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1 Introduction

The first and simplest real option model was pioneered by Mossin (1968), but a formal discussion

on the investment decision problem, also called entry decision problem, was initially proposed

by McDonald and Siegel (1986). The authors claim that a firm with the opportunity to invest

into a project possesses the option to wait for better conditions before starting to implement

the investment. This option is in fact very much like a financial derivative where the underlying

consists of the economic variables that will condition the future value of the project (for instance,

the value of the product bought or sold by the firm).

The combined investment and disinvestment decisions problem, also called entry and exit

decision problem, was initially discussed by Brennan and Schwartz (1985). Applying the option

pricing theory developed by Black, Merton and Scholes in the 1973 , they evaluated active and

inactive firms, and defined the concepts of option to enter and option to abandon as part of

the firms value. A formal and complete discussion of the combined problem using differential

equations was presented by Dixit (1989). In particular, he focused on entry and exit trigger

prices as fundamental indicators for firms decision policies. A mathematical rigorous treatment

of the investment and disinvestment decisions problem was proposed by Brekke and Oksendal

(1994). The authors analyzed the entry-exit decisions problem by applying both the option

pricing theory and the dynamic programming theory, gave a formal proof of the existence of a

solution, and extended the classical approach considering the case of a finite resource.

Although these papers have made a great step toward a better understanding of the investment

and disinvestment decisions, they assume that the project is brought on-line immediately after

the decision to invest is made, and similarly for the disinvestment. As such, the complexity

of these decisions, or the constraints under which they are taken, is not properly modeled. A

critical factor is the presence of a delay between the decision to invest (or disinvest) and the

implementation process. Numerous investment (disinvestment) decisions, from a practical point

of view, are characterized by a significant implementation delay.1

For instance, one of the major characteristics of the capital budgeting process is the delay

existing between the investment decision and its implementation. This implementation delay is

generally associated with the decision process within the firm or the gathering of the financing

funds necessary to undertake the investment or disinvestment spending. Harris and Raviv (1996)

assert that projects are generally initiated from the bottom up, suggesting a centralization of

the capital allocation process. Depending on the nature and the size of the investment, projects

that have been approved at the division level may have to be submitted to headquarters. This
1Our analysis differs significantly from the ”construction-lag” or ”time-to-build” literature, where the lag refers

to the time between the decision to invest and the receipt of the project’s first revenues (see Majd and Pindyck
(1987) and Pindyck (1991, 1993)). In our case the lag measures a systematic delay that comes before the investment
(disinvestment) project takes effectively place, i.e. before the consequence of hitting the trigger price gets activated.
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requires time. Thought the capital budgeting process offers a typical example of investment in the

presence of implementation delay (disinvestment with implementation delay exists too), numerous

industrial-production processes are characterized by an implementation delay in the decision to

invest and disinvest.2 An interesting example, among others, is observable in the energy-industry.

In particular, we refer to fuel-burning utilities that have co-production options, i.e. they generate

electricity burning either gas or coal. Each facility conveniently adapts its fuel-inputs according

to the price evolution of these factors on international exchanges. However, a utility needs some

time to implement the fuel-switching.3 Ideally, the decision to fuel-switch takes place when the

underlying variable, i.e. the fuel price, hits a pre-specified barrier level. In fact, the existence of

physical and technical constraints permit the implementation of the new production-process only

after a given time-interval (see Burtraw (1996), and Tauchmann (2006)).

Although the existence of such a delay is very common in practice, the problem has not re-

ceived much attention in the literature whereas it has relevant consequences. In fact, depending

on the evolution of the decision variable during this implementation lag, the investment (disin-

vestment) opportunity may have lost part of its attractiveness. Gauthier and Morellec (2000)

have discussed the implementation delay which affects the investment decision in the capital

budgeting process. The paper addresses the issue of the investment decision under the Parisian

implementation delay using the probabilistic approach. The Parisian-delay reflects the will of any

firm to verify that the market conditions remain favorable during the implementation-lag of the

investment decision.

The Parisian criterion originates from a relatively new type of financial option-contracts in-

troduced by Chesney et al. (1997) and termed Parisian options. Such a contract corresponds to a

generalization of a barrier-type option. More precisely, a Parisian option gets activated (resp. dis-

activated) if the underlying process has spent a sufficient amount of time above (resp. below) the

barrier level. Literature addressing mathematical and computational aspects related to this new

option-contract is extensive (see Schröder (2003), Avellaneda and Wu (1999) and Haber et al.

(1999), and references therein). However, up to our knowledge, only Gauthier and Morellec (2000)

use the Parisian criterion for the appraisal of investments in a real-option context.

In common with the last-mentioned paper, we apply the probabilistic approach but we discuss

the combined investment and disinvestment decisions under the Parisian implementation delay.

This approach leads to more tractable valuation results compared to the PDE approach. Relying

on standard mathematical results, we prove the independence between the Parisian stopping times

under both historical and a new probability measure (P∗). This makes our study significantly

different from the study in Gauthier and Morellec (2000). Also, an interesting contact with Wald’s
2In the industrial production context, invest indicates the decision to undertake or start a production process,

whereas disinvest indicates the decision to undo or change a specific production process.
3Fuel-switching is the extend to which a producer can reduce the use of one type of energy - coal, for instance

- and uptake of another source of energy - gas - in its place.
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identity is discussed. Furthermore, we derive a sufficient condition for solving the unconstrained

maximization problem and we obtain the Parisian optimal-levels which are correctly ordered (the

investment level is higher than the disinvestment level). Finally, a numerical exercise is performed

to compare the investment and disinvestment decisions problem with implementation delay and

the instantaneous investment and disinvestment decisions problem. Our results confirm that an

increase in uncertainty delays (instantaneous) investments (see Pindyck (1991)) and that the value

of the investment and disinvestment decision problems is lower under the Parisian criterion than

in the instantaneous case (see Gauthier and Morellec (2000) for the investment case). Moreover,

extending the results of Bar-Ilan and Strange (1996) to the disinvestment case, we show that an

increase in the uncertainty of the underlying process hastens the decision to invest (disinvest).

The paper is organized as follows. In Section 2 we introduce the model for the investment

and disinvestment decisions problem in the context of the Parisian stopping times. In Section 3

we solve the constrained maximization problem and derive the sufficient condition to obtain the

optimal triggering levels correctly ordered. Section 4 concludes with a numerical comparison. In

the Appendix we show under which conditions the Parisian time and the drifted Brownian motion

stopped at that time are independent. Furthermore, we make a connection with Wald’s identity in

the context of Parisian stopping time. Finally, we compute the Laplace transform of the Parisian

investment (resp. disinvestment) time under a new measure; we calculate the moment generating

function for the underlying process stopped at the Parisian investment (resp. disinvestment) time;

and we evaluate the first hitting time of the underlying process which starts from the Parisian

investment time.

