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also incorporated, which seems to be realistic for this type of projects.

Accordingly, we propose a new real options model which combines two

stochastic factors with positive and negative shocks.
While the authors developed this model having as a reference the project
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to projects in different areas.
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The Optimal Timing for the Construction of an

International Airport: a Real Options Approach

with Multiple Stochastic Factors and Shocks

1 Introduction

The decision to invest in an international airport demands, usually, a huge
amount of money. This, combined with the fact that this type of investment
is, in a large scale, irreversible, becomes a very important timing problem.

The real options theory, realizing that the uncertainty surrounding a
project gives the firms a valuable option to defer the project implementation,
tries to determine the optimal moment to invest1.

Related to our work is that of Smit (2003), where he analyzes the in-
vestment in an airport infrastructure. Particularly focused on the airport
expansion with strategic interactions, the author combines real option the-
ory and game theory, through a discrete-time model.

Also related is Paxson and Pinto (2005). In this paper the authors
develop a continuous-time model for the option to invest in a duopoly market
under competition, disaggregating revenues into two variables: the profit per
unit and the quantity sold. We derive the model for two stochastic variables
differently, and, more important, we extend the model in order to allow
jumps, which can be positive and negative shocks. These shocks are random
events which modify, in a discrete way, the level of the state variable, and
are particularly relevant in the airport business.

This model has been developed having as a reference the project for
the new Lisbon international airport, but we think the model is sufficiently
flexible to be applied to projects in different areas.

2 The Model

Assume an investor, which can be the Government or a public/private joint-
venture, interested in investing in the construction of a new airport. This
type of investment requires huge amounts of capital, which is, in a large
scale, sunk once spent.

There are several sources of uncertainty in this type of project, since
it depends upon the air transportation industry: the higher the number of
flying passengers, the higher the revenues for the airport.

In this paper, instead of working with one stochastic factor (the net cash
flow, or the gross project value) we disaggregate it into two components.

1See Dixit and Pindyck (1994) and Trigeorgis (1996) for a general overview on real
options.
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Note that the total cash flow for the airport can be expressed as being the
total number of passengers multiplied by the average cash flow per passenger.

So, in our model, we have two basic random variables - the number of
passengers arriving/departing from the airport, as well as the cash flow per
passenger - governed by two different stochastic processes, which we allow
to be correlated.

As we will see later, our model also accounts for other sources of un-
certainty: we call them ”shocks”, which are basically random/unexpected
events with a major (positive or negative) impact2 on the airport revenues.

2.1 The Basic Case: One Stochastic Factor

Let us start with the simplest situation, where only the number of passengers
is stochastic. Let x be the number of passenger per unit of time (e.g.: per
year), and R be the deterministic cash flow per passenger. So, the total cash
flow, in a given period of time is xR.

Let the future values for x be random, according to the following GBM3:

dx = αxxdt + σxxdZx (1)

where αx is the (expected) growth rate of the number of passengers, σx the
related standard deviation, and dZx the increment of the Wiener process.

The net cash flow per passenger (R) is assumed to grow deterministi-
cally4:

dR = αRRdt (2)

F (x) represents the project value function which must satisfy the fol-
lowing ordinary differential equation (ODE), during the continuation period
(when it is not yet optimal to start constructing the airport):

1

2
σ2

xx2 ∂2F (x)

∂x2
+ (r − δx)x

∂F (x)

∂x
− rF (x) = 0 (3)

subject to the boundary conditions:

F (0) = 0 (4)

2As we will see, an example of a negative shock is the terrorist attack occurred on
September 11, 2001. That unexpected event reduced significantly the number of passen-
gers on the airports, almost all over the world.

3Marathe and Ryan (2005) analyzed the validity of the assumption of the geometric
brownian motion process for the U.S. airline passenger emplanements and could not reject
the hypothesis of normality and independence of the log ratios.

4This will be relaxed later on, where R will be modeled as a stochastic variable.
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F (x∗) =
x∗eαxnReαRn

k − αx − αR
e−kn

− K (5)

F ′(x∗) =
eαxnReαRn

k − αx − αR
e−kn (6)

where δx = k − αx, k is the equilibrium rate of return, and n represents the
number of years for the construction.

