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Abstract

Contrary to most of the papers in the literature of investment under uncertainty we study models

that not only capture the timing, but also the size of the investment. We consider a monopoly setting

as well as a duopoly setting and compare the results with the standard models in which the firms do not

have the capacity choice. Our main results are the following. First, for low uncertainty values the follower

chooses a higher capacity than the leader and for high uncertainty values the leader chooses a higher

capacity. Second, compared to the model without capacity choice, the monopolist and the follower invest

later in a higher capacity for higher values of uncertainty. However, the leader will invest earlier in a

higher capacity for higher values of uncertainty. The reverse results apply for lower values of uncertainty.

1 Introduction

When entering a new market it is not only the timing that is important, but also the scale of the investment.

By investing at a large scale the firm takes a risk in case of uncertain demand. In particular, revenue may

be too low to defray the investment cost if ex-post demand turns out to be disappointingly low. On the

other hand, large scale investment gives a high revenue in case of a high demand realization and makes it

less attractive for other firms to enter the same market and thus reduce demand for the incumbent firm.

This paper analyzes the optimal timing and size of this entry problem by considering a firm’s capital

investment project where undertaking the investment implies that the firm obtains a production plant. In

particular, the firm can decide how much output the production plant is able to produce where the amount

increases with the sunk cost investment. This is a real option problem, but, however, the bulk of real option
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models only determines the optimal timing of an investment project of given size (see Dixit and Pindyck

(1994) and Trigeorgis (1996) for an overview). This also holds for the strategic real option models where

competition between firms is taken into account. The latter area is surveyed in Grenadier (2000) and in

Huisman et al. (2004).

We consider a monopoly setting as well as a duopoly setting and compare the results with the standard

models in which the firms do not have the capacity choice. For the monopoly case where our starting point

is Dixit (1993) (see also Decamps et al. (2006)) we find that for higher levels of uncertainty the monopolist

invests later in a higher quantity. This result is comparable to the result in Dangl (1999). The difference in

the setup is that Dangl (1999) assumes a slightly different inverse demand curve and furthermore assumes

that the firm can adjust its output in downtimes. Bøckman et al. (2008) apply the model of Dangl (1999) to

study the investment in small hydropower projects. Bar-Ilan and Strange (1999) compare lumpy investment

with incremental investment. Our results are comparable for their lumpy investment setup, uncertainty

delays investment and increases the size.

In the duoploy model, our main results are the following. First, for low uncertainty values the follower

chooses a higher capacity than the leader and for high uncertainty values the leader chooses a higher capacity.

Second, compared to the model without capacity choice, the monopolist and the follower invest later in a

higher capacity for higher values of uncertainty. However, the leader will invest earlier in a higher capacity

for higher values of uncertainty. The inverse results apply for lower values of uncertainty. Wu (2006) also

studies a duopoly model in which firms can choose the timing and the size of their investment. In his setup

the market is growing until some uncertain point in time and decreasing afterwards. As the first investor

knows that the market will start decreasing some time in the future it will choose a smaller capacity than

the second investor. In this way the first investor can make sure that it will be a monopolist in case the

market has decreased enough.

2 Monopoly

We consider a framework with one firm that can undertake an investment to enter a market. The price at

time t in this market is given by

P (t) = X (t) (1 − ηQ (t)) , (1)

where Q (t) is total market output, η a constant, and X (t) an exogeneous shock process. We assume that

X (t) follows a geometric Brownian motion:

dX (t) = µX (t) dt+ σX (t) dω (t) , (2)

in which µ > 0 is the growth rate, dω (t) is the increment of a Wiener process, and σ > 0 is a constant. The

inverse demand function (1) is a special case of, e.g., (Dixit and Pindyck, 1994, Chapter 9), where they have

P = XD (Q) with D (Q) unspecified. Inverse demand being linear in quantity has been adopted also in,
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e.g., Pindyck (1988), He and Pindyck (1992), Aguerrevere (2003), and Wu (2006). The firm is risk neutral

and discounts against rate r > µ.

A firm can become active on this market by investing in capacity. A unit of capacity costs δ. This implies

that a firm investing in a plant with capacity Q, incurs investment costs being equal to δQ. The firm always

produces up to capacity. In Subsection 2.1 we assume that the firm can invest only once. We study the case

where the firm can make two investments in Subsection 2.2. We compare the model of Subsection 2.1 with

the same model but without capacity choice in Subsection 2.3.

2.1 One Investment

In this subsection we study the market entry of a single firm. The corresponding investment problem is

solved as an optimal stopping problem in dynamic programming. Let V denote the value of the firm then

the investment problem that the firm is facing can be formalized as follows:

V (X (t) , Q) = max
T≥t,Q≥0

E



exp (−rT )




∞∫

τ=0

QX (τ) (1 − ηQ) dτ − δQ







 ,

where T is the stopping time at which the investment is made and Q the quantity that the firm chooses.

The expectation is conditional on the information that is available at time t. Let X∗ be the value of X at

which the firm is indifferent between investing and not investing. The corresponding quantity is denoted

by Q∗ (X∗). For X > X∗ we are in the stopping region where it is optimal to invest immediately. When

X < X∗ demand is (still) too low to undertake the investment. Then we are in the continuation region

where the firm thus waits with investing. The optimal investment policy can be found in two steps. In the

first step, given the current level of the geometric Brownian motion, X, the corresponding optimal value of

Q is found by solving

max
Q≥0

E




∞∫

τ=0

QX (τ ) (1 − ηQ) dτ − δQ



 .

