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Optimal incentives to public-private partnerships

for airport investments under market segmentation

1 Introduction

Large scale infrastructure investments have been increasingly promoted as Public-Private

Partnerships (PPP) under a variety of arrangements. Those arrangements define the risk

and return transferred from the public to the private sector. A correct valuation of the

contractual arrangements is crucial for the bidding and negotiation of the PPP. Frequently,

these projects are “out-the-money” and need investment incentives to be implemented.

Some of these incentives are granted in the form of “contingent claims” or real options.

This paper studies the incentives which may be needed in an airport investment when

the government seeks immediate investment. Under uncertainty of future cash flows, there

is an incentive to delay investment (McDonald and Siegel 1986). The optimal threshold for

investment occurs later than the traditional Net Present Value (NPV) rule suggests. Even

when the NPV is positive, delaying investment may be optimal. The incentives given by

the government entity, that grants the PPP concession, cannot ignore this option to defer

effect, otherwise an insufficient incentive could delay investment, even after the concession

is granted.

PPP and their incentives with real options features have been studied previously in

the literature. PPP arrangements in infrastructure projects and their risks are discussed

by Grimsey and Lewis (2002). In the present paper we focus on the revenue risk, but

other sources of risk can be considered at the cost of a more complex model.

Alonso-Conde, Brown and Rojo-Suarez (2007) study the Melbourne CityLink Project

PPP conditions, treated as real options, and how these options affect the incentive to

invest. The value transferred from the public to the private sector through government

guarantees is analyzed. The options valued are the private concessionaire option to defer

the payments and the State option to cancel the concession. They show that, although

the guarantees provided an investment incentive, the State has transferred considerable

value to the private sector.

Different subsidies, guarantees and other incentives in PPP infrastructure projects

have been previously studied by Cheah and Liu (2006) and Chiara, Garvin and Vecer

(2007). They focus on the demand guarantee which enhance project value. Our analysis

goes a step further, showing how some incentives should be arranged to induce optimal

investment under uncertainty and when demand is segmented.

Debt guarantee provided by the government reduces the cost of capital and raises the

project value. This type of incentive is valued by Ho and Liu (2002), who model a PPP

with value and investment cost behaving stochastically and accounting for the bankrupcy
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risk.

Moel and Tufano (2000) study the bidding terms of a copper mine privatization where

the probability of investment was preferred to the cash proceeds from the privatization.

They suggest that, reducing the committed investment (exercise price), while reducing the

option premium, induces more investment.

The real options embedded in airport projects have been studied by Smit (2003) com-

bining real options and game theory to value airport expansion investments. Pereira,

Rodrigues and Armada (2007) model an airport investment when the revenues and the

number of passengers behave stochastically and negative or positive jumps occur ran-

domly. Gil (2007) present a description of a wide range of real options embedded in

airport investments.

A significant and recent trend in the airport industry is the rise of the low-cost airlines.

de Neufville (2008) suggests that this trend along with the recognition of the uncertainty of

the long term forecasts, has important implications for the airport design planning. Low

cost carriers and passengers have different characteristics of the traditional full-service

carriers. Usually they demand less quality of the infrastructure in exchange of a lower

price. On the other hand these carriers have different strategies, preferring “point-to-

point” flights over the traditional “hub” strategy.

Recognizing this, we model demand of a destination as two segments - low-cost and

full-service - with different expected growth rates and volatility. To meet the segmented

demand, building a single airport serving both segments or segmented airports may be

optimal, while delaying the choice of the best strategy adds value.

The paper unfolds as follows. Section 2 describes and value some of the investment

incentives when a single demand segment is considered. We present a comparison of

the immediate and future cash flows of the different incentives. We extend our analysis,

comparing different investment strategies when the demand is modeled as two segments,

the full-service and low-cost passengers, in section 3. Building a single airport or segmented

airport alternatives are compared is this section and their implication for the incentives

needed to prompt investment are analyzed. Section 4 concludes.

2 Incentives to build immediately

Let P be the number of passengers demanding a destination under the following stochastic

process:

dP = αPdt + σPdZ (1)
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where α is the (expected) growth rate of the number of passengers, σ the standard devi-

ation, dZ an increment of a Wiener process.

Each passenger produces a net deflated revenue, R, that is assumed to be constant.

