
A Real Options Perspective On R&D

Portfolio Diversification

Sjoerd van Bekkum*, Enrico Pennings and Han Smit

Tinbergen Institute Room H09-14, Erasmus School of Economics, P.O. Box 1738,

3000 DR, Rotterdam, The Netherlands

*Corresponding Author. Tel.: +31 10 408 8935; Fax.: +31 10 408 9165;

Abstract

This paper shows that the presence of conditional staging in R&D (Research &

Development) has a critical impact on portfolio risk, and changes diversi�cation

arguments when a portfolio is constructed. When R&D projects exhibit option-

like characteristics, correlation between projects plays a more complicated role than

traditional portfolio diversi�cation would suggest. Real option theory argues that re-

search projects with conditional phases have option-like risk and return properties,

and are di�erent from unconditional projects. We show that although the risk of a

portfolio always depends on the correlation between projects, a portfolio of condi-

tional R&D projects with real option characteristics has fundamentally di�erent risk

than a portfolio of unconditional projects. When conditional R&D projects are neg-

atively correlated, portfolio risk is hardly reduced by diversi�cation. When projects

are positively correlated, however, diversi�cation is more e�ective than these tools

predict.
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1 Introduction

If the outcomes of a �rm's endeavors are unknown, a key strategy to deal with

such risk is betting on more than one horse. Successful R&D policy there-

fore requires the selection and development of several concurrent alternatives,

known as diversi�cation. Additionally, in order to timely abandon unpro�table

projects, R&Dmanagement often involves breaking an individual R&D project

into stages, so that certain requirements must be met before it can enter the

next development phase. The sequential nature then brings conditionality to

the project and causes R&D projects to exhibit option-like behavior, which

complicates the diversi�cation argument. This paper examines diversi�cation

when conditional staging is present in an R&D portfolio, and shows that re-

liance on traditional diversi�cation arguments can be quite misleading. As

compared to diversi�cation of traditional (unconditional) projects, condition-

ally staged projects are less sensitive to changes in correlation and risk is

therefore more di�cult to diversify. Our results show that negative correla-

tion amongst conditionally staged projects makes diversi�cation a less e�ective

instrument to eliminate risk than for unconditional projects. Positive corre-

lation amongst conditionally staged projects, however, makes diversi�cation

more e�ective.

Real options analysis has become a well-established R&D project valuation

technique for intertemporal risky investments in R&D. Rooted in �nancial the-

ory, Myers (1977) was the �rst to describe real options as �the opportunities to

purchase real assets on possibly favorable terms�. In their seminal paper, Black

and Scholes (1973) consider equity of a real, levered �rm as an option on its
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entity value. In the strategy literature, Bowman and Hurry (1993) and Bettis

and Hitt (1995) propose real options theory as an alternative lens for looking at

technology investments that closely resemble the behavior and characteristics

of real options. In the R&D literature, Thomke (1997) indeed shows empiri-

cally that �exibility under uncertainty allows �rms to continuously adapt to

change and improve products. Hartmann and Hassan (2006) provide empiri-

cal evidence that real option analysis is used as an auxiliary valuation tool 1

in pharmaceutical project valuation. In this context, a basic implementation

is provided by Kellogg and Charnes (2000), and more sophisticated option

valuation models for pharmaceutical research have been developed by Loch

and Bode-Greuel (2001). Lee and Paxson (2001) view the R&D process and

subsequent discoveries as sequential (compound) exchange options. Cassimon

et al. (2004) provide an analytical model to value the phased development of

a pharmaceutical R&D project. The empirical literature also con�rms that

R&D yields the positively skewed distribution of returns that is typical for

options. For instance, Scherer & Harho� (2000) show that the top 10% of

the investigated inventions and innovations captured 48 to 93 percent of total

sample returns. They refer to Nordhaus (1989), who postulates that 99.99%

of the tens of thousands of invention patents issued each year are worthless,

but that the remaining 0.01% have high values.

1 The fundamental di�erence between real options and traditional Discounted Cash
Flow (DCF) valuation lies in the �exibility to adapt when circumstances change.
Whereas DCF valuation �xes an investment decision once and for all, an option
is the right (not the obligation) to invest in R&D at some future date. If future
circumstances are favorable, the option will be exercised; if not, the option will
expire without any further cost. Such freedom of choice enables an investor to timely
abandon the project so that further losses are avoided. Therefore, many unfavorable
investments (with limited downside risk) can be �nanced by a few highly pro�table
investments (with unlimited upside potential). Pro�table investments will account
for the majority of returns, so the return distribution becomes positively skewed.
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In concurrence with these �ndings, we analyze conditionally staged (uncondi-

tional) projects as �nancial options (equity shares). Such R&D typically has

a high (low) chance of failure and can be deemed risky (low-risk). High-risk

projects in R&D are by and large of an explorative nature: examples are basic

and fundamental research, or R&D in response to (or in anticipation of) im-

portant changes in a �rm's strategic environment. Low-risk projects in R&D

are most often of an incremental nature: examples are `me-too' inventions

that imitate a successful competitor's invention, or investments in (or varia-

tions of, or incremental changes to) an already commercialized product. We

will refer to these projects by conditionally staged and unconditional projects,

respectively.

