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A Multi-Cycle Two-Factor Model of Asset Replacement 

 
Abstract: The aim of this article is to analyse the asset replacement problem in 

the perspective of optimal replacement time given a certain tax environment 

and depreciation policy. Using a real options approach, our model minimises 

current operation and maintenance costs and permits a new valuation of the 

replacement flexibility under a multi-cycle environment. The innovation on the 

valuation process comes from adding an autonomous salvage value factor. 

Results from partial differential equations reveal relevant differences from 

those observed in one-factor models, specifically in optimal replacement levels 

and in the non-monotonous effects of salvage value variation.  

This paper provides enhancements to existing literature on equivalent 

annual cost by formulating a cost-minimisation problem conditioned by 

autonomous salvage value dynamics, and it contributes to Real Options 

literature by introducing a salvage value factor in the valuation model. 

JEL classifications: D81, D92, H25 

Keywords: Replacement, Real Options, Uncertainty, Equivalent Annual 

Cost, First Passage Time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction 

One of the traditional approaches of determining asset optimal replacement 

level consists of the use of the minimum Equivalent Annual Cost (EAC) of 

assets in competition. This methodology assumes cost structure consistency, 

deterministic cost flows and known salvage value. The major problem of the 

deterministic EAC results from considering both implicit and explicit 

uncertainty. Rust (1985) tries to overcome some of these problems by adopting 

the presumption that higher cost values indicate bigger asset deterioration and 

by modelling cost accumulation as an arithmetic Brownian motion with 

constant drift and variance. Ye (1990) follows in this way, assuming that asset 

deterioration increases stochastically and considering a replacement process 

return to its initial state, each time occurs an asset swap.  Mauer & Ott (1995) 

enhance Ye’s model, modelling cost dynamics using a Geometric Brownian 

Motion (GBM).   

2 Replacement model formulation 

We could begin our analysis by using a single-asset model that sets salvage 

value as a function of operation and maintenance costs (OMC), where the 

critical cost level triggers the replacement process. Instead, our model sets a 

salvage value function to trigger asset replacement, which results from the 

following outcome:   

( ),t t t tC S C Sς =     (1.1) 



This function It represents a product of costs tC  and salvage value tS . Function 

( ),t tC Sς  reflects a market functioning principle that  costs and salvage value 

are inversely proportional (when operational and maintenance costs increase, 

salvage value decreases). Instead of assuming a constant proportion, our model 

assumes a mean-reversion process. Therefore, significant changes in ( ).ς   

indicate relevant variations in tC  or in tS . As a result, asset replacement should 

be observed when ( ).ς  exceeds a certain level ( )* .ς , by an increase in either tC  

or tS . Therefore, each time ( ).ς  reaches a trigger level, it triggers the 

replacement of the current asset by another stochastically equivalent. For a risk-

free interest rate fr , the valuation expression is the following: 

 ( ) ( ) ( )( )
0

, , min 1 , , f

t

r ta
t t t t tV C S t E C C S t e dt

ς
τ τδ ϑ

∞
− 

= − − 
 
∫   (1.2) 

The asset valuation is a function of cost flow that results from the difference 

between the after-tax costs ( )1tC τ−  and the tax shield ( ), ,a
t tC S tτδ ϑ . In 

expression (1.2), tC  corresponds to OMC, τ  is the tax rate, aδ  represents the 

depreciation rate, and ( ).ϑ  indicates the book value, which is given by: 

( ) ( )1
att P e δϑ ϕ −= − ,    (1.3) 

with P  as the acquisition price and ϕ  as the investment tax credit rate.  

( ) ( )1
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δ

ϑ ϕ
−

 
= −  

 

⌢

    (1.4) 

The adoption of an infinite time horizon permits the relaxation of the functional 

dependence between  t  and the function ( ).V . As a result, we consider the 

following diffusion processes: 



C C CdC Cdt Cdzα σ= +     (1.5) 

( )d dt dzς ςς µ ς ς ς σ ς= − +     (1.6) 

The expression (1.6) stems from the one described by Gibson & Schwartz (1990), 

which represents convenience yield properties as part of oil price evolution, 

and from another expression proposed by Dixit & Pindyck (1994). There is also 

strong evidence of a mean reversion presence in the futures market and 

agricultural products as well as some modest evidence of mean reversion in the 

financial markets (Bessembinderetal et al., 1995).  

Assuming the distribution of the risk using financial assets and using the 

contingent claims approach, it is possible to obtain the differential equation of 

( ).V : 

( )( ) ( ) ( )2 2 * 21 1
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Z
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C

δ
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−
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. 

