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Symbol Glossary 
 

Uppercase Roman Letters Uppercase Greek Letters 
BA,  Constants of integration in solutions of differential equation ∆  Prefix for finite but small increment (e.g., t∆ ) 

C  Operating cost of a project Γ  Gamma function 
F  Value of the opportunity to invest; value of a Futures Contract ϕ  Payoff function 
G Value of an option on an option  

I  Capital cost of investment Lowercase Greek Letters 
UM ,  Kummer Functions α  Drift parameter of simple Brownian motion, or proportional growth 

 rate parameter of geometric Brownian motion 

1, +ttM  Minus, marginal utility of consumption  γβα ,, Constants (Chapter 6) 

( )yxN ,  A normal distribution with mean x  and variance y  0  Variable in fundamental quadratic.  Its positive and negative roots are  

 denoted by +0  and −0 , respectively 
P  Output price, crude oil ε  Random variable distributed N(0,1) 

P  Mean reversion value of P  δ  Rate of return shortfall or convenience yield 

Q  Quantity of resources or reserves η  Mean-reversion rate 

R  Revenue from a project µ  Risk-adjusted (CAPM) discount rate 

S  Scale function π  Profit flow or stationary density (Chapter 3) 

T  Terminal time φ  Market price of risk 

V  Value of asset in place ρ  Correlation coefficient 

tX  Value of uncertain asset at time t  σ  Variance parameter in Brownian motion 

 τ  One minus tax rate 
Lowercase Roman Letters ω  The rate of decline in the output rate of a project 

ba,  Coefficients of diffusion process  

d  Infinitesimal increment prefix (e.g. the differential dt ) Moment Operators 

dZ  Increment of standard Wiener (Brownian motion) process )(Ε  Expectation operator 
q  The output rate of a project )(Cov  Covariance operator 
r  Risk-free interest rate )(Sd  Standard deviation operator 
t  Current time )(Var  Variance operator 

Adapted From Dixit &Pindyck (1994) 
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Chapter 1 
 

Introducing the Petroleum Lease 
Valuation Problem 
 

1.0 Petroleum Leases and the need for their Valuation 
 
Petroleum companies acquire the right to produce petroleum by means of several types of 
contractual arrangements with the owners of petroleum rights.  A common type of these 
contracts is referred to as a petroleum lease.  Pursuant to the terms of a petroleum lease, an 
owner of petroleum rights grants a lessee the exclusive rights within a defined volume of the 
earth’s subsurface to: 
 
(1) explore for petroleum during an initial period of time, referred to as the primary term; 

and 
(2) develop and extract petroleum during subsequent periods of time, referred to as renewal 

terms. 
 
The tenure of the primary term is, typically, five years for onshore leases and eight to ten 
years for offshore leases.  If economic quantities of petroleum resources have been 
discovered, the lessee may elect successive renewal terms to develop and extract the 
petroleum.  The consideration paid by the lessee to the owner of the petroleum rights for a 
lease comprises: an initial cash payment; annual rental payments; and a constant, or variable, 
percentage of the petroleum extracted from the leased volume of the subsurface, referred to 
as a royalty payment.  Normally, the rental amount and the royalty percentage are selected by 
the owner of the petroleum rights prior to offering the lease to prospective purchasers.  
Competitive negotiations or tenders of sealed bids in a competitive auction determine the 
magnitude of the initial payment.  In either case, petroleum companies require a methodology 
to determine the fair value of a given petroleum lease.  The valuation of petroleum leases 
using certain mathematical finance techniques is the subject of this thesis.   
 This chapter opens with an overview of the production cycle followed by petroleum 
companies to explore for, develop and extract petroleum.  A definition of a real option and a 
framework for casting investment decisions by petroleum companies as real option valuations 
follows.  A list of the mathematical finance techniques which will be developed in the 
subsequent chapters to value petroleum leases as real options closes the chapter. 
 

1.1 The Production Cycle of Petroleum Companies 
 
Petroleum companies expend quantities of capital to produce petroleum, via a sequential 
production process comprised of five phases.  The activities comprising each phase follow, in 
chronological order. 
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Prospect Generation Phase:  The production cycle begins with geoscientists prospecting 
specific geographic areas where the subsurface may contain accumulations of petroleum 
substances.  Acquiring the exclusive right to explore these prospects for petroleum, by means 
of petroleum leases, or other contracts, completes the first phase.  
 
Exploration Phase: Prospects are explored for petroleum resources in the second phase by 
conducting geophysical studies, drilling exploration wells, logging the resultant well bores 
and testing for the presence of hydrocarbons.  The collective cost of the exploration activities, 
referred to as exploration cost, tend to be large.   Typical exploration costs for onshore and 
offshore prospects would be on the order of magnitude of $1 to $10 million and $100 million, 
respectively.  If the activities in the exploration phase fail to discover resources, the case 
more often than not, a petroleum lease can be relinquished to the owner of the petroleum 
rights and the prospect abandoned.  Alternatively, if a petroleum reservoir containing 
sufficient resources has been discovered, then a petroleum company owns the right, without 
the obligation, to develop the discovered resources into reserves. 
 
Development Phase:  The development phase comprises: the drilling, completing, and 
equipping of development wells; the construction of gathering pipelines; and the fabrication 
and installation of processing plants.  The cost of development is the sum of the costs of the 
development activities and may be an order of magnitude greater than the cost of exploration.  
A petroleum company holding developed reserves has the right to elect to initiate extraction, 
pursuant to the terms of its petroleum lease.   
 
Extraction Phase:  Extracting petroleum from the subsurface involves: lifting; gathering and 
processing; marketing; and paying the requisite royalties and taxes.  Generally, the collective 
costs of extraction can be allocated as fixed or variable, on the basis of 80% and 20%, 
respectively.  As the extraction phase proceeds, the withdrawal of volumes of petroleum from 
the subsurface reservoir will be accompanied, in most cases, by a decline in reservoir 
pressure causing the rate at which the petroleum is produced to decline.  The onset and rate of 
decline can, to some extent, be mitigated by the initiation of reservoir pressure maintenance 
and enhanced recovery schemes.  Inevitably though, the rate of petroleum production will fall 
below that necessary to recover both fixed and variable extraction costs.   
 
Abandonment Phase: When the economic limit of the extraction phase is reached, 
abandonment and reclamation occur.  Net of salvage, expenditures in the abandonment phase 
have, historically, been small relative to those in the preceding phases. 
 The length of time required to plan and implement each phase runs to years for 
onshore, and decades for offshore petroleum projects.  Cumulatively, the time required to 
complete the production cycle can be a full generation in human terms.  Throughout the 
production cycle, uncertainties from three principal sources will challenge petroleum 
companies.  Geologic risks, including: 
 
(1) the absence of a reservoir; and 
(2) an insufficient quantity of petroleum, if any, recoverable from the reservoir,  
 
are significant in the exploration and development phases.  The productivity of the reservoir 
will be definitively revealed, for the most part, in the extraction phase.  Technical risks 
because of logistical problems on the surface and unanticipated conditions in the subsurface, 
in terms of rock hardness or pressure levels, can cause the costs of exploration and 
development operations to exceed budgeted levels.  As a petroleum company explores - and 
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perhaps subsequently develops a prospect - geological and technical information is revealed 
that reduces the levels of geologic and technical risk.  The volatility of petroleum prices, in 
contrast, contributes a high level of uncertainty that pervades all phases of the production 
cycle. 

In making capital budgeting decisions, petroleum companies’ primary valuation metric 
has been the net present value (“NPV”) rule.  Pursuant to the NPV rule, an affirmative 
decision to undertake a project is made if and only if (“IFF”) the present value of the 
expected future net cash flows from the project, discounted at a rate that reflects the 
systematic risk of the project, is greater than the capital cost of the project.  Implicit in the 
NPV rule are the assumptions that:  

 
(1)  all cash flows will happen exactly at the times and in the amounts prescribed by the 

cash flow forecasts; and  
(2)  all investments are irreversible.   
 
The first assumption precludes managers from using new information, as it arrives, to revise 
their strategy.  The sequential, multiphase composition of the petroleum companies’ 
production cycle means there are many decision points where managers can utilize the 
information learned in the previous and current phases to select an optimum course of action 
for the next phase.  The assumptions of the NPV rule and the sequential, multiphase structure 
of the production cycle are not consistent.  In the later phases of the petroleum production 
cycle, where most of the information that can arrive, has arrived, managerial flexibility is less 
valuable. During the exploration and development phases, when relatively little information 
regarding geologic and technical risks is available, flexibility is more valuable.  The proper 
valuation of this flexibility may provide a petroleum company with the advantage it needs to 
succeed in the highly competitive market for petroleum leases.  Is there another valuation 
approach whose formulation and underlying assumptions are more aligned with the 
multiphase order of the petroleum production cycle?  An alternative to the NPV rule is to 
value a project as a real option and accept the project IFF its value is greater than its cost. 
 

1.2 A Definition of a Real Option and its Application to Valuing 
Petroleum Leases 

 
Seppi (2002) defines a real option by first considering how to define a commodity.  In his 
construction, a commodity is formed from three attributes: the nature of a good, G; the time 
when it is present, t; and the location where it is available, L, denoted by {G, t, L}.  This 
definition enables commodities to be a flow during a time period or a stock at a specific point 
in time. Consider the example of the commodity known as West Texas Intermediate (“WTI”) 
crude oil, which is defined as a good having a sulfur content of less than 0.42% and a gravity 
of approximately 38 degrees API and is priced for delivery at Cushing OK.  A real option, 
then according to Seppi, is defined as “a technology to physically convert one or more input 
commodities {G, t, L} into an output commodity {G’, t’, L’}”.  Many real options can be 
identified in the petroleum industry by the application of Seppi’s definition, including the 
following.  The Syncrude Project, which upgrades bitumen to WTI crude oil, is a goods 
conversion option.  A pipeline that transports crude oil from the field gate to a refinery 
represents an option to change locations.  A crude oil storage terminal is an option to change 
the time crude oil is available.  Most important of all, the phases of petroleum cycle represent 
goods conversion options, as is shown below.   



4 

 
Extraction Option: Extraction is the means to convert reserves into above ground barrels of 
crude oil.  A holder of petroleum reserves owns three options, subject to the terms of its lease.  
The first is the extraction option.  When petroleum revenues - the product of the price of 
crude oil and the volume extracted - exceed the cost, extraction will occur.  In this state, the 
holder of the reserves receives the cash flow and retains a right to suspend production. 
Conversely, if petroleum revenues fall below lifting costs, the holder of the reserves can 
suspend extraction, and retains the right to wait for higher crude oil prices in the future. In 
effect, the holder of shut-in reserves has an out-of-the-money call on the price of crude oil.  If 
reservoir conditions permit, at some high enough price of crude oil the holder may wish to 
exercise its second option:  to enhance the recovery of the reserves.  At some very low crude 
oil price, a petroleum company may exercise the third option, when the expected future net 
cash outflows will be greater than the cost of abandonment, by abandoning the reserves and 
reclaiming the surface site. 
 The value of the option to extract petroleum, denoted by e , is a function of three 
stochastic state variables with their associated risk factors: the price of crude oil, P(t) and the 
volatility of crude oil prices, given the information available during the extraction phase, 
σp(e); the quantity of recoverable reserves, Q(t) and the volatility of geological risk, given the 
information available in the extraction phase, σq(e); the cost of extraction, Ce(t) and the 
volatility of extraction cost, σc(e).  The motions of the three variables are specified by the 
stochastic differential equations (“SDE”) 
 

( ) ( ) ( ) ( )tdZedtetdP pp σα +=    ( ) ( ) ( ) ( )tdZedtetdQ qq σα +=     
 

( ) ( ) ( ) ( )tdZedtetdC cce σα += . 
 
The length of time extraction proceeds is Te and the time value of money is r.  Symbolically, 

( ) ( ) ( ) ( ) ( ) ( )[ ]rTeeetCtQtPee ecqpe ,,,,;,, σσσ= .  The quantity of information revealed by 
exploration and development regarding Q(t) and Ce(t) will be large, meaning σq(e) and σc(e) 
will be small.  The uncertain path followed by crude oil prices will be the dominant stochastic 
variable in the valuation of developed reserves. 
 
Development Option: The technology used to convert resources into reserves is termed 
development. The right to develop resources into reserves, without the obligation to do so, is 
a real option, the value of which accrues to a holder of a resource.  The holder of a resource 
will develop it when the value of a producing reserve, given by e, exceeds the cost of 
development, Cd(t).  The development option will have the boundary condition 

( ) ( )[ ]0,** tCteMax d−  where *t  is the optimal time to develop the resource.  The value of 
the development option, denoted by d, will be given by the function:  

( ) ( ) ( )[ ]rTddtCedd dced d ,,,;, σσ=  where dT  is the renewal term of the lease.  But e  is a 
function of QP, and eC , so:  ( ) ( ) ( ) ( )[ ]rTTddddCCQPdd edccqped ed ,,,,,,;,,, σσσσ=  
where ( )dqσ  is the risk associated with Q  based on the information available prior to 
development, ( )ddcσ  is the degree of uncertainty in the cost of development.  Note that the 
risk factors for the quantity of reserves, ( ) ( )ed qq σσ > , and the cost of extraction, 

( ) ( )ed ee cc σσ > , are greater in the development phase than the extraction phase.  The 
volatility of petroleum prices will continue to affect the motion of the value of the underlying 
reserves. 
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Exploration Option:  Exploration is the technology which converts prospects into petroleum 
resources.   It follows that a petroleum lease, which affords the holder the exclusive right, 
without obligation, to drill an exploration well at any time during the primary term, can be 
valued as an American call option that will be referred to as the exploration option.  The 
exploration option will be exercised when the value of the development option, given by d, 
exceeds the exploration costs, denoted by ( )tCx .  The boundary condition for the exploration 
option will be ( ) ( )[ ]0,** tCtdMax x−  where *t  is the optimal time to explore.  The value of 
the exploration option is a function of the state variables d  and xC with associated risk 
parameters ( )xdσ  and ( )x

xcσ , ( ) ( )[ ]rTxxCdxx xcdx x ,,,;, σσ=  where the tenure of the 
primary term of the lease is Tx.  However, d is a function of e and Cd.  Likewise, e is a 
function of P, Q and Ce.  It follows that x is a function of these variables and parameters as 
well.  So 
 

( ) ( ) ( ) ( ) ( )[ ]rTTTxxxxxCCCQPxx edxcccqpedx edx ,,,,,,,,;,,,, σσσσσ= . 

 
Geologic risk, represented by ( )xqσ , is significant in the exploration phase, as more 

exploration wells are abandoned than completed. The quantity of technical risk, ( )x
xcσ , will 

also be large due the uncertain cost of drilling rock not previously penetrated, in a remote 
location.  As the production cycle proceeds, the geologic and technical information revealed 
in the exploration and development phases will significantly reduce the quantity of 
uncertainty associated with Q  and C , symbolically, ( ) ( ) ( )qdx qqq σσσ >>  and 

edx ccc σσσ >> .  The option of deferring exploration or development until some of the 
uncertainty can be resolved, say by competitors drilling in same the area, will be valuable. 
 