2 Model

One of the major characteristic of several decision processes is the delay existing between the

investment (resp. disinvestment) decision and its implementation. As mentioned in the intro-

duction, in the capital budgeting process the implementation delay that affects investment de-

cisions can be due to the research of an investment opportunity on an emerging market or to

the time spent gathering the financing funds. Different reasons, instead, cause implementation

delays which typically affect both the investment and disinvestment decisions in several industrial-

production processes. In order to keep the following presentation simple, we consider the simplest

environment possible in the case of a capital budgeting process.

As in Harris and Raviv (1996), our firm is composed of headquarters and a single division.

The investment decision is initiated by the division manager which must obtain capital from the

headquarters. The disinvestment decision is initiated by the headquarters and implemented by the

division. In both situations an implementation lag due to complex economical and legal situations

is present. The decentralization of the investment and disinvestment decisions is attributable to
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the specific human capital of the division manager. We assume that the division manager has

no incentive to misrepresent his information, however the process of information-transfer within

the firm-divisions and the decisions concerning the capital allocation take time. Furthermore, we

focus on discretionary investments (disinvestments) generally characterized by such bottom-up

(bottom-down) process.

In our setting agents are risk-neutral and the firm has an investment opportunity in a non-

traded asset yielding stochastic returns. Markets are incomplete in the sense that it is impossible

to buy an asset or a dynamic portfolio of assets spanning the stochastic changes in the value of the

project. There is no futures market either for the decision variable or the size of the investment

project prevents the firm from taking a position on such a market. We also assume the perpetual

setting for our model.

In our set-up, the Parisian criterion reflects the will of the firm (the headquarters and the

operational division) to check that the market conditions remain favorable (resp. unfavorable)

during the implementation lag of the investment (resp. disinvestment) decision. In this section

we give the mathematical formulation of Parisian criterion and in the next section we determine

the value of the investment and disinvestment decisions under the Parisian policy.

At any time t the firm can invest in a project yielding an operating profit that depends on

the instantaneous cash flow (St, t ≥ 0). We assume that the dynamics of St follow a geometric

Brownian motion,
dSt

St
= μdt + σZt, S0 = x, (1)

where μ and σ are constants and (Zt, t ≥ 0) is a Brownian motion defined on a filtered probability

space (Ω,F , (Ft)t≥0, P).

We denote by Vt the expected sum of the discounted cash flows from t to infinity,

Vt = Et

[ ∫ ∞

t
e−ρ(u−t)Sudu

]
, (2)

where the discount rate ρ is constant and Et[·] stands for the conditional expectation E[·|Ft]. The

dynamics of Vt are given in the next lemma. According to standard real-option literature, we

must assume that the drift term of the geometric Brownian motion is smaller than the discount

rate, i.e. μ < ρ. This is necessary to obtain the integral in equation (3) finite.

Lemma 2.1 Assume that St is the geometric Brownian motion and that ρ > μ. Then Vt is a

geometric Brownian motion and moreover

Vt =
St

ρ − μ
.
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Proof. We have that

Vt = Et

[ ∫ ∞

t
e−ρ(u−t)Ste

(μ−σ2

2
)(u−t)+σ(Zu−Zt)du

]

Next we search for a martingale, use Fubini’s theorem and get:

Vt = St

∫ ∞

t
e−ρ(u−t)eμ(u−t)du =

St

ρ − μ
.

Based on the above Lemma, Vt satisfies the following SDE

dVt

Vt
= μdt + σZt, V0 =

S0

ρ − μ
. (3)

Since the agents are risk-neutral, the value of the investment and disinvestment decisions

problem can be written as a discounted expectation

E

[
e−ρτI (VτI

− CI)+ + e−ρτD(CD − VτD
)+
]
,

where CI (resp. CD) represents the direct investment (resp. disinvestment) costs, which we make

constant, and τI (resp. τD) represents the first instant when the process V spends consecutively d

units of time above (resp. below) a specific thresholds. This satisfy the Parisian criterion, i.e. the

manager invests (resp. disinvests) at τI (resp. at τD) only if the decision variable Vt had reached a

pre-specified level and had remained constantly above (resp. below) this level for a time interval

longer than a fixed amount of time (so-called time-window). The time-window corresponds to

the implementation delay whereas the pre-specified level is set at an optimal value: the best

investment (resp. disinvestment) threshold h∗
I (resp. h∗

D). We assume that the time-window

associated to the investment (resp. disinvestment) is a fixed amount of time dI (resp. dD). The

decision triggering criterion is then the so-called Parisian stopping time which depends on the

size of the excursions of the state variable over (resp. below) the optimal thresholds (see Figure

1).

The firm (the headquarters and the operational division) maximizes the present value of its

opportunities, namely it solves

V F (V0) = max
τI<τD

E

[
e−ρτI (VτI

− CI)+ 1{τI<∞} + e−ρτD(CD − VτD
)+ 1{τD<∞}

]
.

In the maximization problem one stochastic process is involved, and the geometric Brownian

motion is continuous. Furthermore, in the perpetual case, the exercised boundaries are constant.

Consequently, the investment (resp. disinvestment) decision will occur at the first instant when

Vt hits some constant optimal threshold h∗
I (resp. h∗

D).

Letting τI and τD be the stopping times corresponding to the Parisian criterion with time-
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Figure 1: Evolution of the underlying process and the investment h∗
I (resp. disinvestment h∗

D) optimal-
levels.

windows dI , dD and levels hI , hD respectively, the present value of the investment and disinvest-

ment decisions problem becomes

V F (V0) = max
hD≤hI , V0≤hI

E0

[
e−ρτI (VτI

− CI) 1{τI<∞} + e−ρτD(CD − VτD
) 1{τD<∞}

]
. (4)

3 Solution

In this section we solve the maximization problem and obtain an explicit solution for the optimal

disinvestment threshold, and an implicit solution for the optimal investment threshold. In order

to proceed, as usually done in the literature on Parisian options, we translate the problem in

terms of the drifted Brownian motion. We write

Vt = V0e
σXt , where Xt = bt + Zt, and b =

μ − σ2

2

σ
. (5)

and construct the probability measure P
∗ under which Xt becomes a P

∗-Brownian motion,

dP
∗

dP

∣∣∣
Ft

= e
b2

2
t−bXt . (6)

Then, using Girsanov theorem, we perform a change of measure. It is worth noticing that

under the new measure both τI < ∞ and τD < ∞ hold almost sure. Following the notations in

(5) and recalling the independence result from Theorem 5.10, we obtain4

EP∗
[
e−(ρ+ b2

2
)τI

]
· EP∗

[
ebXτI (V0e

σXτI − CI)
]

(7)

4All terms are calculated in the appendix.
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for the first term in the maximization problem. Similarly, the second term results

EP∗
[
e−(ρ+ b2

2
)τD

]
· EP∗

[
ebXτD (CD − V0e

σXτD )
]
. (8)

Then, we compute the Laplace transform of the Parisian investment (resp. disinvestment)

time under the new measure P
∗ defined in (6). We calculate the moment generating function

for the process Xt defined in (5), stopped at the Parisian investment (resp. disinvestment) time.