Building or expanding an airport can take several years, making the decision of choos-

ing the appropriate capacity an important issue in this type of projects. However, we start

by assuming that the scale of the project is decided when the project begins, which means

that the present value, at time t, of the investment needed to meet the expected demand

is given by:

I (t) = K + kC (t) (2)

where k is the variable investment cost, by passenger, and C the expected capacity, i.e. :

C (t) = E [P (t + m)] = P (t) eαm (3)

where m is the time horizon considered, which may be the concession period.

The equivalent risk-adjusted process of equation 1 is:

dP = (r − δ)Pdt + σPdZ (4)

where δ = µ − α and µ is the equilibrium rate of return. As the stochastic variable is not

a traded asset, a general equilibrium model (e.g.: CAPM) can be used to compute the risk

premium (λ). The equilibrium rate of return is:

µ = r + λσ (5)

with λ = ρPM
rM−r
σM

Using the standard procedures, we have the ordinary differential equation that must

be followed by the project value, V (P ):

1

2
σ2P 2 ∂2V

∂P 2
+ (r − δ)P

∂V

∂P
− rV = 0 (6)

The following boundary conditions are used to find the solution:

V (0) = 0 (7)

V (P ∗) = P ∗ϕ

δ
− K (8)

V ′(P ∗) =
ϕ

δ
(9)

where ϕ = R
(

e−δn − e−δm
)

− δkeαm.
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Boundary equation 8, the so-called value matching condition, gives the Net Present

Value (NPV) of the project for the moment when it is optimal to invest. We are assuming

that either the concession period (m) is finite or that, after m, the NPV is null.

The general solution for equation 6 takes the form:

V (P ) = AP β (10)

where β is:

β =
1

2
−

r − δ

σ2
+

√

(

−
1

2
+

r − δ

σ2

)2

+
2r

σ2
(11)

Determining A and P ∗ using boundary equations 8 and 9, we get the following solutions

for V (P ) and P ∗:

V (P ) =











K
β−1

(

P
P ∗

)β
for P < P ∗

P ∗ ϕ
δ
− K for P ≥ P ∗

(12)

P ∗ =
β

β − 1

δ

ϕ
K (13)

It is well known that δ must be negative, i.e. α < µ, otherwise the investment will be

delayed until the last available moment. For the perpetual options case, as above, invest-

ment would never be optimal. If immediate investment is required by the government,

there is no “optimal” incentive to prompt immediate investement, except for the case of

a finite concession, starting immediately after the concession is granted and before the

construction phase. Nevertheless, value is allways destroyed, being finite for the case of a

finite lived option and infinite for a perpetual option.

Unless P > P ∗, investment will be delayed. If immediate investment is intended,

several incentives can be given. All of them must make the option to delay worthless

(V (P ) = NPV ), which implies allways a cost of V (P ) − NPV . We proceed now to

quantify the amount of the incentive and when it is due.

Fixed investment subsidy

A common incentive is to subsidize investment. Let S be the subsidy needed to make

immediate investment optimal:

S (P ) = K − P
β − 1

β

ϕ

δ
(14)

Lowering P ∗ to P , demands S immediately, but also increases the value of the project

to:

4



Parameter Description Value

P Current number of passengers per year 15 million
α Expected growth rate of P 0.02
σ Standard deviation of P 0.04
R Current mean net revenue per passenger 7
r Risk-free interest rate 0.02
λ Risk premium 0.3
n Years of construction of the airport 7
K Airport fixed investment cost 1000 million
k Airport variable investment cost 25
m Number of years of the concession 30

Table 1: Base-case parameters

V |K=K−S(P ) (P ) =
K − S (P )

β − 1
= P

ϕ

δ
− (K − S (P )) (15)

The additional value, induced by the subsidy, is:

A (P ) = V |K=K−S(P ) (P ) − V |K=K (P ) =
K − S (P )

β − 1
−

K

β − 1

(

P

P ∗

)β

=
K

β − 1

(

1 −

(

P

P ∗

)β
)

−
S (P )

β − 1
(16)

If the government pursues immediate investment, a subsidy of S (P ) must be given

to to the concessionaire who, in turn, is willing to pay A (P ), additionally to V (P ) and

immediately, if that is intended. The net cost of this type of incentive is then:

S (P ) − A (P ) = S (P ) −
K

β − 1

(

1 −

(

P

P ∗

)β
)