Although most real options studies have primarily examined projects in iso-

lation, Engwall (2003) argues that every project takes o� from, or is executed

in, an organizational context. Real options should therefore also be considered

as part of a portfolio. Brosch (2001) contemplates on the in�uence of inter-

acting real options within projects. These positive and negative interactions

between options make a portfolio's value non-additive. Our focus, however, is

on option interactions between projects, and we focus on the risk of the port-

folio. Smith and Thompson (2003, 2005) postulate a project selection strategy

in sequential petroleum exploration, where the outcome of the prior drillings

can be observed before investing in the next drilling. We are also involved

with real option selection, but focus on simultaneous (non-sequential) devel-

opment. Multiple assets have been examined by Wörner et al. (2002, 2003),

who describe a �rm that conducts several R&D projects as a `basket option',

or an option on a set of stochastic variables. Yet, as they focus on the value

of a single claim that pertains to many random variables, their analysis does

not derive results for portfolio management (which inherently deals with the
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selection between multiple claims). In our argument below, we examine condi-

tional projects (or �rms) and how their individual risk- and return properties

a�ect the overall risk of a portfolio.

When constructing an R&D portfolio, the selection of candidates comprises

many important, non-monetary considerations: for example, Prencipe and Tell

(2001) show that �rms try to capture synergies that stem from learning pro-

cesses. Several studies have therefore aimed to integrate risk diversi�cation

with expected costs and bene�ts, inter-project synergies, externalities, R&D

quality and overall �t with the business strategy. In this tradition, Linton,

Walsh, and Morabito (2002) developed a framework that combines both quan-

titative and qualitative measures to rank and select the projects in a portfolio.

Furthermore, Martino (1995) describes several methods for R&D project se-

lection including cluster analysis, cognitive modeling, simulation, portfolio op-

timization, and decision theory. While these sources are suitable for handling

technical and physical diversi�cation, they seem less appropriate for allocat-

ing �nancial resources than the Markowitz (1952) diversi�cation argument.

Markowitz's principle is to minimize risk given a return, or vice versa. Chien

(2002) includes a survey of selection procedures and shows that several origi-

nated from Markowitz's work 2 . Unfortunately, Markowitz diversi�cation only

works when the distribution of project returns is symmetric; an assumption

that is violated for R&D projects with conditionality. Our argument sup-

plements the Markowitz criterion in that it explicitly considers real option

characteristics 3 .

Using a portfolio of two investment opportunities, we show that although the

2 A recent R&D selection model that is based on Markowitz's can be found in
Ringuest et al. (2004).
3 By simulating many real options, we create a skewed distribution.
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risk of an R&D portfolio always depends on the correlation between projects,

the dependence di�ers between conditional projects with real options and un-

conditional projects. In particular, we �nd that when projects are positively

correlated, the overall portfolio risk for conditional projects is lower than for

unconditional projects. Diversi�cation is an important argument to motivate

a portfolio of such projects, because it is more e�ective than one would expect

from unconditional investments. When, in contrast, projects are negatively

correlated, we �nd that the overall portfolio risk for conditional projects is

higher than for unconditional projects. Moreover, under negative correlation,

portfolio risk is less sensitive to changes in correlation as compared to un-

conditional investment projects. Diversi�cation is therefore less e�ective than

one would initially expect from unconditional investments, and more weight

should be placed on non-diversi�cation arguments to motivate a portfolio of

such projects, such as synergies and spillovers.

Our results are relevant for public policy to allocate resources and e�ectively

spur innovation 4 : the risk of a group of positively correlated start-ups 5 is

lower than one would expect if conditionality is ignored. Hence, diversi�cation

may still be a good argument for grouping innovative companies, as risk is more

e�ectively reduced than within industries with a more stable cash �ow. At the

same time, our results are relevant to the investment portfolio of a single �rm:

when positively correlated projects are still young and in the R&D phase,

a portfolio consisting of such projects is less risky than one would expect.

4 For instance, a (regional or federal) government may want to develop a geograph-
ical region, or stimulate research in a certain area. Does a government want to focus
in order to create a specialized technology area such as Silicon Valley, or does it
want to diversify in order to prevent overdependence on a few industries such as
construction and car manufacturing in Detroit?
5 Especially in an innovative �eld, a start-up is a risky business, often with option
characteristics.
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But as successful projects mature, uncertainty resolves over time, and option

characteristics become less relevant, the same correlation between projects

leads to more risk. To minimize overall portfolio risk, some of the matured

projects may therefore be sold in exchange for negatively correlated projects

with low-risk.

This paper is organized as follows: in Section 2, the theory behind a portfolio

of real options is conveyed. In Section 3 we present the model and its results,

and answer the question why pharmaceutical �rms focus instead of diversify

by using our model. In Section 4, we discuss managerial implications and

conclude. In the Appendices A and C, a proof of our �ndings is provided, as

well as a means to extend our analysis to a more realistic setting.