The foregoing discussion has established the sequential arrangement of the real options to 
explore, develop and extract petroleum.  Consequently, a petroleum lease can be valued as a 
three stage compound option, subject to three sources of uncertainty.  The valuation of a 
petroleum lease is further complicated since the two variables Q and C, representing the state 
of the geology and technical cost, are not traded and priced in capital markets.  To simplify 
the valuation of a petroleum lease it is assumed that:  (1) the variables Q and C are 
deterministic;  (2) the price of crude oil, which contributes a significant quantity of 
uncertainty in all phases of the production cycle, can be modeled by a single-factor stochastic 
process; and (3) consistent with the long time frames required to complete exploration, 
development and extraction programs, the options comprising the production cycle have 
infinite lives. 
 

1.3 The Course of this Investigation 
 
To value a petroleum lease as a compound real option, a number of mathematical techniques 
are needed, including the following. 
 
(1) A method of deriving the Black-Scholes-Merton partial differential equation (“BSM 

PDE”) is developed in Chapter 2, consistent with the fact that while barrels of crude oil 
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on the surface are traded in a continuous commodity market, barrels of resources and 
reserves in the subsurface are not. 

(2) A stochastic process, the attributes of which enable it to model crude oil prices, is 
selected in Chapter 3, after consideration of six single-factor candidate processes. 

(3) Methods to estimate the parameters of the stochastic process used to model crude oil 
prices are developed in Chapter 4 by employing two approaches.  In the first, a 
regression equation specific to the stochastic process selected in Chapter 3 is derived 
and applied to a time-series of spot crude oil prices.  The second approach consists of 
deriving the value of a futures contract for crude oil and using it to calibrate the 
parameters of the selected stochastic process to the futures market. 

(4) The valuations of certain perpetuities, where the cash flow is a function of the price of 
crude oil modeled by the stochastic processes, are derived in Chapter 5. The perpetuity 
valuations are used to demonstrate an important difference between the stochastic 
behavior of barrels of crude oil on the surface and in the subsurface and as particular 
solutions to the ordinary differential equations (“ODE”) derived in Chapter 6. 

(5) Derivations of the BSM PDE using the selected single-factor process are developed in 
Chapter 6 which when solved as ODE’s by repeatedly applying the boundary conditions 
known as value-matching and smooth-pasting value the compound real options inherent 
in the petroleum production cycle. 

 
Finally, in Chapter 7, certain conclusions are presented. 
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Chapter 2 
 

A Derivation of the BSM PDE to 
Value Real Options 
 

2.0 Introduction 
 
This chapter contains a derivation of the BSM PDE appropriate to value a real option.  The 
valuation of a real option differs fundamentally from that of a financial option.  Certain of the 
assumptions that underpin the derivation of the BSM PDE to value financial options cannot 
be relied upon when valuing real options.  The assumption that the underlying asset is 
continuously traded and can be used to hedge the real option, is not consistent with the 
valuation problem described in Section 1.2.  To identify an appropriate derivation of the BSM 
PDE, five alternate derivations were reviewed, considering both the number of assumptions 
required and the consistency of the assumptions with respect to the valuation problem.  The 
assumptions necessary to obtain a derivation of the BSM PDE can be allocated into two 
broad classes: those common to all the derivations reviewed; and the incremental 
assumptions specific to each derivation. 
 Let the contingent claim to be valued, representing a firm or project, be a function of 
the uncertain output price received, P(t), and time, t, and denoted by F(P,t).  All of the 
derivation methods considered herein are based on three common assumptions: 
 
(1) The underlying asset, P(t), follows a diffusion process specified by the SDE,        

( ) ( ) )(,,)( tdZtPdttPtdP σα +=             (2.1) 
where: (a) ( )tP,α  is a deterministic function that specifies the expected instantaneous 
   growth rate of P, in dollars per unit-time; 
 (b) ( )tP,σ  is a deterministic function that specifies the annualized standard 

deviation of the returns from P; and 
               (c) )(tdZ  is the increment of a Wiener process with zero drift and unit 

variance per unit of time. 
(2) F(P,t) is at least twice differentiable, so that Itô’s Lemma can validly be applied to F. 
(3) The risk-free interest rate, r, is known and constant across time. 
 
What incremental assumptions are necessary to complete the derivation of the BSM PDE?  
The answer depends on the route followed to derive the BSM PDE.  The principal 
incremental assumptions of four of the five methods:  Delta Hedging, Replication, Spanning 
Assets, and Dynamic Programming, were found to be inconsistent with the valuation of real 
options.  This discussion is contained in Appendix I.  The fifth method, the equilibrium 
method due to Sick (1995), based on the Consumption Capital Asset Pricing Model 
(“CAPM”), is parsimonious in terms of the number of incremental assumptions required and 
their consistency with real option valuations.  Sick’s derivation of the BSM PDE is exposited 
below. 
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2.1 Sick’s Derivation of the BSM PDE for Real Options 
 
According to Sick (1995), the discrete time version of the Consumption CAPM asserts that 
the value at time t of an uncertain asset tX~  at time t + 1, denoted by [ ]1

~
+tt XV  ,  is a function 

of: the risk-free rate, r ; the time, t, expected value of the asset at time t + 1; and the 
covariance of the asset price with minus the time t marginal utility of consumption at t + 1, 
denoted by 1,

~
+ttM .  This can be represented as 

 
[ ]( ) [ ] [ ]1,111

~,~~1~
++++ −=+ tttttttt MXCovXErXV  (2.2) 

 
In (2.2) let:  ttt ∆+=+1  ,  ( ) ttPPX tttt ∆+= ∆+∆+ ,~~ δ ,     
 
   [ ] tttt PXV =∆+

~ ,     and       ttttt PPP −=∆ ∆+∆+
~~ ,                          

 
where δ(P,t) is a deterministic function that specifies the rate, in dollars per unit time, of the 
income paid to the holder of the underlying asset, P. Replace r with  r∆t and 1,

~
+ttM  with 

M~∆ , to allow t∆  to approach zero, then 
 
( ) ( )[ ] ( )[ ]MttPPCovttPPEtrP ttttttt

~,,~,~1 ∆∆+−∆+=∆+ ∆+∆+ δδ . (2.3) 
 
Since δ(P,t) and Pt are known at time t they can be treated as constants.  For random variables 
X and Y any constant b, Cov(X+b,Y) = Cov(X,Y).  Then ),( tPδ can be removed and Pt 
subtracted from inside the covariance in (2.3) without effect giving (2.4), 
 

( )[ ] [ ]MPPCovtrPttPPPE ttttttt
~,~,~ ∆−+∆=∆+− ∆+∆+ δ . (2.4) 

 
Taking the limit as dtt →∆  of (2.4) yields 
 

( )[ ] [ ]dMdPCovrPdtdttPdPE t ,, +=+δ . (2.5) 
 
The motions of P and M are diffusions.  Assume M follows the diffusion process 
 

( ) ( ) MMM dZtMdttMdM ,, σα += . (2.6) 
 
Substituting (2.1) and (2.6) in (2.5) and using ( ) ( )YXCovacdcYbaXCov ,, =++ , then 
 

( )[ ] ( ) ( ) ( )MM dzdzCovtMtPrPdtdttPdPE ,,,, σσδ +=+ . 
 
The standard deviation of both the Brownian Motions dZ and dZM is dt .  Since 

( ) YXYXYXCov ,, ρσσ=  then ( ) dtdZdZCov
MZZM ,, ρ= , where 

MZZ ,ρ  is the correlation 
coefficient between dZ and dZM, or between returns on  M  and  P.  So 
 

( )[ ] ( ) ( ) dttMtPrPdtdttPdPE
MZZM ,,,, ρσσδ +=+ . (2.7) 
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The holder of P expects to receive capital gains at the rate α(P,t) and income at the rate  
δ(P,t) so over time dt, 
 

( )[ ] ( ) ( )dttPdttPdttPdPE ,,, δαδ +=+ . (2.8) 
 
Equating (2.7) and (2.8) and eliminating dt yields 
 

( ) ( ) ( ) ( )
MZZM tMtPrPtPtP ,,,,, ρσσδα +=+ . (2.9) 

 
This, (2.9), is the total return equation.  It says rate of capital gain plus income equals the risk 
free return plus a risk premium.  Repeating the foregoing steps, (2.2) to (2.8), leads to, 
 

( )[ ] [ ]dMdFCovrFdtdttPdFE t ,, +=+π , (2.10) 
 
an expression for the expected capital gain, dF, plus income, denoted by the deterministic 
function π(P,t), from F(P,t).  F(P,t) was assumed to be at least twice differentiable, in its first 
argument and differentiable in its second argument, allowing an expansion of dF by Itô’s 
Lemma as follows, 
 

( ) ( ) ( ) dZFtPdtFtPFtPFdF PPPPt ,,,
2
1 2 σασ +⎥⎦

⎤
⎢⎣
⎡ ++= . (2.11) 

 
Substitute (2.11) on both the RHS and LHS of (2.10), and the diffusion assumption for dM, 
eliminate dt from both sides, and collect like terms to arrive at 
 

( ) ( ) ( ) ( )[ ] ( ) 0,,,,,
2
1

,
2 =+−−++ tPrFFtPtPtPFtPF PMPMPPt πρσσασ . (2.12) 

 

In (2.9) it was shown: ( ) ( ) ( ) ( )tPrPtPtPtP MPM ,,,, , δρσσα −=− , so 
 

( ) ( )[ ] ( ) 0,,,
2
1 2 =+−−++ tPrFFtPrPFtPF PPPt πδσ . (2.13) 

 
If the risk factor for the marginal utility of consumption is  
 

( ) φ
σσ

ασ =
−

=
−

=
M

M

M

M
M

rrrtM ,  

 
which is the market price of risk, then (2.12) can be written as 
 

( ) ( ) ( )[ ] ( ) 0,,,,
2
1

,
2 =+−−++ tPrFFtPtPFtPF PMPPPt πφρσασ . (2.14) 

 
This general form of the BSM PDE was obtained with no reliance on assumptions of 
continuous trading and hedging of the underlying asset.  Furthermore, (2.14) is in a general 
enough form to allow the use of the most appropriate diffusion process to model the behavior 
of P.  The consideration of certain diffusion processes with a view to selecting one to model 
crude oil prices is the subject of the next chapter. 
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Chapter 3 
 

A Stochastic Process to Model Crude 
Oil Prices 
 

3.0 Introduction 
 
In the previous chapter the deterministic functions that define the motion of the underlying 
asset, or output price, via the diffusion process (2.1), were left undefined.  The task in this 
chapter is to define functions for the drift and diffusion terms in (2.1) appropriate to model 
the price of crude oil.  The chapter opens with a discussion of the attributes of an appropriate 
stochastic process followed by an examination of the behavior of a process that meets the 
necessary criteria. A comparison of six stochastic processes and the selection of an 
appropriate process close the chapter. 
 

3.1 Attributes of an Appropriate Stochastic Process 
 
Robel (2001) posits that to model commodity prices usefully, a stochastic process, ( ){ } 0≥ttP , 

must exhibit three characteristics: 
 
(1) generates positive values, P(t) > 0, for all t ≥ 0; 
(2) reverts to a mean value, P , over time; and 
(3) if the process involves more than one unit of the commodity, reverts to the number of 

units of the commodity times the reversion price of one unit. 
 
To Robel’s list a fourth characteristic is added: the property that as t→∞, P(t) is not attracted 
to either of the boundaries P = 0, or P = ∞ .  The economic necessity and mathematical 
definition of each of these characteristics are discussed below. 
 
Positive Prices: Commodity prices must be greater than zero, otherwise suppliers would have 
no motivation to vend.  To demonstrate that a particular process will generate only positive 
values, two steps were utilized. First, a solution of the SDE that defines the process was 
found.  The solution of the general linear single-factor SDE is given in Klebaner (1998) p. 
121-123.  Second, the range of the solution function, P(t), was shown to be positive over the 
function’s domain. 
 
Reversion to a Mean: Mean reversion is the tendency of a random variable if it is above 
(below) some normal level to drift down (up) over time, towards the normal level.   There are 
economic arguments that commodity prices should exhibit mean reversion.  In a competitive 
market, with no barriers to entry or exit, if a commodity price rises above an equilibrium 
price, new supply will come forward and demand will fall, drawing the market price back to 
the normal level.  Conversely, supply will decrease and demand increase if the price of a 
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commodity falls below an equilibrium level.  In the long run, a commodity’s price should 
revert to its supply cost because of competition.  In a market where “pure competition” does 
not exist, the case for the reversion of prices is stronger.  For the commodity crude oil, a 
cartel of suppliers, known as the Organization of Petroleum Exporting Countries (“OPEC”), 
has stated that it will “adjust” the supply of crude oil to obtain a price objective between $22 
and $28 per barrel (“BBL”), for the “OPEC basket” marker crude.  The stated intentions of 
OPEC augment the case for mean reverting behavior in the price path of crude oil, but in no 
way guarantee it.  In both of the Persian Gulf Wars, 1991 and 2003, the price of crude oil 
spiked up, to over $40 per BBL.  The opposite occurred in 1998 when over production by 
certain members of OPEC caused prices to fall to $10 per BBL, briefly. 
 To prove a given stochastic process reverts to a mean value, as ∞→t , two 
approaches are employed.  In the first, an expression for the first moment of the process is 
found, if it exists and the limit taken as ∞→t .  The second route requires the derivation of:  
the process’ stationary density, its probability density at ∞=t , and the first moment of the 
stationary density.  Application of both approaches may be necessary, because not all 
processes have both a first moment and a stationary density.  The stationary density is defined 
in Klebaner (1998) p157-158. 
 
Homogeneity Condition:  This characteristic will be required if the underlying asset is the 
product of price and quantity, so that the price of n BBL’s will revert to Pn .  Robel (2001) 
defines the homogeneity condition for an SDE of the form 
 

( ) ( )[ ] ( )[ ] ( )tdZPtPdtPtPtdP ,, σα += . 
 
Then for any a > 0, the motion of the process Y(t) = aP(t) should be determined by 
 

( ) ( )[ ] ( )[ ] ( )tdZYtYdtYtYtdY ,, σα += ,    
 
where PaY = .  The homogeneity condition will be satisfied if the drift and volatility 
functions are homogeneous functions of degree one of the pair ( ){ }PtP , . 
 
Boundary Behavior:  In the long run, commodity prices tend neither to zero, nor to infinity.  
This implies that to realistically model commodity prices, a stochastic process cannot be 
attracted to either of the boundaries 0=P , or ∞=P .  The behavior of a stochastic process at 
a boundary, whether it is attracted or reflected, is examined by determining the convergence 
or divergence, respectively, of the scale function at the boundary.  The integral that defines 
the scale function can be found in Klebaner (1998) p 150. 
 

3.2 The Attributes of the Inhomogeneous Geometric Brownian 
Motion (“IGBM”) Process 

 
The IGBM process is defined by the SDE, (3.1), with ( ) 00 pP = , 
 

( ) ( )[ ] ( ) ( )tdZtPdttPPtdP ση +−= . (3.1) 
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In (3.1) η  is the speed, or strength of reversion to P  and σ  is the volatility of the diffusion.  
The IGBM process is studied to see if it posses the four characteristics necessary to model 
commodity prices, below. 
 
Positive Prices:  The direct application of the general solution for linear SDE’s provides the 
solution of (3.1) 
 

( ) ( ) ( )
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−= ∫

t
dssZsPptZttP

0

2

0

2

2
exp

2
exp σσηησση . (3.2) 

 
Since ( ) 0exp ≥x for all x , then ( ) 0>tP  for all 0≥t . 
 
