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Abstract

We investigate the e¤ects of the learning curve on the timing and intensity
of investment. The learning curve generates sign�cant scale e¤ects: if the
e¢ ciency gains from learning are large and the learning speed fast, marginal
capital pro�ts are increasing. In a capital expansion model this implies that
the �rm undertakes an initial lumpy investment followed by further marginal
adjustments. However, we investigate a model in which investment is lumpy
by assumption and the �rm chooses its capacity once and for all. We �nd that
the e¤ects of the learning curve are ambiguous: if the speed of learning is high
investment occurs earlier and on a smaller scale. If the learning speed is low
the scale of investment increases while the e¤ect on timing is ambiguous.

1 Introduction

The learning curve hypothesis states that unit costs decrease with cumulative pro-
duction. While producing, a �rm exploits a process of learning-by-doing that will
lead to increased e¢ ciency and lower production costs in the future. There is ample
empirical evidence documenting the presence of the learning e¤ects in various indus-
tries (Wright (1936), Hirsh (1952), Webbink (1977), Zimmerman (1982), Lieberman
(1984), Argote, Beckman and Epple (1990), Gruber (1992) and Bahk and Gort (1993)
among others).
The learning curve has been recognized as a key factor behind the �rms�pro-

duction and competitive policies (see Spence (1981), Fudenburg and Tirole (1983),
Dasgupta and Stiglitz (1988), Majd and Pindyck (1989), Cabral and Riordan (1994),
Cabral and Riordan (1997)). Majd and Pindyck (1989) determine the optimal pro-
duction rate under the learning curve and uncertain demand. They show that the
conditions that make the �rm willing to produce are less stringent. Even when mar-
ginal revenue is lower than marginal cost it may be optimal for the �rm to produce.
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This is because, in addition to the value of generating pro�ts, production has the ad-
ditional value of reducing future marginal costs. However, Majd and Pindyck (1989)
only focus on the production choice while the capital stock is �xed, implying that
production capacity is given. It follows that the speed of learning is bounded by the
�xed capacity.
We extend their investigation by analyzing how the learning curve a¤ects invest-

ment. To do so we exploit the real options framework which allows us to analyze
optimal capacity choice in continuous time, with �exible timing, irreversibility and
an uncertain demand.
Our �rst result is that the learning curve generates a signi�cant scale e¤ect. If

the learning e¢ ciency gains are su¢ ciently large and the learning process relatively
fast, the pro�t function is convex-concave, that is, for low levels of capacity, returns
to capital are increasing. For a linear demand and a constant returns to capital
production function we can derive a simple condition under which increasing returns
are generated. However, this result is robust also to di¤erent speci�cations.
A question that immediately arises is how increasing returns a¤ects the �rm�s

investment strategy. Before answering this question, however, we must de�ne what
the �rm can actually do when choosing its capacity. In other words, we have �rst to
specify our assumptions about which investment option(s) the �rm holds. In the real
options literature a large strand of research (see, Pindyck (1988), He and Pindyck
(1992), Abel and Eberly (1994), Aguerrevere (2003), Guo, Miao and Morellec (2005))
investigates capacity expansion models. In those models the �rm, under the standard
assumption of decreasing marginal returns, expands its capacity sequentially and can
choose in any point in time to increases its capital stock on the basis of the evolution
of the stochastic selling price. In this context, the optimal strategy of the �rm is to
adjust its capacity to prevent the marginal productivity to cross a barrier that de�nes
the investment threshold. It is shown that this threshold equals the sunk marginal
cost multiplied by a factor larger than one which gives account the option to wait
generated by uncertainty (see Dixit and Pindyck (1994), Chapter 11 p.362).
What would the e¤ect of increasing returns be in a capital expansion model?

More speci�cally, how would the expansion path of a learning �rm di¤er from that
one of a �rm producing at a constant marginal cost equal? Two facts must be
taken into account. First, as we will show, the value of a marginal unit for the
learning �rm is larger than that one of the constant marginal cost �rm. This implies
that the investment threshold for the learning �rm will be lower. Second, when the
conditions for the initial investment are met, the constant marginal cost �rm will
invest only in the �rst marginal unit. On the contrary, when the pro�t function is
convex-concave, the learning �rm will invest in a "discrete" amount of capital. Given
increasing marginal pro�ts, the selling price that justify the investment in the �rst
unit of capital triggers the investment also in some following units. Dixit (1995)
investigates the expansion model in a real option context with a convex-concave
production function. He shows how the �rm�s investment path is indeed de�ned by

2



an initial lumpy investment followed by further marginal adjustments. On the basis
of these considerations, we can unambiguously conclude that in a capacity expansion
model the e¤ect of the learning curve is twofold: investment occurs earlier and on a
larger scale.
To enrich the analysis, however, we depart from the framework described above

and investigate the consequences of the presence of the learning curve in a model
where investment is lumpy by assumption. In other words while in a capacity expan-
sion model lumpiness is an endogenous e¤ect of the presence of the learning curve (if
the learning curve generates increasing marginal pro�ts the investment is lumpy, but
it is marginal otherwise) we consider a model in which investment is lumpy both for
a constant marginal cost �rm and for a learning �rm, independently of the presence
of increasing returns. In order to do so we build on the framework proposed by Bar
Ilan and Strange (1999) (BI&S, henceforth) and consider a strategy of a �rm that has
the option to choose once and for all its productive capacity. Investigating a lumpy
investment model, allows us also to give account of the well acknowledged fact that
investment occurs in spikes not only at aggregate but also at micro level (see, e.g.
Caballero et al. (1995), Cooper and Haltiwanger (1999), Doms and Dunne (1998))
A direct consequence of our modelling choice is that the implications of increasing