The boundary 5, the so-called value matching condition, gives the NPV
of the project for the moment when it is optimal to invest. The first part
of the left-hand side of the equation represents the gross project cash flow,
and K is the present value of all the expenditures required to proceed the
construction of the airport.

The general solution for the equation 3 takes the form:

F (x) = Axβ1 + Bxβ2 (7)

where β1 and β2 are the two roots of the fundamental quadratic:

1

2
σ2

xβ(β − 1) + (r − δx)β − r = 0 (8)

and so:

β1 =
1

2
−

r − δx

σ2
x

+

√

(

−
1

2
+

r − δx

σ2
x

)2

+
2r

σ2
x

> 1 (9)

β2 =
1

2
−

r − δx

σ2
x

−

√

(

−
1

2
+

r − δx

σ2
x

)2

+
2r

σ2
x

< 0

In order to respect the first boundary condition 4, and since Bxβ2 goes
to infinity as x goes to zero, we must set B = 0. From hereafter let β ≡ β1.

Solving the problem, taking into account the other two boundaries, we
get the following solutions, respectively, for the airport value function and
for the so-called trigger value, which represents the value of x for which is
optimal to start the construction:

F (x) =











K
β−1

(

x
x∗

)β
for x < x∗

xeαxnReαRn

k−αx−αR
e−kn − K for x ≥ x∗

(10)

x∗ =
β

β − 1

k − αx − αR

eαxnReαRne−kn
K (11)
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Finite concession

Until now we have assumed that the investor acquires a perpetual concession.
If, alternatively, the concession is finite (for example, for m years, including
the construction period), the solution would be:

F (x) =











K
β−1

(

x
x∗

)β
for x < x∗

xeαxnReαRn

k−αx−αR
e−kn

(

1 − e(αx+αR−k)(m−n)
)

− K for x ≥ x∗

(12)

x∗ =
β

β − 1

k − αx − αR

eαxnReαRne−kn
(

1 − e(αx+αR−k)(m−n)
)K (13)

Note that the NPV (lower part of equation 12) is the difference of two
perpetuities with a time lag of m − n years.

2.2 Two Stochastic Factors

Let us now incorporate more uncertainty in the process. In the previous
section, only the number of passengers was considered to be random. Now
we extend the randomness to the net cash flow per passenger.

Let x behave as in 1, and assume now that R (the net cash flow per
passenger) follow a similar GBM process:

dR = αRRdt + σRRdZR (14)

Since x and R are both stochastic, their product, which corresponds to
the total profit for the airport, will also be stochastic.

Instead of working with the two stochastic factors, we can reduce them
to a single one. Let P (x, R) = xR, and so:

dP =
∂P (x, R)

∂x
dx +

∂P (x, R)

∂R
dR

+
1

2

[

∂2P (x, R)

∂x2
(dx)2 +

∂2P (x, R)

∂R2
(dR)2

]

+
∂2P (x, R)

∂x∂R
dxdR

Noting that ∂2P (x,R)
∂x2 = ∂2P (x,R)

∂R2 = 0 and ∂2P (x,R)
∂x∂R

= 1, the previous
equation becomes:
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dP = xdR + Rdx + dxdR (15)

Substituting for dx and dR, and after rearranging:

dP = (αx + αR + ρσxσR) Pdt + (σxdZx + σRdZR) P (16)

where E [dZxdZR] = ρdt.
Using the standard procedures5, we find the ODE that must be followed

by F (P ):

1

2
σ2

P P 2 ∂2F (P )

∂P 2
+ (r − δP )P

∂F (P )

∂P
− rF (P ) = 0 (17)

where σ2
P = σ2

x + σ2
R + 2ρσxσR, δP = k − αP and αP = αx + αR + ρσxσR,

subject to the following boundary conditions:

F (0) = 0 (18)

F (P ∗) =
P ∗eαP n

k − αP
e−kn

− K (19)

F ′(P ∗) =
eαP n

k − αP
e−kn (20)

After taking into account the boundary 18, the general solution for the
equation 17 takes the form:

F (P ) = CP γ (21)

where γ is the positive root of the quadratic equation:

1

2
σ2

P γ(γ − 1) + (r − δP )γ − r = 0 (22)

which is:

γ =
1

2
−

r − δP

σ2
P

+

√

(

−
1

2
+

r − δP

σ2
P

)2

+
2r

σ2
P

Determining C and P ∗ using the boundaries 19 and 20, we get the fol-
lowing solutions for F (P ) and P ∗:

F (P ) =











K
γ−1

(

P
P ∗

)γ
for P < P ∗

PeαP n

k−αP
e−kn − K for P ≥ P ∗

(23)

5See Appendix A.
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P ∗ =
γ

γ − 1

k − αP

eαP ne−kn
K (24)

The solution for the finite concession case is:

F (P ) =











K
γ−1

(

P
P ∗

)γ
for P < P ∗

PeαP n

k−αP
e−kn

(

1 − e(αP−k)(m−n)
)

− K for P ≥ P ∗

(25)

P ∗ =
γ

γ − 1

k − αP

eαP ne−kn
(

1 − e(αP−k)(m−n)
)K (26)

2.3 Two Stochastic Factors with Positive and Negative Shocks

Assume now that there are some random events which, in a discrete way,
changes the level of the state variable.

These events are shocks which seem to be particularly relevant in airports
business. See, as an example, the negative shock coming from the terrorist
attack on September 11, or, the less tragic negative shock coming from the
negative impact of some new competing airport; a positive shock, could be
the occurrence of an important international event, such as the Olympic
games or the world football championship.

In order to incorporate these shocks, we change equation 16 adding an
additional term:

dP = (αx + αR + ρσxσR) Pdt + (σxdZx + σRdZR) P + dqP (27)

where:

dq =























(1 + u) with probability λudt

(1 − d) with probability λddt

0 with probability 1 − (λu + λd)dt

(28)

and (1 + u) represent the positive shock, and (1 − d) represent the negative

shock ; u and d are deterministic parameters.
So F (P ) must satisfy now the following differential equation:
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1

2
σ2

P P 2 ∂2F (P )

∂P 2
+ (r − δP )P

∂F (P )

∂P
− rF (P )+

+λu [F ((1 + u)P ) − F (P )] + λd [F ((1 − d)P ) − F (P )] = 0 (29)

Rearranging, we get:

1

2
σ2

P P 2 ∂2F (P )

∂P 2
+ (r − δP )P

∂F (P )

∂P
− (r + λu + λd) F (P )+

+λuF ((1 + u)P ) + λdF ((1 − d)P ) = 0 (30)

Note that, assuming that the events are independent, the probability
of the occurrence of a positive shock and a negative shock during the same
period of time dt is: λuλd(dt)2. Calling the standard arguments, (dt)2 goes
faster to zero as dt → 0, and so this probability can be ignored.

The expected variation of P , is now αs = αP +λuu−λdd, to incorporate
the effects of the shocks.

The solution must be found subject to the following boundaries:

F (0) = 0 (31)

F (P ∗) =
P ∗eαsn

k − αs
e−kn

− K (32)

F ′(P ∗) =
eαsn

k − αs
e−kn (33)

The general solution is of the form:

F (P ) = DP φ (34)

where φ is the positive root of the non-linear equation:

1

2
σ2

P φ(φ− 1)+ (r− δP )φ− (r +λu +λd)+λu(1+u)φ +λd(1−d)φ = 0 (35)

which, on the contrary to what happens to β (equation 8) and γ (equation
22), must be solved numerically; D, as well as the trigger P ∗, are to be
determined using the boundaries 33 and 32.