Finally, we evaluate the first hitting time of X which starts from the Parisian investment time.

Factoring out the common terms, we can re-write the maximization problem (4) as

V F (V0) = max
hD≤hI , V0≤hI

(V0

hI

)θ1 φ(b
√

dI)
φ(
√

(2ρ + b2)dI)

{
hI

φ(
√

dI(σ + b))
φ(b

√
dI)

− CI+

+
( hI

hD

)θ2 φ(−√(2ρ + b2)dI)
φ(
√

(2ρ + b2)dD)
φ(−b

√
dD)

φ(b
√

dI)

(
CD − hD

φ(−(b + σ)
√

dD)
φ(−b

√
dD)

)}
(9)

where, to simplify the already complicated formulas, we made the following notations:

θ1 =
−b +

√
2ρ + b2

σ
and θ2 =

−b −
√

2ρ + b2

σ
, (10)

and φ is defined in (18).

We now solve the unconstrained maximization problem (9) when dI = dD = 0, i.e. recovering

the well-known case of the instantaneous investment and disinvestment problem. We obtain that

the optimal instantaneous-disinvestment threshold (labeled h∗
ND) is

h∗
ND =

θ2CD

θ2 − 1

whereas the optimal instantaneous-investment threshold is h∗
NI = max{V0, x

∗}, where x∗ is the

largest between the two solutions of the implicit equation

x =
θ1CI

θ1 − 1
+
( x

h∗
ND

)θ2 θ2 − θ1

θ1 − 1
CD

1 − θ2
. (11)

However, the solutions of the unconstrained maximization problem, h∗
ND and h∗

NI , are not

necessarily ordered; imposing CD < CI , one obtains a solution which satisfies the constrains of the

constrained maximization problem (9), i.e. h∗
ND ≤ x∗ and, consequently, h∗

ND ≤ h∗
NI . Therefore,

for time-windows dI = dD = 0 and imposing CD < CI , the (instantaneous) unconstrained

problem has a naturally-ordered solution.

We now look for a solution of the investment and disinvestment problem with Parisian delay
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for more general time-windows, i.e. {dI , dD} > 0. Let us first solve the unconstrained problem

corresponding to (9).5 Taking the partial derivative with respect to hD and solving for the critical

value, we obtain an explicit solution for the optimal disinvestment threshold h∗
D.

h∗
D =

φ(−b
√

dD)
φ(−(b + σ)

√
dD)

θ2CD

θ2 − 1
. (12)

It is immediately observable that h∗
ND = h∗

D when dD = 0. Intuitively, h∗
D increases when the

disinvestment fixed-costs CD increase. This means that, similarly to the instantaneous investment

and disinvestment problem, the higher are the disinvestment costs the sooner the firm wants to

exit. Furthermore, since φ is an increasing function, we obtain that h∗
ND ≤ h∗

D, or that the firm

decides to disinvest earlier in the presence of a disinvestment-delay.

Taking the partial derivative with respect to hI and solving for the critical value, we obtain

an implicit solution for h∗
I , as in the case of instantaneous investment and disinvestment problem.

In particular, we claim that h∗
I = max{V0, x

∗}, where x∗ is the largest between the two solutions

of the implicit equation

x =
θ1CI

θ1 − 1
φ(b

√
dI)

φ((b + σ)
√

dI)
+
( x

h∗
D

)θ2 θ2 − θ1

θ1 − 1
φ(−√(2ρ + b2)dI)
φ(
√

(2ρ + b2)dD)
φ(−b

√
dD)

φ((b + σ)
√

dI)
CD

1 − θ2
. (13)

Denoting the right hand side of the implicit equation (13) by f(x), we now prove that it has

two solutions, one of which is larger than h∗
D, if one imposes the condition (14).

Lemma 3.1 Let f(x) be the right hand side of (13) and h∗
D defined in (12). Then the following

relations hold.

(a) The function f is increasing in (0,∞), and

lim
x↘0

f(x) = −∞ and lim
x→∞ f(x) =

θ1CI

θ1 − 1
φ(b

√
dI)

φ((b + σ)
√

dI)
,

(b) If the following inequality holds

CD
φ(−b

√
dD)

φ(−(b + σ)
√

dD)
< CI

φ(b
√

dI)
φ((b + σ)

√
dI)

, (14)

then f(h∗
D) > h∗

D.

Proof. Since θ1 > 1, part (a) follows easily. We now prove part (b). The following relations hold
5Here the constraint V0 ≤ hI is implicitly assumed. The investigation of a possible condition similar to (14)

which controls for V0 ≤ hI can be subject of future research.
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since φ is increasing.

θ1

θ1 − 1
=

1
1 − θ2

(
− θ2 +

θ1 − θ2

θ1 − 1

)
≥ 1

1 − θ2

(
− θ2 +

θ1 − θ2

θ1 − 1
×

×φ(−
√

(2ρ + b2)dI)
φ(
√

(2ρ + b2)dD)
φ(−(b + σ)

√
dD)

φ((b + σ)
√

dI)

)
.

We now multiply the left and right hand side terms of the above inequality with the terms in

(14) to obtain

θ1CI

θ1 − 1
φ(b

√
dI)

φ((b + σ)
√

dI)
>

CD

1 − θ2

φ(−b
√

dD)
φ(−(b + σ)

√
dD)

(
− θ2 +

θ1 − θ2

θ1 − 1
×

×φ(−√(2ρ + b2)dI)
φ(
√

(2ρ + b2)dD)
φ(−(b + σ)

√
dD)

φ((b + σ)
√

dI)

)
.

Regroupping the terms we obtain f(h∗
D) > h∗

D.