returns are less striking. As already mentioned, in the expansion models lumpiness is
an endogenous e¤ect of the presence of the learning curve, while in our speci�cation
this is an exogenously imposed assumption. But, on the other hand, in our model
the e¤ects of learning are more di¢ cult to pin down ex ante.
We �nd that the in�uence of the learning curve on timing and intensity of in-

vestment is ambiguous. To explain the ambiguity we need to remind, �rst, a result
of BI&S (1999): in general, factors that delay the investment increases its intensity
when it occurs. In the remainder we will call this result bad news e¤ect. When a
bad news arrives, the option value to delay the investment increases so that invest-
ment occurs when the value of the project, determined by the output selling price,
is higher. Therefore, at the time of investment the marginal productivity of capital
is higher and the scale of the optimal capacity also grows. For the same principle,
factors that accelerate the investment usually decrease its intensity. Given that the
learning curve increases the value of capital, investment tends to occurs earlier and,
according the above described mechanism, on a smaller scale.
However, larger capacity, increasing the per-period prodution rate, guarantees

that the bene�ts of the learning curve are obtained more rapidly. For this reason, the
�rm has an incentive to increase its scale, in contrast to the bad news e¤ect. When
the learning curve increases the scale of the investment, given that larger capacity
implies a higher sunk costs, the �rm may prefer to postpone it. Therefore, the e¤ect
of the learning curve on timing and intensity of investment is ambiguous. Compared
to a �rm that produces at constant marginal cost, a learning �rm invests earlier and
less if the learning speed is high. High learning speed implies that the �rm does not
need a large per-period production rate, i.e. large capacity, to move down along the
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learning curve. On the contrary, when the learning speed is low, it invests on a larger
scale, while the e¤ect on timing is ambiguous.
This article is organized as follows. The next section presents our modelling

assumptions. Section 3 shows the optimal policy of a �rm that produces at constant
marginal cost. Section 4 is the bulk of our work and investigates the choice of timing
and intensity of investment for a �rm facing the learning curve, while Section 5
concludes.

2 The learning curve

Consider a �rm that at any time t sells its product at a price determined by the
inverse demand function

X = P � 'q; (1)

where q is the quantity of output produced in each period, ' is a strictly positive
and constant parameter, and P is a demand shift parameter that �uctuates over time
according to

dP

P
= �dt+ �dZt; (2)

where dZt is the increment of a standard Wiener process. Each unit of the capital
stock produces one unit of output, and we assume that the �rm always produces up
to its capacity, which means that

q = K (3)

at all times without the possibility of temporary suspension of the production. As we
we clarify more in detail in Section 4, the �rm holds an option to choose once and for
all its productive capacity at per unit cost of capital equal to k. We further suppose
that capital does not depreciate and investment is fully irreversible.
To model the learning curve we follow Majd and Pindyck (1989). Starting from an

initial level c, marginal cost asymptotically declines to zero with cumulative output
Qt.1 Given that in our model �rm�s per-period production rate is constant and equal
to the chosen capacity K, it holds Qt = tK. Marginal cost equals

c(Qt) = ce
�Qt. (4)

It follows that, the instantaneous pro�t at time t is

�(P;K;Qt) =
�
P � 'K � ce�Qt

�
K (5)

1While we consider an in�nite learning, Majd and Pindyck (1989) assume that the learning
process as soon as marginal cost reaches a strictly positive lower bound. Using Majd and Pindyck�s
speci�cation our qualitative results wouldn�t change.

4



The value of the capital in place and the value of the marginal unit of capital
stock are equal to their expected discounted stream of pro�ts:

V (P;K; 0) = E

�Z 1

0

�(P ;Qt;K)e
��sds

����P0 = P;Q0 = 0� ;
where � is the time discount rate. The integral can be directly evaluated.

V (P;K; 0) = K

�
P

�
� 'K

�
� c

K + �

�
; (6)

in which � = �� � > 02. Marginal capital pro�s equals

VK(P;K; 0) =
P

�
� 2'K

�
� c

K + �
+

Kc

(K + �)2
: (7)

where the last term represents the bene�t that a larger capacity gives to the �rm
in terms of an increased speed of learning. Note that, for a �rm that produces at
constant marginal cost, i.e.  = 0, value and marginal value of capital are given by
V (P;K) = K

�
P
�
� 'K

�
� c

+�

�
and VK(P;K; 0) = P

�
� 2'K

�
� c

�
, and are lower than

(6) and (7).
The presence of the learning curve has an important implication for the scale

e¤ect which we establish the in following proposition.

Proposition 1 The pro�t function (6) is convex-concave in K if

 >
'�

c
. (8)

The proof is relegated in Appendix A.1. The result in Proposition 1 means that,
when  is large enough, the learning curve gives rise to an initial region of increasing
marginal pro�ts. In that case marginal and average pro�t curves have inverse U-
shapes.
For given ' and � marginal pro�ts are increasing when the initial marginal cost c

is large and the learning speed parameter  is high. The underlying logic is straight-
forward. The speed at which the �rm moves down along the learning curve depends
on the learning rate, de�ned as K. Therefore, larger capacity guarantees faster
learning and greater pro�ts. But on the other hand, it implies also a cost because it
reduces the selling price proportional to the parameter '. When the e¢ ciency gains
are substantial and (c is high) and can be reached quickly ( is also high), marginal
productivity of capital is maximal for a su¢ ciently large K, that is the pro�t func-
tion is convex-concave. Figure 1 shows the shape of the marginal (VK) and average
(AV = V

K
) pro�t curves for the parameters values speci�ed in the �gure�s caption.