Reversion to a Mean:  The first moment is found by taking the expectation at 0=t  on both 
sides of (3.1) and applying Fubini’s Theorem to the LHS of (3.1) 
 

( )[ ] ( )[ ] PtPEtPE
dt
d ηη =+ . (3.3) 

 
Equation (3.3) is a first order, non-homogeneous ODE in ( )[ ]tPE  that can be solved with the 
integrating factor ( )tηexp  as follows, 
 

[ ]{ } dsePsPEed
t st s ∫∫ =
00

)( ηη η . (3.4) 

 
Completing the integration and substituting ( )[ ] 00 pPE =  in (3.4), results in the first moment, 
 

( )[ ] ( ) tePpPtPE η−−+= 0 . (3.5) 
 
Taking the limit of (3.5) as ∞→t  proves ( )tP  reverts to P .  A second method to show that 
( )tP  reverts to P  involves finding the stationary density of ( )tP , denoted by ( )pπ , and 

deriving its first moment.  The stationary density of the diffusion (2.5) and the IGBM is 
 

( )
( )

( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧

= ∫ dy
y
y

p
Cp

P

22
2exp
σ
α

σ
π ⎥

⎦

⎤
⎢
⎣

⎡
−=

⎟
⎠
⎞

⎜
⎝
⎛ +−

p
PpC

2

12

2
2exp2

σ
η

σ
σ
η

 (3.6) 

 
since for the IGBM process ( ) ( )yPy −= ηα  and ( ) 222 yy σσ = .  The constant C  is 
determined by setting the integral of (3.6) from 0 to ∞  equal to one.  The IGBM’s stationary 
density is  
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +Γ⎟

⎠

⎞
⎜
⎝

⎛=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ +

12/2
2

2
12

12

2

22
2

σ
η

σ
ηπ σ

η

σ
η

σ
η

p
P

epPp . (3.7) 

 
In (3.7) ( )XΓ denotes the gamma function.  The first moment of ( )pπ  is defined as 
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( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +Γ⎟

⎠
⎞

⎜
⎝
⎛== ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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⎠
⎞
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⎠
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1
2
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2

2
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η

σ
ηπ σ
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σ
ησ

η
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 (3.8) 

 

( ) PPpE =⎟
⎠
⎞

⎜
⎝
⎛ +Γ⎟

⎠
⎞

⎜
⎝
⎛Γ⎟

⎠

⎞
⎜
⎝

⎛= 12/22
222 σ
η

σ
η

σ
η . 

 
Again, the IGBM process is shown to revert to P  as ∞→t . 
 
Homogeneity Condition:  Let ( ) ( )taPtY =  for 0>a , then from (3.1) 
 

( )( ) ( )( ) ( )( ) ( )( )PtPataPPatYYYtY ,, αηηα =+=−=  and 
 

( )( ) ( ) ( ) ( )( )PtPatPatYYtY ,, σσσσ === . 
 
The IGBM process is homogeneous of the pair ( ){ }PtP ,  satisfying the homogeneity 
condition. 

Boundary Behavior:  The scale density for the diffusion process (2.5) and the IGBM is  
 

( ) ( )
( )

=
⎭
⎬
⎫

⎩
⎨
⎧
−=′ ∫

P
dy

y
ypS

2

2exp
σ
α  

⎭
⎬
⎫

⎩
⎨
⎧

p
p 2

2 2exp2

σ
ησ

η

. (3.9) 

 
The integral of (3.9) yields the scale function for the IGBM  
 

( ) ( ) dyyydyySpS
PP

⎭
⎬
⎫

⎩
⎨
⎧=′= −∫∫ 1

2
2

2 2exp
σ
η

σ
η

. (3.10) 

 
At the boundary 0=P  the term [ ]P2/2exp ση  will dominate the integral and the limit of 

[ ]P2/2exp ση  as 0→P  will equal ∞  if 0/2 2 >ση , so the integral, ( )0S  will not converge 
and the IGBM diffusion will not reach 0=P .  Similarly, at the boundary ∞=P , the term 

2/2 σηP  will dominate the integral and the ∞→P  limit 
2/2 σηP  = ∞ , if 0/2 2 >ση .  The 

integral ( )∞S  will diverge and the IGBM diffusion will not reach ∞=P . 
 While possessed of the preceding four positive attributes, the IGBM process does 
have one detrimental feature.  There are restrictions on the values the IGBM’s parameters, η  
and σ , can take on, lest the variance of the process become infinite!  The determination of 
the parameter restrictions begins by deriving an expression for the second moment of the 
stationary density. 
 

( ) ( ) == ∫ dppppE π22 ⎟
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Var ( ) ( ) ( )22 2/ σησ −= Pp  (3.11) 
 
If 22 ση =  then the denominator in (3.11) will be zero and the variance infinite.  The variance 
must be positive, implying ση >2 , for 0>η .  The restrictions on the parameters of the 
IGBM process are explored further by deriving its second moment.  Applying Itô’s Lemma 
to ( )2tP shows 
 

( )[ ] ( ) ( ) ( )[ ] ( ) dZtPdttPtPtPPtPd 22222 222 σσηη ++−= . (3.12) 
 
Again, on both sides of (3.12) the expectation is taken at t = 0 and Fubini’s Theorem applied 
on the LHS, yielding  
 

( )[ ] ( ) ( )[ ] ( )[ ]tPEPtPEtPE
dt
d ηση 22 222 =−+ . (3.13) 

 
( )[ ]tPE  is known from (3.5).  As a result (3.13) is a first order, non-homogeneous ODE that 

can be solved using the integrating factor ( )[ ]t22exp ση − , 
 

( ) ( )[ ]{ } ( ) ( ) ( ){ }dsePpdsePPsPEed
t

s
t

s
t

S ∫∫∫ −−− −+=
0

20
0

22
0

222 2 σησηση η . (3.14) 

 
The integrals on both sides of (3.14) depend on the terms in the exponential functions.  
Variations in the values of the exponents results in three different cases for the second 
moment. 
 
Case 1:  If  02 2 =−ση , then (3.14) becomes 
 

[ ] ( ){ }∫ ∫ −−+=−
t t sdsePpdsPPptPE
0 0

02
0

2 2)( ηη  

 
[ ] ( ) ( )122)( 02

0
2 −−++= − tepPPtPptPE ηη . (3.15) 

 
The limit as ∞→t  of (3.15) will be ∞  because of the t  in the second term on the RHS. 
 
Case 2:  If 02 =−ση , then (3.14) becomes 
 

( )[ ] ( ){ }∫ ∫−+=−
t tst dsPpdsePPptPEe
0 0

0
222

0
22 2 σσ σ  

 
( )[ ] ( ) ( ) ttt tePpPePeptPE

222

0
222

0
2 212 σσσ σ −−− −+−+= . (3.16) 
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The limit as ∞→t  of (3.16) is 22P .  While finite, the variance of the IGBM process in Case 
2 may be orders of magnitude larger than 2σ , for the values associated with most commodity 
prices,.  Var[P(∞)] = 22 σ>>P . 
 
Case 3:  If neither 02 2 =−ση  nor 02 =−ση , then (3.14) will be 
 
( ) ( )[ ] ( ) ( ) ( ){ }dsePpdsePPptPEe

t st st ∫∫ −−− −+=−
0

2
0

0

222
0

222 2 σησηση η  

 

( )[ ] ( )
( )

( )[ ] ( ) ( )[ ]tttt eePpPePePtPE
222 2

02
2

2

2
22

0
2 21

2
2 σηησηση

ση
η

ση
η −−−−−−− −−

−
+−

−
+= .  (3.17) 

 
The limit of (3.17) as ∞→t  is ( )22 2/2 σηη −P .  It follows that 

( )[ ] ( ) ( )2
2 2/ σησ −=∞ PPVar .  Note this expression for the variance of the IGBM process is 

the same as the variance of the stationary density, (3.11), since both are taken at ∞=t .  To 
summarize, the foregoing has established that in order that the variance of the IGBM process 
be finite and positive the parameters of the process are subject to the restrictions  2ση ≠ , 

22 ση ≠  and 22 ση > .  
 

3.3 Selection of an Appropriate Stochastic Process 
 
The mathematical techniques employed above to discern the characteristics of the IGBM 
process were utilized to review the attributes of five other single-factor stochastic processes: 
 
(1) Geometric Brownian Motion (“GBM”),    PdzPdtdP σα += ; 
(2) Ornstein-Uhlenbeck (“OU”),                     ( ) dzdtPPdP ση +−= ; 
(3) Exponential OU,                                        ( ) ( )[ ] PdzdtPPdP σηση +−+= ln2/ln 2 ; 
(4) Cox-Ingersoll-Ross (“CIR”),                     ( ) dzPdtPPdP 2/1ση +−= ; and 
(5) Stochastic Logistic – Verhulst (“SLV”),   ( ) PdzPdtPPdP ση +−= . 
 
The results of the review are discussed and summarized in Appendix II.  Of the six, single-
factor stochastic processes reviewed, only the IGBM process has all the attributes listed in 
Section 3.1 necessary to model commodity prices.  The IGBM process: 
 
(1) generates strictly positive values; 
(2) reverts to P ;  
(3) notwithstanding its name, is homogeneous; and  
(4) will be reflected at either of the boundaries 0=P  or ∞=P , if 0/2 2 >ση .   

 
For these reasons the IGBM process is selected to model crude oil prices.  Whether, or not, 
the parameter restrictions found in Section 3.2 will prevent the IGBM process from modeling 
the price of crude oil is addressed in the next chapter, wherein values of its parameters are 
estimated.  
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Chapter 4 
 

Estimation of Parameters 
 

4.0 Introduction 
 
In this chapter two approaches to estimate the parameters necessary for the IGBM process to 
model crude oil prices are implemented.  In the first approach a regression equation is derived 
and then applied to an historic time-series of spot crude oil prices.  The second approach 
involves deriving formulas for futures contracts and call options on futures contracts and 
calibrating these formulas to the prices prevailing in the markets for each of these contracts.  
The estimates obtained from the two approaches are compared and a selection of appropriate 
parameters is made in the closing section. 
 

4.1 Time-Series Approach 
 
Derivation of Regression Equation: A continuous time solution of the IGBM SDE is derived 
and then restated in discrete time to obtain a recursive form, below. 
 

( ) ( )[ ] ( ) ( )tdZtPdttPPtdP ση +−=  (4.1) 
 
To solve (4.1), let ( ) ( )[ ]tPPtY −=η  and apply Itô’s Lemma to obtain 
 

( ) ( ) ( ) ( )tdZtPdttYtdY ηση −=+ . (4.2) 
 
The resulting SDE can be solved with the integrating factor, ( )tηexp , which gives 
 

( )[ ] ( ) ( )sdZsPesYed
t sst

∫∫ −=
00

ση ηη . (4.3) 

 
Integrate (4.3) and substitute for ( )tY to find  
 
( ) ( ) ( ) ( ) ( ) ( )sdZsPeePePtP

t sttt σηηη ∫ −−−− ++−=
0

01 . (4.4) 

 
Evenly subdivide the interval [0,T] into N subintervals. Let ti = iT/N  for i = 1,....,N and 
denote each time step as 1−−=∆ ii ttt .  Then (4.4) recast in discrete time is 
 

)()()()1()(
1

)(
1 sdZtPeetPePtP i

it

it
sitt

i
t

i σηηη ∫
−

−−∆−
−

∆− ++−= .    (4.5) 

By the Itô Isometry Theorem the integral on the RHS of (4.5) will be a N(0, 2σ ) random 
variable.  So 
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where ε  is a random variable distributed ( )1,0N .  Let )()()(
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For small t∆ , ( ) ⎥⎦
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σ is approximated by ( )21
2

−itPσ  in (4.7).  Since 
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ε , then the variance of ( ) 2, εσε it  , for the IGBM will be given by the last term in 

(4.7).  Then from (4.6)  
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Equation (4.8) suggests the linear regression approach 
 
( ) ( )

( ) ( ) ε̂1ˆˆ
11

1 +⎥
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⎤
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where â  is the intercept, b̂  is the slope and 2

εσ  is the standard error of residuals.  The 
parameters of the IGBM process are obtained from the above statistics by 
 

ln1
t∆

−=η  ( )1ˆ +a ,              ( )abP ˆ/ˆ −= ,          and     te ∆−−
= ηε

ησσ 21
2 . 

 
Application to a Time-Series: A monthly time-series comprised of spot WTI crude oil prices 
for the period from May 1983 to August 2003 was obtained.  Some basic statistics for the 
time-series follow in Appendix III.  The regression scheme specified by (4.9) was applied to 
the whole of the time-series and a subset from August 1998 to August 2003.  The subset of 
the time-series was selected to see whether the parameter estimates varied with the sample 
period.  The estimates contained in Table 4.1 were computed. 
 

Table 4.1  Estimates of IGBM Parameters, Time-Series Approach 
Parameter May ‘83 – Aug. ‘03 Aug. ‘98 – Aug. ‘03 
Speed of reversion  (η) 0.419 0.393 
Mean Reversion Value ( )P  $21.827 $29.633 
Annual Volatility (σ)  34.232% 38.790% 

 
While the speed of reversion and the volatility have remained somewhat constant over the 
sample period of twenty years, the mean reversion value, P , appears to have increased.  The 
observed upward movement in P  is consistent with certain supply policies announced by 
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OPEC.  The upward shift in P  is likely the reason for the deviations from a straight line, 
between $22 and $30 per BBL, in the percentile versus percentile plot in Figure 4.1. 
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Figure 4.1 Percentile vs Percentile (Monthly Prices) 

 
In Figure 4.1 the percentiles for the monthly time-series of both historic and simulated crude 
oil prices are compared.  The simulated prices were generated using the Milstein Scheme for 
the IGBM given by (4.10) using the estimates of  η , P , and σ  determined by the regression 
for the May 1983 to August 2003 time-series.  The Milstein Scheme in (4.10) was derived by 
the direct application of (4.9) and (4.10), P. 33 in Jackel (2002) to (3.1).   
 

[ ]
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2
11)()( 22

1 εσεσηη     (4.10) 

 
Ten time-series of crude oil prices were generated with (4.10) and the percentiles for each 
calculated.  The median percentile for the sample of ten time-series is plotted on the vertical 
axis on Figure 4.1.  The points in Figure 4.1 form an approximately straight line through the 
origin, consistent with the notion the IGBM can model crude oil prices.  Note there is little 
deviation at both ends of the distribution. 
 Time-series data is also used to estimate the risk premium for crude oil, φσρ PPM , as 
defined in Chapter 2.  The correlation between the returns from holding crude and the equity 
market is denoted by PMρ .  Monthly returns for each of crude oil and common equity were 
computed using WTI spot prices and the Standard & Poors’ 500 (“S&P 500”) total return 
index, respectively.  The relationship between the monthly returns for the S&P 500 and WTI 
crude oil is illustrated on the previous page.  The correlation coefficient between the two 
return time-series, for 20 years of data, is -0.142.  While the magnitude of ρ  is small, its sign 
has a significant implication:  the risk premium φσρ PPM  is negative.  
 Time-series data was used in Weir (2002) to estimate ranges for the historical equity 
risk premium, rM −µ , and equity volatility of 3.8% to 5.1% and 13% to 23%, respectively.  
Single point estimates of 4.5% and 17% for the equity risk premium and equity market 
volatility, respectively, were selected.  This implies a market price of risk of =φ 0.265, since 

( ) MM r σµφ /−= . 
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Figure 4.2 Monthly Returns from WTI vs Equity 

 
 

4.2 Calibration Approach 
 
The calibration approach to estimating parameters entails two steps.  First, a valuation model 
of a futures contract is derived, assuming the spot price evolves through time as an IGBM.  
Second, a search is conducted for those values of the parameters that will calibrate a sequence 
of futures valuations to a sequence of prices of traded futures contracts.  The sequence of 
traded futures contracts, ordered according to the increasing maturity of the contracts, is 
referred to as the term structure, or futures curve.  
 