(1.7) 

This contains the partial derivatives of ( ).V  with respect to the variables C  and 

ς , the risk-adjusted drift rate of costs *
C f Crα δ= − , the risk-adjusted drift rate of 

salvage value *
S f Srα δ= − , the risk free interest rate fr  and convenience yields 

Cδ , Sδ . The general solution of equation (1.7)  is:  (see Appendix 8.1)  

( ) ( ), ,H A BV C V C k C k Cξς ς= + +    (1.8) 

with ( ),HV C ς  described by:  

( )
( )

( ) ( )
2

1 2
1

1

1 2 3 1 2 3, , , , ,
C

C C

k
k

H D EV C C k H h h h k L l l l
ςσ

β
σ βς ς

− +
+= +   , (1.9) 

where , ,C D Ek , are constants, ( )1 2 3, ,H h h h  is a hypergeometric function (see 

Appendix 8.2), ( )1 2 3, ,L l l l  is a Laguerre polynomial (see Appendix 8.3),  , Cςσ σ  

correspond to the standard deviation of ,Cς , 1β  and  the terms ,A Bk  defined as: 
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   (1.11) 

In order to achieve the general solution of ( ),V C ς , we should determine 

constant values k using boundary equations described in the next section.  

3 Boundary Conditions   

After establishing a general solution, it is possible to determine a 

replacement critical level by applying appropriate boundary conditions set 

specifically to the problem. The first boundary condition, commonly called the 

value matching condition, sets equal the options to abandon and invest . This 

condition ensures the function’s continuity at a critical level, by disregarding 

the difference in making an investment immediately before or just after the 

value passes the critical level:  

( ) ( ) ( ) ( )
* *

* * *
* *

, , 1N NV C V C P C
C C

ς ςς ς ϕ τ ϑ
  

= + − − − −  
  

⌢

. (1.12) 

Apart from ensuring a value-matching at critical level, we need to grant the 

same slope between the payoff and function ( ).V as demonstrated in the 

following equations: 

 ( ) ( ) ( )* * *, ,C C N N CV C V C Cς ς τ ϑ= −
⌢

,  (1.13) 

 ( ) ( )* *, , 1N NV C V Cς ςς ς τ= − + ,   (1.14) 

with the book value derivative ( )C Cϑ
⌢

 :  
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   (1.15)

 

When costs reach very high values, assets can be replaced before being 

completely written off. Therefore, the cost unitary increase leads to an increase 

in (.)V . To determine the value of that growth, we consider an expression 

representing the present value of expected costs: 

( ) ( ) ( ) ( )* * 2

0 0

1 1
, 1 1 exp 1

2
f fC

r t r tt a
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(1.16) 
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being 
a

Z

δξ = −
 
and Cδ representing the convenience yield. Partial derivative of 

( ),V C ς in respect of C is given by: 
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As 0ξ < : 
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(1.19) 

which results in the following boundary equation: 

 
( ) 1

lim ,CC
C

V C
τς

δ−>∞

−=     (1.20) 



When S  reaches zero and ς  takes equal value, then the cost function is no 

longer affected by salvage value. In this situation, function (.)V  exclusively 

depends onC : 

( ) ( ), 0V C V C=
     

(1.21) 

Defining ( ).V  in 2R , Dineen (2000) says that there exists a local minimum 

( ),N NC ς
 
where: 

( ) ( ). 0, . 0CV Vς= =
    

(1.22)   

( ) ( ) ( ). 0, . 0, . 0CC CV V Vςς ς> > >
    

(1.23)
 

and where following conditions are satisfied: 

( ), 0C N NV C ς = , ( ), 0N NV Cς ς =    (1.24) 

These last conditions play the rule of not allowing ( ),V C ς  to take values less 

than ( ),N NV C ς .  

 

4 Numerical case  

To test this new model, we consider a parameter set for which we calculate the 

optimal replacement time. We’ve assumed a two-factor cost function where one 

factor (salvage factor) follows a mean-reverting process and the other factor 

behaves as a geometric Brownian motion. The factor ς  has a mean-reversion 

rate µ , a standard salvage factor Sς and a standard deviation ςσ
 
whose values 

are contained in Table 4-1. 

 



Table 4-1: Mean Reverting Parameters 

Parameter  Symbol Value 

Instantaneous standard deviation  
ςσ  0,2 

Initial value  of salvage factor 
Nς  8 

Standard level of  salvage factor 
Sς  8 

Mean-reversion  rate  µ  0,5 

 

Regarding parameter values, we consider a salvage factor standard deviation 

that is higher ςσ  than the cost standard deviation Cσ .  For Sς , we adopt a value 

of 8, which represents 80% of purchase value. As we need a fast rate of mean 

reversion, it has been adopted a value of 0,5µ = . 