2If � � � � 0, it would be optimal to inde�netely postpone the investment, i.e an investment
would never occur.
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Figure 1: Average (AV ) and marginal (VK) revenue curves. Parameters values are:
P = 100; c = 40,  = 0:1; � = 0:05, � = 0:01; ' = 1.

3 Timing and intensity of investment

3.1 Constant marginal cost

In this section we investigate the investment strategy of a �rm that produces at a
constant marginal cost c. Here, our analysis is analogous to Bar Ilan and Strange
(1999) with the sole di¤erence that while they employ a Cobb-Douglas production
function, q = K� with � 2 (0; 1), we use the linear demand with constant returns
production speci�ed in equations (1) and (3).
Given our assumptions, the per-period pro�t is

�(P;K; ) = (P � 'K � c)K

and the value of capital

V (P;K) = E

�Z 1

t

�(P;K; )e��(s�t)ds

����P0 = P; � ;
Solving the integral yields

V (P;K) = K

�
P

�
� 'K

�
� c

�

�
(9)

The �rm�s problem is to choose once and for all the optimal size and timing of invest-
ment. Denote by F (P;K) the option value associated with this investment oppor-
tunity. A standard analysis shows that this option satis�es the ordinary di¤erential
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equation
1

2
�2PFPP + �PFP � �F = 0: (10)

with general solution A(K)P �1 +B(K)P �2, where

�1 =
1

2
� (�� �)

�2
+

s�
(�� �)
�2

� 1
2

�2
+
2�

�2
> 1

�2 =
1

2
� (�� �)

�2
�

s�
(�� �)
�2

� 1
2

�2
+
2�

�2
< 0

are the roots of the quadratic equation 1
2
�2�(� � 1) + �� � � = 0. The boundary

condition
lim
P!0

F (P;K) = 0; (11)

implies F (P;K) = A(K)P . The coe¢ cient A(K) and the investment trigger P (K)
are obtained from the value matching and smooth pasting conditions

F (P (K); K) = V (P (K); K)� kK; (12)

FP (P (K); K) = VK(P (K); K); (13)

Substituting the expression for (9) and using the solution of F (P;K), (12) and (13)
can be rewritten as

A(K)P
�1 = K

�
P

�
� 'K

�
� c

�
� k

�
; (14)

�1A(K)P
�1�1 =

K

�
: (15)

Simple algebra yields

P (K) =
�1�

�1 � 1

�
'K

�
+
c

�
+ k

�
; (16)

and

F (P;K) =
K

�1 � 1
(
'K

�
+
c

�
+ k)

�
� (�1 � 1)
�1�

P

('K + c+ �k)

��1
: (17)

Given that the �rm has only the possibility to undertake one investment, it chooses
its capacity to maximize F (P;K). Di¤erentiating (17) with respect to K and rear-
ranging yields

K =
1

' (�1 � 2)
(c+ �k) (18)

7



Subtituting this expression in (16) gives us the solution for the trigger price

P =
�1�

(�1 � 2)
(
c

�
+ k); (19)

Note that we require �1 > 2. If this condition is not satis�ed (it happens when
volatility is high and the discount factor � is low) the �rm�s investment problem has
no �nite solution.
In Table 1 we report comparative statics results of our model compared with those

of BI&S (1999). All the derivations are in the Appendix. As shown, the e¤ects in
the two models are in general consistent and, as stressed by BI&S, display surprising
patterns.
For example consider a rise in � and c. When volatility and marginal production

cost rise both in the optimal capacity K and in the investment trigger P increase.
While the e¤ect on investment timing is expected, (the investment is delayed) the
e¤ect of intensity is a �rst sight surprising: the �rm invests more. One would expect
that the "bad news" of rising uncertainty and production cost should lead to lower
investment. However, this is not the case. BI&S (1999) clarify the reason why
this happens. When a bad news arrives, the option value to delay the investment
increases so that the value matching condition (12) is satis�ed for a larger P . For
this reason, at the time of investment the marginal productivity of capital is higher
and the scale of the optimal capacity K grows. This principle implies that, in general
(but not always), the sign of the derivatives of K and P goes in the same direction.
Factors that delay the investment increase its intensity when it occurs. This property
will be called in the remainder "bad news e¤ect". To clarify the point and ease
the understanding of the learning curve case, tackled in the next section, we further
brie�y investigate the mechanism underlying the bad news e¤ect.
Our model implies a simultaneous solution for timing and intensity of investment,

but for the sake of clarity we consider them separately. The timing is determined by
(12) and (13). The intensity is determined by the condition

FK(P;K) =
1

�1�

�
P

P (K)

��1 �
P (K) + (1� �1)PK(K)K

�
= 0 (20)