Valuation of Futures Contracts:  The value of a futures contract at time t that settles at a later 
time T, denoted by Ft(T), according to Seppi (2002) is equal to the time t risk-neutral 
expectation of the spot price at time T, 
 

[ ] [ ])(ˆ)(ˆ)( TPTPTF
ttt

Ε=Ε= . (4.11) 
 

The risk neutral motion of P, denoted by P̂ , is given by an IGBM process with a risk-neutral 
drift, ( )tP,α̂ . Subtracting the risk premium, ( )φσρ PPM , from the real world drift results in 
( )tP,α̂ .  The volatility of an IGBM process is, ( ) PP σσ = , so 
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Let ρσφηη +=ˆ  and ( )ρσφηη += /ˆ PP  so that the risk-neutral process for the spot price is 
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Since the expected value at time  t of a stochastic variable following an IGBM is (3.5), 
then, from (4.11), (3.5) and (4.12) the value of a futures contract is 
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The above relationship, (4.13), has also been derived as a solution of the PDE for futures 
prices by Bos, Ware, and Pavlov (2003).  The value of a futures contract, given by (4.13), can 
be interpreted as having two components.  The first term is a long run mean.  The second 
term is a revision in expectations.  The long run mean can be obtained by taking the limit of 
(4.13) as ∞→T .   
 Consider the ability of (4.13) to model the observed term structure of crude oil futures 
prices.  When the spot price,  P(t), is greater (less) than the long run mean, then the second 
term will be positive (negative) and will decline monotonically with the maturity of a 
contract, since dFt(T)/dT is negative.  Futures curves having a negatively, or positively, 
sloped term structure are said to be in “backwardation” or “contango”, respectively. Both 
types of futures curves can be modeled by (4.13).  The expression (4.13) is, however, not 
capable of representing a term structure that has both a positive and a negative slope, at 
different maturities.  Such term structures arise when the mid-maturity contracts are higher, 
or lower, than both the spot price and long dated contracts.  The monotonic expression, 
exp ( )( )[ ]tT −+− ρσφη  inhibits (4.13) from modeling term structures that are convex, or 
concave. 
 
Estimates by Calibration to the Futures Curve: Baker, Mayfield and Parsons (1998) and 
Bessembinder, Coughenour, Sequin, and Smolder (1998) have observed that when spot crude 
oil prices are subject to a shock up, or downwards, the subsequent term structure tends to be 
negatively or positively sloped, respectively.  This observation is consistent with the view 
that crude oil prices are mean reverting and suggests that the futures markets’ view of the 
long run mean reverting price is the price of the longest dated future.  For crude oil, this 
implies ( )6tFP = , since crude oil futures contracts are traded having maturities of up to six 
years.  Using the assumption that ( )6tFP =  and the futures curve ( )0tF  to ( )6tF , the 
SOLVER tool in Excel is used to search for values of the parameters η  and ρσφ  that 
calibrate (4.13) to the observed term structure of crude oil futures, with the minimum 
absolute error.  The estimates of parameters obtained by calibrating (4.13) to the futures 
curve at two arbitrary dates are shown in Table 4.2. 
 

Table 4.2  Estimates of IGBM Parameters, Calibration Approach 
Parameter October 13, 2003 October 30, 2003 
η  1.369 2.462 
ρσφ  3.05% 7.89% 

P  $26.09 $26.69 

 
The calibration procedure is illustrated in Figure 4.3 for the crude oil futures curve on 
October 30, 2003. 
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Figure 4.3  Actual vs Model Futures Prices 
 

The above graph illustrates the difficulty of replicating a convex futures curve with (4.13).  
The parameters estimated by the search algorithm place the model in the midst of the actual 
term structure.  The relative error in applying the model to the October 30,2003 curve is 
approximately 1%.  Nonetheless, the monotonic property of (4.13) means it cannot fully 
capture the shape of the term structure of futures contracts in all possible cases. 
 
Estimates by Calibration to Options on Futures: A direct estimate of the volatility of crude 
oil is not available by calibrating (4.13) to the futures curve.  Instead, valuation models of call 
options exercisable for crude oil futures contracts are calibrated to market prices to extract an 
estimate of the volatility of crude oil futures.  Applying the futures call option model in Black 
(1976) to a sequence of at-the-money calls resulted in the following estimates of implied 
volatility of the underlying futures contracts. 
 

Table 4.3  Implied Volatility of Crude Oil Futures At November 3, 2003 
Call Expiry Feb. 2004 June 2004 Dec. 2004 Dec. 2005 
Volatility 31.7% 30.7% 25.9% 25.7% 

 
A trend of declining implied volatility with increasing maturity of the futures contracts is 
apparent in the Table 4.3.  What does this say about the volatility of spot prices?  The answer 
depends on the model of futures prices used in the call valuation. 
 Black’s 1976 call valuation model utilizes the “cash and carry” model of futures 
prices, ( ) ( )( )[ ]tTrPTPF −−= δexp, , where delta is the convenience yield net of carrying 
costs.  Applying Itô’s Lemma to find dF and computing returns by dividing dF by F, shows 
that the volatility of the futures prices, Fσ , equals that of crude oil prices, Pσ .  Which of the 
above list of implied volatilities should we select as being an estimate of Pσ ?  Since Black’s 
1976 model is based on the assumption that the underlying is following a GBM, it cannot 
model the attenuation of volatility with increasing maturity of the futures contracts. 
 Clewlow and Strickland (2000) propose modeling the attenuation of volatility with 
the increasing maturity of futures contracts explicitly, using the SDE 
 

( ) ( ) ( ) ( )tdZTFeTdF t
tT

t
−−= ησ . (4.14) 

 
There is no drift term in (4.14). Clewlow and Strickland state that in a risk-neutral world a 
futures contract that had no cost can offer an investor no return.  Utilizing (4.14) to model the 
underlying forward contract that matures at time s, Clewlow and Strickland (2000) derive the 
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value, denoted by C, at time t of a European call option with strike price K that expires at 
time T, as follows 
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The valuations of call options exercisable for futures given by (4.15) are used to calibrate the 
market prices of a set of at-the-money futures options to a corresponding term structure of 
prices of crude oil futures contracts.  Calibration proceeds by searching for the magnitudes of 
σ  and η  that minimize the difference between the model values and market prices of the 
futures call options.  The search is conducted using the SOLVER Tool in the Excel 
spreadsheet located in Appendix IV.  The estimates for σ  and η  found by the search, using 
the market prices prevailing on November 4, 2003, are 35% and 0.624, respectively. 
 

4.3 Comparison of Estimates and Selection of Parameters 
 
To implement valuation models, where the price of crude oil is assumed to follow the IGBM 
process, estimates of four parameters are required:  the mean-reverting price, P ; the speed of 
reversion, η ; the volatility of prices, Pσ ; and the risk premium, φσρ PPM .  The estimates 
from the time-series and calibration approaches are compared and an appropriate selection for 
each parameter is made, below. 
 
Parameter P : The time-series approach estimates for P are $21.83 and $29.63 per BBL for 
samples comprising the last twenty years and five years, respectively.  The assumption that 
P has remained constant for the entire twenty-year sample period is not consistent with the 
$8 per BBL difference between the two estimates.  The dichotomy between the quantity and 
the relevance of the time-series data reduces the weight that can be given to the time-series 
estimates of P .  The futures curve estimate, based on the longest dated futures price of 
$26.04 to $26.69 per barrel, is the market price today for delivery in six years.  As such it is 
the market price that will balance supply and demand in the future, bearing in mind the 
OPEC range of $24 to $30 per BBL.  Placing more weight on the estimate drawn from the 
longest dated future, results in $27 per BBL being selected as an estimate of P . 
 
Parameter η : For the speed of reversion, η , three estimates were acquired, based on:  the 
time-series regression approach, of 0.393 to 0.419; the calibration to the futures curve 
approach, of 1.369 to 2.462; and the calibration to call options on futures approach, of 0.624.  
The calibration to futures estimates are an order of magnitude larger than those obtained from 
the other two approaches.  On the two days these estimates were computed, the crude oil 
futures curve had a steep negative slope.  The calibration to futures estimate of η on these 
days had to have sufficient magnitude to bend the model futures curve to fit the price of both 
the first and last months’ futures.  While there should be a reluctance to select parameters 
other than those consistent with the futures curve, more weight is placed on the time-series 
estimate, which is a direct measure of the speed of reversion of spot prices and the calibration 
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of futures call options estimate, which directly addresses the attenuation of futures volatility.   
An appropriate speed of reversion parameter for spot crude oil prices lies midway between 
the estimates of 0.4 and 0.6, say 0.5. 
 
Parameter σ : The time-series and the calibration to call options on futures approaches 
delivered estimates of  the volatility of spot crude oil prices of 34.2% to 38.8% and 35%, 
respectively.  Selecting 35% as the magnitude of spot crude oil price volatility is consistent 
with both historic and market-derived information. 
 
Parameter σφρ : The time-series approach found estimates of PMρ  and φ  of -0.142 and 
0.265, respectively.  With σ  = 35% the implied time-series estimate of φσρ is -1.32%.  In 
contrast, the calibration to the futures curve approach produced estimates of 3.1% to 7.9%. 
The later estimates of the risk premium are positive and consistent with the levels for risk 
classes such as equities or “high-yield” debt.  An argument could be made that higher returns 
from crude oil mean lower profits in the rest of the economy and ergo lower stock returns.  
Furthermore, there is some empirical evidence, as we shall see in Chapter 5, that the 
correlation coefficient between returns from equities and reserves of crude oil, held in the 
subsurface, is also negative.  More weight is assigned the time-series estimate and the range – 
1.0% < σφρ  < 1.0% is selected for the parameter. 
 In selecting the parameters above, weight was given to both the time-series and the 
calibration approaches.  The later estimates are based on market prices on or about October 
30, 2003.  The parameters selected are not necessarily appropriate for some other date. 
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Chapter 5 
 

The Valuation of Petroleum Reserves 
as Perpetuities 
 

5.0  Introduction 
 
In this chapter valuations of producing petroleum reserves are derived by discounting 
perpetual, risk-neutral cash flow streams at the risk-free rate.  The risk-neutral cash flow 
streams are functions of forward prices.  Let the rate at which the risk-neutral cash flow 
stream is paid to the holder of the perpetuity be denoted by ( )tπ̂ .  Then, during the period of 
time, dt, the payment is ( ) ( )[ ]dttFdtt 0ˆ ππ = , where ( )tF0  is the value of a forward contract at 
time zero that matures at time t.  A forward contract is a risk-neutral contract that can be 
discounted at the risk-free rate, r.  It follows that the value of a perpetuity at t=0, denoted by 

( )( )[ ]tFtV S 0;, π∞  that commences payments at time ts, is given by 
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st
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The valuation of a forward, given by (4.11), enables (5.1) to be written as the expectation 
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While the perpetuity valuations determined by (5.2) are used in subsequent chapters as 
boundary conditions, here they are utilized to demonstrate an important difference between 
the stochastic behaviors of surface and subsurface barrels of crude oil. 
 

5.1  Valuation of Producing Petroleum Reserves – IGBM Prices 
 
Level Extraction Rates:  Consider a perpetuity that pays ( ) ( )[ ] dtCtPdtt O−=τπ , where ( )tP  
follows an IGBM given by (3.1).  The risk-neutral motion of (3.1) is given by (4.12) and the 
first moment of an IGBM by (3.5).  Then the perpetuity’s value will be, from (5.2), 
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If the payments begin immediately so that ts=0, then  
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The value of the perpetuity (5.3) is equal to τ  times the sum of:  risk-neutral mean-reverting 
price, P̂ , less operating costs, OC , capitalized at the risk-free rate; plus the difference 
between the initially observed price and the risk-neutral mean-reverting price capitalized at 
rate ( )η̂+r .  Note that the denominator in the second term will be negative unless the 
restriction, 0ˆ >++=+ ρσφηη rr , is imposed.  This is a subtle but important point, the 
significance of which will be examined in the next chapter.  In real world parameters (5.3) is 
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Declining Extraction Rates:  Consider a perpetuity with declining revenues, R(t) = q(t)P(t)dt, 
where P(t) follows an IGBM and q(t) is deterministic and declines exponentially.  An SDE 
for the motion of R(t) and its expected value are required.  The motions of P(t) and q(t) are 
given by the SDE for the IGBM process (3.1) and  dq(t) = −ω q(t)dt  , respectively.  So by the 
product rule, d[R(t)] = d[qP]  is 
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Let ( )ωηη +=′  and ( ) ( ) ( )ωηη += tqPtR in (5.5), then 
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To find the first moment of R(t) the expectation at t=0 is taken on both sides of (5.6) and 
Fuibini’s Theorem is applied on the LHS yielding  
 

[ ] [ ] )()()( tRtREtRE
dt
d ηη ′=′+ .  (5.7) 

 

The ODE (5.7), is solved with the help of the integrating factor )exp( tη′  so 
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According to (5.8) the expected revenue is equal to the product of the deterministic 
production rate and the expected stochastic price.  Then a perpetuity that pays 
( ) ( )[ ] dtCtRdtt O−= τπ  will have a value given by (5.2) and (5.8), 
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If the payments begin immediately so that ts=0, then  
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The value of the perpetuity (5.9) can be interpreted as the sum of  the net risk-neutral mean-
reverting revenues, Pq ˆ

0τ , capitalized at the risk-free rate, plus the rate of decline, ω+r ; 
plus the capitalized net incremental revenues, positive or negative, due to the initial 
difference between the observed price and the risk-neutral mean-reverting price; minus the 
capitalized fixed costs, rC /0 .  In real world variables (5.9) is 
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If (5.9) is re-written in the form V(P) = b + mP, where b is the term representing the 
capitalized mean-reverting revenues less capitalized fixed costs and m  is ( )ηωτ ˆ/0 ++rq , 
then Itô’s Lemma can be used to show 
 

dtmPbVdVVar 2)]1([)( += σ . (5.11) 
 

Since P follows an IGBM it is greater than zero.  The imposed restriction, 0ˆ >+ηr , ensures  
m>0.  Since the petroleum reserve is on production, net revenues must exceed costs, so b>0.  
It follows that the denominator in (5.11) is greater than zero and volatility of holding a 
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reserve of crude oil, Sd(dV/V), is less than that of crude oil on the surface, σ.  Is there any 
evidence that in-ground barrels are less volatile than barrels of crude on the surface? 