Relying on the previous lemma, we deduce that the implicit equation x = f(x) has two

solutions, termed x∗
1 and x∗

2, where 0 < x∗
1 < h∗

D < x∗
2. Hence, the unconstrained maximization

version of (9) has two critical points, (x∗
1, h

∗
D) and (x∗

2, h
∗
D). Out of these two points, only (x∗

2, h
∗
D)

satisfies the constrain h∗
D < x∗. Thus h∗

I = max{V0, x
∗} is well defined, and the conditions

h∗
D ≤ h∗

I , V0 ≤ h∗
I are satisfied. It can easily be deduced that the critical point (x∗

2, h
∗
D) is a

local maximum point for the unconstrained maximization version of (9), and thus (h∗
I , h

∗
D) is

the unique solution for maximization problem (9). We summarize our results in the following

theorem.

Theorem 3.2 Consider the investment and disinvestment decisions of a firm under the Parisian

criterion with time windows dI , dD. If (14) holds, then the optimal investment and disinvestment

thresholds satisfy the following equations,

h∗
D =

φ(−b
√

dD)
φ(−(b + σ)

√
dD)

θ2CD

θ2 − 1

and h∗
I = max{V0, x

∗}, where x∗ solves the implicit equation

x =
θ1CI

θ1 − 1
φ(b

√
dI)

φ((b + σ)
√

dI)
+
( x

h∗
D

)θ2 θ2 − θ1

θ1 − 1
φ(−√(2ρ + b2)dI)
φ(
√

(2ρ + b2)dD)
φ(−b

√
dD)

φ((b + σ)
√

dI)
CD

1 − θ2
.
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4 Model Results

After we obtain an explicit solution for the optimal exit-level and an implicit solution for the

optimal entry-level under the Parisian criterion, we present a brief discussion of the optimal

investment and disinvestment thresholds h∗
I and h∗

D in terms of the time windows dI and dD.

(a) If dI = dD = 0 we recover the well-known case of instantaneous investment and disinvestment

problem, and so h∗
I = h∗

NI and h∗
D = h∗

ND,

(b) If dD = 0 and dI ≥ 0, then h∗
D = h∗

ND,

(c) If dD → ∞, then h∗
I converges to

h∗
OI =

θ1CI

θ1 − 1
φ(b

√
dI)

φ((b + σ)
√

dI)
,

where h∗
OI represents the optimal investment threshold for time-window dI while disinvest-

ment is not possible. This value was first discovered in Gauthier and Morellec (2000).

(d) If dD ≥ 0 and dI ≥ 0, then h∗
D ≥ h∗

ND.

For illustrative purposes we perform a numerical evaluation to compare the investment (dis-

investment) decision problem with implementation delay and the instantaneous investment (dis-

investment) decision problem. The results are summarized below. In the first table we report the

ratio of the value of the Parisian investment and disinvestment decisions problem with respect

to the instantaneous investment and disinvestment decisions problem, at their respective optima.

Since the first column and row correspond to the values of dI , dD respectively, we expect this ratio

to be equal to 1 when the delay dI = dD = 0. This is the case, as we observe in the upper-left

corner of Table 1.

d 0 0.5 1 1.5 2
0 1.0000 0.9999 0.9998 0.9997 0.9996

0.5 0.9872 0.9871 0.9870 0.9869 0.9868
1 0.9738 0.9737 0.9736 0.9735 0.9734

1.5 0.9600 0.9599 0.9598 0.9598 0.9597
2 0.9461 0.9460 0.9459 0.9458 0.9457

Table 1: Ratio of Parisian value problem and instantaneous value problem. The parameters we used are
ρ = 0.13; μ = 0.05; σ = 0.40; CD = 0.5; CI = 1.7; V0 = 1.

We observe that the value of the investment and disinvestment decision problems is lower

under the Parisian criterion than in the instantaneous case, for reasonable parameter values. This

is to be expected, because the time-lag under the Parisian criterion measures a systematic (and

unavoidable) delay that forces the firm to ”postpone” the investment (disinvestment) procedure.
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Extremely interesting is the presence of an asymmetry effect: the larger dI is the stronger the

impact on the investment-value compared to the impact of an equal value for dD. This is a

result of the disinvestment opportunity. Because the firm can exit costly the firm’s profits are

a convex function of the stochastic underlying and the expected profits increase in an uncertain

environment. Therefore, a firm will invest at a lower level when the implementation delay forces

the firm to decide in advance whether to enter or not a few periods ahead. Since instantaneous

and Parisian investment (disinvestment) optima are linear functions of both CD and CI , only the

impact of the process-volatility on the optimal thresholds requires further investigation.

σ σ=.05 σ=.20 σ=.40
d 0 0.5 1 0 0.5 1 0 0.5 1
0 2.8291 2.8291 2.8291 3.5735 3.5735 3.5734 5.3185 5.3113 5.3080
3 2.3221 2.3221 2.3221 2.1571 2.1571 2.1570 2.0858 2.0823 2.0807
5 2.0973 2.0973 2.0973 1.8080 1.8079 1.8079 1.5447 1.5417 1.5403

Table 2: Parisian optimal investment value. The parameters we used are ρ = 0.13; μ = 0.05; CD =
0.5; CI = 1.7; V0 = 1.

Our findings confirm the results of numerous papers that report that an increase in uncer-

tainty delays (instantaneous) investments, see Pindyck (1991) for survey. The first raw of Table

2 show the effect of an increase of uncertainty without investment delay. As σ goes from 0.05 to

0.40, h∗
I rises from 2.8291 to 5.3185, while h∗

D falls from 0.4882 to 0.2620 (not reported in the

Table). The higher (instantaneous) investment threshold and the lower (instantaneous) disin-

vestment threshold imply that more uncertainty delays both entry and exit, and thus generates

more so-called inertia. The intuition behind such conventional result is that a firm delays in order

to avoid learning of bad-news after it has made decision to enter (exit). Since the likelihood of

observing a bad-news rises with uncertainty, so does the benefit of waiting. However, waiting

has an opportunity cost due to the foregone income during the period of inaction and this is

more evident in the presence of delays. As a result, conventional finding on the effect of the

uncertainty of the underlying process on the investment (disinvestment) are reversed when there

are time-lags. Similarly to Bar-Ilan and Strange (1996), in Table 2 we show that an increase

in the uncertainty hastens the decision to invest (disinvest). For instance when dI = 5, h∗
I falls

from 2.0973 to 1.5447, while h∗
D raises from 0.5201 to 0.5884 (not reported in the Table). Since

the firm can exit costly, the downside risk of the project is bounded. This makes profit a convex

function of the stochastic underlying the expected return of the project therefore raises with

uncertainty. Therefore, a higher volatility hastens investment (disinvestment) when delays force

a firm to decide in advance to undertake a decision or not in the future.

An interesting direction for future research is the analytical study of the behavior of the

optimal thresholds in the Parisian decision problem as functions of the delays dI , dD. Moreover,
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one can look for explicit conditions when the inequality (14) holds. Though possible, such an

analysis requires a careful study of the properties of the function φ.