5 Characteristics of solution 

Given the assumption of a constant tax regime and a two factor cost 

function, Table 5-1 presents the outcomes of the numerical case described in 

Appendix 8.4: 

Table 5-1: Numerical solution of the two factor cost function 

# C* S* E[T*] V(C*) V(CN)

1 1,137 5,999 1,085 82,184 78,325

2 1,148 6,746 1,222 93,054 88,630  

The values inside Table 5-1 confirm a slightly positive change in critical level 

value, resulting from considering a new two-factor cost function on multi-cycle 

environment. When we compare critical cost values obtained from various 

models, it is possible to find substantial differences in cost critical level, 

supporting the notion that flexibility assessments produced by previous asset 

replacement models are incorrect. In Table 5-1, the main difference between 



cost function #1 and cost function #2 is in the way salvage value has been 

considered (directly or implicitly). Another relevant difference is in the 

replacement cycles’ number, which was assumed. 

6 Sensibility Analysis   

In this section, we refine our analysis, changing some parameter values:  

1. The value of mean reverting rate µ will vary between 0.40µ =  and 

0.60µ = , at intervals of 0.10; 

2. The standard value Sς  will vary between 6Sς =  and 10Sς =  at intervals 

of 2; 

3. The standard deviation value ςσ  will vary between 0.10ςσ =  

and 0.30ςσ = , at intervals of 0.10.  

In order to follow the mean reverting rate ς  in the direction of Sς , we study the 

effect on replacement critical level by parameters that constitute mean reverting 

rate ς . From Paxson (2005), it is possible to know that incentive for increasing 

investment is related to the increase in the speed of mean reversion, given the 

lack of the variance of the long-term technology factor. 

Table 6-1: Effect of changing the mean reverting rate 

µ C* S* T* V(C*) V(CN)

0.4 1,138 7,401 1,138 91,680 87,790

0.5 1,148 6,746 1,222 93,054 88,630

0.6 1,171 6,140 1,505 95,876 90,262  

In Table 6-1, we can observe some changes in C* as a result of changes in the 

mean reverting rate. It also possible to see an increase in the replacement level 

C* for higher values of mean reverting rate µ . When µ  takes higher values, 



there is a faster return to the average value of the salvage factor, and the period 

between asset replacement *E T    increases. Given a standard salvage factor 

Sς , we test the model’s response to this parameter’s changing ( 8Sς ≠ ). From 

literature, when we give Sς  higher values, we will expect an enlargement 

between C and S values because these two parameters are complementary. For 

similar reasons, low values of Sς   will tend to limit the ranges of C and S. 

Table 6-2: Effect of changes in standard salvage factor 

ςςςςS C* S* E[T*] V(C*) V(CN)

6 1,153 6,458 1,278 93,626 88,970

8 1,148 6,746 1,222 93,054 88,630

10 1,145 6,943 1,184 92,652 88,387
 

We have filled the table above with changes in the main parameters of the 

replacement model resulting from changes in the standard factor. Its 

observation allows us to collect evidence that lower values of replacement level 

*C  and thinner replacement periods *E T    result from higher values of Sς . The 

reason associated with this behaviour is that higher levels of salvage value 

joined with lower costs make investing in assets more attractive. We were 

expecting a similar effect from introducing volatility ςσ  but, in this case, 

variation will depend on the magnitude of Cσ  and ςσ  relationship. This yields 

the assumption that Cςσ σ>  determines the direction of critical cost variation 

*C . In Dobbs (2002), periodic asset exchange accelerates from including ςσ  and 

reducing replacement critical level.  

 

 



Table 6-3: Effect of changes in the salvage factor standard deviation 

σσσσς C* S* E[T*] V(C*) V(CN)

0,10 1,154 6,393 1,291 102,524 97,816

0,20 1,148 6,746 1,222 93,054 88,630

0,30 1,126 8,077 0,953 87,307 83,980  

It can be seen in Table 6-3 that variation in volatility has significant effects on 

the replacement critical level *C . As a result, it’s possible to observe that lower 

critical values *C  result from higher volatility ςσ  values. A possible explanation 

for this behaviour seems to lie in the fact that higher volatility levels of salvage 

factor could create more opportunities for reaching earlier optimal replacement 

levels, either by increasing cost value or by increasing salvage value. 