When FK(P;K) is positive it is optimal for the �rm to increase the investment size,
and the other way around.3 The sign of (20) depends on the expression in the square
brackets. The �rst term, P (K), is always positive. Therefore, PK(K)K must be also
positive.4 Now, consider how a bad news a¤ects this optimality condition. When a
bad news arrives investment is delayed, i.e. P (K) increases, and this tends to rise
FK(P;K). In general, (1 � �1)PK(K)K may decrease but not su¢ ciently to o¤set

3Indeed, �1 > 2 guarantees that F (P;K) is a concave function, thus FKK(P;K) < 0.
4It is never optimal to invest in a capacity level lying in the increasing part of the marginal pro�ts

curve. Therefore, it always holds PK(K) > 0.
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the increase in P (K). Therefore, the net e¤ect is to rise FK(P;K) and this implies
that the �rm must invest in a larger capacity to restore optimality.
For example, consider an increase in the marginal production cost c, starting from

optimality (i.e. (20) is satis�ed). From (16) it is immediate to see that, other things
being equal, P (K) rises. In addition, PK(K) does not depend on c, leaving the second
term in (20) una¤ected. This implies that the e¤ect on FK(P;K) is unambiguously
positive and that K� must increase.
For the interpretation of the e¤ect of other parameters we remand the reader

to BI&S (1999). Notice how, contrary to BI&S�s model, with a linear demand and
constant returns to capital the bad news e¤ect applies also for the sunk investment
cost k.

3.2 Learning curve

The solution procedure for the learning �rm�s investment problem follows the same
steps outilined in the previous section and eventually yields

P �(K) =
�1�

�1 � 1

�
'K

�
+

c

K + �
+ k

�
; (21)

and

F (P;K) =
K

�1 � 1

�
'K

�
+

c

K + �
+ k

�0@�1 � 1
�1�

P�
'K2

�
+ Kc

K+�
+ k

�
1A�1

; (22)

The optimal capacity K� is implicitly de�ned by the condition

FK(P;K) =
1

�1�

�
P

P �(K)

��1
[P �(K) + (1� �1)P �K(K)K] = 0 (23)

Condition (23) is satis�ed when

'K

�
+

c

K + �
+ k + (1� �1)

�
'K

�
� Kc

(K + �)2

�
= 0 (24)

or

(�1 � 2) =
�

'K

�
c (�1K + �)

(K + �)2
+ k

�
> 0: (25)

Note thatK� is �nite if (�1�2) > 0, the same condition that we found in the constant
marginal cost case.5 The optimal capacity K� is the real solution of a cubic equation,
but the explicit expression that de�nes it results too complex to be informative. Yet,

5As shown in the Appendix (�1 � 2) guarantees that F (P;K) as de�ned in (23) is concave.
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Our Model BI&S (1999)

V (P;K) K
�
P
�
� 'K

�
� c

�

�
K�

�
P
�
� c

�

�
K�; P � �;� �; �
Kk;P k +; + �; =
Kc; P c +; + +; +
K�; P � +; � +; �
K�;P � +; + +; +

Table 1: Comparative statics results with constant marginal production costs for our model
(linear demand with constant returns to capital production function) and BIS (1999) (Cobb-
Douglas production function).

constant c learning
K�
� ; P

�
� �;� �;�

K�
k ;P

�
k +; + +; +

K�
�; P

�
� +; � +; �

K�
�;P

�
� +; + +; +

K�
c ; P

�
c +; + +; +

K�
 ; P

�
 N:A: �;�:

Table 2: Comparative statics. Learning curve and constant marginal cost �rm

di¤erentiating the above optimality condition we can analytically de�ne how factors
a¤ect K�.
In Appendix we show that

K�
� 7 0, K�

� > 0, K
�
� > 0; K

�
k > 0; K

�
 7 0; K�

c < 0 (26)

where @K�

@�
� K�

� . Also for K constant,

P �� (K) > 0, P
�
�(K) 7 0, P �k (K) > 0, P �� (K) 7 0, P � (K) < 0, P �c (K) (27)

Given that P �K(K) > 0, K�
� > 0 and P �� (K) > 0, the trigger price unambiguously

increases in �. The same reasoning holds for P �k and P
�
c . On the contrary, we cannot

analytically pin down the sign of P �� , P
�
� and P

�
 . Numerically we show that the e¤ect

is ambiguous for all the three variables.
Table 2 summarizes the results and compare them with the constant marginal

cost case. As we show, where a direct comparison is possible, the direction of the
e¤ects is the same.
The main goal of our analysis is, however, to investigate the e¤ect of the learning

curve on timing and intensity of investment. In this perspective, our interest is focused
on the comparative statics e¤ect of . As  decreases the learning e¤ect progressively
weakens and eventually vanishes.  = 0 corrspond to the constant marginal cost case.
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Thus, K�
 and P

�
 provide information about what happens to intensity and timing of

investment when the in�uence of the learning curve on production process becomes
more powerful.
As indicated in Table 2, the e¤ect of  is ambiguous.

Proposition 2 Consider the optimality condition (23). The optimal capacity is in-
creasing in  (K�

 > 0), if

K <
(�1 � 2) �

�1
(28)

and the other way around.