5 Appendix

5a Definitions and Results

The Brownian meander and the Parisian criterion are closely related. Following we define the

Brownian meander and list some of its properties. Then, we present the connection existing

between the Brownian meander and the Parisian criterion.

Let (Zt, t ≥ 0) be a standard Brownian motion on a filtered probability space

(Ω,F , (Ft)t≥0, P). For each t > 0, we define the random variables

gt = sup{s : s ≤ t, Zs = 0}, (15)

dt = inf{s : s ≥ t, Zs = 0}. (16)

The interval (gt, dt) is called the interval of the Brownian excursion which straddles time

t. For u in this interval, sgn(Zt) remains constant. In particular, gt represents the last time

the Brownian motion crossed the level 0. It is known that gt is not a stopping time for the

Brownian filtration (Ft)t≥0, but for the slow Brownian filtration (Gt)t≥0, which is defined by

Gt = Fgt ∨ σ(sgn(Zt)). The slow Brownian filtration represents the information on the Brownian

motion until its last zero plus the knowledge of its sign after this.

The Brownian meander process ending at t is defined as

m(t)
u =

1√
t − gt

|Zgt+u(t−gt)|, 0 ≤ u ≤ 1. (17)

The process m
(t)
u is the non-negative and normalized Brownian excursion which straddles time

t and it is independent of the σ-field (Gt)t≥0. When u = 1 and t = 1, we conveniently denote

m1 = m
(1)
1 . The random variable m1 will play a central role in the calculation of many other

variables that will be introduced later on. The distribution of m1 is known,

P(m1 ∈ dx) = x exp(−1
2
x2)1x>0dx,

and the moment generating function φ(z) is given by

φ(z) = E(exp(zm1)) =
∫ ∞

0
x exp(zx − 1

2
x2)dx. (18)

We now look at the first instant when the Brownian motion spends d units of time consecu-
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tively above (resp. below) the level 0. For d ≥ 0, we define the random variables

H+
d = inf{t ≥ 0 : t − gt ≥ d, Zt ≥ 0} (19)

H−
d = inf{t ≥ 0 : t − gt ≥ d, Zt ≤ 0} (20)

The variables H+
d and H−

d are Gt-stopping times, and hence Ft-stopping times. See Revuz

and Yor (1991) for more details. From equation (17) we can easily deduce that the process

(
1√
d
|Zg

H+
d

+ud|
)

u≤1

=
(
m

(H+
d )

u

)
u≤1

is a Brownian meander, independent of Gg
H

+
d

. In particular, (1/
√

d)ZH+
d

is distributed as m1,

P(ZH+
d
∈ dx) =

x

d
exp(−x2

2d
)1x>0dx. (21)

and the random variables H+
d and ZH+

d
are independent.

Similarly, (1/
√

d)ZH−
d

is distributed as −m1,

P(ZH−
d
∈ dx) =

−x

d
exp(−x2

2d
)1x<0dx. (22)

and the random variables H−
d and ZH−

d
are independent.

The Laplace transform of H+
d was first calculated in Chesney et al. (1997). We present the

result in the next theorem.

Theorem 5.1 Let H+
d be the stopping time defined in (19) and φ the moment generating function

defined in equation (18). For any λ > 0 ,

E[exp(−λH+
d )] =

1
φ(
√

2λd)
. (23)

The proof of the theorem relies on a very clever use of the Arzela martingale, μt = sgn(Zt)
√

t − gt

- a remarkable (Gt) martingale. The same results holds also when H+
d is replaced with H−

d .

So far we only looked at the Brownian motion excursions above or below level 0. More

generally, we can define for any a ∈ R and any continuous stochastic process X,

gX0,a
t (X) = sup{s : s ≤ t,X0 = X0,Xt = a}, (24)

H+
(X0,a),d(X) = inf{t ≥ 0 : t − gX0,a

t ≥ d,X0 = X0, Xt ≥ a} (25)

H−
(X0,a),d(X) = inf{t ≥ 0 : t − gX0,a

t ≥ d,X0 = X0, Xt ≤ a} (26)

Thus gX0,a
t (X) represents the last time the process X crossed level a. As for the Brownian
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motion case, gX0,a
t (X) is not a stopping time for the Brownian filtration (Ft)t≥0, but for the slow

Brownian filtration (Gt)t≥0. The random variables H+
(X0,a),d(X) (resp. H−

(X0,a),d(X)) represent

the first instant when the process X spends d units of time above (resp. below) the level a. The

variables H+
(X0,a),d(X) and H−

(X0,a),d(X) are Gt-stopping times, and hence Ft-stopping times. In

the notation we use, we indicate the starting point of the process X, the level a and the length of

time d. Although indicating the starting point seems unnecessary, it turns out to be extremely

helpful in the context of the Parisian criterion.

Another relevant random variable is the first hitting time of level a, which we define below.

TX0,a(X) = inf{s : X0 = X0,Xs = a} (27)

5b Parisian Criterion

According to the notation introduced in Section 2, the investment stopping time τI which satisfies

the Parisian criterion corresponds to H+
(V0,hI),dI

(V ). In order to express in mathematical formulas

the disinvestment stopping time τD, we need to extend the definition of H+
(V0,hI),dI

(V ).

Let τ be any stopping time, a ∈ R, X a continuous stochastic process, and gX0,a
t (X) defined

in equation (24).

(a) The first instant after τ when the process X spends d units of time above (resp. below)

the level a is given by the stopping time H+,τ
(X0,a),d(X) (resp. H−,τ

(X0,a),d(X))

H+,τ
(X0,a),d(X) = inf{t ≥ τ : t − gX0,a

t ≥ d,X0 = X0, Xt ≥ a} (28)

H−,τ
(X0,a),d

(X) = inf{t ≥ τ : t − gX0,a
t ≥ d,X0 = X0, Xt ≤ a} (29)

(b) The first hitting time after τ of level a is the stopping time T τ
X0,a(X)

T τ
X0,a(X) = inf{s ≥ τ : X0 = X0,Xs = a}. (30)

If X has the strong Markov property and τ is a finite stopping time, we have the follow-

ing equalities in distribution H+,τ
(X0,a),d(X) = H+

(Xτ ,a),d(X), H−,τ
(X0,a),d(X) = H−

(Xτ ,a),d(X), and

T τ
X0,a(X) = TXτ ,a(X). Now, we can state the formulas for the stopping times τI and τD, which

satisfy the Parisian criterion.