7 Conclusions 

Our work demonstrates a new asset replacement policy based on the ability 

to measure salvage value’s hidden flexibility. Previous literature determines 

replacement level using a one-factor function. This article enhances the cost 

function formulation, introducing an innovative dynamic salvage factor. It 

adapts a constant factor to a salvage value mean reversion process, where the 

standard salvage factor equals the previous constant salvage factor. This way of 

addressing the problem of optimal asset replacement assumes a multi-cycle and 

a constant tax regime. Comparing these results with the previous one found in 

Oliveira & Duque (2007), we found no significant differences, in spite of using a 

unique-cycle framework and a geometric Brownian motion to directly emulate 

salvage value.  When we decided not to admit first degree homogeneity, we 

assumed the risk of not obtaining analytical solutions. As a result, main results 



have been obtained from numerical solutions of the numerical case illustrated 

in Appendix 8.4. Thus, our model provides the ability to predict replacement 

timing, demonstrating the salvage value’s relevance to the asset replacement 

process. Our next step will be to extend this study to a variable tax regime 

environment.  

8 Appendices 

8.1 General solution of the differential equation 

In order to determine the general solution of the homogeneous equation 

(1.7), we use the method of characteristics (Polyanin, 2001) to swap it to its 

canonical form with a new coordinate system. This swapping will allow us to 

determine a partial differential equation on which it is possible to separate 

variables (Weinberger, 1995). Following Polyanin (2001), we consider a general 

form of a second-order partial differential equation: 

 2CC C CaV bV cV dV eV fV gς ςς ς+ + + + + = , (1.25) 

where , , , , , ,a b c d e f g  are equation coefficients. Including the new coordinate 

system ( ),θ η , we obtain a function ( ),V θ η  whose canonical form is:   

 ( ), , , ,V V V Vθθ θ ηφ θ η= .  

Adjusting to equation ,  we obtain the following coefficients:  

2 21

2 Ca Cσ= , 
1

2 C Cb Cτ τσ σ ρ= , e 21

2
c ςσ= , 

From which results the determinant expression: 

 ( )2 2 2 2 21
1

4 C Cb ac Cς ςσ σ ρ− = − .  



If we assume Equation (1.7) as a parabolic equation, we need to switch between 

coordinates systems ( ) ( ), ,C ς θ η− >  and solve the characteristic equation:  

 
1

0C
C C
ς

ς

σ
η η

σ
+ = ,  

with C C

ηη ∂=
∂

  and  ς
ηη
ς
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∂

,  from which we obtain the following solution: 
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where: 

 
C
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C
ςσς

ς σ
= ,  

( ) ( ) 0
C

ln ln Cςσ
ς ς

σ
= + , 

with constant 0ς . Applying the exponential function to both sides of the 

previous equation, we determine the value of  ς  

0CC e
ςσ

σ ςς = .  

As 0
1 eςς = ,  

1

CC
ςσ

σ

ςς = . 

Equalising ( ) 1,Cη ς ς= ,  

 ( ),
C

C

C
ςσ

σ

ςη ς = .  

For function θ , we can choose any function that intercepts other characteristic 

curve, as:  



 ( ),C Cθ ς = .  

Determining partial derivatives of ( ).η  and ( ).θ  with respect to C  and ς , we 

obtain: 
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Given ( ) ( ), ,v V Cθ η ς=  

 C C CV v vθ ηθ η= + , 

 V v vς ς θ ς ηθ η= + ,  

from which we obtain the following expressions: 
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Substituting previous expressions in the following equation:   

 ( )2 2 2 21 1 1

2 2 2C C CC C C CV C V V C V C Vς ς ς ς ςς ςσ σ σ σ σ σ+ = + +  (1.26) 

we obtain its canonical form:  
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2 2 *1
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C
C f
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v v v r v
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α σ
σ θ α θ ς θ η µ η

σ

   
   + + − − =

   
   

 (1.27) 

In order to solve equation (1.27) using variable separation (Weinberger, 1995), 

we introduce some new variables with the following values:  

 Cm
ςσ

σθ η=  e n η=  (1.28) 

Setting the equivalence ( ) ( ), ,v v m nθ η =  yields the following expressions:  

 
1

m
C

v vς
θ

σ
σ θ

= , (1.29) 

 
1

m nv v v
nη = +  (1.30) 

After substituting them in equation (1.27), it is possible to confirm this 

expression:   

 ( ) ( )2 *1

2 mm m C n f
C

v m v m nv r vς
ς

σ
σ ς µ ς µ α

σ
 

= − − − − − +  
 

. (1.31) 



After doing a variable switching in order to obtain ( ) ( ), ,v m n v q r=  and having 

m  and n  given by expressions (1.28), function ( ),v q r  takes the following form: 

 ( ) ( ) ( ),v q r Q q R r= , (1.32) 

which represents the product of two functions and permits a solution based on 

two ordinary differential equations. Adopting equal notation:  

 '
dQ

Q
dq

=   and '
dR

R
dr

= , 

from which we can take following equalities: 

'm qv v Q R= = , 

 'n rv v QR= = ,  

''mm qqv v Q R= = . 