5.2 Estimates of the Volatility of Returns from Holding Reserves 
 
Estimating the volatility of returns from holding in-ground barrels of crude oil is more 
difficult than for above-ground barrels.  There is no organized marketplace for reserves where 
homogeneous volumes trade hands pursuant to standardized contracts on a regular schedule.  
Rather, from time-to-time, buyers and sellers of reserves negotiate unique transactions.  The 
reserves sold in successive transactions differ from each other in terms of location, quality, 
fiscal burdens, extraction costs and decline rate.  Reserves of natural gas and crude oil are 
commingled in many transactions.  Nonetheless, several sources of estimates of the volatility 
of returns from holding petroleum reserves can be cited. 
 Adelman and Watkins (2003) studied a database of 6,000 reserve transactions in the 
U.S. during the period from 1982 to 2002.  They focused on the approximately 28% of the 
transactions where information regarding both the total purchase price and the volumes of 
reserves traded was available.  By regressing the realized purchase price against the volumes 
of crude oil and natural gas acquired in each transaction, Adelman and Watkins (2003) 
obtained estimates of the annual average transaction price per BBL of crude oil and per MCF 
of natural gas.  Annual holding period returns were then computed by expressing the change 
in the capital value of a BBL of petroleum, or MCF of natural gas, as a percentage of the 
prior year’s value.  The volatility of the time series of returns for reserves of crude oil and 
natural gas were estimated to be 35.8% and 42.9%, respectively.  It should be noted that 
Adelman and Watkins’ (2003) holding period returns do not include any of the cash flow that 
would be received by the owner of reserves. 
 Chen and Antonacci (2003) estimate holding period returns for reserves, including the 
annual cash flow, by considering notional, rather than real, reserves.  Declining production 
streams for the notional reserves of crude oil and natural gas were estimated based on U.S. 
averages.  The income portion of the return was calculated as the product of the annual 
forecast volume times the spot field price net of costs, again based on U.S. averages.  At each 
year end the discounted expected future cash flow from the reserves was computed using the 
forecast production decline curves and the forward price curves for crude oil and natural gas 
to obtain a capital value.  The annual income and capital gains were computed to derive a 
time series of total returns for the period 1982 to 2002.  The volatility of the time series of 
total returns found by Chen and Antonacci was 21.64%.   This is much less than Adelman 
and Watkins’ (2003) estimates.  The difference may be, in part, due to Chen and Antonacci 
including the annual income in their estimate of total return.  However, the arithmetic average 
of total returns estimated by Chen and Antonacci (2003), of 5.53% for reserves of petroleum 
and natural gas, in equal parts, is not that different from the changes in the capital values for 
petroleum and natural gas of 4.5% and 11.5%, respectively, estimated by Adelman and 
Watkins (2003).  Lastly, Chen and Antonacci (2003) estimate the correlation coefficient 
between returns on large capitalization stocks and reserves of crude oil and natural gas during 
the period 1982 to 2002 was –0.20. 
 The foregoing estimates of the volatility of the returns from holding reserves may not 
be sufficient to confirm the conjecture:  that the volatility of holding reserves is less than, or 
equal to, the volatility of holding crude oil on the surface.  The estimates are, however, 
consistent with the conjecture.  Furthermore, the volatility estimates contradict the assertions 
of GBM based valuation models, see Appendix V, that the volatility of holding in-ground 
barrels is greater than, or equal to, holding above-ground barrels.  In any case, the observed 
stochastic behaviors of barrels of crude oil on the surface and in the ground are different. 
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Chapter 6 
 

The Valuation of Petroleum Leases 
 

6.0 Introduction 
 
The previous chapters contain certain seemingly disparate mathematical techniques that, in 
this chapter, will be assembled to value petroleum leases as perpetual options.  This chapter 
opens with the derivation and solution of a valuation equation for a claim on a mean reverting 
asset.  The general form of the BSM PDE, found in Chapter 2, is configured with the IGBM 
diffusion process, selected in Chapter 3, and solved for the perpetual case.  Valuations of 
perpetual calls and puts, along with their sensitivity to certain parameters, are obtained in 
sections three and four, respectively.  The call and put valuations, together with the valuation 
of a level perpetuity, found in Chapter 5, are used to value an extraction and development 
options in section five.   The value of a call option exercisable for a declining, perpetual cash 
flow stream is developed in section seven.  The parameters selected to model crude oil prices 
in Chapter 4 are used to value examples of both tar-sands and conventional petroleum leases 
in sections six and eight, respectively. 
 

6.1   Solutions of the BSM Equation for an IGBM Motion 
 
The general form of BSM PDE derived in Chapter 2 is  
 

( ) ( ) ( )[ ] ( ) 0,,,
2
1 2 =+−−++ PrVVtPtPVtPV PPPt πφρσασ . 

 
If an asset, P , follows a motion determined by the IGBM SDE (3.1), 
 

)()()]([)( tdZtPdttPPtdP ση +−=               with  0)0( PP = . 
 
Then, in the BSM PDE the coefficient of the diffusion term will be, ( ) 222 , PtP σσ =  and the 
coefficient of the convection term will be, ( ) ( )[ ] ( )[ ]PPtPtP ρσφηηφρσα +−=− ,, .  For a 
perpetual American claim on P , such that Vt = 0, while it is optimal to hold V, its value will 
be given by the ODE (6.1) 
 

( )[ ] ( ) 0
2
1 22 =+−+−+ PrVVPPVP PPP πρσφηησ . (6.1) 

 

The homogeneous portion of (6.1) after dividing through by 2

2
1σ  is 
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( ) 0222
222

2 =−⎥
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⎤
⎢
⎣

⎡ +
−+ VrVPPVP PPP σσ

ρσφη
σ
η . 

 
Let  ( ) 222 /2/2,/2 σγσηβσρσφηα randP ==+−=   ,   then 
 

[ ] 02 =−++ VVPVP PPP γαβ . (6.2) 
 
A general approach to solving ODE’s with polynomial coefficients is given in Bateman 
(1953) and a specific substitution for the independent variable in (6.2) is in Robel (2001).  It 
follows that to solve (6.2) the changes of the dependent variable, ( ) ( )ξξ HPV 0= , and the 
independent variable, 1−= Pβξ , are appropriate. 
 
( ) ( ) ( )[ ]PHPPV ξξ 0=  (6.3) 
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β d
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201001  (6.4) 

 

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
++++= +++

2

2
403020

2 1021001
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Substitute (6.3), (6.4), and (6.5) in (6.2) and collect like terms in 10+ξ  and ( )ξξ H0 . 
 

( )[ ] ( )[ ] 00100102 02
2

2
10 =−−++

⎭
⎬
⎫

⎩
⎨
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−−−+++ HH
d
dH
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Hd ξγα

ξ
ξα

ξ
ξξ  (6.6) 

 
Since neither 10+ξ  nor H0ξ  are equal to zero, then (6.6) will be equal to zero IFF 
 

[ ] 002022

2

=−−−++ H
d
dH

d
Hd

ξ
ξα

ξ
ξ  (6.7) 

 
and 
 

( ) 00102 =−−+ γα . (6.8) 
 
The ODE (6.7) is Kummer’s equation, whose solution is 
 
( ) ( ) ( )ξαξαξ ;202,0;202,0 21 −++−+= UAMAH , 

 
where M(a, b; x) and U(a, b; x) are Kummer’s functions as defined in Abramowitz and 
Stegun (1964) (“A&S”) 13.1.2 and Spanier and Oldham (1987) (“S&O”) 48:3:1, 
respectively, and A1 and A2 are arbitrary constants.  Kummer’s U function is also referred to 
as Tricomi’s confluent hypergeometric function.  In the original variable, P, the 
homogeneous solution of (6.2) is 
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To confirm that (6.9) represents two independent solutions of (6.2), substitute each of the 
solution terms and their respective derivatives into (6.2).  For the solution containing 
Kummer’s M function these are, 
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  (6.12) 
 
Substitution of (6.10), (6.11) and (6.12) in (6.2) leads to 
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Similarly, the solution containing Kummer’s U function and its derivatives are, 
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Substitution of (6.14), (6.15) and (6.16) in (6.2) leads to 
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The quadratic (6.8) that determines 0  has two solutions, denoted by +0  and −0  for the 
positive and negative roots, respectively.  The magnitudes of +0  and −0  are given by 
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( ) ( ) 2/4110 2/
⎥⎦
⎤

⎢⎣
⎡ +−±−=−+ γαα . (6.18) 

 
Since 0>r  and 02 >σ , then it is the case that 0>γ .  It follows that 
( ) ( ) γαα 411 22 +−<− which implies +− << 000 .  With two possible values for 0  and two 
solution terms in (6.9) then there are four “solutions” that will satisfy (6.2).  Which two of 
these solutions will be useful in determining the value of a call, or a put option on P?  
Consider the values of 0  and the specifications of the free boundary problems for put and call 
options.  Robel (2001) has discussed the requirements for a perpetual American call option.  
The free boundary conditions for put and call options are in Table 6.1. 
 

Table 6.1  Free Boundary Conditions for Perpetual Puts and Calls on an IGBM Asset P  
Option Put Call  
Boundary Behaviour ( ) 0lim =∞→ PVp  ( ) =→ PVP 0lim bounded             (6.19) 

First Derivative ( ) 0' <PV  ( ) 0' >PV               (6.20) 

Second Derivative ( ) 0" >PV  ( ) 0" >PV               (6.21) 

 
Robel (2001) has concluded that for a call option 01 =A , the valuation being provided by 
Tricomi’s function with +=00 .  Robel (2001) showed that ( )PVH  is bounded utilizing the 
asymptotic expansion of Kummer’s ( )xcaU ;,  function (see A&S 13.5.2 or S&O 48:6:1), 
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x

abxxcaU a , (6.22) 

 
where  b = 1 + a – c .  Then, if Kummer’s U function in (6.14) is expanded using (6.22), then 
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To show ( ) 0' >PVH for 0>P , examine (6.15).  By manipulation, 
( ) 0/2010 2 >==−+ σγα r , for either −0  or +0 .  For 0>P  the only term in the first 

derivative of ( )PV  given by (6.15) that can be negative is ( )PU /;202,10 βα−++ .  
According to S&O, ( )xbaU ;,  will be positive and defined for 0;0,0 >>> xba .  Since 

0>P , ensuring ( ) 0' >PV  comes down to selecting the first parameter greater than zero.  
Since +− << 000 , then 10110 +<<+ +− , so selecting += 00  will ensure the first parameter 

is positive.  The second parameter, α−+ 202 , is equal to ( ) γα 411 2 +−−  and 

( ) γα 411 2 +−+  for −0  and +0 , respectively.  Again, the choice of += 00  will make the 
second parameter positive as well. 
 
The condition necessary to protect the positive value of the second derivative of V(P), given 
by (6.12), was determined by Robel (2001) to be γα < .  Recall that in Chapter 5 the 
valuations of perpetuities, whose cash flow followed an IGBM, had discount factors in their 
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denominators of the form, σφρη ++r .  To have positive perpetuity values, then 
0/++ σρηr  must be greater than zero or ( )ησφρ +−> r  or ( ) r<+− ρσφη .  Dividing both 

sides of the last inequality by 2/2σ , yields α  and γ , respectively.  From the restriction, 
γα < , it follows that 

γααααγαα 41212,422 22 ++−=+++−<      and          
2

4)1(

2
1

2 γαα +−
<+  

 
hence +< 0α or α−+<+ ++ 20220 .  This is an inequality Robel (2001) uses to show 

( ) 0" >PV .  Robel (2004) has observed, “that the same assumption [ ]γα <  which is needed to 
ensure the underlying asset has a finite value is exactly the same assumption which also 
ensures that the problem of valuing the [contingent] asset is well-posed”.  It can be added that 
the ability for the risk premium to be negative, albeit not too negative, is useful when 
working with certain commodities such as crude oil where the correlation of holding period 
returns with the market maybe negative. 
 For the valuation of a put option it must be shown that the limit as ∞→P  of (6.10),   
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is zero.  Consider the first limit.  If 000 >= +  then the limit will be equal to zero.  The second 
limit can be obtained from the definition of the Kummer M  function, 
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which is one.  Hence, the limit as ∞→P  of (6.23) is the product of zero and one equal to 
zero, if +=00 . 
 The put option valuation formula must have a negative first derivative.  The first 
derivative is given by (6.11) which has a negative sign.  Since 0,000 >>= + β  and 0>P  
then for (6.11) to be negative we must select the parameters of ( )PM βα ;202,10 −++  
such that it is positive.  S&O show that ( )zbaM ;,  will be strictly positive when 

0,0,0 >>> zandba .  Since 110,00 >+= ++  and 0202 >−++ α  then 
( ) 0;202,10 >−++ PM βα  and (6.11) will be negative.  Similarly, the second derivative 

will be positive as well. 
 

6.2   Valuation of a Perpetual American Call 
 
The value of a perpetual American call on one unit of an asset following an IGBM process 
with a price of P is given by (6.9) with A1 = 0.  To find the constant A2, a value of P, denoted 
by P*, that maximizes the value of V(P) for all P < P* must be found.  Imposing the value-
matching and smooth-pasting boundary conditions accomplishes this.  For a call option, 
having an exercise price of I and the payoff function ],0[)( IPMaxP −=ϕ , then the value-
matching and smooth-pasting boundary conditions are  
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1)(')()()( **'*** ==−== PPVandIPPPV ϕϕ ,   respectively. 

 
The first derivative of V(P) is (6.15), which at P* must equal 1, so 
 

( ) ( )*0**
2 /;202,10/ PUPPA βαβγ −++= . (6.24) 

 

Since ( ) IPVP =− ** , then 
 

( ) ( ) IPUPAP =−+− *0*
2

* /;202,0 βαβ . (6.25) 
 

By substituting (6.24) for 2A  into (6.25) an expression for *P is found, 
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A numerical solution of (6.26) will yield P* which can be substituted into (6.24) to find A2 
and thus fully parameterize the value function (6.9).  The value of a perpetual call is 
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          IP −=                                            *PP ≥ . 
 
As a demonstration of the foregoing, consider the valuation of a perpetual, American call 
option on spot crude oil with the parameters:  27$,35.0,01.0,05.0 ==−== Pr σφσρ  
and 5.0=η , estimated in Chapter 4.  The variation of the optimal exercise price, *P , with 
the mean reversion price, P , is illustrated by the valuations of a call option exercisable at a 
cost of =I  $27.00 for an asset following an IGBM in the graph on the LHS of Figure 6.1. 
 

  
 

Figure 6.1  Comparison of Call and Put Valuations 
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6.3   Valuation of a Perpetual American Put 
 
Analogously to the valuation of the call, the put option exercisable for one unit of an asset 
following an IGBM process with a price of P is given by (6.9) with A2 = 0.  To find the 
constant A1 , a value of P , again denoted by P* , that maximizes the value of V(P) for all P 
greater than P* must be found.  Again, imposing the value-matching and smooth-pasting 
boundary conditions will accomplish this.  For a put option, with an exercise price of I and a 
payoff function of ],0[)( PIMaxP −=ϕ , then the value-matching and smooth-pasting 
boundary conditions are 
 

1)(')()()( **'*** −==−== PPVandPIPPV ϕϕ ,   respectively. 
 
The first derivative of V(P) is (6.11), which at P* must equal -1, so 
 

( ) ( )*0**
1 /;202,10/0/ PMPPA βαβ −++= . (6.27) 

 
And since ( ) IPPV =+ ** , then 
 

( ) ( ) IPPMPA =+−+ **0*
1 /;202,0/ βαβ . (6.28) 

 
By substituting (6.27) for 1A , in (6.28) an expression for *P  is found 
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A numerical solution of (6.29) will yield *P  and 1A  will follow from (6.27).  The value of a 
perpetual put is 
 
( ) PIPV −=  *PP ≤  
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Valuations of the put options, as a function of price, with the critical exercise prices varying 
with P  are compared on the RHS of Figure 6.1.  Note that in the graph for the put 
valuations, the vertical order of the curves is reversed from that in the call valuations. 
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6.4   Valuation of a Plant with a Level Extraction Rate and 
Options on Same 

 
Extraction Option:  Consider a plant that extracts one unit of output per unit of time that: 
 
(1) receives at the plant gate a stochastic price, P, where P follows an IGBM; 
(2) incurs costs per unit time equal to C; and  
(3) pays taxes on its net profits P – C  at a rate of one minus τ .   
 