The solution is given by

Q∗ (X) =
1

2η

(
1 −

δ (r − µ)

X

)
. (3)

In the next step the optimal investment threshold X∗ is derived. Appendix A.1 shows the derivation of the

results that are presented in the next proposition.

Proposition 1 The value of the monopolist that can invest only once is equal to

V (X) =





AXβ if X < X∗,

(X−δ(r−µ))2

4Xη(r−µ) if X ≥ X∗,

where the optimal investment trigger X∗ and the corresponding optimal capacity level Q∗ are given by:

X∗ =
β + 1

β − 1
δ (r − µ) , (4)

Q∗ =
1

(β + 1) η
. (5)
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Furthermore, it holds that

β = 1
2 −

µ
σ2 +

√(
1
2 −

µ
σ2

)2
+ 2r

σ2 ,

A =
δ
(
β+1
β−1δ (r − µ)

)−β

(
β2

− 1
)
η

.

Note that equation (5) is equivalent to equation (34) in Dixit (1993)1. From equation (3) we conclude that

the optimal capacity level is increasing in X , indicating the level of demand at the moment of investment.

At a higher level of X it is profitable for the firm to have a higher capacity so that the total profit flow

increases.

Next we carry out some comparative statics analysis. First of all, we have (cf. Dixit and Pindyck (1994)):

∂β
∂σ

< 0, ∂β
∂µ

< 0, and ∂β
∂r

> 0. Furthermore, differentiating (4) and (5) with respect to β gives

∂X∗

∂β
= −

2δ (r − µ)

(β − 1)
2 < 0, (6)

∂Q∗

∂β
= −

1

((β + 1) η)
2 < 0. (7)

We conclude that, like the standard real options result, increased uncertainty raises X∗ and thus delays

investment. However, here we also find that increased uncertainty raises Q∗ as well. This confirms Dixit

(1993) who concludes that greater volatility systematically leads to the adoption of larger projects. Figure

1 presents the uncertainty results for a specific example.

Furthermore, we can derive from equation (5) that if uncertainty goes to infinity (if σ goes to ∞, then β

goes to 1) the optimal capacity approaches 1
2η from below, which is the optimal output level for a monopolist

in the corresponding static Cournot game in which there are no investment costs associated with the capacity,

i.e. the capacity is already in place.

2.2 Two Investments

In this subsection we investigate the consequences for the investment policy if the firm has two (instead of

one) investment opportunities. The first investment brings the capacity of the firm from 0 to Q1 and the

second investment from Q1 to Q2. To rule out disinvestment we assume that Q2 > Q1 > 0. The model is

solved backwards. This means that first for a given capacity level Q1 the second investment is analyzed.

After that the first investment is studied given the optimal investment behavior for the second investment.

We refer the reader to Appendix A.2 for the derivation of the following proposition.

1To see this, note that the total investment cost in Dixit (1993) is denoted by K and the profit flow in that paper is equal

to PX, where P follows a geometric Brownian motion and X is equal to F (K), being the production function. In our model

the total investment cost is equal to δQ and the profit flow is equal to XQ (1 − ηQ) , where X follows a geometric Brownian

motion.

Equation (5) can be found by taking F (K) =
(
1 − η K

δ

)
K

δ
and maximizing

(F (K))β

Kβ with respect to K as suggested in Dixit

(1993).
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Figure 1: Optimal investment trigger X∗ and optimal quantity Q∗ as function of σ. The plots are based on

the following parameter values: µ = 0.05, r = 0.1, δ = 0.1, and η = 0.05.

Proposition 2 Consider a monopolist that can invest twice in time. The optimal investment triggers X∗
1 and

X∗
2 and the corresponding optimal capacity levels Q∗

1 and Q∗
2 are implicitly given by the following equations:

1 −
βQ∗

1η

(1 − ηQ∗
1)

− 2

(
β (1 − 2ηQ∗

1)

(β + 1) (1 − ηQ∗
1)

)β
= 0, (8)

X∗
1 (Q∗

1) =
βδ (r − µ)

(β − 1) (1 − ηQ∗
1)
, (9)

X∗
2 (Q1) =

(β + 1) δ (r − µ)

(β − 1) (1 − 2ηQ1)
, (10)

Q∗
2 (Q1) =

1 + (β − 1) ηQ1

(β + 1) η
. (11)

In Figure 2 the relationship of the investment triggers and the optimal levels of capacity with the level

of uncertainty are plotted. From Figure 2 we conclude that adding an additional investment opportunity

does not lead to new economic insights, since the result is qualitatively similar. If we compare it to the

case where the firm can invest only once,we conclude that, first the firm makes its first investment earlier.

Second, the size of the first investment is smaller. Third, the second investment is later. Fourth, the final

capacity of the firm is larger. Fifth, the final capacity converges to 1
2η if uncertainty goes to infinity (as in

the one investment case).

2.3 Comparison

In this subsection we analyze the influence of capacity choice. We do so by taking the monopoly model

with one investment as basis. We compare the model with capacity choice with the model without capacity

choice. Let the capacity in this latter model be equal to QfixM , then the investment thresholds is equal to
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Figure 2: Optimal investment triggers X∗
1 , X∗

2 , and X∗ and optimal quantities Q∗
1, Q

∗
2, and Q∗ as function

of σ. The plots are based on the following parameter values: µ = 0.05, r = 0.1, δ = 0.1, and η = 0.05.‘

(substitute QfixM into equation (37))

X
fix
M =

βδ (r − µ)

(β − 1)
(
1 − ηQ

fix
M

) . (12)

The difference of the investment behavior in the two models can be explained by looking at the difference

of the two investment thresholds, i.e. by investigating

X
fix
M

X∗
M

=
β

(β + 1)
(
1 − ηQ

fix
M

) . (13)

We study the effect of uncertainty in the following way. Given a particular level of uncertainty σ let us fix

Q
fix
M to the corresponding Q∗

M . For that particular level of uncertainty the investment thresholds are equal.

