.h
(r��)

(�1)(r+���) �
�1r

(�1�1)(r+�)

i
> 0 implies

h
(r��)
(�1)r �

�1(r+���)
(�1�1)(r+�)

i
> 0: De�ne

F (�; �2) =
h
(r��)
(�1)r �

�1(r+���)
(�1�1)(r+�)

i
; and notice that F (0; �2) = 0; since, in this case
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�1 = : Now compute

@F (�; �2)

@�
=

1

(�1 � 1)2(r + �)2

�
(r + �� �)(r + �)@�1

@�
� ��1(�1 � 1)

�
:

If @F (�;�
2)

@� > 0; then F (�; �2) > 0; hence we now show that @F (�;�2)
@� > 0: From

Eq. (20), it is immediate to obtain

@�1
@�

=
2

2�+ (2�1 � 1)�2
:

Accordingly,

@F (�; �2)

@�
=
2(r + �� �)(r + �)� ��1(�1 � 1)

�
2�+ (2�1 � 1)�2

�
(�1 � 1)2(r + �)2 [2�+ (2�1 � 1)�2]

:

Because the denominator of the above expression is positive, @F (�;�2)
@� > 0 if

G(�; �2) = 2(r + �� �)(r + �)� ��1(�1 � 1)
�
2�+ (2�1 � 1)�2

�
> 0:

Hence, we now study G(�; �2): Using the fact that �2 = 2(r+����1)
�1(�1�1)

(exploit Eq.
(20)); we obtain:

G(�; �2) = 2(r + �� �)(r + �)� 2� [��1(�1 � 1) + (r + �� ��1)(2�1 � 1)] ;

that is:

G(�; �2) = 2(r + �� �)(r + �)� 2�
�
(2�1 � 1)(r + �)� ��21

�
;

Notice, �rst, that lim�2!0G(�; �
2) = 0 because lim�2!0 �1 =

r+�
� ; hence, if

@G(�;�2)
@�2 > 0; then G(�; �2) > 0; for �2 2 (0;1); � 2 (0;1):
Because @G(�;�2)

@�2 = �4� (r + �� ��1)
@�1
@�2 ; since we have that r + � � ��1 > 0

(refer again to Eq. (20)), and @�1
@�2 < 0; the proof is completed. �

Proof of Proposition 2.

Because
h

(r��)
(�1)(r+���) �

�1r
(�1�1)(r+�)

i
> 0; we have that lim�z!0 l:h:s:(8) = 1;

and that lim�z!1 l:h:s:(8) = 0: Notice, moreover that @(l:h:s:(8))
@�z < 0; and that

@2(l:h:s:(8))
(@�z)2 > 0; because �2 < 0:
The right hand side of Equation (8) is linear and increasing in �z. Hence, its second

derivative in �z is nought, and �z is unique.
Notice that

r:h:s:(8)j�z=z
¯
=

�
r � �

(r + �� �)


 � 1(1� �)�
�1

�1 � 1
r + ��

r + �

�
I;

while

l:h:s:(8)j�z=z
¯
=

�
(r � �)

( � 1)(r + �� �) �
�1r

(�1 � 1)(r + �)

�
(1� �)I:

Hence,
r:h:s:(8)j�z=z

¯
< l:h:s:(8)j�z=z

¯
;

which completes the proof. �
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Proof of Corollary 3.
Recall that �2 < 0: hence, the fact that E2; G2 > 0 is obvious from Lemma 1.
As for E3; consider that:

E3 =
�2 ��l1

�1(r + �� �)
�z1��1 � r(1� �)I

(�1 � 1)(r + �)z¯
�1
� �2
�1
G2�z

�2��1 +
�2 � 1
�1 � 1

G2z¯
�2��1 :

Exploiting Equation (3), the above expression may be written as:

E3 =
�2 ��l1

�1(r + �� �)
�
�z1��1 � z

¯
1��1

�
+

+

�
(r � �)

( � 1)(r + �� �) �
�1r

(�1 � 1)(r + �)

�
(1� �)I
�1z¯

�1
+

��2
�1
G2
�
�z�2��1 � z

¯
�2��1

�
� �2
�1
G2z¯

�2��1 +
�2 � 1
�1 � 1

G2z¯
�2��1 ;

which, using the de�nition for G2 in (7), simpli�es to:

E3 =
�2 ��l1

�1(r + �� �)
�
�z1��1 � z

¯
1��1

�
� �2
�1
G2
�
�z�2��1 � z

¯
�2��1

�
:

If �z were equal to z
¯
; we would have E3 = 0: Notice, moreover, that:

@E3
@�z

= (1� �1)
�2 ��l1

�1(r + �� �)
�z��1 � (�2 � �1)�2

�1
G2�z

�2��1�1 < 0:

�

Proof of Lemma 4.h
1� (�1�1)(r��)

(�1)(r+���)

i
> 0 requires ( � 1)(r + � � �) > (�1 � 1)(r � �):  is the

positive root of Eq. (18), so that �1 = � �
�2 �

1
2+

q�
�
�2 �

1
2

�2
+ 2r

�2 ; while, from Eq.