The plant’s instantaneous profit will equal ( )dtCP −τ  and its value, V(P), is given by the 
perpetuity valuation (5.3) 
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where ( )φσρηη +=ˆ  and ( )σφρηη += /ˆ PP .  The slope of (6.30) is 
( ) ( )φσρητ ++=′ rPV / , which by restriction is greater than zero.  For an initial P less than 

( ) rPCC /ˆˆ −+η , the value of the plant will be negative, assuming the manager of the plant 
does not have the flexibility to suspend the operation of the plant. 
 Now, let the manager of the plant be empowered with the authority to shut-in 
production when P < C and restart extraction if P > C, incurring no cost to take either course 
of action.  The value of a unit flow of extraction, again denoted by V(P), will be given by the 
ODE (6.1) where ( ) ( )[ ]CPMAXP −= τπ ,0 .  The homogeneous solution of ODE (6.1) 
follows from (6.9) and the particular solution from (6.30).  Application of the value-matching 
and smooth-pasting boundary conditions at P = C will determine the constants in the solution.  
Now consider the value of the plant when P < C and P > C, denoted by ( )PVCP<  and 

( )PVCP> , respectively. 
 When P < C, then ( ) 0=Pπ .  In the region CP <≤0  the situation of an owner of a 
non-producing plant is analogous to that of the holder of an out-of-the-money call option.  If, 
in the future, the price rises above the cost of production, C, the operator of the plant can 
recommence production.  This and the boundary condition ( ) 0→PV  as 0→P  implies 

01 =A  in (6.9).  So, 
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When CP > , then ( ) ( )CPP −=τπ .  The solution of (6.1) will then comprise the 
homogeneous solution (6.9) plus a particular solution.  The particular solution, ( )PVP , of 
(6.1) is given by the risk-neutral value of the perpetuity (6.30).  Differentiation and 
substitution of (6.30) into (6.1) shows it is indeed a particular solution.  Hence, the solution of 
(6.1) is 
 

( ) ( ) ( )PVPVPV PHCP +=>  (6.32) 
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At some “high enough” price, V(P) will just be equal to the capitalized value of the cash flow 
stream given by the perpetuity (6.30).  Since ( ) ( )PUP βαβ ;202,00 −+  goes to infinity as  
P does, then B2 in (6.32) must equal zero.  This is equivalent to saying that when P > C, the 
value of a producing property is the sum of the capitalized cash flow, from (6.30), plus the 
right to suspend production, being a put, given by the first term in (6.32).  So, 
 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+
−

+⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛=> η

τβαβ
ˆ

ˆˆ
;202,0

0

1 r
PP

r
CP

P
M

P
BPVCP . (6.33) 

 
To find the constants, A2 and B1, the further boundary conditions that both ( )PV  and ( )PV ′  
must be continuous at P = C are imposed.  The requirements for continuity provide two linear 
equations in two unknowns, A2 and B1.  Since the second constant and the independent 
variable of both Kummer functions, M and U, are the same, for notational simplicity let 

( )PM βα;202,0 −+  be denoted by ( )0M , ( )PM βα;202,10 −++  be denoted by 
( )10 +M  and the analogous terms in U  by ( )0U  and ( )10 +U .  Thus, at CP = , 
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Solving (6.34) and (6.35) for 2A  and 1B  yields 
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Development Option:  Consider the value of the option, F(P), to develop a plant with the 
capacity of extracting one unit of output per unit of time, worth V(P).  The value of the call 
option will be determined by the ODE (6.1) with 0)( =Pπ , since the holder of the option will 
not receive any cash flow from nonexistent plant.  Along with the imposition of the value-
matching and the smooth-pasting boundary conditions, 
 

( ) ( ) ( ) ( )****
DDDDD PVPFandIPVPF ′=′−= τ , 
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where *
DP  is the optimal price of crude oil at which to exercise the development option F(P) 

and construct the additional capacity, V(P) is the value of one BBL per annum of capacity, 
including the value of the right to suspend production, and τ  is the after-tax capital cost of 
constructing the incremental capacity.  F(P) will be given by (6.9) with  A1 = 0 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛=

P
U

P
KPF βαβ ;202,0

0

2 . 

 
V(P) will be given by (6.33).  The only case considered is the case for V(P) where P > C, 
since it would not be rational to build a plant just to shut it.  Lastly, ID is reduced by τ , since 
the capital costs are deductible for computing the resource owner’s net profit interest and the 
cash inflows were adjusted down by τ . 
 
At *

DP  the value matching condition, ( ) ( ) DDD IPVPF τ−= ** , leads to 
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The smooth-pasting condition ( ) ( )**
DD PVPF ′=′  leads to 
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Then substitution of (6.38) in (6.39) results in an expression for *P  
 

( ) ( )
( ) ( ) .....100
0

010
0

*1 +
⎭
⎬
⎫

⎩
⎨
⎧

++
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
M

U
MU

P
B

D

γβ  (6.40) 

 

( )
( )

( )
( ) ( ) 0

ˆ

ˆˆ
0

101
0

10
ˆ

*

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−+

+
−

⎭
⎬
⎫

⎩
⎨
⎧

−
+

+
+

η
ηγτγ

η
τ

rr
PI

r
C

U
U

U
U

r
P

D
D . 

 
Since 1B  is known from (6.37), then (6.40) can be solved numerically to find *

DP .  
Substitution of *

DP  in (6.38) will determine 2K .  The value of a call option exercisable for 
one BBL per annum of production capacity is 
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Exploration Option:  Consider the value of the option, G(P), to explore for the opportunity to 
develop a plant, given by F(P), to extract one unit of output per unit of time, worth V(P).  The 
value of this call option will, again, be given by the ODE (6.1) with π(P) = 0, since the holder 
of G(P) will not receive any cash flow from the unexplored and undeveloped lease 
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If *

XP  and XI  are the optimal exercise price and the cost of exercise, respectively, for the 
exploration option, then the value-matching and smooth-pasting boundary conditions are 
 
( ) ( ) ( ) ( )****

XXXXX PFPGandIPFPG ′=′−= τ . (6.44) 
 
A choice between (6.41) and (6.42) to represent F(P) must be made to apply the boundary 
conditions (6.44) based on whether **

DX PP >  or **
DX PP < .  Dixit and Pindyck (1994) observe 

that “intuitively we would expect **
DX PP > ”.  Suppose **

DX PP <  so that ( )*
XPF  is given by 

(6.41) and since ( ) ( )**
XX PFPG ′=′  implies that 22 LK = , but this is contradicted by the 

boundary condition ( ) ( ) XXX IPFPG −= ** .  It follows that **
DX PP >  and ( )*

XPF  is given by 
(6.42).  Then the value-matching condition says 
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The smooth-pasting boundary condition leads to 
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Then substitution of (6.45) in (6.46) and collecting terms in power of *

XP  results in a familiar 
expression 
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Again, since 1B  is known from (6.37), then (6.47) can be solved numerically to find *

XP .  
Substitution of *

XP  in (6.45) determines 2L .  The value of the exploration option is 
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6.5   Valuation of Syncrude Extraction, Development, and 
Exploration Options 

 
An example of a petroleum project with a non-declining rate of extraction is the Syncrude 
Project.  Located near Fort McMurray in the Athabasca region of northeast Alberta, Syncrude 
mines bituminous oil sands, extracts crude bitumen and upgrades the bitumen to synthetic 
crude oil.  Syncrude holds three long-term oil sands leases comprising nearly 200,000 acres 
of Crown rights.  The magnitude of the resource underlying the three leases has been 
estimated by the Alberta Energy and Utilities Board (the “AEUB”) at 9.0 billion barrels of 
crude bitumen.  Of this resource, the AEUB estimates that 6.0 billion BBL are recoverable by 
surface mining, representing the Project’s initial established reserves.  Cumulative bitumen 
extraction since 1978 is approximately 1.7 billion BBL, leaving remaining reserves of 4.3 
billion BBL.  With mining and extraction capacity of 302,000 BBL per day of bitumen, 
Syncrude is currently operating at an average rate of 261,000 BBL per day of bitumen, 
equivalent to 86% of capacity.  A capacity expansion program, known as the Stage 3 
Expansion, is underway which when completed, in 2006, will increase Syncrude’s bitumen 
capacity to 500,000 BBL per day.  At the current or expanded capacity rates of extraction the 
Project’s reserves of bitumen will be depleted in 45 and 24 years, respectively.  Syncrude’s 
exiting reserves together with even a small portion of the reserves held by third parties 
without an existing mine and upgrading plant located in the Athabasca region, estimated by 
the AEUB at 24.2 billion BBL, should be sufficient to enable the Project to continue 
operating for many decades and be valued as a perpetuity. 
 The bitumen stream, at the inlet to Syncrude’s upgrading plant, is very viscous, short 
of hydrogen and high in impurities, including sulphur and heavy metals.  Upgrading removes 
the excess carbon, via a coking process and the impurities.  The Project’s yield of synthetic 
crude oil output is equal to approximately 86% of the volume of bitumen input.  Currently, 
Syncrude’s capacity and output of crude oil are 260,000 BBL per day and 224,700 BBL per 
day, respectively.  The Stage 3 Expansion is planned to add 110,000 BBL per day of 
incremental crude oil output capacity. 
 
Extraction Option:  The value of the option to extract crude oil from the oil sands, V(P), is 
given by (6.31) and (6.33) with the constants A2  and B1 determined by (6.36) and (6.37), 
respectively.  To implement the extraction model parameters for  P, C  and τ  are required.  
At the plant gate, the crude oil price Syncrude’s output receives approximates the WTI 
reference price.  The parameters estimated for WTI crude oil in Chapter 4 were:  

== P;5.0η $27 with the OPEC range =$24 to $30; =σ 0.35; and 01.0−=σφρ .  Operating 
costs, following the completion of the Stage 3 Expansion, are forecast at $16 per BBL, 
including expensed and capitalized items.  The fiscal arrangement between Syncrude and the 
owner of the resource, the Province of Alberta, is a one percent royalty on sales, prior to 
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recovery of capital costs, then a 25% share of net profits, represented by 1-τ .  The foregoing 
can be utilized to value one BBL per annum of Syncrude production. 
 

 

 
 

Figure 6.2  Comparison of Syncrude Production Option and Perpetuity Valuations 
 
Figure 6.2 illustrates how the value of the Syncrude project, V(P), varies as the mean-
reverting price of crude oil changes. Intuitively, V(P) should shift higher, or lower, with 
increased, or decreased, levels of P .  For each pair of curves, the trajectory of the upper 
curve is given by (6.31) and (6.33) and that of the lower curve by the perpetuity (6.30).  The 
value of flexibility is equal to the distance between the curves comprising each pair.  If P = 
$30, the curves representing the project’s value are close together, consistent with the 
intuition that at “high prices” the value of the right to suspend extraction is small.  This 
occurs because P = $30 >> C = $16 and the strength of reversion of P  is “strong”, η  being 
0.5.  For P = $ 27, the pair of value curves are farther apart, reflecting the greater chance that 
P will fall below C, increasing the value of the put term in (6.33).  The value of the right to 
shut-in the project for P = $27 is approximately $2.50 per BBL per annum.  When multiplied 
by the annual capacity of Syncrude, 135 MMBBL per annum at the completion of the Stage 3 
Expansion, the value of the option to suspend production is worth approximately $338 
million to the holders of the Project.  A downward shift of P to $24 increases the probability 
that P will fall below C = $16.  It follows that the value of the option to suspend production 
of crude oil will be larger than that for P = $27.  The separation of the bottom pair of curves 
is approximately $5.00 per BBL per annum, equivalent to $675 million of project value. 
 The positive intercepts of the vertical axis and modest slopes of the value curves 
indicate an important attribute of the valuations of Syncrude by (6.30), (6.31) and (6.33):  
they are not very sensitive to changes in crude oil prices, given the selected strength of mean 
reversion of P.  At P = 0, the cash flow from the Project, that will be capitalized in (6.30), can 
be written as CrCP )()( ρσφη +−− . This cash flow will be positive for 

)](/)[( CPCr −+> ρσφη .  For P = $27, r = 0.05, and ρσφ  = -0.01, then for any 058.0>η  
the value of the perpetuity, (6.30), will be greater than zero.  The shallow slope of the mean-
reverting value functions contrasts with steep assent, with increasing P, of the value function 
for a flexible project where the output price, P, follows a GBM.  The value, V(P), is given in 
Dixit and Pindyck (1994), p. 188-189, by 
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The value functions for the Syncrude project assuming P follows either a GBM or an IGBM 
are contrasted in Figure 6.3. 
 

 
 

Figure 6.3  Comparison of Valuations of the Syncrude Project, Tau=1.0 
 
Modeling P as a GBM, with 35.0=σ and %9.4=δ  calibrated to the October 30, 2003 
futures curve, results in a value function with a steep, asymptotic slope approximated by the 
reciprocal of the discount factor in the perpetuity, δ/1  = 20.4.  The value function for the 
project where P  follows an IGBM has an asymptotic slope, again approximated by the 
reciprocal of the perpetuity’s discount factor, see (6.30), equal to 1 /  ( r +η  + φσρ ) = 1.85 
(ignoring τ = 0.75).  If crude oil did not exhibit the speed of revision found in Chapter 4, η = 
0.5, then the slope of V(P) would be much greater.  For example, if the half-life of reversion 
was five years, not 1.4 years, then η  would equal 0.14 and the slope of V(P) would be 5.6.  If 
the price of crude oil is as mean-reverting as both the historical data and the futures curve 
imply, then the value of the Syncrude project with C = $16 will not vary a large amount with 
changes in P. 
 
Development Option:  The value of a call option, denoted by F(P), to build one BBL per 
annum of incremental Syncrude capacity is given by (6.41) and (6.42) with the optimal 
exercise price, P*, determined by the numerical solution of (6.40).  The exercise price of the 
call, DI , can be estimated from the cost of adding an incremental BBL per annum of capacity 
in the Stage 3 Expansion.  The management of the Syncrude Project now expects to complete 
the Stage 3 Expansion in late 2006, with the course of construction having run nearly five 
years.  The originally budgeted cost for the Stage 3 Expansion of Cdn. $4.1 billion, in July 
2001, was later revised to Cdn. $5.7 billion and is currently estimated at Cdn. $7.8 billion.  At 
this cost level the incremental capacity to be added, say an effective rate of 100,000 BBL per 
day, has a capital cost equivalent to $160.28 per BBL per annum, before recoveries from 
Alberta’s net profit interest.  The value of the option to develop one BBL per annum of 
Syncrude capacity with a capital cost of $160 per BBL per annum is shown in Figure 6.4. 
 



42 

 
 

Figure 6.4  Call Value for One BBL per Annum of Syncrude Project 
 
Figure 6.4 shows that the value of a call on incremental capacity at Syncrude will remain 
valuable, between $46-$65 per BBL per annum, over a wide range of crude oil prices up to 
$35 per BBL.  At current prices, $35 per BBL, investment in additional capacity, even at a 
cost of $160 per BBL per annum, is optimum since P* = $34.25.  Before taking such a 
decision, though, a decision-maker may wish to expand the scope of his thinking to include 
the effect on P* of OPEC’s actions with respect to its targeted price band of $24 to $30 per 
BBL; and cost under-runs or over-runs of, say, 20% in the capital cost.  Then using (6.41) 
and (6.42), P* can be calculated reflecting the changes in P  and DI . 
 