From (13) we conclude that Xfix
M will be lower than X∗

M for higher values of uncertainty and vice versa.

Knowing that Q∗
M increases with uncertainty we conclude that, compared to the model without capacity

choice, for a higher level of uncertainty the monopolist will invest later in a larger capacity and vice versa.

We illustrate this effect in the following example. We take r = 0.1, µ = 0.05, δ = 0.1, η = 0.05. We set

the capacities equal for σ = 0.1. This gives QfixM = 7.03. In the next figures the thresholds and the optimal

quantities for the two models are plotted as function of the uncertainty paramater. We indeed see that

lowering uncertainty leads to earlier investment with a smaller capacity and vice versa higher uncertainty

leads to later investment with a higher capacity.

3 Duopoly

This section adds competition to the investment problem in which we determine the optimal timing and

quantity of the firm. Therefore we extend the model of the previous section with an additional firm. We
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Figure 4: Comparison of quantities QM and Q
fix
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δ = 0.1, and η = 0.05.
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denote by QL (QF ) the capacity of the first (second) investor, so that Q = QL +QF . The derivations of the

propositions are given in Appendix B. In Subsection 3.1 we study the game in which each firm can make a

single capacity investment and the firm roles are assigned exogenous to the firms. The next step is to assign

the firm roles endogenous, which is done in Subsection 3.2. We compare that model with the same model

without capacity choice in Subsection 3.3.

3.1 Exogenous firm roles

As is standard in the literature, also this game is solved backwards in time, i.e. we start with the analysis of

the follower leading to the optimal follower quantity Q∗
F and the follower’s threshold level of the stochastic

demand parameter denoted by X∗
F . We do this for every given level of the leader quantity, so that we obtain

functions Q∗
F (QL) and X∗

F (QL) .

Proposition 3 Given the current level of X and the capacity level QL of the leader, the optimal capacity

level for the follower Q∗
F (X,QL) is equal to

Q∗
F (X,QL) =

1

2η

(
1 − ηQL −

δ (r − µ)

X

)
. (14)

The value function of the follower V ∗
F (X,QL) is given by

V ∗
F (X,QL) =





AF (QL)Xβ if X < X∗

F (QL) ,

(X(1−ηQL)−δ(r−µ))2

4Xη(r−µ) if X ≥ X∗
F (QL) ,

(15)

where

X∗
F (QL) =

β + 1

β − 1

δ (r − µ)

1 − ηQL
, (16)

AF (QL) =

(
(β − 1) (1 − ηQL)

(β + 1) δ (r − µ)

)β
(1 − ηQL) δ

(β + 1) (β − 1) η
, (17)

so that

Q∗
F (QL) ≡ Q∗

F (X∗
F (QL) , QL) =

β + 1

β − 1

δ (r − µ)

1 − ηQL
.

The next step is to study the problem of the leader. The leader takes into account the strategy of the

follower. The follower has two possibilities: investing at the same time as the leader or investing later. Given

the current level of X the leader knows that the follower will invest later if it chooses its capacity QL such

that X∗
F (QL) is larger than X. We refer to this strategy as a deterrence strategy. Of course, normally entry

by the follower is deterred only temporarily, because the follower does enter at the moment that X hits

X∗
F (QL). Note that from equation (16) it follows that the leader can (temporarily) deter the investment of

the follower for any X by choosing QL larger than Q̂L (X) , where

Q̂L (X) =
1

η

(
1 −

(β + 1) δ (r − µ)

(β − 1)X

)
. (18)
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This also implies that the follower immediately invests if QL ≤ Q̂L. There exists an X level, which will be

denoted by Xdet
2 , such that for X larger than Xdet

2 , at which it is not optimal for the leader to play the

deterrence strategy. In other words, for these X values it holds that the optimal leader capacity in case of

a deterrence strategy, QdetL , is lower than Q̂L (X) . Then the level of demand is that high that it is always

optimal for the follower to enter at the same time as the leader. Furthermore, for small values ofX the leader

will not play the deterrence strategy, as then the demand level is that low that it will result in a negative

value. This lower bound for the deterrence strategy is labeled Xdet
1 . The following proposition summarizes

the deterrence strategy.

Proposition 4 The leader will consider the deterrence strategy whenever the current level of X is in the

interval
(
Xdet

1 , Xdet
2

)
, where Xdet

1 is implicitly defined by

Xdet
1

r − µ
− δ −

(
Xdet

1 (β − 1)

(β + 1) δ (r − µ)

)β
δ

β − 1
= 0, (19)

and

Xdet
2 =

2 (β + 1)

β − 1
δ (r − µ) . (20)

The optimal capacity level QdetL (X) of the leader for its deterrence strategy is implicitly determined by

X
(
1 − 2ηQdetL

)

r − µ
− δ −

(
X (β − 1)

(
1 − ηQdetL

)

(β + 1) δ (r − µ)

)β (
1 − (β + 1) ηQdetL

)
δ

(β − 1)
(
1 − ηQdetL

) = 0, (21)

The value function for the leader’s deterrence strategy, when the leader invests at X, V detL (X) , is given by

V detL (X) =
XQdetL (X)

(
1 − ηQdetL (X)

)

r − µ
− δQdetL (X) −

(
X (β − 1)

(
1 − ηQdetL (X)

)

(β + 1) δ (r − µ)

)β
δQdetL (X)

β − 1
. (22)

Given that X is sufficiently low, for the deterrence strategy the optimal investment threshold Xdet
L and the

corresponding quantity QdetL is given by

Xdet
L =

β + 1

β − 1
δ (r − µ) ,

QdetL =
1

(β + 1) η
.