2 Conceptual Framework

An opportunity to invest can turn out favorably or unfavorably. In the �rst

case the investor makes a pro�t, and otherwise he looses no more than the

initial amount invested. Such limited liability causes the investor's payo� struc-

ture to be non-linear, and further investment is conditional on a positive value

development in the future. This is the key characteristic of a �nancial option.

The familiar payo� structure of both the investor and an individual Euro-

pean option at maturity is shown in Figure 1A: if the stock is valued at less

than the investment (equal to $1) , the call is worthless. The exercise price is

analogous to the present value of the investment that is made after the initial

investment to acquire the option. If the stock price is larger than $1, its value

rises one-to-one with increases in the stock price. The stock price is analogous
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Figure 1. Return on an individual call option and on a population of

call options

Consider the following call option: each option costs 1$ in exchange for the
right (not the obligation) to buy the common stock at a �xed price, here being
also 1$. The individual option is worthless when the price of the stock is 1$
or below. The distribution of option returns is truncated: any return value
below -1$ is impossible. Figure 1a shows the value of a single call option at
expiration. Figure 1b shows the return distribution of a population of call
option returns, where the shaded part is truncated.

to the present value of the project's cash �ows 6 . So at expiration the project

value can either be zero, or larger than zero.

Figure 1B shows what this means for a large portfolio of calls, which is a valid

way to describe reality if the portfolio's constituents behave similar to �nan-

cial options, i.e., if a portfolio consists entirely of conditionally staged projects

as often found in pharmaceuticals, biotechnology, venture capital and software

technology. Since negative values are impossible to obtain, a distribution of

returns that would otherwise be normal now becomes truncated from the left:

when the underlying stock is not worth the exercise price, the option will re-

main unexercised. Therefore, the shaded area of the distribution is nonexistent

6 The analogy holds also for the other variables that are needed to calculate the
value of an option: the variance of stock is analogous to the project's cash �ow
volatility, and the time to maturity is analogous to the investor's time available to
defer a next investment. The risk-free rate represents the time value of money in
both the real and �nancial setting.
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and the distribution seizes to be symmetrical 7 .

If the projects are without conditional staging, the shaded area would exist,

the distribution would be symmetrical and by a 'perfect hedge', a riskless

portfolio can be created: when two equity shares are perfectly negatively cor-

related, one goes down by an equal amount if the other goes up and vice

versa 8 , so that all deviation is o�set. In line with Markowitz (1952), we call

this hedging mechanism the �diversi�cation e�ect� on the risk of a portfolio.

However, if the projects are conditionally staged, project values are option-

like distributed, above-average returns are no longer o�set by below-average

returns and Markowitz's (1952) diversi�cation principle is no longer valid.

Because the payo� from a call cannot fall below zero, the option already pro-

vides insurance against the negative payo�s by nullifying those payo�s that

are lower than the exercise price. As a consequence, these would-be-negative

payo�s are no longer available for diversi�cation, and constructing a riskless

portfolio is no longer possible. In a portfolio of options, paradoxically, the

key characteristic of an option limits downside risk of the individual project,

but complicates diversi�cation and increases risk of the portfolio. In line with

Jensen's Inequality, we call this the `convexity e�ect', which may partly o�set

the diversi�cation e�ect. In Appendix A, we derive this result as we examine

the variance of a conditionally staged portfolio more explicitly.

7 Because the value of a project is a random variable and the option value on the
project is a convex function of the project value, it is known that

E[OV (x)] > OV (E[x])

where OV is the value of the option and x is the project value. In this particular
case, this means that the expected value of the option on the project is larger than
an option on the expected value of the project. This inequality is known as Jensen's
Inequality, and is caused by the nonlinear transformation of an option value on some
underlying asset.
8 That is, when uncertainty is constant and equal for both shares.
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In the next section, we will develop a Monte Carlo simulation model to show

the e�ect of risky projects on a portfolio of R&D projects. The procedure is

straightforward and can easily be used in practice with other portfolio selec-

tion criteria. But before we proceed, a proper de�nition of the key concepts is

appropriate. This paper is focused on the risk of a portfolio, and is therefore

a supplement to other portfolio selection criteria we already mentioned. Their

importance notwithstanding, for the sake of argument we group all these cri-

teria under the name of �non-diversi�cation criteria�. The �uncertainty� in our

portfolio is completely determined by how the market value of projects devel-

ops: we con�ne our analysis to the relation between market values of projects,

and assume the project costs to be independent and known. We prefer this

setup because modelling more than one uncertainty would cause our results to

become confounded. For more realistic settings, the procedure can be easily

extended to accommodate two or more related stochastic processes such as

uncertain costs and bene�ts.

3 Methodology and Results

3.1 Simulation Model

To �nd the volatility of an option portfolio, we need to estimate the volatility of

payo�s for each option. The payo�s can be found by examining the lognormal

value distribution of market prices for R&D projects, which are assumed to

follow a geometric Brownian motion.