Accordingly, the solutions are:
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F (P ) =











K
φ−1

(

P
P ∗

)φ
for P < P ∗

Peαsn

k−αs
e−kn − K for P ≥ P ∗

(36)

P ∗ =
φ

φ − 1

k − αs

eαsne−kn
K (37)

For the case of a finite concession period, the solution is given by:

F (P ) =











K
φ−1

(

P
P ∗

)φ
for P < P ∗

Peαsn

k−αP
e−kn

(

1 − e(αs−k)(m−n)
)

− K for P ≥ P ∗

(38)

P ∗ =
φ

φ − 1

k − αs

eαsne−kn
(

1 − e(αs−k)(m−n)
)K (39)

3 The effect of uncertainty

It is commonly accepted that uncertainty increases option values. Neverthe-
less such relationship depends on the effect, less studied, of the uncertainty
on the underlying asset value, the NPV, in our case6. Note that it depends
on the equilibrium rate of return (k), which is related with the uncertainty
of the project. According to the CAPM such relationship is expressed as:

k = r + λρPMσP (40)

where λ = rM−r
σM

is the market price of risk, ρPM the correlation of the total
revenues with the market and σM the market volatility.

The net effect of an increase of the project volatility depends on the indi-
rect effect it can have through the correlation, and if the increased volatility
is unaccompanied by the market volatility. The sign of the effect can be
null, negative or positive.

Assuming that the increased volatility leaves unchanged both the cor-
relation and the market price of risk, it implies a higher cost of capital,
reducing the NPV. In the case of a single stochastic factor model, an in-
crease in the volatility to σ′

x, would increase the equilibrium rate of return

6See Davis (2002) for a related discussion.
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Parameter Description Value

x Current number of passenger per year 11.5 million
R Current mean cash flow per passenger (EUR) 8

P ≡ xR Current total cash flow per year (EUR) 92 million
K Present value of the investment cost (EUR) 3000 million
k Equilibrium rate of return 0.090
r Risk-free interest rate 0.030
αx Expected growth rate of x 0.04
σx Standard deviation of x 0.15
αR Expected growth rate of R 0.020
σR Standard deviation of R 0.01
ρ Correlation between the two stochastic variables 0.00
n Number of years for the construction 7
m Number of years of the concession 30

Table 1: Base-case parameters for the project considering two stochastic
factors.

to7:

k′ =
σ′

x

σx
(k − r) + r (41)

4 A Numerical Example

4.1 Considering Two Stochastic Factors

Assume a project for the construction of a new airport, considering that both
the number of passengers and the cash-flow per passenger behave stochas-
tically. The basic parameters are in Table 1.

The main objective is to determine the optimal timing to start the con-
struction of the new airport (which is given by the critical total annual cash
flow, P ∗), and additionally, the value of the option to invest, and of the
option to defer the project implementation.

Table 2 shows the output values. For the base-case parameters the con-
struction should only start when the present value of the expected annual
cash flow is 203.2 million euros for the perpetual case concession, whereas
for the finite concession case, it must reach 407.7 million euros.

The option to defer construction adds 948.4 million euros to the tradi-

7Note that

λρxMσx =
k − r

σx
=

k′ − r

σ′
x

.
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tional NPV, which is negative, making the investment opportunity worth-
while. The option almost doubles its value for the case of a finite concession.
However the probability of investing in a finite concession is very small, as
will also be shown in the the following Figures.

The second stochastic variable adds to the investment opportunity 246
million euros and 77.5 million euros for the perpetual and finite concessions,
respectively.

Two factors One factor

Output Description Perp. Finite Perp. Finite

x∗ Critical number of passengers (mil-
lion)

19.4 38.8

P ∗ Critical total annual cash flow
(EUR million)

203.2 407.7

F (x) Value of the investment opportu-
nity (EUR million)

434.2 93.6 188.2 16.1

NPV Value of the project if implemented
today (EUR million)

-514.2 -1761.0 -514.2 -1761.0

OD Value of the option to defer the
construction (EUR million)

948.4 1854.6 702.4 1777.1

[OD = F (x) − NPV ]

Table 2: Output values for the base-case parameters.

Figures 1 to 5 show the impact of some parameters. The expected growth
rates of either the number of passengers or the cash flow per passenger
(Figure 1) and the equilibrium rate of return (Figure 2) are some of the key
drivers of the value of the investment opportunity.

The difference between the perpetual and finite concessions, both in the
NPV and investment opportunity values, increases significantly with the
growth rates (Figure 1), and deacreases with the equilibrium rate of return
(Figure 2). As the growth rates become closer to the equilibrium rate of
return (i.e. k − αx − αR approaches zero) the NPV goes to infinity.