Table 6.2    *P  As a Function of P  and DI  

P  ID = $128 ID = $160 ID = $192 
$30 27.77 31.18 35.04 
$27 29.87 34.25 39.72 
$24 33.90 41.02 51.34 

 
Based on P  = $27 per BBL capacity additions costing $160.28 per BBL per annum are 
optimum at a crude oil price of $35 per BBL.  However, if Syncrude were to experience 
capital cost overruns, a spot price of nearly $40 per BBL will be required to make the 
addition economic.  Lastly, OPEC’s role in providing its competitors with a “price umbrella” 
can be seen in Table 6.5.1.  If OPEC targets the high end of its range, $30 per BBL of WTI, 
the Syncrude Expansion is economic at $35 per BBL, even with cost overruns.  Only by 
targeting the lower end of its range, $24 per BBL of WTI, will OPEC rule out the expansion 
of a project like the Syncrude Expansion, unless a 20% decrease in the capital costs per unit 
of capacity can be attained. 
 Beyond the completion of the Stage 3 Expansion, the Syncrude planners are 
considering two further expansions, known as the Stage 4 and Stage 5 Expansions, which 
could add incremental crude oil output capacities of 70,000 BBL per day and 120,000 BBL 
per day, respectively.  If approved, construction of Stage 4 may commence in 2007 and 
continue till 2010.  Syncrude has estimated the cost of the Stage 4 Expansion at Cdn. $2.3 
billion, equivalent to $90 per BBL per annum.  The capital cost estimate will be revised upon 
the completion of a pre-engineering study, which is underway and a definitive engineering 
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study and construction budget.  For now, perhaps the best estimate available of the capital 
cost of adding capacity is Syncrude’s experienced costs with the Stage 3 Expansion. 
 
Exploration Option:  The value of a call option, denoted by G(P), to acquire the option to 
build one BBL per annum of incremental Syncrude capacity is given by (6.48) and (6.49) 
with the optimal exercise price, *

XP , determined by the numerical solution of (6.47).  
Comparisons of (6.41) and (6.42) to (6.48) and (6.49) and (6.40) to (6.47) show that the value 
of G(P) is given by F(P) where the cost of exploration, XI , has been added to the cost of 
development, DI .  In Table 6.2 it was demonstrated that increasing DI  caused P* to increase.  
It follows that a valuation of the option to explore the Syncrude leases could be calculated by 
adding the exploration costs to the development costs and utilizing (6.41) and (6.42).  The oil 
sands leases held by Syncrude are fully explored at this time so no additional costs are added 
in our calculations. 
 
Syncrude Lease Valuation:  Combining the preceding calculations facilitates the valuation of 
Syncrude’s holding of oil sands leases.  Assuming that the capacity utilization rate in the 
Syncrude plant will reach 90%, then the output rate of crude oil for the Project at the 
completion of the Stage 3 Expansion will approximate 333,000 BBL per day.  Similarly, the 
Stage 4 and Stage 5 Expansions may add output rates of crude oil of 63,000 BBL per day and 
108,000 BBL per day, respectively.  Based on the parameters estimated in Chapter 4 with 

=P  $27 per BBL and a spot price of $30 per BBL the valuation in Table 6.3 results. 
 
Table 6.3    Pre-Income Tax Valuation of Syncrude Leases at Oct. 31, 2003 
 $/BBL/Annum $ MM Value 
Extraction Option 176 21,392 
   Less:  Cost to Complete Stage 3  (2,000) 
  19,392 
Development Options   
   Stage 4 59 1,357 
   Stage 5 59 2,326 
  3,683 
Total Value  23,075 
 

6.6   Valuation of an Option on a Project with a Declining 
Extraction Rate 

 
Extraction and Development Option:  Consider a project that extracts q(t) units of output per 
unit of time, declining exponential at a fixed rate ω  and receives a price for its output, P(t), 
where P follows an IGBM, then its gross revenues will be R(t)=q(t)P(t).  The instantaneous 
cash flow that will accrue to the project will be ( ) ( )[ ]dtCtRt 0−=τπ  and the value of the 
project, with no flexibility, is given by (5.9) which can be written in the form 
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The value of the perpetual call option to develop a project with a declining revenue stream  
will be given by the ODE (6.1) with ( ) 0=Pπ  along with the value-matching and smooth-
pasting boundary conditions, 
 

( ) ( ) ( ) ( )**** '' DDDDD PVPFandIPVPF =−= , 
 

where *
DP  is optimal price of crude oil to exercise F(P) and develop the project.  V(P) is 

specified by (6.50).  For *
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application of the value-matching condition results in 
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Substitution of (6.52) in (6.51) results in an expression for *P  
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which is solved numerically to find *
DP  and then 2K  follows from (6.52).  The value of F  is 

 

( ) *
0

2 ;202,0 DPP
P

U
P

KPF <⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛=

βαβ  (6.54) 

 
          DImPb −+=                                                    *

DPP ≥ . (6.55) 
 
Exploration Option:  Consider the value of the option, G(P) , to explore for the opportunity to 
develop the project, given by F(P).  Again, the value of the call option will be given by the 
ODE (6.1) with ( ) 0=Pπ .  If *

XP  and XI  are the optimal exercise price and cost of exercise, 
respectively, for G(P), its solution can be found by applying the value-matching and smooth-
pasting boundary conditions to (6.9) with A1 = 0, 
 
( ) ( ) ( ) ( ) XXXXXX IPFPGandIPFPG −=−= **** '' . 
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and the smooth-pasting condition leads to 
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Substituting (6.57) in (6.56) again leads to an expression in *
XP , 
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which can be solved numerically for *
XP .  Substitution of *

XP  in (6.57) determines 2L .  The 
value of the exploration option is 
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          ( )DX IImPb +−+=                                                    *
XPP ≥ . (6.59) 

 

6.7 Valuation of a Conventional Petroleum Lease 
 
As an example of a small, conventional petroleum project in the Western Canadian 
Sedimentary Basin, consider the valuation of a lease covering, say, 640 acres that 
prospectively contains 300,000 BBL of crude reserves.  When explored and developed the 
lease will have four wells capable of initially extracting crude oil at a rate of 100 BBL per 
day, declining at a rate of 12% per annum.  Fixed extraction costs are assumed to be $72,000 
per annum.  Variable costs, represented by τ , are assumed to total 30% of the WTI reference 
price comprised of: royalties, 15%; transportation and quality differentials, 7.5%; and 
variable extraction costs, 7.5%.  The value of the development option is given by (6.54) and 
(6.55).  If the cost of development, DI , is $750,000, then the value of the development option 
is illustrated in Figure 6.5 below. 
 

 
 

Figure 6.5  Value of Conventional Development Option 
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Chapter 7 
 

Conclusions 
 

7.0 Conclusions from This Investigation 
 
The principal conclusions to be drawn from the foregoing investigation include the following: 
 
Petroleum leases are real options.  Petroleum lease contracts can be analyzed and valued as 
real options, pursuant to Seppi’s definition.  The valuation of the rights accruing to the holder 
of a petroleum lease proceeds in a reverse-recursive manner via the petroleum production 
cycle:  from the extraction phase; through the development phase; and finally, to the 
exploration phase. 
 
Real options can be valued using the BSM PDE.  Notwithstanding that certain of the 
assumptions, such as the continuous trading and the use of the underlying asset to hedge the 
contingent claim being valued, that underpin the derivation of the BSM PDE to value 
financial options, cannot be relied upon, there exist alternate assumptions consistent with the 
characteristics of real options which facilitate the derivation of the BSM PDE to value real 
options.  A derivation of the BSM PDE to value real options, supported by valid assumptions 
and parsimonious with respect to the number of required assumptions, is Sick’s derivation, 
based on the Consumption CAPM.  Sick’s derivation not only yields (2.14), a general form of 
the BSM PDE suitable for any stochastic process that the underlying asset follows, but also 
the total rate of return equation (2.9). 
 
Commodity prices can be modeled by the IGBM process.  It was argued in Chapter 3, to 
model commodity prices appropriately, a stochastic process must possess four attributes: 
 
(1) generate strictly positive values; 
(2) revert to a mean value, P ;  
(3) have drift and volatility functions that are homogeneous of the pair ( ){ }PtP , ; and  
(4) as ∞→t , not be attracted to either of the boundaries 0=P  or ∞=P .   

 
The mathematical techniques necessary to determine the foregoing attributes were applied to 
six, single-factor stochastic processes: only the IGBM process was found to have all four 
attributes, subject to the restrictions 2ση ≠ , 22 ση ≠  and 22 ση > . 
 
The IGBM process can be parameterized to model crude oil prices.  Two approaches, a time-
series approach using historic crude oil prices, and a calibration approach based on the 
market prices of crude oil futures and options exercisable for crude oil futures, were 
employed to estimate the parameters of the IGBM process.  The implementation of the time-
series approach encountered the dichotomy between the quantity and the relevance of historic 
data.  While more confidence can be placed on the sample comprising twenty years of data 
than the five year sample, the parameter, P , appears to vary with time, implying that the 
estimate of P  from the five year sample is more relevant for valuation purposes.  The most 
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relevant estimate of P , however, is the one obtained from the market price of the longest 
dated futures contract.  It is commodity market participants’ forward looking estimate of the 
price required to balance supply and demand in the long-run.  The other two parameters 
estimated by the time-series approach, η  and σ , appear to be time invariant.  The calibration 
approach’s estimate of σ  was approximately the same as the time-series approach, while its 
estimate of η  was an order of magnitude larger.  Giving weight to the estimates obtained 
from both approaches, the magnitudes of the selected parameters for crude oil prices, 5.0=η  
and 35.0=σ , do not violate the parameter restrictions for the IGBM process, 2ση ≠ , 

22 ση ≠  and 22 ση > . 
 
Reserves of petroleum can be valued as perpetuities.  The value of a petroleum reserve, 
where the extracted crude oil receives prices following an IGBM process, can be derived for 
level and declining rates of extraction:  the valuations are given by (5.3) and (5.9), 
respectively. 
 
The riskiness of petroleum reserves is less than crude oil on the surface.  Empirical evidence, 
prepared by others, was presented demonstrating:  the volatility of returns from holding 
petroleum in the ground is less than, or equal to, that from holding crude oil on the surface.  
The volatility of holding a petroleum reserve was derived by applying Itô’s Lemma to (5.9) 
and is given by (5.11).  Examination of the coefficients of (5.11) results in the view that the 
volatility of returns from holding a petroleum reserve is less than that of crude oil, consistent 
with the empirical evidence.  In contrast, reserves valued assuming prices follow a GBM 
have volatilities greater than crude oil’s. 
 
Valuations of American style, perpetual options exercisable for an asset following an IGBM 
process can be derived.  The value of a perpetual option, exercisable at any future time, for 
an asset, the price of which follows an IGBM, is given by the ODE (6.1).  For the 
homogeneous portion of the ODE (6.1) it was shown that (6.9) is the solution and that there 
are four solution candidates.  Of these solutions, the two for which for += 00  and containing 
Kummer’s U and M functions, can be used to value perpetual, American calls and puts, 
respectively.  The effect of varying P on the values and optimal exercise prices of perpetual 
call and put options is illustrated in Figure 6.1. 
 
The value of a petroleum lease contract is found by the valuation of the compound options to 
extract, develop and explore.  In the case of a level extraction rate:  a petroleum lease 
valuation begins by determining the value of a plant, V(P), with the flexibility to suspend and 
restart extraction, given by (6.31) and (6.32) when P < C and P > C, respectively, with 
constants specified by (6.36) and (6.37).  Letting V(P) be the underlying asset, the value of 
the next option in the sequence - the development option, F(P) – is found by imposing the 
value-matching and smooth-pasting boundary conditions. F(P) has the value given by (6.41) 
and (6.42) for *

DPP < , and *
DPP ≥ , respectively.  By letting F(P) now be the underlying asset 

and again imposing the value-matching and smooth-pasting boundary conditions the value of 
the last option in the sequence – the exploration option, G(P) - is acquired.  For *

XPP <  and 
*
XPP >  , G(P) is given by (6.48) and (6.49), respectively, with the constant specified by 

(6.45). 
 In the case of a declining extraction rate, a petroleum lease valuation begins by 
deriving the value of a perpetuity, denoted by V(P) and given by (6.50).  The value of the 
development option, F(P), is obtained by letting V(P) be the underlying asset and imposing 
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the value-matching and smooth-pasting boundary conditions.  The relationship between the 
value of the development option and the price of crude oil is given by (6.54) and (6.55) for 

*
DPP <  and *

DPP ≥ , respectively.  Making F(P) be the underlying asset for the exploration 
option, the value of which is denoted by G(P), and again imposing the value-matching and 
smooth-pasting boundary conditions results in (6.58) and (6.59) for *

XPP <  and *
XPP ≥ , 

respectively, with the constant determined by (6.57). 
 In both the level and declining extraction rate cases, G(P) values a petroleum lease as 
a function of the current price of crude oil, assuming there is no geological risk or technical 
risk:  the extraction rate and all costs, eC , DI , and XI  are all known with certainty.  In 
addition, determining the constants for the solutions of the valuation ODE’s also yields the 
optimal prices of crude oil, *

XP  and *
DP , at which to exercise the exploration and development 

options, respectively. 
 
The Syncrude lease valuation example illustrates the appropriateness and limitations of real 
options as a valuation approach.  The application of the real option methodology to the 
Syncrude Project, in Chapter 6, resulted in: 
 
(1) the valuation of a plant with extraction flexibility as a function of the current price of 

crude oil, see Figure 6.2; 
(2) a demonstration that a plant with extraction flexibility is worth an amount greater than 

or equal to a plant without it, compare the pairs of curves in Figure 6.2; 
(3) the valuation of the perpetual call option to develop a plant with extraction flexibility as 

a function of the price of crude oil, see Figure 6.4; and 
(4) the calculation of the optimal price of crude oil at which to exercise the option to 

develop the flexible plant, as a function of P and DI . 
 
The experience of the owners’ of the Syncrude Project during the Stage 3 Expansion 
demonstrates two of the major differences between real options and financial options.  First, 
the time required to exercise a real option, the course of construction, is not instantaneous, as 
in the case of financial options.  Second, there can be significant uncertainty associated with 
the magnitude of the exercise price of a real option on a large, capital intensive project: as the 
90% cost overrun during the Stage 3 Expansion illustrates. 
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Appendix 1 
 

Comparison of Incremental 
Assumptions to Derive the BSM PDE 
 
Delta-Hedging:  The delta-hedging method, as defined in Wilmott, Howinson, & Dewynne 
(1995) p42-43, assumes the underlying asset is both continuously traded and can be 
combined with the contingent asset being valued to form hedged, or risk-free portfolios.  
These portfolios may be comprised of: a long position of one unit of the contingent claim and 
a short position of delta units of the underlying asset; or a long position in one unit of the 
underlying asset and a short position in delta units of the contingent claim.  Neither 
assumption is tenable for the purpose of valuing petroleum assets.  While subsurface barrels 
trade hands in privately negotiated transactions from time to time, there is no organized 
market where homogeneous barrels of reserves trade in a continuous manner.  Hedged 
portfolios comprised of, say, a long position in the contingent claim and a short position in a 
barrel of subsurface crude oil cannot be formed in practice.  How could someone lend a 
barrel of crude oil to a short seller that had not yet been discovered, developed or extracted? 
 