+
S (P )

β − 1

= S (P )
β

β − 1
−

K

β − 1

(

1 −

(

P

P ∗

)β
)

(17)

Figure 1 shows a sensitivity analysis of the value and incentives to the number o

passengers, using parameters from Table 1. A higher number of passengers makes the

project more valuable and reduces the value of the option to defer, thus reducing the need

to have incentives to build immediately the airport. From the government perspective, the

maximum value that can be expected to receive from the concession, net of the incentives

cost, is exactly the NPV of the project. The investment subsidy has, however, to be

greater than the negative NPV (which would be the incentive needed under certainty) to

make investment optimal. Part of the subsidy is recovered by the increased value of the

project.

A similar analysis for the volatility is shown in Figure 2. As we are doing a static
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analysis, λ and α remain constant, meaning that µ adjusts to σ variations, implying a

negative relationship between uncertainty and the NPV and the project value. This also

implies that the option to defer starts deacreasing with volatility and then increases with

volatility. The same relathionship holds for the investment subsidy.

Revenue subsidy

Another incentive could be given in the form of a variable subsidy per passenger,

increasing the revenue from R to R + s (P ). s (P ) must be enough to make ϕ equal to:

ϕ|R=R+s(P ) =
β

β − 1

K

P
δ

(R + s (P ))
(

e−δn − e−δm
)

− δkeαm =
β

β − 1

K

P
δ

s (P ) =

β
β−1

K
P

δ − ϕ|R=R

e−δn − e−δm
(18)

The present value of the subsidy is given by:

S (P ) =
s (P )

(

e−δn − e−δm
)

δ
(19)

The additional value induced by the subsidy is:
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A (P ) = V |R=R+s(P ) (P ) − V |R=R (P ) =
K

β − 1
−

K

β − 1

(

P

P ∗

)β

=
K

β − 1

(

1 −

(

P

P ∗

)β
)

(20)

The main differences between a revenue subsidy and an investment subsidy are the

moment when they occur and the amounts involved. While the net cost is the same (equal

to the value of the option to defer), an investment subsidy is paid immediately and the

revenue subsidy is paid in the future. On the other hand, the additional value that the

concessionaire is willing to pay, is also different and higher for the revenue subsidy case

(Equations 16 and 20).

Figure 3 shows that the revenue subsidy, per passenger, needs to increase up to infinity

as we move closer to zero passengers. Differently from the investment subsidy, the project

value before the threshold is constant and equal to the NPV at the threshold level.

Guaranteed number of passengers

If the government guarantees the revenues of P passengers, whatever the number of

passengers might be, the NPV of the project becomes:

NPV (P, P ) = P
ϕ

δ
− K + RP

(

e−rn − e−rm

r
−

e−µn − e−µm

µ

)

= P
ϕ

δ
− K + RPψ (21)

where ψ =
e−rn − e−rm

r
−

e−µn − e−µm

µ
The new threshold is:

P ∗
1 =

β

β − 1

δ

ϕ
(K − RPψ) (22)

The number of guaranteed passengers, P , must be such that:

P =
β

β − 1

δ

ϕ
(K − RPψ)

P =
K − β−1

β
ϕ
δ
P

Rψ
(23)

The present value of the subsidy is given by:
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Figure 3: Revenue subsidy
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S (P ) = RPψ (24)

The additional value induced by the subsidy is the same as in Equation 20 or can be

obtained with the following equation:

A (P ) = NPV (P, P ) − V (P ) = P
ϕ

δ
− K + RPψ −

K

β − 1

(

P

P ∗

)β

= P
ϕ

δ

β

β − 1
−

K

β − 1

(

P

P ∗

)β

(25)

Figure 4 (b) shows that the number of guaranteed passengers must grow linearly as

the “moneyness” of the option to invest decreases. The proceeds from the concession are

similar to the case of a fixed investment subsidy (Figure 4).

Concession period

The concession period can be extended by s to make immediate investment optimal.

s (P ) must be enough to make ϕ equal to:

ϕ|m=m+s(P ) =
β

β − 1

K

P
δ

RP
(

e−δn − e−δ(m+s)
)

− δkeα(m+s) =
β

β − 1

K

P
δ (26)

Equation 26 must be solved numerically.