We start with two projects iε{1, 2}. Unless we consider the special cases in

Appendix A, it is not possible to determine the risk of an option portfolio ana-
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lytically because the joint distribution of options is not analytically tractable.

We therefore model the behavior of both end-of-R&D values projects Vi by a

simple normal distribution 9 , de�ned as follows:

Vi = µi + σiεi (1)

where µi is the project value, σi is the standard deviation of project values and

εi is a random draw from a standard normal distribution. For each project i,

we calculate the option value OVi:

OVi = max[Vi −Xi, 0]e−rT (2)

where Xi is the investment, needed to start or acquire the project. To �nd the

volatility of an option, we repeat equations 1 and 2 R times and see how its

values are distributed:

σOVi
=

√
1

R

∑
r

(OVir −OVi)2 (3)

When both projects are technically related, samples need to be drawn from

a bivariate standard normal distribution and the relatedness between market

values is measured by means of a correlation coe�cient ρ12 between ε1 and ε2.

Hull (2006) describes how a bivariate standardized normal distribution can be

constructed through Cholesky decomposition. For each simulation round, in-

dependent samples y1 and y2 are taken from a univariate standardized normal

distribution and the correlated samples ε1and ε2are calculated as follows:

9 Our results also persist for other models of behavior.
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ε1 = y1 (4)

ε2 = ρ12y1 + y2

√
1− ρ2

12 (5)

From one set of independent samples y1 and y2, we generate 21 pairs of corre-

lated samples ε1 and ε2 (ranging from ρ12 = −1.0 to ρ12 = 1.0 with step size

0.10) by plugging in the independent sample values in equations 4 and 5 10 .

Because the value of a portfolio is simply the sum of the projects i,

pf =
∑

i

OVi, (6)

the risk of the portfolio can be de�ned for each correlated sample ε1and ε2,

similar to the variance of the option value. An estimate of this variance is

based on a simulation of portfolios and averaging over R:

σ̂pf=

√
1

R

∑
r

(pfr − pf)2. (7)

3.2 Simulation Results

Figure 2 compares the cumulative variance of two unrelated, but otherwise

identical options (i.e. equation 3, the dotted line σ2
0 = σ2

1 + σ2
2 where ρ12 = 0)

with 21 option pairs, which are related to a greater or less degree (i.e. equation

7, the solid, curved line). We observe that at ρ = 0, the variance of the option

portfolio (the solid line σ2
pf ) is equal to the risk of the two unrelated projects

σ2
0: a portfolio of completely unrelated options is identical to options that are

10 Usually, a triangular matrix needs to be constructed that represents a consistent
variance-covariance matrix (VCV). In the two-variable case, however, this is not
necessary because any correlation structure between two variables is consistent as
long as the correlation is between -1 and 1.
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both separate and unrelated. In this situation, the projects are identical in

value and in risk.

To illustrate the di�erence between the actual portfolio risk and the calculated

risk when using Markowitz, we have added a third, dashed line σ̃2
pf that shows

the variance of the projects if we assume Markowitz diversi�cation to be valid.

This would be appropriate if the separate projects would be unconditional and

behave as equity shares. To construct the three lines, the following well-known

formula to calculate portfolio variance is used:

σ2
1&2 = σ2

1 + σ2
2 + 2ρσ1σ2 (8)

The di�erence lies in the interpretation of the correlation coe�cient ρ (the hor-

izontal line σ2
0 illustrates the degenerate case where ρ is zero), which measures

the correlation between projects. In case of the naively calculated variance

σ̃2
pf , the projects are correlated one-to-one with the projects' market values

and ρ is a constant. In case of the correct variance σ2
pf , however, co-movement

between real option projects is a function of market value and the probability

that a project is terminated 11 . A manager that doesn't recognize real option

characteristics would end up calculating risk naively, and Figure 2 illustrates

how naively calculated risk may di�er from correctly simulated risk .

In the Figure, the naive portfolio variance at ρ = 0 equals the simulated

variance of the portfolio and the separate options. We also see that both σ̃2
pf

and σ2
pf are reduced when projects are less then perfectly positively correlated,

and that two perfectly positively correlated projects have a variance of 200%

11 This fact has also been used in the theoretical derivations of our results in Ap-
pendix A.
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Figure 2. Simulation Results for Two Identical Investment Opportuni-

ties

Each trial generates two random samples y1 and y2 and, subsequently, two
option values. Simultaneously, option values are calculated for increasing cor-
relation increments, ranging from 1.0 to + 1.0. Apart from the risk-free rate,
all elements are assumed to follow their own, distinctive process. All other
parameters are set as follows:
Number of Trials: n = 50, 000
Number of Options: i = 2
Project Market Value: V1 = V2 = 20
Investment: X1 = X2 = 25
Volatility: σ1 = σ2 = 5
Time to Maturity: T1 = T2 = 18 months
Risk-free rate: r = 5%

compared to σ2
0, as proven in Appendix A. When the projects are negatively

correlated, both σ̃2
pf and σ2

pf are less then σ2
0. These are all diversi�cation

e�ects in line with the theory posed by Markovitz.