The above proposition states that an increase in  is more likely to increase the
optimal capacity when the learning rate K is small. To ease the interpretation of
Proposition 2 we rewrite the optimality condition (23) as

P �(K) + (�1 � 1)AVK(K)K = 0; (29)

where AV = V (P;K;0)
K

. Optimality requires AVK(K) < 0, because K� lies in the de-
creasing returns region where both the average and marginal pro�t curve are declining
in K.
An increase in , a¤ects both tems in condition (29). The e¤ect on P �(K) in

unambiguous. Given that faster learning increases the value of capital the threshold
investment curve de�ned by P �(K) shifts down. For this reason, FK(P;K) tends to
be lower pushing the �rm to invest in a smaller capacity. This is the bad news e¤ect
identi�ed by BI&S (1999). The good news of a faster learning tends to anticipate
the investment. Therefore. marginal capital pro�ts when the investment occurs are
lower and this reduces the investment size.
However, the e¤ect on AVK is ambiguous. It is easily shown that AVK(K) > 0 if

K < �, and the other way around. If (28) holds, the increase in AVK (a reduction of
AVK in absolute value) is su¢ ciently strong to more than counterbalance the bad news
e¤ect. A larger AVK(K) means that the the rate at which the average productivity
of capital (which determines P �(K)) decreases in K is lower. Indeed, larger capacity
increases production costs but also increases the speed of learning making a larger
capacity relatively more convenient. If this e¤ect is dominant the size of investment
rises. The e¤ect on P � is also ambiguous. With  larger, P �(K) declines, and if the
�rm chose same capacity stock it would invest earlier. However, the optimal capacity
may increase, rising the irreversible expenditure wK. If the increase is the sunk cost
is substantial, investment occurs later.
Hence, the ambigous e¤ect of the learning curve on the optimal investment size

is totally driven by its in�uence on the shape of the average productivity curve.
Figure 2 helps to clarify this point. The �gure shows AV curves for di¤erent levels
of . Two fact are immediately clear. First, lower  shifts the AV curve down
because the value of capital is lower. Second, the slopes change, but the e¤ect is
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non monotonic. For example, start from the capacity level Kmax, identi�ed by the
verical line, that maximizes the average value of capital for  = 0:1. In that point
the average pro�t curve is �at, i.e. AVK = 0. As  decreases AVK �rst becomes
positive (note how for  = 0:01 the the average pro�t curve at Kmax is increasing),
then negative (for  = 0:001 and  = 0 the pro�t function is concave and the AV
curves are monotonically decreasing).
The reason is the following. With high  marginal returns to capital are increasing

(see Proposition 1) but the peak of the average productivity of capital occurs for a rel-
atively smallK because the �rm does not need a large capacity to exploit the learning
curve. Given the high  the learning process proceeds already fast. With  smaller,
but not too low, marginal returns are still increasing but the average productivity of
capital is maximized for a larger K, because the �rm needs to compensate the low 
with a larger per-period production rate to optmally exploit the learning curve. This
implies that at Kmax AVK(K) > 0. If  further decrease, marginal returns becomes
decreasing and AVK(K) is always negative.
Compare, now, learning and constant marginal cost �rms. As suggested by Propo-

sition 2 and con�rmed by the numerical results of Table 4 in the Appendix, the learn-
ing �rm invest on a larger scale if  is small and on a smaller scale if  is high. When
 is high, the di¤erence in average pro�ts between learning and costant marginal cost
�rms is large, because the learning process proceeds fast. The large value of capital
is an incentive to anticipate the investment, and the already fast learning induces
the �rm to install a small capacity. Given that marginal cost will rapidly decline
in the future, waiting too long before undertaking the investment is not desirable.
The learning �rm invest much earlier than the constant marginal cost �rm, but this
implies that bad news e¤ect is stronger. Investment occurs on a smaller scale.
When  is small, however, the learning process is slow so that the di¤erence in

average pro�ts between learning and costant marginal cost �rms is also small. This
implies that the bad news e¤ect is weakened, because the downward shift of the
threshold curve is less pronounced. Moreover, a small  also implies that a larger
capacity is needed to exploit the learning curve. Therefore, investment occurs on a
larger scale. With a larger investment the e¤ect on timing is ambiguous. The average
pro�t per unit of capital is always larger for the learning �rm. Thus, for given K
investment would still occur earlier. But on the other hand the irreversible sunk
expenditure wK, is also larger. Therefore, it might be optimal to undertake it later,
i.e. for a larger P �.
Given that we investigate a real options model, a question that naturally arises

is how uncertainty a¤ects the above described mechanism. The answer is, in this
case, clear-cut. Uncertainty, increasing �1, makes condition (28) more stringent, i.e.
it reduces the likelihood that the learning curve increases the scale of investment.
Indeed, other things being equal, higher volatility itself triggers the bad news e¤ect
inducing the �rm to invest later and on a larger capacity. This implies that the
additional incentive to further increase the capacity due to the learning curve is

12
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Figure 2: Average (AV ) revenue curves for di¤erent values of . Parameters values
are: P = 100; c = 40, � = 0:05, � = 0:01; ' = 1.

weaker, because the �rm already invest on a large scale. As also shown by the
numerical results of Table 4 in the Appendix, with higher � the region where K�

 > 0
progressively shrinks.
To summarize, we �nd that the in�uence of the learning curve on timing and

intensity of investment is ambiguous. On one side, the value of capital increases so
that, other things being equal, the investment trigger P � is lower. A lower trigger
implies that, at the moment the investment occurs, also the marginal productivity
of capital is also lower. Therefore, the �rm prefers to choose a smaller capacity. On
the other side, larger capacity, increasing the per-period prodution rate, guarantees
that the bene�ts of the learning curve are obtained more rapidly. Therefore, the �rm
has an incentive to increase its scale. Given that larger capacity implies a higher
sunk costs, the �rm may prefer to postpone the investment (higher P �). The e¤et
on timing and intensity of investment depends on which of these two opposing forces
prevail. Typically, when the speed of learning is high, investment occurs earlier and on
a smaller scale. When the learning speed is low, the intensity of investment increase,
while the e¤ect on timing is ambiguous. Finally, uncertainty decrease the probability
that the learning curve will increase the scale of investment.
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Figure 3: Marginal revenue curve with a production for of the form K�. Parameters
values are: P = 100; c = 40,  = 0:1, � = 0:05, � = 0:01; � = 0:8

3.3 Extension: a Cobb-Douglas production function

In this section we extend the results of Section 3 and investigate the e¤ects of the
learning curve using a production function analogous to BI&S (1999), that is q =
K� with � 2 (0; 1). This extension represents a robustness check for one of the
main results of our model, that is the fact that the learning curve may generate
increasing marginal pro�ts. Indeed, for a Cobb-Douglas production function, and
more in general for the broader class of functions which satisfy the Inada conditions,
marginal productivity of capital at K = 0 is in�nite. Given that marginal pro�ts
must be initially decreasing, a textbook convex-concave pro�t function, as that we
found for the linear case, is immediately ruled out. However, we will show that the
marginal pro�t curve can be still characterized by an inverse U-shaped region, that
is the learning may generate increasing marginal pro�ts.
As in Section 2, the �rm�s cost function is (4). Therefore, pro�t at time is

�(P;K;Qs) = K
�
�
P � ce�Qt

�
It follows that value and marginal value of capital are

V (P;K; 0) =
PK�

�
� K�c

K� + �
(30)

VK(P;K; 0) =
�

�
PK��1 � �cK��1

K� + �
+
�K2��1c

(K� + �)2
(31)
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Our main interest here is to understand whether, for some parameters values,
marginal pro�t function (31) displays an increasing region. Figure 3 helps to clarify
this point. Marginal pro�t is very large for small capacity ( it is in�nite for K = 0)
and is initially steeply decreasing in K. For K su¢ ciently large, however, the curve
displays the familiar inverse U-shape. In other words, the pro�t function (30) is
concave-convex-concave and our intuition is robust: the learning curve may generate
increasing marginal pro�ts.
The �rm investment problem can is solved with procedure outlined in the previous

sections and eventually yields

P �(K) =
�1�

�1 � 1

�
c

K� + �
+ kK1��

�
;

and

F (P;K) =
K�

�1 � 1

�
c

K� + �
+ kK1��

�0@�1 � 1
�1�

P�
c

K�+�
+ kK1��

�
1A�1

: (32)

The optimal capacity K� maximizes (32) and satis�es

�c

K� + �
+ �kK1�� + (1� �1)

�
� �cK�

(K� + �)2
+ (1� �) kK1��

�
: = 0 (33)

Equation (33) is satis�ed if

�1(1� �) = 1 +
�cK��1

k (K� + �)2

�
�1K

� + �

(K� + �)

�
> 1: (34)

Note that a �nite solution for the optimal capacity can be obtained if �1(1� �) > 1
and k > 0.6

Analogously to the linear demand case the e¤ect of learning on investment in-
tensity is ambiguous, with K� increasing in  if K� < � (�1�2)

�1
, and the other way

around. The interpretation follows the same lines of the previous section.
In the Appendix we show that other factors a¤ect K� in the following directions:

K�
� 7 0, K�

� > 0, K
�
� > 0; K

�
k < 0, K

�
c > 0 (35)

The same argument of the previous section implies that P �� > 0, P
�
c > 0. The e¤ect

of other factors on the investment timing is shown numerically.

6An analogous condition the same condition found in BI&S (1999). Condition (34) guarantees
that the investment option as speci�ed in (32) is a concave function of K.
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4 Conclusions

We investigated the optimal investment policy of a �rm that faces the learning curve
and a stochastic demand. The learning curve generates signi�cant scale e¤ects: if the
e¢ ciency gains from learning are large and the speed of learning su¢ ciently fast, the
pro�t function is convex-concave, i.e the marginal pro�t function has inverse U-shape.
As shown in Dixit (1995) this result implies that in a capacity expansion model,
the initial investment would be lumpy followed by additional marginal adjustments.
However, following Bar Ilan and Strange (1999), we investigate a model in which the
�rm chooses once and for all its capital stock and investment is lumpy by assumption.
We �nd that the in�uence of the learning curve on timing and intensity of investment
is ambiguous.When the learning speed is low, the intensity of investment increase,
while the e¤ect on timing is ambiguous. Uncertainty decrease the probability that
the learning curve increases the scale of investment.
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A Appendix

A.1 Proof of Proposition 1

In order to prove that the pro�t function is convex-concave in K, we have to show
that VKK(P;K;Qt) > 0 holds for K = 0, and VKK(P;K;Qt) < 0 for a given bK > 0.
This second part is immediately veri�ed by noticing that, for �nite values of ', c and
c, lim

K!1
VKK = �2'

�
. For the second part note that

VKK(P;K; 0) = �
2'

�
+

2c

(K + �)2
+

22Kc

(K + �)3
:

Therefore, VKK(P; 0; 0) > 0 holds if condition (8) is satis�ed. �

A.2 Comparative statics

A.2.1 Constant marginal cost

P k =
�1�

(�1 � 2) �
> 0

Kk =
�

' (�1 � 2)
> 0

With an abuse of notation we indicate the partial derivatives of �1 with respect a
generic factor x not with the subscripts but as @�1