Figure 5 shows that, after a certain point, the NPV decreases with the concession

duration. This is due to the variable investment component of the NPV. Such a result

implies that we are unable to prompt immediate investment for low numbers of passengers

(Figure 6). The incentives are similar to the revenue subsidy, except that we can only

induce investment for P greater than 10 million.

Immediate vs future cash flows

We now compare the moment of the payment of the incentives and the net proceeds

from the incentives. Figure 7 shows the government cash flows induced by the incentives.

The investment subsidy is the only incentive, of those presented above, that is due imme-

diately1. All the other types of incentives are due after concession is granted, with positive

cash flows, related with the additional project value, received immediately. The revenue

1To be more precise, any incentive can be deferred or anticipated at the risk-free rate.
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Figure 4: Guaranteed number of passengers
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Figure 5: NPV - concession period

subsidy and the guarantee of a certain number of passengers, are the incentives which

delay more the payments and anticipate more the receipts. These type of incentives may

be more likely to be given by governments which are less committed to future tax payers

generations.

3 A single full-service airport or segmented airports

Let us assume that there are two types (segments) of passengers demanding a destination:

dPl = αlPldt + σlPldZl (27)

dPf = αfPfdt + σfPfdZf (28)

E [dZldZf ] = ρdt

where αl and αf are the (expected) growth rate of the number of low cost and full service

passengers, σl and σf the respective standard deviations, dZl and dZf increments of Wiener

processes and ρ the correlation coefficient.

An important issue is whether a single aiport, serving both segments, or segmented

airports are the optimal strategy.

As in the previous section, each passenger produces a net revenue Ri (i = l, f), that

is assumed to be constant. We also assume that, for the case of a single airport, the
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Figure 6: Concession extension
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revenue, Rs, is equal for both segments. If the traffics are segmented by two airports, it

is reasonable to assume that Rl < Rf .

The present value of the investment, needed to meet the expected future demand, is

given by:

Ii = Ki + kiCi (29)

where ki is the variable investment cost per passenger, Ci the expected capacity, as follows:

Ci (t) = E [Pi (t + m)] = Pi (t) eαim (30)

and m is the concession period. Note that, for the case of a single airport, the capacity is

Cl + Cf .

It also reasonable to assume that the low cost segment has higher expected growth

rates (αl > αf ) and higher uncertainty (σl > σf ).

The decision to invest in segmented airports

Although the traffics are correlated, the decisions to build two segmented airports are

independent, if that decision is only determined by economic factors.

The project value is the same as in the previous section:

Vi(Pi) =















Ki

βi−1

(

Pi

P ∗
i

)βi

for Pi < P ∗
i

P ∗
i

ϕi

δi
− Ki for Pi ≥ P ∗

i

(31)

P ∗
i =

βi

βi − 1

δi

ϕi
Ki (32)

where δi = r + λiσi − αi and ϕi = Ri

(

e−δini − e−δim
)

− δikie
αim.

The decision to invest simultaneously in segmented airports

When the concessionaire is committed to build simultaneously the two airports, the project

value function, V (Pl, Pf ), must satisfy the following PDE:

1

2
σ2

l V
2 ∂2V

∂P 2
l

+
1

2
σ2

fV 2 ∂2V

∂P 2
f

+ ρσlσfPlPf
∂2V

∂Pf∂Pl

+ (r − δl) Pl
∂V

∂Pl
+ (r − δf )Pf

∂V

∂Pf
− rV = 0 (33)

This PDE can only be solved numerically using finite differences methods, or V (Pl, Pf )
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can be found with a binomial tree method or by simulation. In all cases we have to use a

finite maturity.

We compute the project value using the Boyle, Evnine and Gibbs (1989) binomial

method. At each time-step of the binomial tree, the payoff of immediate exercise of the

option to invest must be compared with the continuation value. That payoff, when the

decision to invest must be made simultaneously for the two airports, is given by:

Π2s (Vl, Vf ) = Pf

ϕf

δf
− Kf + Pl

ϕl

δl
− Kl (34)

The decision to invest in a single airport

The value of the project for the case of a single airport, serving both traffics, must satisfy

the same PDE (Equation 33). The payoff is now given by:

Π1 (Vl, Vf ) = Pf

ϕf

δf
+ Pl

ϕl

δl
− Ks (35)

where Ks is the single airport fixed investment cost, ϕi = Rs

(

e−δins − e−δim
)

− δikse
αim.