The `convexity e�ect', however, limits the most severe value drops but leaves

all positive development intact, so that project payo�s are non-linear and the

value distribution becomes skewed. Figure 2 and Appendix A both show that

when the value dynamics of individual projects can no longer be o�set, naively

applying Markowitz diversi�cation may lead to signi�cant miscalculations of

risk. This is caused by the interaction between diversi�cation and convexity
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e�ects, which has both positive and negative consequences. When projects are

positively correlated, the cushioning of convexity enhances diversi�cation and

overall risk becomes lower than under Markowitz. But when the projects are

negatively correlated, the cushioning of convexity hampers the diversi�cation

e�ect, leading to a less e�ective hedge. As a consequence, options are more

complex instruments for diversi�cation than stock. In terms of the e�ect that

correlation has on risk, the sensitivity of unconditional risk to changes in

correlation is generally smaller than for unconditional risk, up to a correlation

of about ρ = 0.70: especially for negatively correlated projects, diversi�cation

is hardly changing the portfolio's risk. Stated more precisely, the variance of a

conditionally staged portfolio is compressed towards the cumulative variance

for two independent options. The range of a conditionally staged portfolio

is smaller than the range of an unconditional portfolio, but the minimum

is higher than the unconditional portfolio's minimum. We can formulate the

following hypotheses:

H1: Under positive correlation, conditionally staged projects diversify risk

better than unconditional projects.

H2: Under negative correlation, unconditional projects diversify risk better

than conditionally staged projects.

3.3 Robustness Analysis and General Applicability

The base case (Figure 2) shows what happens when two simple and identical

options are out of the money: the investment hasn't been recovered yet. This

setting is typical for many R&D projects. Figures 3a-d show results of sim-

ulated options that have a lower volatility (Figure 3a), a di�erent volatility
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(Figure 3b), are at the money (Figure 3c) or in the money (Figure 3d). In

all these situations, the convexity-e�ect persists. In Figure (a), we halve the

volatility so that the project is not in the money until the value equals µ+2σ.

In R&D, this means that the project is not continued in about 97.5% of the

cases and hardly any of these projects is available for risk diversi�cation. As

a consequence, the diversi�cation e�ect is almost absent and all we see is the

convexity e�ect: we might just as well not diversify at all. As a less extreme

case, when volatilities di�er, Figure (b) shows that portfolio risk is less sen-

sitive to changes in correlation than in Figure 2 and diversi�cation is still

quite ine�ective. Please note the unit change on the y-axis, indicating that in

this case, zero variance can not be achieved by naive calculation either. When

the moneyness increases in Figure (c) and (d), the curves move towards the

straight line and our results become less distinct. This re�ects the familiar fact

that options that are deeply in the money will behave similarly to the underly-

ing stock. As a consequence, the convexity e�ect becomes less pronounced and

the diversi�cation e�ect starts to dominate. In R&D, this means that if the

value of the project is much higher then its costs, conditional staging doesn't

make a large di�erence because the project will be exercised anyway.

A few general remarks are in order here. Many projects are funded by multiple

�nance or subsidy rounds and our simple calls represent the last phase. The

pharmaceutical industry, for example, is typically characterized by six stages

of development. This means that the condition of completing the sixth phase

is conditional upon completion of the �fth phase, which is conditional on the

fourth phase, etcetera. These more realistic features can easily be modeled

by using compound options in the simulation. In the compounded case, we

are stacking `e�ect on e�ect'. This is not demonstrated here, because such

simulation results are highly dependent on the success of entering the next
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Figure 3. Sensitivity Analysis of Simulation Results

Figure (a) shows a volatility of 2.5 instead of 5 for both options.
Figure (b) shows a volatility of 4 and 6 for each instead of 5 for both options.
Figure (c) shows a project value of 25 instead of 20.
Figure (d) shows a project value of 30 instead of 20.
All other option parameters are identical to the base case in Figure 2.

(a) (b)

(c) (d)

round: such arbitrarily chosen input parameters (especially for several stages)

will have a critical in�uence on the portfolio variance and conceal the con-

vexity e�ect. Compound options can easily be put to practice by means of

Cassimon et al. (2004), who have developed a closed-form model for the suc-

cessive phases from R&D to commercialization. Likewise, simulation makes it

straightforward to implement other realistic features such as uncertain costs

or time-to-completion. That, however, would also drive us away from the es-

sential portfolio diversi�cation problem.

For ease of exposition, we have limited the analysis to the smallest portfolio

possible, a portfolio of two projects. The e�ect is also observable when we

increase the number of assets. If we introduce a third asset and keep the
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step size �xed at 0.10, for example, then 21 correlated samples are ranked

similarly for every random variable. So for the 3-variable case we have a grid

of 21 correlation points between variable 1 and 2, 21 between 1 and 3 and

21 between 2 and 3. Appendix B describes how to develop the simulation

procedure for three and more projects by constructing a consistent correlation

structure 12 .