Proposition 5.2 Let τI and τD be the stopping times corresponding to the Parisian criterion

with time windows dI , dD and levels hI , hD respectively. Then the following equalities hold

τI = H+
(V0,hI),dI

(V ), (31)

τD = H−,τI

(V0,hD),dD
(V ). (32)
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Otherwise, in terms of the drifted Brownian motion, the Parisian stopping times are

τI = H+
(V0,hI),dI

(V ) = H+
(l0,lI),dI

(X), where l0 = 0, and lI =
1
σ

log
(hI

V0

)
,

and

τD = H−,τI

(V0,hD),dD
(V ) = H−,τI

(l0,lD),dD
(X), where l0 = 0, and lD =

1
σ

log
(hD

V0

)
.

5c Parisian Stopping Times and Independence

In this sub-section we prove that the Parisian investment (resp. disinvestment) time and the

position of the underlying value process at that time are independent. We rely on the key property

of independence of the Brownian meander from the slow Brownian filtration. The independence

is a pivotal result that allow us to perform exact calculations of the maximization problem (4) in

section 3.

The following proposition helps us to decompose the disinvestment Parisian time, provided

that we have proved the independence relationship between the Parisian investment time and the

position of the underlying value process.

Proposition 5.3 Let τ be any finite stopping time such that τ and Vτ are independent, and

assume hD ≤ Vτ a.s. Then the following equality in distribution holds

H−,τ
(V0,hD),dD

(V ) = τ + TVτ ,hD
(V ) + H−

(hD,hD),dD
(V ),

and the terms of the sum are independent. A similar relationship holds for H+,τ
(V0,hI),dI

(V ) if we

assume Vτ ≤ hI a.s

Proof. The strong Markov property and the continuity of the process V give us the equality.

The independence follows from our hypothesis that τ and Vτ are independent.

The next theorem shows that the Parisian disinvestment time and the position of the under-

lying value process at that time are independent.

Theorem 5.4 Assume that hD ≤ hI , V0 ≤ hI , let τD = H−,τI

(V0,hD),dD
(V ) and P

∗ defined in (6).

Then the stopping time τD is finite P
∗ a.s. and the random variables τD and VτD

are independent

under the P
∗ measure.

The proof is broken-down in several steps. The next lemma is one of the main results of this

paper. It is the key result we use in our theorem because it proves an independence relationship

between two related quantities.
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Lemma 5.5 Let Xt = bt + Zt, with b ∈ R, and construct the stopping time T = H+
(0,0),d(X)

according to equation (24). The following conclusions hold.

(a) The random variables XT · 1{T<∞} and T · 1{T<∞} are independent under the P measure

if and only if b ≥ 0,

(b) The random variables XT · 1{T<∞} and T · 1{T<∞} are independent under the P
∗ measure

for any b ∈ R.

A similar relationship holds when H+
(0,0),d

(X) is replaced with H−
(0,0),d

(X)

Proof. Using Girsanov’s theorem, we construct the probability measure P
∗ under which Xt

becomes a P
∗-Brownian motion. Under this probability XT = XH+

(0,0),d
(X) becomes a Brownian

meander and thus it is independent of T = H+
(0,0),d(X). Also 1{T<∞} = 1 a.s. under the measure

P
∗. Thus we have the required independence under the P

∗ measure for any b ∈ R. We need to

show that the independence holds also under the original measure P if and only if b ≥ 0.

The independence holds if and only if the Laplace transforms satisfy the equality

EP

[
e−λXT −αT · 1{T<∞}

]
= EP

[
e−λXT · 1{T<∞}

]
· EP

[
e−αT · 1{T<∞}

]
. (33)

Hence, we show that the equality holds if and only if b ≥ 0.

Let us look at the left hand side of (33) and apply the transformation of the measure. Under

the P
∗ measure, 1{T<∞} = 1 a.s., so we do not have to write it.

EP

[
e−λXT −αT · 1{T<∞}

]
= EP∗

[
e−λXT −αT e−

1
2
b2T+bXT

]

We know that under the P
∗ measure, XT is independent of T , and grouping the factors, the left

term of (33) becomes

EP

[
e−λXT −αT · 1{T<∞}

]
= EP∗

[
e(−λ+b)XT

]
· EP∗

[
e(−α− 1

2
b2)T

]
.

Let us now calculate the product from the right hand side of (33),

EP

[
e−λXT · 1{T<∞}

]
· EP

[
e−αT · 1{T<∞}

]
.

We change the measure using Girsanov in both terms and get

= EP∗
[
e−λXT e−

1
2
b2T+bXT

]
· EP∗

[
e−αT e−

1
2
b2T+bXT

]
.

We know that under the P
∗ measure, XT is independent of T , and grouping the factors we get

= EP∗
[
e(−λ+b)XT

]
· EP∗

[
e(−α− 1

2
b2)T

]
· EP∗

[
e−

1
2
b2T+bXT

]
.
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The extra term is

EP∗
[
e−

1
2
b2T+bXT

]
=

φ(b
√

d)
φ(|b|√d)

,

where last equality follows from the properties of the Brownian meander. This extra term is equal

to 1 if and only if b ≥ 0, which means that the independence holds if and only if b ≥ 0.

Remarks. It worth noticing that in most of the cited papers, all quantities are transformed

and the computations are under the measure P
∗, where the independence comes automatically

from the properties of the Brownian meander. Those papers that work with P do not investigate

under which condition for b such independence holds.

While studying the independence relationships, we observed an interesting connection with

Wald’s identity. The following theorem, which relates Wald’s identity with the finiteness of the

stopping times, is known

Theorem 5.6 Let Zt be a P-Brownian motion and Xt = bt+Zt be a drifted P-Brownian motion.

Let P
∗ be the measure under which Xt is a P

∗-Brownian motion. Let T be any stopping time and

assume P
∗(T < ∞) = 1. Then Wald’s identity holds

EP∗
[
e−

1
2
b2T+bXT

]
= 1

if and only if P(T < ∞) = 1.

In our case T = H+
(0,0),d(X). We know from Chesney et al. (1997) that P

∗(T < ∞) = 1, and

from the properties of the Brownian meander we know that

EP∗
[
e−

1
2
b2T+bXT

]
= 1 if and only if b ≥ 0.

Thus P(T < ∞) < 1 if and only if b < 0. We now ask what P(T < ∞) equals to. In order to

calculate it, we take first a detour and calculate the Laplace transform of H+
(0,0),d(X) under the

P measure.

Theorem 5.7 Let Xt = bt + Zt, where b is some fixed real number, and construct the stopping

time H+
(0,0),d(X) according to equation (24). Let φ be the moment generating function defined in

equation (18). Then for any λ > 0, the Laplace transform of H+
(0,0),d(X) is given by

EP

[
e
−λH+

(0,0),d
(X)
]

=
φ(b

√
d)

φ(
√

(2λ + b2)d)
. (34)

Proof. Using Girsanov’s theorem, we construct the probability measure P
∗ under which

Xt becomes a P
∗-Brownian motion. Under this probability XH+

(0,0),d
(X) becomes a Brownian

meander and thus it is independent of H+
(0,0),d(X). We look at the Laplace transform and apply
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the transformation of the measure.