@x
. Note that

@�1
@�

< 0 which implies
@

@�

�1
(�1 � 2)

> 0

@�1
@�

> 0 which implies
@

@�

�1
(�1 � 2)

< 0

@�1
@�

< 0 which implies
@

@�

�1
(�1 � 2)

> 0

It follows that
K� = �

@�1
@�

(c+ �k)

' (�1 � 2)2
> 0
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P � =
@

@�

�1
(�1 � 2)

�(
c

�
+ k) > 0

K� = �
@�1
@�

(c+ �k)

' (�1 � 2)2
> 0

P� =
@

@�

�1
(�1 � 2)

�(
c

�
+ k)� �1

(�1 � 2)
(
c

�
+ k) 7 0

K� = �
@�

@�

1

' (�1 � 2)2
(c+ �k) +

k

' (�1 � 2)
7 0

P � =
@

@�

�1
(�1 � 2)

�(
c

�
+ k) +

�1
(�1 � 2)

(
c

�
+ k)� �1

(�1 � 2)
�
c

�2
7 0

Kc =
1

' (�1 � 2)
> 0

P c =
�1�

(�1 � 2) �
> 0 (36)

A.2.2 Learning curve: linear demand and CRS

F (P;K) =
P �(K)K

�1�

�
P

P �(K)

��1
; (37)

The �rm maximizes this option choosing the optimal capacity. The �rst order con-
dition with respect to K is

FK(P;K) =
1

�1�

�
P

P �(K)

��1
[P �(K) + (1� �1)P �K(K)K] = 0

For K chosen optimally the term inside the square brackets must be equal to zero.
Thus,

'K

�
+

c

K + �
+ k + (1� �1)

�
'K

�
� Kc

(K + �)2

�
= 0

Note that in order for the above equation, the term in the square brakets must be
positive. This property will result useful to evaluate the sign of some of the partial
derivatives below.
To perform a comparative statics analysis we di¤erentiate the equilibrium condi-

tion. Hence all the following partial derivatives are evaluated at K = K�, but we
write K omitting the star (�) to make the notation less burdensome.

FKK(P;K) =
1

�1�

�
P

P �(K)

��1 �'
�
� c

(K + �)2
+ (1� �1)

�
'

�
� c

(K + �)2
+

22Kc

(K + �)3

��
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In order to have a well de�ned a problem it must be that FKK(P;K) < 0, which
implies

(�1 � 2) >
�
'

�
� c

(K + �)2

��1
(�1 � 1)

22K2c

(K + �)3
< 0:

This condition is immediately satis�ed when (25) holds.
Notice that

FK� = �
1

�1�

�
P

P �(K)

��1 @�
@�

�
'K

�
� Kce�Qt

(K + �)2

�
> 0;

FK� = �
1

�1�

�
P

P �(K)

��1 @�
@�

�
'K

�
� Kce�Qt

(K + �)2

�
> 0;

FKk =
1

�1�

�
P

P �(K)

��1
> 0:

FK =
1

�1�

�
P

P �(K)

��1 � cK2

(K + �)3
[� (�1 � 2)� 2�1K]

�
7 0

FK� =
1

�1�

�
P

P �(K)

��1 �
(�1 � 2)

'K

�2
+

cK

(K + �)3
[K (1� 2�1)� �]

�@�
@�

�
'K

�
� Kc

(K + �)2

��
7 0

FKc =
1

�1�

�
P

P �(K)

��1 � 1

K + �
� (1� �1)

Kc

(K + �)2

�
> 0

Rearranging the partial derivatives (26) follows.
For given K it holds

P �� (K) =
@

@�

�1
�1 � 1

�

�
'K

�
+

c

K + �
+ k

�
> 0; (38)

P �k (K) =
�1�

�1 � 1
> 0

P �� (K) =

�
'K

�
+

c

K + �
+ k

��
@

@�

�1
�1 � 1

� +
�1

�1 � 1

�
+

� �1�

�1 � 1

�
'K

�2
+

c

(K + �)2

�
7 0

P ��(K) =

�
'K

�
+

c

K + �
+ k

��
@

@�

�1
�1 � 1

� � �1
�1 � 1

�
7 0
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P � (K; 0) = �
�1�

�1 � 1
Kc

(K + �)2
< 0

P �c (K; 0) =
�1�

�1 � 1
1

K + �

A.2.3 Learning curve: Cobb Douglas

FK(P;K; 0) =
K��1

�1�

�
P

P �(K)

��1 � �c

K� + �
+ �kK1�� + (1� �1)

�
� �cK�

(K� + �)2
+ (1� �) kK1��

��
:

FKK(P;K) =
K��1

�1�

�
P

P �(K)

��1 �
� �2cK��1

(K� + �)2
+ (1� �)�kK��+

+ (1� �1)
�
� �2cK��1

(K� + �)2
+ 2

�22cK2��1

(K� + �)3
+ (1� �)2kK��

��
In order for the problem to have a unique solution it must be FKK < 0. Therefore,
it must be that

�1(1� �) > 1 +
�

1� �
cK2��1

k (K� + �)3
[� (�1 � 2)� �1K�] :

This condition is satis�ed when (34) holds.