The assumption, underlying the perpetual concession, that the number
of passengers grows infinitly is, surely, unrealistic, while for the growth rate
of the cash flow per passenger, such assumption is more realistic.

Higher growth rates, after a certain value, increases the critical value
of the total cash flow in a finite concession, which is not the case for the
perpetual concession. The same patern can be found for the equilibrium
rate of return (Figure 2) and the volatility (Figure 5). The critical cash flow
increases monotonically with the investment cost (Figure 3) and the time
needed to construct the airport (Figure 4) both for the perpetual and finite
concessions.

As discussed previously in section 3, a higher uncertainty may decrease
the NPV. Figure 5 presents the results for the model with a single factor,
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Figure 1: The impact of the growth rates
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Figure 2: The impact of the equilibrium rate of return
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Figure 3: The impact of the investment cost
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Figure 4: The impact of the number of years of construction

and shows that, if we assume that the covariance with the market remains
unchanged, a higher uncertainty reduces the NPV through an increased
required rate of return, reducing the probability of investing. Even reducing
both the NPV and the investment opportunity values, a higher volatility
increases the value of the option do defer.

4.2 Considering Two Stochastic Factors with Shocks

Let us consider now the existence of some unexpected shocks, which, as
we saw, can have a positive or a negative impact on the level of the state
variable (total cash flow), increasing or decreasing it in a discrete way.

Let the parameters be as presented in Table 1, and additionally consider
the shocks and the respective probabilities presented in Table 3).

Parameter Description Value

u Magnitude of the positive shock 0.1
d Magnitude of the negative shock 0.15
λu Probability of occurrence of the positive shock 0.1
λd Probability of occurrence of the positive shock 0.1

Table 3: Parameters for shocks and probabilities.

The critical P (total annual cash flow), as well as the value of the in-
vestment opportunity are presented in Table 4. The effect of adding shocks
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Figure 5: The impact of the volatility of the number of passengers

depends on the relative magnitudes and probabilities of the positive and neg-
ative shocks (Figure 6). If the magnitude of the positive shock is lower than
the magnitude of the negative shock, the effect is negative. A higher(lower)
magnitude of the positive(negative) shocks increases(decreases) the value of
the project.

Without shocks With shocks

Output Description Perp. Finite Perp. Finite

P ∗ Critical total annual cash flow
(EUR million)

203.2 407.7 232.2 419.9

F (x) Value of the investment opportu-
nity (EUR million)

434.2 93.6 244.7 60.1

NPV Value of the project if imple-
mented today (EUR million)

-514.2 -1761.0 -942.6 -1862.4

OD Value of the option to defer the
construction (EUR million)

948.4 1854.6 1187.3 1922.6

[OD = F (x) − NPV ]

Table 4: Output values for the base-case parameters, considering the
shocks.

5 Conclusions and Future Research

This paper presents a real options model to value the option to build a
new international airport, considering that the number of passenger and the

14
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Figure 6: The impact of the shocks
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cash flow per passenger behave stochastically. Additionally, positive and
negative shocks are also incorporated, which seems to be realistic for this
type of projects.

The option to defer this type of heavy investment projects is highly
dependent on the assumptions about the expected growth rates, time needed
for construction and the equilibrium rate of return.

We have shown that higher uncertainty of the stochastic variables lowers
the value of the project and increases the option to delay it.

One of the most interesting conclusions is related to concession terms
of the project. If the contract allows the builder to delay the investment,
making it optional and not compulsory, he would available to pay more
for the concession or, alternatively would require less public expenditure.
However, a finite concession is very unlikely to induce investment, requiring
more financial support of the government, if the desired outcome is the
construction of the infrastructure.

Calibration of this model may imply the adjustment of some assumptions
about the behavior of the stochastic variables.