Alternatively the leader can choose an accommodation strategy. If it chooses its capacity QL lower than

or equal to Q̂L (X) , the investment will trigger the follower to make its investment immediately afterwards.

Since the leader is the first firm that makes the investment decision, we assume that the leader becomes the

Stackelberg leader in the duopoly that is formed after the two investments are made. As with the deterrence

strategy there exists an X interval in which the leader will consider this strategy. For low X values, the

optimal leader quantity in the accommodation strategy is too high, i.e. QaccL (X) > Q̂L (X) , to trigger

direct follower investment. In other words there exists an X level, denoted by Xacc
1 such that the leader

can only play the accommodation strategy for X values larger than Xacc
1 . In the following proposition the

accommodation strategy of the leader is described.
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Proposition 5 The leader will consider the accommodation strategy whenever the current level of X is

larger than or equal to Xacc
1 , where

Xacc
1 =

β + 3

β − 1
δ (r − µ) . (23)

The optimal capacity level QaccL for the leader’s accommodation strategy is given by

QaccL (X) =
1

2η

(
1 −

δ (r − µ)

X

)
. (24)

The value of the accommodation strategy, when the leader invests at X, is equal to

V accL (X) =
(X − δ (r − µ))

2

8Xη (r − µ)
. (25)

The optimal investment threshold for the accommodation strategy is given by

Xacc
L =

β + 1

β − 1
δ (r − µ) , (26)

QaccL =
1

(β + 1) η
. (27)

Since Xacc
L < Xacc

1 , the optimal investment threshold Xacc
L has in fact no meaning since the demand

parameter has to admit at least the value Xacc
1 before the follower invests at the same time as the leader. In

Figure 5 the functions QdetL , Q̂L, and QaccL are plotted as function of X. The boundary values Xdet
1 , Xdet

2 , and

Xacc
1 are also plotted in that figure. One can see thatXdet

1 is the smallestX value for which the leader chooses

a positive capacity. The follower postpones its investment if the leader chooses a capacity that is larger than

Q̂L (X) , i.e. above the dashed line. That is why Xdet
2 is equal to the intersection point of Q̂L (X) and QdetL .

For X larger than or equal to Xdet
2 the optimal capacity of the leader in the deterrence strategy, QdetL (X), is

smaller than the capacity that ensures deterrence, Q̂L (X) . Furthermore, the leader can succesfully use its

accommodation strategy for X values larger than Xacc
1 . Below that boundary the optimal capacity of the

leader is larger than the capacity that ensures direct entry of the follower, Q̂L (X). The optimal capacity

of the leader depends on the strategy that the leader chooses: deterrence or accommodation. For X less

than Xacc
1 the leader can only choose deterrence and for X larger than Xdet

2 the leader can only choose

accommodation. For X ∈
(
Xacc

1 , Xdet
2

)
either the deterrence or the accommodation strategy maximizes the

leader’s value. In case X is less than Xdet
L the leader will wait with investment until X hits Xdet

L for the

first time. The following proposition describes the optimal leader strategy.

Proposition 6 Given the current level of X the optimal capacity of the leader is equal to

Q∗
L (X) =






QdetL

(
Xdet
L

)
if X ∈

[
0, Xdet

L

)
,

QdetL (X) if X ∈

[
Xdet
L , X̂

)
,

QaccL (X) if X ∈

[
X̂,∞

)
,

where X̂ is such that

X̂ = inf
(
X̂ ∈

(
Xacc

1 , Xdet
2

)∣∣∣V accL (X) = V detL (X)
)
. (28)
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Figure 5: QdetL , Q̂L, and QaccL as function of X.

The value of the leader is given by

V ∗
L (X) =






(
X
Xdet

L

)β
V detL

(
Xdet
L

)
if X ∈

[
0, Xdet

L

)
,

V detL (X) if X ∈

[
Xdet
L , X̂

)
,

V accL (X) if X ∈

[
X̂,∞

)
.

(29)

All numerical examples show that Xdet
L < Xacc

1 , which implies that the leader will only play the accomo-

dation strategy if the starting value of X is larger than X̂. The following proposition gives the investment

threshold for the exogenous leader.

Proposition 7 Given the current level of X the investment threshold for the exogenous leader is equal to

X∗
L =





Xdet
L if X ∈

[
0, Xdet

L

)
,

X if X ∈
[
Xdet
L ,∞

)
.

The optimal capacity for the leader Q∗
L (X) and the optimal capacity of the follower Q∗

F (X) are plotted

in Figure 6. Figure 7 shows the value functions for the leader and the follower.

The following proposition is proved in Appendix B.

Proposition 8 The strategy boundaries Xdet
1 , Xdet

2 , and Xacc
1 are increasing with uncertainty. Further-

more, the region in which the leader can choose between the two strategies X ∈
(
Xacc

1 , Xdet
2

)
decreases with

uncertainty.