(20) implies: �1 � 1 = � �
�2 �

1
2 +

q�
�
�2 �

1
2

�2
+ 2(r+�)

�2 : Hence, the above inequality
can be written as:

24� �
�2
� 1
2
+

s�
�

�2
� 1
2

�2
+
2r

�2

35 (r + �� �) >
>

24� �
�2
� 1
2
+

s�
�

�2
� 1
2

�2
+
2(r + �)

�2

35 (r � �):
When � = 0; the left and the right hand sides of the expression above are identical.
Notice, however, that the �rst derivative with respect to � of the left hand side

is positive, while the second derivative is nought. As for the right hand side of the
expression above, notice that the �rst derivative is positive, while the second one is
negative. Hence, to prove the lemma, it su¢ ces to show that the derivative of the
left hand side �evaluated at � = 0 �is higher that the derivative of the right hand
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side, i.e. that:24� �
�2
� 1
2
+

s�
�

�2
� 1
2

�2
+
2r

�2

35 >
24s� �

�2
� 1
2

�2
+
2r

�2

35�1 (r � �)
�2

:

Multiplying both sides by
�q�

�
�2 �

1
2

�2
+ 2r

�2

�
; and rearranging, we obtain:

�
�

�2
� 1
2

�2
+
2r

�2
>
(r � �)
�2

+

�
�

�2
+
1

2

�s�
�

�2
� 1
2

�2
+
2r

�2
;

which readily becomes:

�
�

�2
� 1
2

�2
+
r + �

�2
>

�
�

�2
+
1

2

�s�
�

�2
� 1
2

�2
+
2r

�2
:

Squaring both sides of the above expression gives:

�
�

�2
� 1
2

�4
+

�
r + �

�2

�2
+ 2

�
r + �

�2

��
�

�2
� 1
2

�2
>

>

"�
�

�2
� 1
2

�2
+
2�

�2

#"�
�

�2
� 1
2

�2
+
2r

�2

#
:

Some simpli�cations give: �
r + �

�2

�2
>
4�r

�4
;

which is always veri�ed, since r > �: �

Proof of Theorem 5.
Notice, from (6), that limzt!0 F (zt) = 0; while limzt!0 L(zt) = �I: Now consider

the di¤erence L(zt)� F (zt) in the interval zt 2 [z¯ ; �z]: Grouping terms one obtains:

L(zt)� F (zt) =
�h1 ��l1
r + �� �zt + (E4 � E2)z

�1
t + (G4 �G2)z�2t � r + ��

r + �
I:

Exploiting (14), and (7) one can write:

E4 � E2 = �z�2��1
�
�2
�1
G2 �G4

�
� �z1��1

r + �� �

�
�h1 ��2 +

�2 ��l1
�1

�
:

Taking advantage of the expression above, we obtain:

@ [L(zt)� F (zt)]
@zt

=
�h1 ��l1
r + �� � + �2(G4 �G2)z

�2�1
t +

+

�
�z�2��1 (�2G2 � �1G4)�

�1�z
1��1

r + �� �

�
�h1 ��2 +

�2 ��l1
�1

��
z
�1�1
t :
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Hence, we have that

@ [L(zt)� F (zt)]
@zt

����
zt=�z

=
�h1 ��l1
r + �� � + �2(G4 �G2)�z

�2�1+

+ �z�2�1 (�2G2 � �1G4)�
�1

r + �� �

�
�h1 ��2 +

�2 ��l1
�1

�
;

which boils down to:

@ [L(zt)� F (zt)]
@zt

����
zt=�z

=

�
�h1 ��l1 � �1(�h1 ��2)�

�
�2 ��l1

��
r + �� � +(�2��1)G4�z�2�1:

We now substitute out G4 using (14), and we obtain:

@ [L(zt)� F (zt)]
@zt

����
zt=�z

=

= (�h1 ��2)
(

1� �1
r + �� � �

1� 
r � �

�
1� (�1 � 1)(r � �)

( � 1)(r + �� �)

��
�z

z
¯

��2�1)
:

where we have exploited Eq. (3). The above expression can be written as:

@ [L(zt)� F (zt)]
@zt

����
zt=�z

=

=
(�h1 ��2)(1� �1)

r + �� �

(
1 +

�
1� ( � 1)(r + �� �)

(�1 � 1)(r � �)

��
�z

z
¯

��2�1)
:

Lemma 4 guarantees that both addenda inside the big curly brackets are positive,
so that the derivative is negative. Because L(zt); and F (zt) are continuous, this
completes the proof. �

10 Appendix 3: A Cournot interpretation for payo¤s and wel-
fare levels

Consider an industry composed of two �rms, i and j; which, in each (in�nitesimally
short) period, are involved in a two�stage interaction: �rst they decide whether to
innovate or not, and then they compete à la Cournot. Firms�horizon is in�nite.
Market demand is linear and equal to: P = a

p
zt � bQ, where P is the market

clearing price and Q = qi + qj is the total quantity supplied.
Each �rm has a unit cost of production c

p
zt. The assumption that both the mar-

ket dimension parameter a; and the unit cost c are in�uenced by the same disturbance
is widely used in the literature (Huisman and Kort (2004), Pawlina and Kort (2006),
Cooper (2006), Moretto (2008)). In fact, it greatly simpli�es the analysis. To avoid
excessive analytical intricacies, several other contributions admit only a few possible
demand levels, or ignore variable cost (see e.g. Grenadier (1996), Nielsen (2002)).
We think that the approach we follow is the optimal compromise between analytical
tractability and �realism�.
In each period t �rm i (and j) decides whether to invest in R&D or not. This

investment immediately yields a cost-reducing process innovation, which shrinks the
unit production cost by an amount x

p
zt, with x < c. Hence �rm i�s post�innovation

production cost is C(qi) = (c� x)qi
p
zt.

40



Each �rm�s payo¤ depends not only on its adoption date but also on its rival�s
one. If both �rms have not invested up to period t, their individual pro�ts in the
Cournot subgame at t are those of the pre�innovation stage, i.e.

�0zt =
A2

9b
zt; (33)

where A = a� c: The subscript indicates the number of �rms that have innovated at
time t: The instantaneous welfare (computed à la Marshall as the sum of consumers�
and producers�surpluses) is then equal to:

M0zt =
4

9

A2

b
zt: (34)

If instead only one �rm, say �rm i; invests in R&D at t, it bene�ts of an e¢ ciency
advantage, and obtains a higher market share. The market price at t decreases in
comparison with the pre-innovation level, while the individual pro�ts become:

�h1zt =
(A+ 2x)2

9b
zt; �

l
1zt =

(A� x)2
9b

zt; (35)

where the superscript h denotes variables pertaining to the �rms that has already
invested, while l refers to the �rms which has not innovated yet. Notice that �h1 > �

l
1;

�h1 > �0 and �
l
1 < �0; as required by Assumption 1: Because q

l
j =

A�x
3b ; to preserve

the duopolistic structure characterizing our market we need to assume A > x. This
hypothesis implies that, in a Cournot environment, the cost-reducing innovation is
non�drastic. In case of asymmetric behavior at t, welfare is:

M1zt =
8A(A+ x) + 11x2

18b
zt; (36)

with M1 > M0:
Finally, we need to compute the outcomes when both �rms have innovated at t.

In this case, being more e¢ cient, they both produce more than in the status quo;
therefore, the market price is lower. Individual pro�ts at t are:

�2zt =
(A+ x)2

9b
zt: (37)

Obviously, �h1 > �2; as required by Assumption 1; notice, moreover, that the
di¤erence between �h1 and �2 is increasing in x: when only one �rm enjoys a cost
advantage, she obtains a larger market share while bene�ting from an higher price
to cost margin.
When both �rms have innovated, the social welfare is:

M2zt =
4(A+ x)2

9b
zt; (38)

with M2 > M1:
When �rms simultaneously invest in R&D, individual pro�ts rise from (33) to (37)

and welfare jumps from (34) to (38). Alternatively, �rms may behave asymmetrically,
so that there are both an innovation leader and a follower. Under these circumstances
individual pro�ts �rst change from (33) to (35) (and welfare from (34) to (36)) and
then from (35) to (37) (and welfare from (36) to (38)).
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Leader's (continuous line) and Follower's (dashed line) value functions for:  r = 0.04, α = 0.01, σ = 0.03, θ = 
0.07, λ = 0.40, I = 100. Π0 = 1, Π1

h = 4, Π1
l = 0.25, and Π2 = 2.25. The dotted line represents both S(zt), and 

the discounted value of )()( zFzL = .  
 

 
Leader's (continuous line) and Follower's (dashed line) value functions for:  r = 0.04, α = 0.01, σ = 0.03, θ = 
0.12, λ = 0.40, I = 100. Π0 = 1, Π1

h = 4, Π1
l = 0.25, and Π2 = 2.25. The dotted line represents both S(zt), and 

the discounted value of )()( zFzL = . The continuous line ending at z~ represents the discounted value of 
).~()~( zFzL =  



 
In the areas above the θ(λ) frontiers the leader delays her investment at least up to z. 
 
 

 

 
In the areas above the θ(λ) frontiers the leader delays her investment at least up to z. 



 
 
 
 
 

 
 
 