Replication:  A prescribed alternative derivation, equivalent to the delta-hedging method, is 
the replication method, as defined in Dixit & Pindyck (1994) p116-117.  Assuming the claim 
to be valued, F(P,t)  is not traded, a notional portfolio that will replicate the risk and return 
characteristics of F is formed, comprised of:  the underlying asset P, which is assumed to be 
traded; and risk-free bonds.  While the replication method could be used to value the 
extraction phase, where the project’s output of crude oil is traded, application to the earlier 
phases, where the underlying asset is not traded, becomes more problematic. 
 
Spanning-Assets:  Another method, advocated by both Dixit & Pindyck (1994) and Robel 
(2001), is derived by the use of spanning-assets.  This method requires the assumed existence 
of a traded asset that can be sold short; is perfectly correlated with the underlying asset, P, so 
that it will replicate, or “span”, the movements in P; and follows its own stochastic process.  
The further assumption that the expected returns of the underlying asset and the spanning-
asset are equal and given by the CAPM, is required to complete the derivation.  Is there a 
traded asset that could replicate the returns of subsurface barrels of petroleum?  Publicly 
traded royalty trust units and master limited partnership units might fill this role for 
developed barrels but not for undiscovered barrels of petroleum. 
 
Dynamic-Programming:  Dixit & Pindyck (1994) also consider the dynamic-programming 
method of deriving the BSM PDE.  Pursuant to this method, the value of the contingent claim 
F(P,t) is expressed in terms of Bellman’s recursive form, see p122, and simplified using a 
Taylor series expansion to order dt and Itô’s Lemma.  The resulting PDE is analogous to the 
BSM PDE, except that the convection term contains the real drift and the discount term 
contains the exogenous discount rate.  The substitution of the risk-neutral for the real drift in 
the convection term and the risk-free for the exogenous discount rate in the discount term 
results in the BSM PDE.  This recasting of the BSM PDE from the real to risk-neutral world 
obscures the underlying assumptions being relied upon to obtain the result.  Such a 
transformation means the resulting PDE relies on the assumptions that characterizes the risk- 
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neutral world of no arbitrage.  The no arbitrage assumption is equivalent to assuming that 
both the underlying asset and the contingent claim trade continuously and can be sold short as 
in the delta-hedging method. 
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Appendix II 
 

Comparison of Single-Factor 
Stochastic Processes 
 
GBM Process:  Frequently utilized, the GBM process generates positive values and satisfies 
the homogeneity condition.  The first moment of the GBM is given by [ ]tp αexp0  so that as 

∞→t , it will not revert to a mean.  For ασ 2> , the motion of the GBM process will be 
attracted to the boundary 0=P .  The boundary behavior of the GBM is of practical 
importance, given the high volatility of crude oil and the low level of risk-free interest rates. 
 
OU Process:  The first moment of the OU process is also given by (3.5) showing it reverts to 
P .  The solution of the OU SDE contains a normally distributed random variable and can 
generate negative values.  While the probability of this occurring for crude oil is low, based 
on the parameters selected in Chapter 4, the terminal density is N (28, .35), the OU Process 
violates the homogeneity condition. 
 
CIR Process:  While generating positive values and reverting to P , the CIR process violates 
the homogeneity condition.  For the parameters for crude oil the CIR process should not be 
attached to either of the boundaries 0=P  or ∞=P . 
 
Exponential OU Process:  This is the stochastic version the Gompertz ODE.  The solution of 
the exponential OU comprises power and exponential functions and only generates positive 
values.  The first moment exists but when the limit as ∞→t  is taken, the reversion value is 
found to be [ ]ησ 4/exp 2P .  Also, the Exponential OU does not satisfy the homogeneity 
condition. 
 
SLV Process:  This is the stochastic version of the Verhulst ODE.  The solution to the SLV 
SDE, given in Kloeden and Platen (1999) and Robel (2001), is comprised of exponential 
functions in the numerator and denominator that will generate positive values for 0>t .  The 
first moment of the SLV process is a function of the second moment, the second of the third, 
and so on.  According to Robel (2004) the moments of the SLV process are unknown.  The 
stationary density of the SLV does exist and its first moment is ( )PP ησ 2/1 2− .  
Consequently, the SLV does not revert to P .  Furthermore, the SLV process does not satisfy 
the homogeneity condition.  The boundary behavior of the SLV process is the same as the 
CIR process. 
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Table A-II-1    Comparison of Single-Factor Stochastic Processes 
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Appendix III 
 

Statistics for Spot Crude Oil Time-
Series Data 
 
The time series data comprises spot WTI crude oil prices, observed monthly, for the period 
from May 31, 1986 until August 29, 2003.  The start date was not chosen; rather it is the 
earliest date for which Bloomberg has data.  Also considered was a subset of the last five 
year’s data.  The summary statistics are: 
 
 

Table A-III-1  Summary Statistics for Spot Crude Oil Time-Series 
  

Statistic           May ’83 – Aug. ‘03       Aug. ’89 – Aug. ‘03 
   
No. of observations                   244                61 
Min.  $10.40  $11.26 
Max.  39.60  36.60 
   
Location   
Mean  21.94  25.09 
Mode  30.25              N/A 
Median  20.42  26.80 
   
Shape   
Standard Deviation  $5.63  $6.11 
Skewness  0.46  -0.65 
Kurtosis  -0.51  -0.27 

 
Comments regarding the time-series include: 
 
1. The means of the two samples appear to be different, with the mean increasing from 

$21.94 per BBL to $25.09 per BBL in the last five years. 
 
2. The dispersion, as measured by the standard deviation, has increased slightly. 
 
3. The 20 year sample displays positive skewness, indicating a skew to the right and some 

negative, excess kurtosis, indicating a flat peak density. 
 
The spot crude oil prices comprising both the “long” and “short” time-series were used to 
implement the linear regression approach specified by (4.9).  The absolute value of the t̂ -
statistics for the intercept and slope of the regression (4.9), â  and b̂ , respectively, are shown 
below. 
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Table A-III-2 t̂ -Statistics for Regression Parameters 
 May ’83 – Aug. ‘03 Aug. ’89 – Aug. ‘03 
   

â  3.11 1.60 
   

b̂  3.43 2.17 

   
Degrees of Freedom 242 59 

 
The t̂  distribution value for a two sided test at the .005 significance level with 200 degrees of 
freedom, 200,005.t  is 2.838.  Since tt >ˆ  it follows that for the “long” time-series the null 

hypothesis Ho:  0ˆ =a  and Ho:  0ˆ =b  can be rejected at the 0.5% level, implying â  and 0ˆ =b  
differ from zero.  For the “short” time-series less confidence can be placed on the regression 
coefficients.  For the intercept, 296.1;ˆ 60,20 =ta , so the null hypothesis Ho:  0ˆ =a  can only be 

rejected at the 20% confidence level.  The situation is better for the slope parameter b̂  where 
0.260,05. =t  so Ho:  0ˆ =b  can be rejected at the 5% level. 
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Appendix IV 
Estimates of Parameters by Calibrating Calls on Crude 
Oil Futures 
 
 
Call Option on a Forward Contract Feb-04 Mar-04 Apr-04 May-04 Jun-04 Jul-04 Aug-04 Sep-04 Oct-04 Nov-04 Dec-04 Mar-05 Jun-05 Dec-05 

    
Call Option Maturity  (T-t) 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 1.083 1.333 1.583 1.080 
Risk Free Rate  r 0.010 0.010 0.010 0.011 0.011 0.011 0.012 0.012 0.013 0.013 0.013 0.015 0.017 0.0188 
Discount Factor  P(t,T) 1.002 1.003 1.004 1.005 1.006 1.008 1.009 1.010 1.012 1.013 1.015 1.020 1.027 1.021 
Maturity of Futures Contract (s-t) 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 1.080 1.330 1.583 1.080 
Price of Futures Contract F(t,s) $28.47 $28.19 $27.91 $27.63 $27.35 $27.10 $26.88 $26.66 $26.48 $26.32 $26.16 25.800 25.590 $25.51 
Volatility  Sigma 0.350   
Speed of Reversion  Alpha 0.624   
First Term  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.004 1.004 1.000 1.000 
Second Term  0.732 0.660 0.595 0.536 0.483 0.435 0.392 0.354 0.319 0.287 0.260 0.190 0.139 0.260 

  w 0.026 0.033 0.040 0.046 0.051 0.055 0.060 0.063 0.067 0.070 0.073 0.080 0.085 0.073 
Option Strike Price  K $28.50 $28.00 $28.00 $27.50 $27.50 $27.50 $26.00 $27.00 $26.50 $31.00 $26.00 $26.00 $26.00 $25.00 

  h 0.075 0.128 0.084 0.129 0.088 0.056 0.258 0.076 0.126 -0.486 0.158 0.114 0.091 0.210 
Cumm Norm(h)  N(h) 0.530 0.551 0.533 0.551 0.535 0.522 0.602 0.530 0.550 0.313 0.563 0.545 0.536 0.583 
CummNorm(h-sqrt(w))  N(h-sqrt(w)) 0.465 0.478 0.454 0.466 0.446 0.429 0.506 0.430 0.447 0.226 0.455 0.433 0.421 0.476 

    
Call Price(Model)  P(t,T)[F(t,s)N(h)

-KN(h-w)] 
$1.83 $2.15 $2.19 $2.42 $2.40 $2.38 $3.06 $2.55 $2.75 $1.25 $2.93 $2.87 $2.86 $3.03 

    
Call Price (Market)  $1.73 $2.17 $2.24 $2.51 $2.47 $2.33 $3.10 $2.43 $2.59 $0.90 $2.73 $2.73 $2.87 $3.84 

  $0.10 $0.02 $0.05 $0.09 $0.07 $0.05 $0.04 $0.12 $0.16 $0.35 $0.20 $0.14 $0.01 $0.81 
Abs. Error  $2.21   

    
Square Error  $0.01 $0.00 $0.00 $0.01 $0.00 $0.00 $0.00 $0.01 $0.02 $0.12 $0.04 $0.02 $0.00 $0.65 

  $0.90   
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Appendix V 
 

Valuation of a Producing Petroleum 
Reserve – GBM Prices 
 
 
Consider the valuation of a stream of cash flows from a petroleum reserve.  The gross 
revenues receivable are the product of: the price, ( )tP ; the rate of crude oil production, ( )tq , 
which declines by a constant percentage, ω ; and the amount of time, dt , equal to 
( ) ( )dttqtP .  Let ( ) ( ) ( )tPtqtR = .  Since ( ) ( )tqtdq ω−= , then, by the product rule, the real 

motion of ( )tR  will be given by the SDE (AV.1). 
 

( ) ( ) ( ) ( )dztRtRtdR Pp σωα +−=                                 ( ) 000 pqR =  (AV.1) 
 
The risk-neutral version of R  will have a drift term of: 
 
( ) ( ) =/−−= RRtR PP 0,ˆ ρσωαα ( )Rr P ωδ −−  

 
Where Pδ  is the convenience yield of crude oil. The risk-neutral motion of ( )tR  is (AV.2). 
 

( ) ( )[ ] ( ) ( )dztRtRrtRd PP
ˆˆˆ σωδ ++−=                   000

ˆ PqR =  (AV.2) 
 
If the holder of the petroleum reserve must pay fixed and variable operating costs, 
represented by OC and τ , respectively, then the instantaneous cash flow will be 
( ) ( )( )dtCtRdtt O−= τπ .  The value of a perpetuity paying ( )dttπ  from (AV.2) is: 

 
( )[ ] ( ) ( )[ ] dteqpRtRRtV tr

St
S

−∞

∫ =Ε=∞ 0000 0|ˆˆ,;, ππ  

 
                ( ) ( )[ ]( )dteCeqpRtR

St
tr

O
tr∫

∞
−− −=Ε= 000 0|ˆτ  

 

                ( ) dteCdteqp
St

tr
O

St

tp ∫∫
∞

−
∞ +− −= ωδτ 00  

 

[ ]
( )

r
eCeqptRV

SSp tr
O

P

t

S

−+−

−
+

=
ωδ

τ ωδ
00

0,  

 
If 0=St , then: 
 

( )
r

CqpRV O

P

−
+

=
ωδ

τ 00
0  (AV.3) 



57 

 
The aggregate value of all the barrels comprising a petroleum reserve given by (AV.3) is 
equal to the capitalized value of the net revenues, discounted at the rate ( ωδ +P ), less the 
capitalized fixed costs, discounted at the risk-free rate.  Over the life of the reserve the total 
quantity of barrels extracted will be ω/0qQ = .  Hence, the value of a single barrel of crude 
oil in the reserve, QVB /= , is: 
 

( )
rQ
CPPB O

P

−
+

=
ωδ

τω  (AV.4) 

 
Now consider some of the attributes of the valuation model defined by (AV.4).  Since 

τddB /  is positive, as royalties and taxes increase, the value of a barrel will go down.  Now 
consider how B  varies with the production decline rate, ω . 
 

( )2ωδ
δτ

ω +
=

p

pP
d
dB  

 
So long as 0>pδ , then ωddB /  will be positive, so as the decline rate increases, pushing 
more production to the front end of the time line, then B  will increase.  But is pδ  always 
greater than zero?  Remember, pδ  is the convenience yield on a barrel of crude oil and is 
estimated from the futures curve using the “cash and carry” futures model.  So, when the term 
structure is “backwardated”, pδ 0> .  But if the term structure is in “contango” then 0<pδ .  
In this instance, where longer-dated barrels are worth more than short-dated barrels, B  will 
decline with increases in ω .  Since ω  is a portion of the reserves produced, as well as the 
decline rate, (AV.4) says producers facing a “contango” in the futures market should “throttle 
back” their wells.  Doing so will decrease the capitalization rate in (AV.4), and 
correspondingly increase the value of the revenue stream.  The limit of this strategy will be 
reached when pδω = ; after this point the “capitalized revenue” term of (AV.4) will become 
negative.  This is not consistent with reality! 
 
Another problem with GBM-based valuation models concerns the volatility of their returns.  
By applying Itô’s Lemma to (AV.4) it can be shown that: 
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Consider the relationship between the volatilities of each of a barrel of subsurface petroleum, 

( )BdBSd /  and a barrel of crude oil on the surface, σ , specified by (AV.5). The magnitude 
of the second term in the denominator on the RHS of (AV.5), relative to one, will determine 
whether ( )BdBVar /  is greater, or less than 2σ .  The capitalized fixed costs per barrel, 

rQC /0 , must be significantly less than the net price per barrel, Pτ , or the reserve would not 
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have been placed on production.  It follows that ( ) 1//0 0 << PrQC τ .  If 2/1 <<− ωδ P , then 
the remaining portion of the denominator of (AV.5), ( )1/ +ωδ P  will be less than one.  In this 
event, the whole of the denominator will be less than one and ( ) 2/ σ>BdBVar , otherwise 
the converse applies. 
 
Pindyck (2001) estimated that the mean and standard deviation of the three-month 
convenience yield for crude oil are 6.94% and 9.76%, respectively, based on samples of spot 
and futures prices from January 1, 1984 to January 31, 2001.  Experience shows that the rate 
of production declines in most, but not all, petroleum reserves at annual rates between 5% 
and 30%, with a range of 12% to 20% being “typical”.  Adjusting the annual decline rate to 
quarterly rates shows that for “typical”, but not all, estimates, the ratio ωδ /P  will lie in the 
interval ( -1, 2).  It follows that for “typical” estimates of Pδ  and ω , the variance of a barrel 
of reserves, valued by (AV.4), will be greater than that of a spot barrel.  This prediction 
contradicts the available evidence. 
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