Since Xacc
1 is increasing with uncertainty, we conclude that the X region in which the leader uses the

deterrence strategy increases with uncertainty.
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3.2 Endogeneous firm roles

In this subsection we use the knowledge of the previous subsection to analyze the model with endogenous

firm roles. We use the preemption principle that is described in Fudenberg and Tirole (1985) and extended

to stochastic models in e.g. Huisman (2001). The preemption trigger XP is the solution of the following

equation

V ∗
L (XP ) = V ∗

F (XP , Q
∗
L (XP )) .

The following theorem describes the equilibrium in the capacity choice game. The proof is given in the

Appendix.

Theorem 1 The first firm (leader) invests at XP in capacity Q∗
L (XP ) and the second firm (follower) invests

at X∗
F in capacity Q∗

F (Q∗
L (XP )) .

It turns out that for low values of uncertainty the leader capacity is lower than the follower capacity and

for high values of uncertainty the leader chooses a larger capacity than the follower.

3.3 Comparison

Like in Subsection 2.3 we analyze the addition of the capacity choice by comparing the model with and

without capacity choice. Fixing the quantity of the leader to Q
fix
L and the quantity of the follower QfixF

leads to the following expression for the investment trigger of the follower:

X
fix
F =

βδ (r − µ)

(β − 1)
(
1 − η

(
Q
fix
L +Q

fix
F

)) .

The investment trigger of the leader, Xfix
P , is implicitly defined by the following equation

X
fix
P Q

fix
L

(
1 − ηQ

fix
L

)

r − µ
−Q

fix
L δ +

(
X
fix
P

X
fix
F

)β

QfixF δ −
X
fix
F Q

fix
F

(
1 − ηQ

fix
F

)

r − µ



 = 0.

The comparison for the follower is comparable to the comparison of the monopolist, because at the time

the follower invests, the leader has already invested, so that the follower cannot influence the decision of

the leader anymore. So, compared to the model without capacity choice, for a higher level of uncertainty

the follower will invest later in a larger capacity. For the leader we were not able to derive an analytical

comparison of the thresholds in the two models. Therefore we do the comparison in an example. We have set

r = 0.1, µ = 0.05, δ = 0.1, η = 0.05. That leads to QfixL = 4.94 and QfixF = 5.30. From Figure 8 we conclude

that, compared to the model with fixed capacity, the leader invests earlier in the model with flexible capacity

when uncertainty increases and later when uncertainty decreases. Although the investment trigger for the

first investor in the model with flexible capacity goes up, it increases slower than the investment trigger of

the first investor in the model with fixed capacity. Note that this result is opposite to the result that we
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XP

XP
fix

0.00 0.05 0.10 0.15 0.20

0.010

0.011

0.012

0.013

0.014

Σ

X

Figure 8: Comparison of triggers XP and Xfix
P for the following parameter values µ = 0.05, r = 0.1, δ = 0.1,

and η = 0.05.

QL
fix

QL

0.00 0.05 0.10 0.15 0.20

4.6

4.8

5.0

5.2

5.4

Σ

Q

Figure 9: Comparison of quantities QL and Q
fix
L for the following parameter values µ = 0.05, r = 0.1,

δ = 0.1, and η = 0.05.
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found for the monopolist in Section 2.3. Furthermore, we conclude from Figure 9 that the leader will invest

in a higher capacity when uncertainty increases and in a lower capacity when uncertainty decreases.

The results for the follower are indeed comparable to the results of the monopolist. Figure 10 shows that

the investment trigger in the model with flexible capacity increases faster than the investment trigger in the

model with fixed capacity in case the uncertainty increases. The capacity that the follower chooses in the

model with flexible capacity increases with uncertainty (see Figure 11).

XF
fix

XF

0.00 0.05 0.10 0.15 0.20

0.020

0.022

0.024

0.026

0.028

Σ

X

Figure 10: Comparison of triggers XF and X
fix
F for the following parameter values µ = 0.05, r = 0.1,

δ = 0.1, and η = 0.05.

4 Conclusions

A Monopoly

A.1 One Investment

A.1.1 Stopping Region

The profit of this firm at time t is denoted by π (t) and is equal to

π (t) = P (t)Q (t) = X (t)Q (t) (1 − ηQ (t)) . (30)
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QF
fix

QF

0.00 0.05 0.10 0.15 0.20

5.1

5.2

5.3

5.4

5.5

Σ

Q

Figure 11: Comparison of quantities QF and Q
fix
F for the following parameter values µ = 0.05, r = 0.1,

δ = 0.1, and η = 0.05.

We denote by V (X,Q) the expected value of the firm at the moment of investment given that the current

level of X (t) is X and the firm invests in Q units of capital. Then it holds that

V (X,Q) = E




∞∫

t=0

π (t) exp (−rt) dt− δQ



 =
XQ (1 − ηQ)

r − µ
− δQ. (31)

Maximizing with respect to Q gives the optimal capacity size Q∗ for every given level of X :

Q∗ (X) =
1

2η

(
1 −

δ (r − µ)

X

)
.

A.1.2 Continuation Region

Standard real options analysis (e.g, Dixit and Pindyck (1994)) shows that the value of the option to invest,

denoted by F , is equal to

F (X) = AXβ, (32)

where β is the positive root of the quadratic polynomial

1
2σ

2β2 +
(
µ−

1
2σ

2
)
β − r = 0. (33)

and is thus given by

β = 1
2 −

µ
σ2 +

√(
1
2 −

µ
σ2

)2
+ 2r

σ2 . (34)
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To determine the indifference level X∗ we employ the value matching and smooth pasting conditions:

F (X∗) = V (X∗, Q) , (35)

∂F (X)

∂X

∣∣∣∣
X=X∗

=
∂V (X,Q)

∂X

∣∣∣∣
X=X∗

. (36)

Substitution of (31) and (32) into (35) and (36) and solving for X∗ gives

X∗ (Q) =
βδ (r − µ)

(β − 1) (1 − ηQ)
. (37)

From (3) and (37) we obtain the results that are presented in Proposition 1.