EP

[
e
−λH+

(0,0),d
(X)
]

= EP∗
[
e
−λH+

(0,0),d
(X)

e
− 1

2
b2H+

(0,0),d
(X)+bX

H+
(0,0),d

(X)
]
.

Grouping terms together and using the independence property just mentioned, we obtain

EP

[
e
−λH+

(0,0),d
(X)
]

= EP∗
[
e
(−λ− 1

2
b2)H+

(0,0),d
(X)
]
EP∗
[
e
bX

H
+
(0,0),d

(X)
]
.

We now apply the result for the Laplace transform of the Brownian meander, and use the fact

that φ is the moment generating function of 1√
d
H+

(0,0),d(X) to obtain that

EP

[
e
−λH+

(0,0),d
(X)
]

=
φ(b

√
d)

φ(
√

(2λ + b2)d)
.

We now calculate P(T < ∞), where we denoted T = H+
(0,0),d(X). If T (ω) < ∞, then

lim
λ↘0

e−λT (ω) = 1;

if T (ω) = ∞, then e−λT (ω) = 0 for every λ > 0, so

lim
λ↘0

e−λT (ω) = 0.

Therefore,

lim
λ↘0

e−λT (ω) = 1T<∞.

Letting λ ↘ 0 and using the Monotone Convergence theorem in the Laplace transform formula

of T we obtain

P(T < ∞) =
φ(b

√
d)

φ(|b|√d)
.

If b ≥ 0, then

P(T < ∞) = 1.

If b < 0, then

P(T < ∞) =
φ(b

√
d)

φ(−b
√

d)
< 1.

We summarize the results in the following theorem.

Theorem 5.8 Let Xt = bt + Zt, where b is some fixed real number, and construct the stopping

time H+
(0,0),d(X) according to equation (24). Let φ be the moment generating function defined in

19



equation (18). Then

P(H+
(0,0),d(X) < ∞) =

φ(b
√

d)
φ(|b|√d)

.

Remarks. In real option terms, this theorem has the following implications: if b ≥ 0, then

the investment process will take place with probability 1, while there is a positive probability

that the disinvestment process will not take place. If b < 0, then there is a positive probability

that the investment process will not take place. Furthermore, if the investment took place, then

the disinvestment process will take place with probability 1.

If we condition on the stopping time to be finite, then we recover the independence under the

measure P, for any b ∈ R.

The next result is a direct consequence of Lemma 5.5, and it proves an independence rela-

tionship for the process Vt, starting from hI . In order to emphasize that the starting point for

our process is hI , we use the notion V hI
t in the proof of the next lemma.

Lemma 5.9 Let T = H+
(hI ,hI),dI

(V ) be the stopping time defined in equation (24) and b,Xt be

defined in (5). The following conclusions hold.

(a) The random variables T · 1{T<∞} and VT · 1{T<∞} are independent under the P measure if

and only b ≥ 0. In particular T · 1{T<∞} and XT · 1{T<∞} are independent under the P measure

if and only if b ≥ 0,

(b) The random variables T · 1{T<∞} and VT · 1{T<∞} are independent under the P
∗ measure

for any b ∈ R. In particular T · 1{T<∞} and XT · 1{T<∞} are independent under the P
∗ measure

for any b ∈ R.

Proof. We know that Vt is the geometric Brownian motion in (3). If it starts from hI , then

V hI
t = hIe

σXt , where Xt = bt + Zt, and b =
μ − σ2

2

σ
.

From the above equality we also get that H+
(hI ,hI),dI

(V ) = H+
(0,0),dI

(X). Thus we have obtained

that

VH+
(hI ,hI ),dI

(V ) = hIe
σX

H+
(0,0),dI

(X)
and H+

(hI ,hI),dI
(V ) = H+

(0,0),dI
(X).

The independence follows now from Lemma 5.5.

We now prove that the Parisian investment time and the position of the underlying value

process at that time are independent, this is a remarkable finding of the paper.

Theorem 5.10 Assume that V0 ≤ hI , let b,Xt be defined in (5), and recall that the Parisian

investment time is τI = H+
(V0,hI),dI

(V ). The the following conclusions hold.
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(a) If b ≥ 0, then the stopping time τI is finite P a.s., and under P
∗ τI is finite a.s. for any

b ∈ R.

(b) The random variables τI · 1{τI <∞} and VτI
· 1{τI<∞} are independent under the P measure

if and only if b ≥ 0. In particular τI · 1{τI<∞} and XτI
· 1{τI <∞} are independent under the P

measure if and only if b ≥ 0,

(c) The random variables τI ·1{τI <∞} and VτI
·1{τI <∞} are independent under the P

∗ measure

for any b ∈ R. In particular τI · 1{τI <∞} and XτI
· 1{τI<∞} are independent under the P

∗ measure

for any b ∈ R,

Proof. Let us prove first the independence under P
∗. We apply Proposition 5.3 with τ = 0,

and obtain

τI = H+
(V0,hI),dI

(V ) = T(V0,hI)(V ) + H+
(hI ,hI),dI

(V ),

where the terms of sum are independent. If b ≥ 0, then under P, τI < ∞ a.s. because the stopping

times T(V0,hI)(V ) and H+
(hI ,hI),dI

(V ) are finite. Similarly, τI < ∞ a.s under P
∗ for any b ∈ R. On

the other hand, by the strong Markov property and the continuity of the process V , we have the

equality in distribution under P
∗

VτI
· 1{τI<∞} = VH+

(hI ,hI ),dI
(V ).

We now apply Lemma 5.9, and get that VH+
(hI ,hI ),dI

(V ) and H+
(hI ,hI),dI

(V ) are independent. By the

strong Markov property, we have that VH+
(hI ,hI ),dI

(V ) and T(V0,hI)(V ) are independent. Putting all

together, we obtain that τI and VτI
are independent, which is the desired result. The proof of

independence under P is similar to the proof of Lemma 5.5 and we skip it.

We have now all the components to give the proof of Theorem 5.4.

Proof of Theorem 5.4. Here we work under the measure P
∗. Denote τD = H−,τI

(V0,hD),dD
(V ).