3.4 Implications

The implications of our results can be readily applied in any research policy

that concerns simultaneous development. While various applications may il-

lustrate the use of our �ndings, we give an example that originates from the

pharmaceutical industry. In this sector, many small �rms succesfully focus on

a few drugs, rather than become part of a portfolio of a large, diversi�ed com-

pany. Why is risk diversi�cation not necessary for small research ventures to

be successful in such risky business? One argument would be that in the early

stages of development, economies of scale (e.g. in marketing) are not feasible

yet. Another would be that the R&D process is di�erently organized for small

ventures than for big companies. Our results give an additional argument for

this behavior: a strong focus only marginally increases the risk of the portfolio

while it may strongly contribute to non-diversi�cation criteria (such as syn-

ergies and spillovers) and preserve the upward potential. We also provide an

argument in favor of active portfolio management: as portfolios need restruc-

12 At the same time, the number of possible correlations is smaller than 63. If, for
instance, two projects c1 and c2 have a negative correlation of 0.99, the third cannot
be highly correlated with both at the same time. In this three-variable case, the
correlation between c1 and c2 and a third, single option can only be de�ned on the
complete interval [-1, 1] when the correlation of the two projects c1 and c2 is held
constant at ρ = 0.
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turing when projects evolve and become less risky, the venture may be sold to

a diversi�ed company.

If conditionally staged projects are positively correlated, their combined value

is less volatile than standard portfolio theory might suggest. Portfolio risk is

likely to be overestimated because the diversi�cation e�ect is cushioned by the

convex nature of options. In terms of diversi�cation, these projects are good

candidates for portfolio selection. If, conversely, drug development projects

are negatively correlated and the uncertainty is high enough to let progress be

conditionally staged, then the cushioning of convexity causes diversi�cation to

be less e�ective than would be expected from Markowitz. As time progresses,

the results of these R&D programs improve and become less uncertain, the

cushioning disappears and the projects will behave more stock-like. In these

later stages, diversi�cation becomes more important in portfolio selection as

the risk becomes more sensitive to changes in correlation.

It may be useful to provide examples of positively and negatively corre-

lated risk as well. Positively correlated risk can partly be ascribed to non-

diversi�able market risk. Another part may be ascribed to the medical context,

where positively correlated projects may represent two or more drug develop-

ment programs projects that will lead to `complementary treatment' of illness:

a �rst example is the case for the treatment of HIV, where (due to mutations)

any mono-therapy is not able to suppress an HIV-infection and a combination

of three drugs is prescribed. When the side e�ects of one drug become less

severe, or if the e�ectiveness of one drug improves, the value of the other two

drugs will increase as well, because the quality of the treatment increases. As

a second example, we can think of drugs that treat disorders that are strongly

related such as lung cancer and cardiovascular diseases. Often, both are the
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result of a common cause such as an unhealthy lifestyle. When patients can

be treated for one disease, the patient will live longer and the odds increase

that he will su�er from the second disease. Ironically, this is good news for in-

vestors as the market value of both drugs increases. An example of negatively

correlated risk lies in two drug development programs that are substitutes:

if the value of one program goes up due to a major discovery, the value of

the other project automatically goes down (for instance, when two develop-

ment programs aim to cure similar diseases). The risk of negatively correlated

projects is only marginally lower in a portfolio than for independent projects.

Therefore, although non-diversifcation arguments may provide good reason to

combine these projects, risk reduction isn't one of them. Until the projects

mature and risk has been diminished, negatively correlated risky projects are

less attractive portfolio candidates for risk management.

We consider the pharmaceutical industry to be a well-chosen example for its

active portfolio management also. It is evident that corporate risk diminishes

as new ventures reach maturity. In Figure 1, our framework indicates that ven-

tures �rst behave as the curvature, and later behave as the straight, dotted line.

The gentle slope of the curve shows that although the risk of positively cor-

related ventures is still higher than the risk of negatively correlated ventures,

the di�erence doesn't matter as much as standard portfolio theory predicts.

Therefore, structuring a portfolio to minimize variance is not as important

in the early stages. When ventures mature, however, diversi�cation becomes

more important and the risk characteristics of positively and negatively cor-

related ventures become more pronounced. It may be wise to sell positively

correlated ventures in this stage.
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4 Conclusion and Future Research Directions

In this article we have shown that the presence of conditional staging in R&D

invalidates diversi�cation arguments when a portfolio is constructed. Under

negative correlation, emphasis should be placed on other (non-diversi�cation)

arguments when constructing a portfolio whereas under positive correlation,

the advantages of diversi�cation are larger than one may expect fromMarkowitz

diversi�cation. We have also demonstrated that due to the convexity of high-

risk projects, the sensitivity of portfolio risk to correlation is smaller for high-

risk projects than for low-risk projects.