A.2 Two Investments

A.2.1 Second Investment

The value of the firm at the moment of the second investment when the capacity of the firm increases from

Q1 to Q2 is equal to

V2 (X,Q1, Q2) =
XQ2 (1 − ηQ2)

r − µ
− δ (Q2 −Q1) . (38)

Before the second investment the value is equal to

F2 (X,Q1) =
XQ1 (1 − ηQ1)

r − µ
+A2X

β. (39)

Let us denote the trigger of the second investment by X∗
2 . The value matching and smooth pasting conditions

are given by

XQ1 (1 − ηQ1)

r − µ
+A2X

β =
XQ2 (1 − ηQ2)

r − µ
− δ (Q2 −Q1) , (40)

Q1 (1 − ηQ1)

r − µ
+ βA2X

β−1 =
Q2 (1 − ηQ2)

r − µ
. (41)

Solving these equations gives

X∗
2 =

β

β − 1

(r − µ) δ

(1 − η (Q1 +Q2))
, (42)

A2 =
(X∗

2 )
1−β

β

(Q2 −Q1) (1 − η (Q1 +Q2))

r − µ
. (43)

The optimal Q2 is determined by solving

max
Q2>Q1

[
XQ2 (1 − ηQ2)

r − µ
− δ (Q2 −Q1)

]
. (44)

The first order condition is given by

X (1 − ηQ2)

r − µ
−
XQ2η

r − µ
− δ = 0, (45)

which gives

Q∗
2 (X) =

1

2η

(
1 −

(r − µ) δ

X

)
. (46)

Solving the system of equations (42) and (46) leads to the equations (8) and (9).
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A.2.2 First Investment

The value of the firm at the moment of the first investment is equal to

V1 (X,Q1) =
XQ1 (1 − ηQ1)

r − µ
− δQ1 +A2X

β. (47)

Before the first investment the value is given by

F1 (X) = A1X
β. (48)

Value matching and smooth pasting results in the following equations:

A1X
β =

XQ1 (1 − ηQ1)

r − µ
− δQ1 +A2X

β, (49)

βA1X
β−1 =

Q1 (1 − ηQ1)

r − µ
+ βA2X

β−1, (50)

which give

X∗
1 =

β

β − 1

(r − µ) δ

(1 − ηQ1)
, (51)

A1 = A2 +
(X∗

1 )1−β

β

Q1 (1 − ηQ1)

r − µ
. (52)

The optimal Q1 can be determined by maximizing the value of the firm at the moment of the first investment

max
Q1≥0

[
XQ1 (1 − ηQ1)

r − µ
− δQ1 +A2 (Q1)X

β

]
. (53)

The first order condition is given by

X (1 − ηQ1)

r − µ
−
XQ1η

r − µ
− δ +

∂A2 (Q1)

∂Q1
Xβ = 0. (54)

Note that

A2 (Q1) =
δ (1 − 2ηQ1) (X∗

2 (Q1))
−β

(β − 1) (β + 1) η

=
δ (1 − 2ηQ1)

(β − 1) (β + 1) η

(
β + 1

β − 1

(r − µ) δ

(1 − 2ηQ1)

)−β

=
δ

(β − 1) (β + 1) η

(
(β + 1) (r − µ) δ

(β − 1)

)−β

(1 − 2ηQ1)
β+1

, (55)

so that

∂A2 (Q1)

∂Q1
=

δ

(β − 1) (β + 1) η

(
(β + 1) (r − µ) δ

(β − 1)

)−β

(β + 1) (1 − 2ηQ1)
β
· −2η

= −
2δ

(β − 1)

(
(β + 1) (r − µ) δ

(β − 1) (1 − 2ηQ1)

)−β

= −
2δ (X∗

2 (Q1))
−β

(β − 1)
. (56)

Substitution of (56) into (54) gives

X (1 − ηQ1)

r − µ
−
XQ1η

r − µ
− δ −

2δ

(β − 1)

(
X

X∗
2 (Q1)

)β
= 0. (57)

Substitution of (8) and (51) into equation (57) results in equation (10).
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B Duopoly

Finally we establish our economic results based on the outcome of this game.

B.1 Follower

The value function of the follower at the moment of investment is denoted by V ∗
F , it depends on X , QL, and

QF , and is equal to

V ∗
F (X,QL, QF ) =

XQF (1 − η (QL +QF ))

r − µ
− δQF . (58)

Maximizing with respect to QF gives the optimal capacity size of the follower, given the level X and the

capacity size of the leader QL:

Q∗
F (X,QL) =

1

2η

(
1 − ηQL −

δ (r − µ)

X

)
. (59)

Before the follower has invested, thus when X < X∗
F (QL) , the firm holds an option to invest. the option

value is

FF (X) = AFX
β . (60)

Solving the corresponding value matching and smooth pasting conditions gives

X∗
F (QL, QF ) =

β

β − 1

δ (r − µ)

(1 − η (QL +QF ))
. (61)

We conclude that (after solving the system of equations (59) and (61))

X∗
F (QL) =

β + 1

β − 1

δ (r − µ)

1 − ηQL
, (62)

Q∗
F (QL) =

1 − ηQL

(β + 1) η
. (63)

Substitution (63) into (58) gives equation (15).