We need to prove that τD and VτD
are independent. Recall that the Parisian investment time is

τI = H+
(V0,hI),dI

(V ), and by Theorem 5.10, the random variables τI and VτI
are independent. We

apply Proposition 5.3 with τ = τI , and obtain

τD = H−,τI

(V0,hD),dD
(V ) = τI + TVτI

,hD
(V ) + H−

(hD,hD),dD
(V ),

where the terms of sum are independent. Also, under P
∗, τD < ∞ because the stopping times

τI , TVτI
,hD

(V ) and H−
(hD,hD),dD

(V ) are finite. On the other hand, by the strong Markov property

and the continuity of the process V , we have the equality in distribution under P
∗

VτD
= VH−

(hD,hD),dD
(V ).
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We now apply Lemma 5.9, and get that VH−
(hD,hD),dD

(V ) and H−
(hD,hD),dD

(V ) are independent. By

the strong Markov property, we have that VH−
(hD,hD),dD

(V ) is independent of τI and of TVτI
,hD

(V ).

Therefore, we obtain that τI and VτI
are independent, which is the desired result.

5d Laplace Transforms and Moment Generating Functions

To obtain an explicit solution for the best disinvestment threshold, and an implicit solution for

the best investment threshold we need to calculate all terms that enter into the maximization

problem. We first find the Laplace transform of the Parisian investment time under the measure

P
∗ defined in (6).

Proposition 5.11 For any λ > 0, the following equality holds,

EP∗
[
e−λτI

]
=
(V0

hI

)√
2λ
σ 1

φ(
√

2λdI)
.

Proof. From Proposition 5.3 we have

EP∗
[
e−λτI

]
= EP∗

[
e−λTl0,lI

]
EP∗
[
e
−λH+

(lI ,lI ),dI
(X)
]

using the corresponding Laplace transforms formulas we obtain

EP∗
[
e−λτI

]
= e−(lI−l0)

√
2λ 1

φ(
√

2λdI)
=
(V0

hI

)√
2λ
σ 1

φ(
√

2λdI)
.

In the next proposition we calculate the moment generating function for the process Xt defined

in (5), stopped at the Parisian investment time.

Proposition 5.12 For any λ ∈ R, the following equality holds,

EP∗
[
e−λXτI

]
=
(hI

V0

)−λ
σ
φ(−λ

√
dI).

Proof. Using the definition of XτI
we obtain

EP∗
[
e−λXτI

]
= EP∗

[
e−λ(lI+m1

√
dI)
]
,

Now using the definition of lI and φ we obtain

EP∗
[
e−λXτI

]
= e−λlI φ(−λ

√
dI) =

(hI

V0

)−λ
σ
φ(−λ

√
dI).

Following, we calculate the Laplace transform of the first hitting time of X, started from the

Parisian investment time.
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Proposition 5.13 For any λ > 0, the following equality holds,

EP∗
[
e
−λT(XτI

,lD)(X)
]

=
(hD

hI

)√
2λ
σ

φ(−
√

2λdI)

Proof. Conditioning we write

EP∗
[
e
−λT(XτI

,lD)(X)
]

= EP∗
[
EP∗
[
e
−λT(XτI

,lD)(X)
∣∣∣FτI

]]

since XτI
≥ lD a.s., we can use the Laplace transform of hitting time to obtain

EP∗
[
e−(XτI

−lD)
√

2λ
]
.

Using the formulas for XτI
and ld, we know that XτI

− ld = 1
σ log VτI

hD
and hence we obtain

EP∗
[(VτI

hD

)−√
2λ
σ
]

= h

√
2λ
σ

D EP∗
[
V

−
√

2λ
σ

τI

]
=
(hD

V0

)√
2λ
σ

EP∗
[
e−

√
2λXτI

]

Applying now Proposition 5.12 we arrive to our result.

Then we find the Laplace transform of the Parisian disinvestment time under the measure P
∗

defined in (6).

Proposition 5.14 For any λ > 0, the following equality holds,

EP∗
[
e−λτD

]
= EP∗

[
e−λτI

]φ(−√
2λdI)

φ(
√

2λdD)

(hD

hI

)√
2λ
σ

Proof. Using Proposition 5.3, we can write

EP∗
[
e−λτD

]
= EP∗

[
e−λτI

]
EP∗
[
e
−λT(XτI

,lD)(X)
]
EP∗
[
e
−λH−

(lD,lD),dD
(X)
]

Now using the corresponding Laplace transforms, we arrive at the desired result.

Again, we calculate the moment generating function for the process Xt defined in (5), stopped

at the Parisian disinvestment time.

Proposition 5.15 For any λ ∈ R, the following equality holds,

EP∗
[
e−λXτD

]
=
(hD

V0

)−λ
σ
φ(λ
√

dD).
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Proof. Using the definition of XτD
we obtain

EP∗
[
e−λXτD

]
= EP∗

[
e−λ(lD−m1

√
dD)
]
.

Now using the definition of lD and φ we obtain the desired result.

Finally, we are now able to calculate the first term appearing in the maximization problem

(4).

Proposition 5.16 The following equality holds,

EP

[
e−ρτI (VτI

− CI)1{τI <∞}
]

= EP∗
[
e−(ρ+ b2

2
)τI

](hI

V0

) b
σ
φ(b
√

dI)×

×
{
hI

φ(
√

dI(σ + b))
φ(b

√
dI)

− CI

}
.

Proof. Using equation (7) and Proposition 5.12, the left hand side in the above equality becomes

EP∗
[
e−(ρ+ b2

2
)τI

]{
V0

(hI

V0

) σ+b
σ

φ(
√

dI(σ + b)) − CI

(hI

V0

) b
σ
φ(b
√

dI)
}

and grouping the terms we arrive at the desired result.

Similarly, we calculate the second term appearing in the maximization problem (4).

Proposition 5.17 The following equality holds,

EP

[
e−ρτD(CD − VτD

)1{τD<∞}
]

= EP∗
[
e−(ρ+ b2

2
)τI

](hI

V0

) b
σ
( hI

hD

)−b−
√

2ρ+b2

σ ×

×φ(−√(2ρ + b2)dI)
φ(
√

(2ρ + b2)dD)
φ(−b

√
dD)

{
CD − hD

φ(−(b + σ)
√

dD)
φ(−b

√
dD)

}

Proof. Using equation (8), Propositions 5.14, and Proposition 5.15, the left hand side in the

above equality becomes

EP∗
[
e−(ρ+ b2

2
)τI

](hD

hI

)√
2ρ+b2

σ φ(−√(2ρ + b2)dI)
φ(
√

(2ρ + b2)dD)

{
CD

(hD

V0

) b
σ
φ(−b

√
dD)−

−V0

(hD

V0

)σ+b
σ

φ(−(b + σ)
√

dD)
}

and now factoring out and grouping the terms we arrive at the desired result.
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