Implementation of our model is straightforward, and shows that the di�erence

in risk between high-risk and low-risk projects can be quite substantial: for

two negatively correlated risky projects of about ρ = −0.5, the uncertainty

is reduced by only 10%/50% = 20% as compared to low-risk uncertainty

reduction. For ρ = +0.5, the uncertainty is increased by only 30%/50% =

60% as compared to low-risk uncertainty. These di�erences can easily become

more dramatic (in extreme cases, diversi�cation becomes impossible), and our

�ndings are robust to changes in the parameter structure of the model. We

have provided examples to show why this is important for the R&D portfolio

of a drug developer.

Some extensions to the model can make it more suitable to analyze portfolio

risk under more speci�c circumstances. One can easily construct a portfolio

with projects that di�er in volatility, time to maturity and moneyness. We have

explained the possibility of compounding options when additional parameters

(such as success probabilities) are known. Using a provided algorithm, it is

easy to extend the analysis to a large portfolio, with each project having its
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own distinct features such as the required investment outlay, estimated date of

completion and volatility of market value. The simulation procedure remains

the same for several underlying stochastic processes and may include other

case-speci�c peculiarities such as mean reversion, barriers or autocorrelation.

It is also possible to account for synergies on the cost side. Future research may

hence yield similar results as ours, but from real-life data. For expositional

purposes, however, all these extensions would unnecessarily complicate our

argument.

An important implication that follows from our work is that, when evaluating

the risk of a portfolio of risky R&D opportunities, it is not su�cient to merely

examine the risk-return properties between projects: it is also important to

determine the presence of staged conditionality before drawing conclusions

on how appropriate a project is for reducing the risk of the portfolio. When

additional information is available on project parameters to tailor the model to

a speci�c problem, our framework could also be helpful in the formulation and

assessment of research and development policy by public and private parties.
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Appendix A: Explicit Derivation of Main Results

To examine the variance of a risky R&D portfolio more closely, an analytical

treatment of our theoretical framework will convey what happens when the

correlation is perfectly positive, negative or absent. Because of the nature of

options (i.e., the max operator), the variance of a single call option consists of

two properly weighted variances, namely one variance in case the call value is

positive � which we will denote by V ar(c+) � and one for the case the outcome

is zero:

V ar(max[V − I, 0]) = w1V ar(V − I) + w2V ar(0) = w1V ar(c
+) (9)

where w1 and w2 are the appropriate weights. The key to an analytical deriva-

tion of the variances is recognizing the outcome possibilities that exist in each

of the three correlation scenarios, and construct a single variance from there,

using a variance decomposition formula that is de�ned as:

V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ]) (10)

We will consider a portfolio of two simple investment opportunities (calls) that

are exactly equal two each other. Both require an investment X that is, by
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assumption, equal to the expected value of the project (for ease of notation,

we drop the subscript i that we introduced in Section 3.1):

X1 = X2 = X = E[VT ] (11)

As a consequence, for at the money options, each call will be distributed

around E[VT ](again, we drop the subscript i):

Pr(VT > X|X = E[VT ]) = Pr(ε > 0) = 0.5; ε ∼ N(0, 1) (12)

Furthermore, since both calls are identical, we know that the probability of

being in the money is equal for both calls i, j:

Pr(Vi,T > X) = Pr(Vj,T > X) (13)

The cases of perfectly positive, negative or absent correlation di�er only in

the correlation that exist between two projects, and each will yield a di�er-

ent expression for the portfolio variance, as expressed in terms of the option

components' variance in 9.

Perfectly positively correlated projects

For ρ = 1, either both calls are in the money or both calls are out of the

money. This means that the portfolio consists of two possible outcomes:

Pf = (c+1 + c+2 |V1 > X, V2 > X) + (0|V1 < X, V2 < X)
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Because of equation 12 and equation 13, each outcome is equally likely. In this

case (denoting the positive part of the portfolio by pf+ and the negative by

pf−), the variance composites on the right-hand side are:

V arpf+ =V ar(2c+|V > X) = 4× V ar(c+|V > X)

V arpf− = 0

Furthermore, we know that E[pf+] = 2E[c+] since both projects are identical.

From equation 10, it follows that the portfolio variance of a portfolio is:

V ar(pf |ρ = 1) =
4V ar(c+) + 0

2
+

(2E[c+]− E[c+])2 + (0− E[c+])2

2
= 2× V ar(c+) + E[c+]2

Perfectly independent projects

For ρ = 0, we know from equation 12 and equation 13that each option can be

in the money or out of the money with equal probability. In this case, we can

therefore distinguish 4 possible outcomes :

Pf = (V1 −X|V1 > X, V2 < X)

+ (V2 −X|V1 < X, V2 > X)

+ (V1 −X + V2 −X|V1 > X, V2 > X)

+ (0|V1 < X, V2 < X)

The variance of the �rst two terms on the right hand side is equal to V ar(c+),

and the expected value for both is E[c+]. Since the non-linear payo� is ac-

counted for in the last term, we can use Markowitz to �nd the variance of the

third term, which is simply the sum of the variances V ar(c+1 ) and V ar(c+2 )
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because ρ = 0. Furthermore, we know that the expected value of this term

equals the sum of the expected values E[c+1 ]and E[c+2 ]. It follows from equation

10 that

V ar(Pf |ρ = 0) =
V ar(c+) + V ar(c+) + 2var(c+) + 0

4

+
0 + 0 + (2E[c+]− E[c+])2 + (0− E[c+])2

4
=V ar(c+) + 0.5(E[c+])2

This is exactly half of the variance found at ρ = +1, a �nding that corresponds

with the simulation results.