Delaying the choice of the best alternative

All the previous alternatives have been valued independently and with the assumption of

choosing immediately the best alternative. The best strategy is contingent on the values of

the underlying stochastic variable and delaying the decision may add value to the project.

The option to delay the choice can be valued as before, but with the following exercise

payoff:

Πb (Vl, Vf ) = max [Π2i (Vl, Vf ) , Π2s (Vl, Vf ) , Π1 (Vl, Vf )] (36)

where Π2i (Vl, Vf ) = V (Pl) + V (Pf ) is the payoff of investing in segmented airports.

When we value the option with numerical methods, we are confined to finite lived

options. A fair comparison of the different alternatives, should be done for the same

maturity, which means that we have also to resort to numerical methods even for the case

of the two segmented airports. As those options only have a single underlying asset, we

value them using the Cox, Ross and Rubinstein (1979) binomial method.
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Parameter Description Full-service Low-cost Single airport

P Current number of passengers per year (million) 15 5
α Expected growth rate of P 0.02 0.04
σ Standard deviation of P 0.04 0.1
R Current mean net revenue per passenger 7 5 7
r Risk-free interest rate 0.02
λ Risk premium 0.3 0.35
n Years of construction of the airport 7 3 7
K Airport fixed investment cost (million) 1000 300 1000
k Airport variable investment cost 25 5 25
m Number of years of the concession 30
T Maturity of the option to invest 30

Table 2: Base-case parameters

Comparison of the four alternatives

We now compare the four investment strategies using the parameters presented in Table

2.

Figure 8 shows the impact of the number of passengers. Building two segmented

airports simultaneously is allways less valuable than building them independently. A

single airport is more valuable the higher the number of full-service passengers (Figure 8

(a)) and the lower the number of low-cost passengers (Figure 8 (b)). These results come

from the fact that the trigger value (when the option to defer is null), is lower for the

single airport than for the segmented airports (Figures 8 (c) and (d)). A higher number of

low-cost passengers, on the other hand, increases the incentive to build a low-cost airport,

raising the value of the segmented airports alternative.

Delaying the choice of the best alternative has allways value, but that value converges

to zero, i.e. equals the single airport alternative or the segmented airport alternative, as

we move to extremes. On the other hand, giving the concessionaire the option to delay,

demands a higher incentive to make immediate investment optimal. The value of the

option to defer (Figures 8 (c) and (d)) measures the net incentives needed. For the base-

case parameters, prompting immediate investment in a single airport is allways cheaper

for the range analyzed.

The effect of volatility is presented in Figure 9. As in the previous section, a higher

volatility increases the required rate of return, which in turn, reduces the “moneyness”

of the projects. As we move to the extremes, the segmented airports strategy is more

valuable, whereas for intermediate value of volatility we have closer values of the two

strategies. In fact, for different base-case parameters, we could have higher values for the

single airport strategy, for the intermediate volatility levels.
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4 Concluding remarks and future research

Building an airport involves large sunk costs which, as is suggested by the real options

literature, under uncertainty, produces an incentive to delay investment. These projects

have been frequently developed by public-private partnerships and, usually, the govern-

ment who grants the concession, seeks immediate investment. A correct valuation of

these incentives is crucial to promote the desired outcome and to avoid an excessive value

transfer to the private sector.

We quantify the optimal investment subsidy, revenue subsidy, guaranteed number of

passengers and concession extension that prompts immediate investment. Furthermore we

show that these type of incentives are due in different amounts and moments, with the rev-

enue subsidy and concession extension incentives being more likely, when the government

favors current to future tax payers.

We extend our analysis to the optimal investment strategy and incentives when we

model demand with two segments recognizing the rise of the low-cost carriers which have

different characteristics when compared to the traditional full-service demand. We show

that the alternative strategies of building a single airport, serving both segments, or seg-

mented airports, dominate for different parameters values. Nevertheless, delaying the

choice of the best alternative increases project values and thus increases the need for

incentives to promote immediate investment.

Several extensions can be made to this paper. Other options, as the expansion or

the bankruptcy options can be added to the model. Optimal capacity choice is another

important issue in large scale projects. Other assumptions about the stochastic behavior

of the two segments, namely mean-reverting processes, could be considered. Adding more

stochastic variables is also another feasible extension.
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