B.2 Leader

The value function of the leader at the moment of investment for the deterrence strategy is given by

V detL (X,QL) =
XQL (1 − ηQL)

r − µ
− δQL −

(
X

X∗
F (QL)

)β (
X∗
F (QL)QLηQ

∗
F (QL)

r − µ

)
. (64)

Substitution of (62) and (63) into this equation results in

V detL (X,QL) =
XQL (1 − ηQL)

r − µ
− δQL −

(
X (β − 1) (1 − ηQL)

(β + 1) δ (r − µ)

)β
δQL

β − 1
. (65)

Maximizing with respect to QL gives the following first order condition

φ (X,QL) ≡
X (1 − 2ηQL)

r − µ
− δ −

(
X (β − 1) (1 − ηQL)

(β + 1) δ (r − µ)

)β
(1 − (β + 1) ηQL) δ

(β − 1) (1 − ηQL)
= 0. (66)
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Solving (66) gives QdetL (X) .

Setting QL = 0 in equation (66) gives equation (19). Define

ψ (X) =
X

r − µ
− δ −

(
X (β − 1)

(β + 1) δ (r − µ)

)β
δ

β − 1
,

then we have that

ψ (0) = −δ < 0,

ψ (X∗
F (0)) =

δ

β − 1
> 0,

∂ψ (X)

∂X
=

1

r − µ

(
1 −

β

β + 1

(
X (β − 1)

(β + 1) δ (r − µ)

)β−1
)
.

For X ∈ (0, X∗
F (0)) it holds that

∂ψ (X)

∂X
> 0, (67)

so that we have shown that Xdet
1 exists.

For the accommodation strategy the value function of the leader is given by

V accL (X,QL) =
XQL (1 − η (QL +Q∗

F (QL)))

r − µ
− δQL. (68)

Substitution of (63) into (68) and maximizing with respect to QL gives

QaccL (X) =
1

2η

(
1 −

δ (r − µ)

X

)
. (69)

Equation (88) is the result of the substitution of equation (69) into equation (68).

The leader will only use its accommodation strategy if the optimal quantity QaccL (X) leads to immediate

investment of the follower. So it should hold that

X∗
F (QaccL (X)) ≤ X. (70)

We define X̂1 as

X̂1 = X∗
F

(
QaccL

(
X̂1

))
. (71)

Subsitution of (62) and (69) into (71) gives

X̂1 =
β + 1

β − 1

δ (r − µ)

1 − η 1
2η

(
1 −

δ(r−µ)

X̂1

) . (72)

Rearranging gives

X̂1 =
β + 3

β − 1
δ (r − µ) . (73)

Furthermore, the leader cannot use the deterrence strategy anymore if we have that

X∗
F

(
QdetL (X)

)
≤ X. (74)
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Let us define X̂2 as

X∗
F

(
QdetL

(
X̂2

))
= X̂2. (75)

To determine X̂2 we substitute equation (62) for X into (66):

β+1
β−1

δ(r−µ)
1−ηQL

(1 − 2ηQL)

r − µ
− δ −

(
β+1
β−1

δ(r−µ)
1−ηQL

(β − 1) (1 − ηQL)

(β + 1) δ (r − µ)

)β
(1 − (β + 1) ηQL) δ

(β − 1) (1 − ηQL)
= 0. (76)

Some rearrangement gives

β + 1

β − 1

1 − 2ηQL
1 − ηQL

− δ −
(1 − (β + 1) ηQL) δ

(β − 1) (1 − ηQL)
= 0, (77)

so that

QL =
1

2η
. (78)

Substitution of (78) into (62) gives

X̂2 =
2 (β + 1)

β − 1
δ (r − µ) . (79)

Before the leader has invested, thus when X < Xdet
L , the firm holds an option to invest. the option value

is

F detL (X) = AdetL Xβ. (80)

The value matching and smoothing pasting conditions to determine Xdet
L are given by:

AdetL Xβ =
XQL (X) (1 − ηQL (X))

r − µ
− δQL (X) −

(
X (β − 1) (1 − ηQL (X))

(β + 1) δ (r − µ)

)β
δQL (X)

β − 1
(81)

βAdetL Xβ−1 =
QL (X) (1 − ηQL (X)) +X ∂QL

∂X
(1 − 2ηQL (X))

r − µ
− δ

∂QL

∂X
(82)

−

(
X (β − 1) (1 − ηQL (X))

(β + 1) δ (r − µ)

)β δ
(
QL (X)

(
β (1 − ηQL (X)) − (β + 1)Xη ∂QL

∂X

)
+X ∂QL

∂X

)

X (β − 1) (1 − ηQL (X))
.

Substitution of (82) into (81) gives

XQL (X) (1 − ηQL (X))

r − µ
−
XQL (X) (1 − ηQL (X)) +X2 ∂QL

∂X
(1 − 2ηQL (X))

β (r − µ)

− δQL (X) +
δX

β

∂QL

∂X

+

(
X (β − 1) (1 − ηQL (X))

(β + 1) δ (r − µ)

)β (
δX ∂QL

∂X
(1 − (β + 1) ηQL (X))

β (β − 1) (1 − ηQL (X))

)

= 0. (83)

In order to be able to use equation (83) to calculate Xdet
L we need an expression for ∂QL

∂X
. Total differen-

tiation of equation (66) gives
∂φf (X,QL)

∂QL

∂QL

∂X
+
∂φ (X,QL)

∂X
= 0. (84)