Applying these expressions to equation (1.31) permits the assembly of an 

expression like this one: 

 ( )( ) ( )2 *1
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2 C f
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Q R q Q R q rQR r QRς
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σ
 

+ − + − − − =  
 

, (1.33) 

with the free-risk interest rate fr . We manipulate equation (1.33) in order to 

split components that are functions of Q or of R: 
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   (1.34) 

with a constant ratio 2k−  (Abell and Braselton, 1997). From previous expression 

we can create the following ordinary differential equations: 



 ( )( ) ( )2 2 *1
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C
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σ
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, (1.35) 

and 

 2' 0rR k R− = . (1.36) 

For equation (1.35) there exists a general solution of the form (Abramowitz 

& Stegun, 1965): 

 ( ) ( ) ( )1
1 1 2 3 2 1 2 3, , , ,Q q q K H h h h K L l l lβ= +   , (1.37) 

where 1,2K  are constants and ( ).H  is confluent hypergeometric function 

pleaded with the following parameters:  
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and ( ).L  represents a Laguerre generalised polynomial with these parameters: 
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Developing equation (1.36) to seek a function ( ).R : 

2dR dr
k

R r
= , 

 ( ) ( )2

0ln ln kR r r= + , (1.38)  

with constant 0r . Applying the exponential function to both sides of equation 

(1.38), we obtain: 

( ) 2k
rR r K r=  

for 0r
rK e= . Thus, function ( ).v  (1.32) takes the following form: 
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Setting the equivalences 1A rK K K=  and 2B rK K K= , we then have: 
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Unfolding the above expression for the original coordinate system, we get:  

 ( )
( )

( ) ( )
2

1 2
1

1

1 2 3 1 2 3, , , , ,C

k
k

H A BV C C K H h h h K L l l l
ςσ

β
σ βς ς

− +
+  = +         (1.41) 

Henceforth, ( ),HV C ς  will represent a homogenous part of the two-factor cost 

function ( ),V C ς , whose parameters are already set out above, with the 

exception of 3l  and 3h , which take the following form: 

3 3 2

2
l h

ς

ςµ
σ

= = . 

8.2 Hypergeometric function 

( ).H  is a hypergeometric confluent function, also known as Kummer’s 

function, whose value can be taken from the following series expansion: 
 
 



( ) ( )
( )1 1 0

, ,
!

n
n

n
n

a z
H a b z

b n

∞

=
=∑ , 

where a  and b  are integers and z  is the variable. The function representation 

in integral form is: 

 ( ) ( )
( ) ( ) ( ) 11

1 1

0

, , 1
b azt ab

H a b z e t t dt
b a a

∞
− −− −Γ

= +
Γ − Γ ∫ , (1.42) 

with ( )aΓ equal to the following integral sum: 

 ( ) 1

0

a ta t e dt
∞

− −Γ = ∫ , (1.43) 

where a  and b  represent polynomial degrees. 

8.3 Laplace Function 

Generalised n degree Laguerre polynomial, ( ), .n aL
 
is given by:   

 ( ) ( ) ( ), 1 1

1
, 1,

!
n

n a

a
L z H n a

n
ς

+
= − + , (1.44) 

for 1a > − . Substituting t  for n  , one defines Laguerre function as: 

( ) ( ) ( ), 1 1

1
, 1,

1n aL z H t a z
t

= − +
Γ +

,  (1.45) 

whose value corresponds to a multiple of an n-degree Laguerre polynomial. 

8.4 Numerical Case  

Parameter Symbol Value

Risk free interest rate 
fr  0.07 

Cost Drift Rate 
Cα  0.06 

Cost Volatility 
Cσ  0.10 

Market Risk Price  η  0.4 

Initial operation and maintenance 
NC  1 



Asset purchasing price P  10 

Tax credit rate  ϕ  0 

Tax rate  τ  0.30 

Depreciation rate  aδ  0.50 
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