FK�(P;K) = �
K��1

�1�

�
P

P �(K)

��1 @�
@�

�
� �cK�

(K� + �)2
+ (1� �) kK1��

�
> 0

FK�(P;K) = �
K��1

�1�

�
P

P �(K)

��1 @�
@�

�
� �cK�

(K� + �)2
+ (1� �) kK1��

�
> 0

FKk(P;K) =
K

�1�

�
P

P �(K)

��1
[1� �1(1� �)] < 0

FK(P;K) =
K��1

�1�

�
P

P �(K)

��1 � �K�c

(K� + �)3
[(�1 � 2)� 2�1K]

�
7 0

FK�(P;K) =
K��1

�1�

�
P

P �(K)

��1 �� �c

(K� + �)3
(K�(1� 2�1)� �)

�
+

�@�
@�

�
� �cK�

(K� + �)2
+ (1� �) kK1��

��
< 0

FKc(P;K; 0) =
K��1

�1�

�
P

P �(K)

��1 � �

K� + �
� (1� �1)

�K�

(K� + �)2

�
> 0:
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constant c learning
K�
� ; P

�
� �; � �; �

K�
k ;P

�
k �; = �; +

K�
�; P

�
� +; � +; �

K�
�;P

�
� +; + +; +

K�
c ; P

�
c +; + +; +

K�
 ; P

�
 N:A: �;�:

Table 3: Comparative statics. Learning curve and constant marginal cost with a Cobb-
Douglas production function

Rearranging the partial derivatives (26) follows.
For given K it holds

P �� (K) =
@

@�

�1
�1 � 1

�

�
c

K� + �
+ kK1��

�
> 0;

P �k (K) =
�1�

�1 � 1
K��1 > 0

P �� (K) =

�
c

K� + �
+ kK1��

��
@

@�

�1
�1 � 1

� � �1
�1 � 1

�
+

� �1�

�1 � 1
�ce�Qt

(K� + �)2
7 0

P ��(K) =

�
c

K� + �
+ kK1��

��
@

@�

�1
�1 � 1

� � �1
�1 � 1

�
7 0

P � (K; 0) = �
�1�

�1 � 1
�K�c

(K� + �)2
< 0

P �� (K) =
�1�

�1 � 1
1

K� + �
> 0;

P �c (K; 0) =
�1�

�1 � 1
1

K� + �
> 0

A.3 Numerical results
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� = 07 � = 0:05 � = 0:1 � = 0:15
 K� P � K� P � K� P � K� P �

0 13.50 54 23.14 69.02 57.02 123.23 243.2 421.12
0.0001 14.59 53.95 24.9 68.87 60.19 121.80 227.96 379.83
0.001 20.63 49.45 29.30 59.60 52.12 91.11 126.43 204.86
0.01 14.01 25.03 16.59 28.26 23.81 39.06 47.53 76.36
0.1 5.42 9.30 6.14 10.01 8.37 13.50 15.84 25.37
1 1.87 3.41 2.03 3.27 2.73 4.38 5.09 8.15
10 0.66 1.46 0.65 1.04 0.87 1.40 1.62 2.59

Table 4: The e¤ect of  on timing and intensity of investment for di¤erent values of �.
Parameters values are: c = 40, � = 0:05, � = 0, � = 1, w = 10.

 K� P �

0 23.14 69.02
0.000001 23.16 69.03
0.00001 23.33 69.03
0.0001 24.90 68.87

Table 5: The e¤ect of  on timing and intensity of investment. Parameters values are:
c = 40, � = 0:05, � = 0:05, � = 0:01, � = 1 w = 100.

� K� P �

0.4 9.78 14.71
0.05 8.37 13.50
0.06 7.99 13.48
0.07 7.89 13.76
0.08 7.91 14.14

Table 6: The e¤ect of � on timing and intensity of investment. Parameters values are:
c = 40, � = 0:1,  = 0:1, � = 0:01, � = 1, w = 50.

� K� P �

0 7.28 15.13
0.01 8.08 14.98
0.02 9.45 15.41
0.03 12.18 17.21

Table 7: The e¤ect of � on timing and intensity of investment. Parameters values are:
c = 40, � = 0:1,  = 0:1, � = 0:1, � = 1, w = 50.
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� K� P �

0 7.28 15.13
0.01 8.08 14.98
0.02 9.45 15.41
0.03 12.18 17.21

Table 8: The e¤ect of � on timing and intensity of investment. Parameters values are:
c = 40, � = 0:1,  = 0:1, � = 0:01, � = 1, w = 50.

 K� P �

0 315.2 123.22
0.000001 316 123.26
0.00001 323.7 123.61
0.0001 403.2 126.57
0.001 510.8 112.73
0.01 121.2 58.71
0.1 15.8 25.44
1 1.7 10.40

Table 9: Cobb-Douglas production function. The e¤ect of  on timing and intensity of
investment. Parameters values are: c = 40, � = 0:01, � = 0:05, � = 0:0, � = 0:6, w = 100.

 = 0:001  = 1
� K� P � K� P �

0.4 604.7 69.47 5.10 2.67
0.05 317.2 67.37 4.6 3.16
0.06 182.6 65.24 4.3 3.65
0.07 113.8 63.34 4.1 4.12
0.08 75.6 61.70 3.9 4.60

Table 10: Cobb-Douglas production function. The e¤ect of � on timing and intensity of
investment. Parameters values are: c = 40, � = 0:1, � = 0:, � = 1, w = 10.
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