Several extensions to the model, including, for example, the valuation
of other options, the possibility of investing continuously and the effect of
competition, may be added, at the cost of more complexity and the use of
numerical valuation methods.
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A Appendix

From equations 1 and 14 we saw that:

dx = αxxdt + σxxdZx (42)

dR = αRRdt + σRRdZR (43)

and according to equation 15:

dP = xdR + Rdx + dxdR (44)

Substituting (42) and (43) in (44), we get:

dP = x (αRRdt + σRRdZR)

+ R (αxxdt + σxxdZx)

+ (αxxdt + σxxdZx) (αRRdt + σRRdZR) (45)

Noting that xR = Rx = P , (45) comes

17



dP = αRPdt + σRPdZR

+ αxPdt + σxPdZx

+ (αxxdt + σxxdZx) (αRRdt + σRRdZR) (46)

The term (αxxdt + σxxdZx)(αRRdt + σRRdZR) is equal to ρσxσRPdt.
Note that we ignore the terms dt of order 3/28 or higher, since they go faster
to zero as dt goes to zero. Additionally, dZxdZR = ρdt. According to this
(5) comes, after rearranging:

dP = (αR + αx + ρσxσR)Pdt + (σRdZR + σxdZx)P (47)

In order to simplify, let αP = αR + αx + ρσxσR, so (47) reads now:

dP = αP Pdt + (σRdZR + σxdZx)P (48)

Consider now a portfolio consisting on the option to invest (F (P )) and

on a short position on ∂F (P )
∂P

units of the project (or of a perfect correlated
asset or portfolio). The value of this portfolio is:

Π = F (P ) −
∂F (P )

∂P
P (49)

Considering that the short position demands the payment δP = k − αP

(see, for example, Dixit and Pindyck (1994) for details), the total return for
the portfolio Π during the period dt is:

dF (P ) −
∂F (P )

∂P
dP − δP P

∂F (P )

∂P
dt (50)

Applying the Ito’s Lemma, F (P ) must follow the ODE:

dF (P ) =
1

2

∂2F (P )

∂P 2
(dP )2 +

∂F (P )

∂P
dP (51)

Substituting, we can write the total return for the portfolio as follows:

8dZR × dt = εt

√
dt × dt = εtdt3/2, where εt is a random variable that follows a normal

distribution with the first two moments being (0, 1).
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1

2

∂2F (P )

∂P 2
(dP )2 − δP P

∂F (P )

∂P
dt (52)

Let us now calculate (dP )2:

(dP )2 = [αP Pdt + (σRdZR + σxdZx)P ]2 (53)

= (αP Pdt)2 + 2αP Pdt(σRdZR + σxdZx)P

+ (σxdZx + σRdZR)2P 2 (54)

Ignoring all terms dt of order higher than 1 we get:

(dP )2 = [(σxdZx)2 + (σRdZR)2 + 2σxdZxσRdZR)]P 2 (55)

Since (dZx)2 = dt, (dZR)2 = dt, and dZxdZR = ρdt, (dP )2 is simply

(dP )2 = (σ2
x + σ2

R + 2ρσxσR)dtP 2 (56)

and so, substituting:

1

2
(σ2

x + σ2
R + 2ρσxσR)dtP 2 ∂2F (P )

∂P 2
− δP P

∂F (P )

∂P
dt (57)

Note that this is risk-free, and so the adequate return is the risk-free
rate. Which means that, during short period dt, the return for the portfolio
must be:

rΠdt = r

(

F (P ) −
∂F (P )

∂P
P

)

dt (58)

and so:

1

2
(σ2

x + σ2
R + 2ρσxσR)dtP 2 ∂2F (P )

∂P 2
− δP P

∂F (P )

∂P
dt

= r

(

F (P ) −
∂F (P )

∂P
P

)

dt (59)

After dividing both sides of the equation by dt and after rearranging, we
get:
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1

2
(σ2

x + σ2
R + 2ρσxσR)P 2 ∂2F (P )

∂P 2
+ (r − δP )P

∂F (P )

∂P
− rF (P ) = 0 (60)

or, as it appears in equation 17:

1

2
σ2

P P 2 ∂2F (P )

∂P 2
+ (r − δP )P

∂F (P )

∂P
− rF (P ) = 0 (61)

where σ2
P = σ2

x + σ2
R + 2ρσxσR.
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