Perfectly negatively correlated projects

For ρ = −1 and at the money options, we know that either one call or the

other is in the money. But because both projects can never jointly be in- or

out of the money at ρ = −1, this simply means that the variance is equal to

either the variance of one call, or that of the other. More precisely, we can

state that:

Pf = (c+1 + 0|V1 > X, V2 < X) + (0 + c+2 |V1 < X, V2 > X)

= c+1 = c+2 = c+.

We can write the last line because the calls are identical under the given

conditions. It follows directly that we can write:

V ar(Pf |ρ = −1) = V ar(c+)
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This demonstrates why in our results, the variance of a perfectly negatively

correlated portfolio doesn't go to 0% in the limit but is of a magnitude be-

tween zero and the variance at ρ = 0. Indeed, diversi�cation under these

circumstances does not permit risk to be diversi�ed away.

Appendix B: How to Generate Random Samples from a Mul-

tivariate Normal Distribution

In case a third stock enters our model, a third sample is drawn; ρ13 and ρ23

need to be de�ned in such a manner that the variances and covariance are

consistent, for instance, if asset 1 and asset 2 strongly move together as well

as asset 1 and 3 (i.e., the correlations ρ12 and ρ13 are highly positive), then the

dynamics of asset 2 and 3 need to be positively related to some extent (i.e., ρ23

needs to have a high positive value) as well. If we require 3 correlated samples

from normal distributions, the required samples are de�ned as follows:

ε1 =α11x1 (14)

ε2 =α21x1 + α22x1 (15)

ε3 =α31x1 + α32x1 + α33x1

The Cholesky decomposition procedure sets α11 = 1 and requires α21 to be

chose such that α21α11 = ρ21 and α
2
21 + α2

22 = 1. This yields

α21 = ρ21 (16)

and

α22 =
√

1− ρ2
21. (17)
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For the third sample, α31 is to be chosen such that α31α11 = ρ31, yielding

α31 = ρ31. Then α32 is to be chosen such that

α31α21 + α32α22 = ρ32, (18)

leading to

α32 =
ρ32 − ρ12ρ13√

1− ρ2
12

. (19)

We conclude by the requirement that

α2
31 + α2

32 + α2
33 = 1, (20)

leading to

α33 =

√√√√√1− ρ2
13 − (

ρ23 − ρ2
12ρ

2
13√

1− ρ2
12

)2. (21)

We can simply generalize this case to n by expanding the Choleski matrix in

equation 15, for example to

ε4 = α41x1 + α42x2 + α43x3 + α44x4 (22)

and repeat this procedure. But correlations need to be chosen with more and

more care as the number of projects increases. In case of 2 projects, the re-

striction imposed by (B2) implies that ρ12 must be smaller than 1. Although

not very demanding in the two-variable case, the requirements above pose

more restrictions on the correlated projects for every project that enters the

simulation. We initially consider a single drug. If we want to simulate two

additional projects that both are correlated to this drug ρ12 = ρ13 = −0.9,
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then these projects need to be positively correlated. More speci�cally, if we

let the third variable enter the simulation, it must satisfy:

α2
31 + α2

32 + α2
33 = 1 (23)

or

α2
33 =

√
1− α2

31 − α2
32 =

√
1− 0.92 − α2

32 > 0. (24)

Hence, the Choleski-variable α2
32 must not be larger than (1 - 0.81 = ) 0.19

and
√

0.19 5 α32 5
√

0.19. (25)

Using this condition in the other requirement 18, we �nd the following range:

ρ23 ≤ 0.90× 0.90 + 0.19× 0.19 = 0.88

ρ23 ≥ 0.90× 0.90− 0.19× 0.19 = 0.62.

If a fourth project enters the story and ρ14 = ρ12 = ρ13 = −0.9, it is required

that

α2
44 =

√
1− α2

41 − α2
42 − α2

43 =
√

1− 0.92 − α2
42 − α2

43 > 0

and, similarly to equation 25, that

−α22 ≤ α42 + α43 ≤ α22,

meaning that α42 + α43 are subject to the same constrant as was α32. So

any newly entering simulation variable is subject to all previous constraints

plus 1. For instance, if we choose ρ42 = ρ32(so α42 = α32 and α41, α42, α43 =
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α31, α32, α33), it must be true that

α44 =
√

1− α2
41 − α2

42 − α2
43 =

√
1− 0.81− 0.19− α2

43 > 0

and the fourth project needs to be uncorrelated with the others for consistency.
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