Rewriting gives

∂QL

∂X
= −

∂φ(X,QL)
∂X

∂φ(X,QL)
∂QL

. (85)
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We have that

∂φ (X,QL)

∂X
=

1 − 2ηQL
r − µ

−

(
X (β − 1) (1 − ηQL)

(β + 1) δ (r − µ)

)β−1
β (1 − (β + 1) ηQL)

(β + 1) (r − µ)
, (86)

∂φ (X,QL)

∂QL
= −

2ηX

r − µ
+

(
X (β − 1) (1 − ηQL)

(β + 1) δ (r − µ)

)β
βηδ (2 − (β + 1) ηQL)

(β − 1) (1 − ηQL)2
. (87)

Combining (85), (86), and (87) gives

∂QL

∂X
=

1−2ηQL

r−µ
−

(
X(β−1)(1−ηQL)

(β+1)δ(r−µ)

)β−1
β(1−(β+1)ηQL)

(β+1)(r−µ)

2ηX
r−µ

−

(
X(β−1)(1−ηQL)

(β+1)δ(r−µ)

)β
βηδ(2−(β+1)ηQL)

(β−1)(1−ηQL)2

. (88)

The leader threshold Xdet
L and the corresponding quantity QdetL can be calculated by first substituting

equation (88) into equation (83) and then simultaneously solving the resulting equation and equation (66).

Doing this gives

Xdet
L =

β + 1

β − 1
δ (r − µ) ,

QdetL =
1

(β + 1) η
.

For the accommodation strategy the value matching and smooth pasting condition are given by:

AaccL Xβ =
(X − δ (r − µ))

2

8Xη (r − µ)
, (89)

βAaccL Xβ−1 =
X2 − δ2 (r − µ)

2

8X2η (r − µ)
. (90)

Substitution of (90) into (89) gives

(X − δ (r − µ))
2

8Xη (r − µ)
−
X2 − δ2 (r − µ)

2

8βXη (r − µ)
= 0. (91)

Rearranging gives
(β (X − δ (r − µ)) − (X + δ (r − µ))) (X − δ (r − µ))

8βXη (r − µ)
= 0. (92)

Since from (89) it follows that X = δ (r − µ) is not a valid solution, we have that

Xacc
L =

β + 1

β − 1
δ (r − µ) . (93)

B.2.1 Economic Analysis

We know from the literature (e.g., Dixit and Pindyck (1994)) that

∂β

∂σ
< 0.
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Futhermore, we have that

∂Xacc
1

∂β
=

−4δ (r − µ)

(β − 1)
2 < 0,

∂Xdet
2

∂β
=

−4δ (r − µ)

(β − 1)2
< 0,

Xdet
2

Xacc
1

=
2 (β + 1)

β + 3
,

∂
Xdet

2

Xacc
1

∂β
=

4

(β + 3)
2 > 0.

Concerning Xdet
1 it holds that

ψ
(
Xdet

1 , β
)

=
X

r − µ
− δ −

(
X (β − 1)

(β + 1) δ (r − µ)

)β
δ

β − 1
= 0

So that
∂ψ (X, β)

∂X

∣∣∣∣
X=Xdet

1

∂Xdet
1

∂β
+
∂ψ (X, β)

∂β

∣∣∣∣
X=Xdet

1

= 0.

Rewriting gives

∂Xdet
1

∂β
= −

∂ψ(X,β)
∂β

∣∣∣
X=Xdet

1

∂ψ(X,β)
∂X

∣∣∣
X=Xdet

1

.

We know from (67) that ∂ψ(X,β)
∂X

∣∣∣
X=Xdet

1

> 0. Furthermore,

∂ψ (X, β)

∂β
= −

δ

β2
− 1

(
X (β − 1)

(β + 1) δ (r − µ)

)β (
1 + (β + 1) log

(
X (β − 1)

(β + 1) δ (r − µ)

))
,

so that
∂ψ (X, β)

∂β

∣∣∣∣
X=Xdet

1

> 0

if and only if

1 + (β + 1) log

(
Xdet

1 (β − 1)

(β + 1) δ (r − µ)

)
< 0. (94)

Define X = β
β−1δ (r − µ), then Xdet

1 < X, as it holds that

X <
β + 1

β − 1
δ (r − µ) ,

ψ
(
Xdet

1 , β
)

= 0,

∂ψ (X)

∂X
> 0 for X ∈

(
0,
β + 1

β − 1
δ (r − µ)

)
,

and

ψ
(
X, β

)
=

δ

β − 1

(
1 −

(
β

β + 1

)β)
> 0.

So that (94) holds if

1 + (β + 1) log

(
X (β − 1)

(β + 1) δ (r − µ)

)
< 0.
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Substitution of the definition of X gives

1 + (β + 1) log

(
β

β + 1

)
< 0.

Define the function γ (β) as follows

γ (β) = 1 + (β + 1) log

(
β

β + 1

)
.

We have that

γ (1) = 1 + 2 log

(
1

2

)
< 0,

lim
β→∞

γ (β) = 0,

∂γ (β)

∂β
=

1

β
+ log

(
β

β + 1

)
> 0.

The last equation holds since β > 1 and

∂γ (β)

∂β

∣∣∣∣
β=1

= 1 + log

(
1

2

)
> 0,

lim
β→∞

∂γ (β)

∂β
= 0,

∂2γ (β)

∂β2 = −
1

β2 + β2 < 0.

We conclude that ∂ψ(X,β)
∂β

∣∣∣
X=Xdet

1

> 0 and therefore
∂Xdet

1

∂β
< 0.
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