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Abstract

We present an approach for valuing real investment projects taking into
account both personal and corporate taxation, and assuming that the
project may also be financed by issuing incremental debt. The setting
is a generalized Miller equilibrium economy with differential taxation
for bond-holders and equity-holders and with cross-sectional variation
in corporate tax rates. We use valuation neutrality (the martingale op-
erator is not affected by taxes) and holding-period neutrality (there are
no tax-based incentives to adjust the investment holding period) of the
tax scheme. Accordingly, we provide a certainty equivalent (risk-neutral)
valuation framework taking into account taxation and valuation of tax
shields, for capital budgeting projects both in case the firm can and can
prevent default on debt payment.

The certainty-equivalent operator is not affected by tax shields and
is the same before and after personal taxes. Interest tax shields can be
incorporated by either adjusting the discount rate for interest tax shields
(depending on the financincg system) or with an APV-like approach with
interest tax shields being additive.

We also analyze also the effect of debt financing on the value of the
option to invest and on the exercise policy, including the effect of default
risk. One of the findings of this work is that for low uncertainty a higher
leverage can reduce the time-value of the real options and increases the
probability of exercising these options. This effect is completely offset
in case either the uncertainty or the leverage is high; i.e., when the firm
is close to default.

Keywords: Investment under uncertainty, capital structure, risk-neutral
valuation, corporate and personal taxation, default risk.
JEL classifications: G31, G32, C61



1 Introduction

The most widely used models for valuing or optimizing capital invest-
ment decisions under uncertainty are based on cash flows discounted at
a risk-adjusted rate. Nevertheless, the presence of leverage, discretion
and asymmetry forces a valuation approach based on computation of
certainty equivalent, as opposed to expected, cash flows. This leads to
the real options approach for capital budgeting valuation.

The interaction of personal and corporate taxes on various financing
instruments generates a net interest tax shield that may have positive or
negative value. This interaction is so often mishandled that few people
recognize that it could just as likely have a negative value as a positive
value. The differential taxation does not affect the certainty-equivalent
(equivalent martingale) operator. The value of the interest tax shield can
be calculated either by an additive term that separates the value under
different financing scenarios (an adjusted present value or APV treat-
ment), or by adjusting the discount rate to reflect the tax wedge that sep-
arates the riskless market returns for instruments of different tax classes
in what we will call a tax-adjusted discount rate (TADR) approach.

A equity-finance real investment opportunity (such as an option to
pursue an R&D project) should be discounted at a different riskless dis-
count rate than used for a financial derivative. This is because the mar-
ginal investor for a capital investment project is likely to face differential
taxation of debt and equity instruments, which drives a tax wedge be-
tween the riskless returns on equity and debt instruments. However, the
market maker who sets the relative prices of financial derivatives and
their underlying instruments is typically taxed at the same rate on all
financial instruments, so she does not see a tax wedge between riskless
equity and debt instruments. Thus, the common practice of discounting
financial derivatives (puts and calls on stocks, for example) at the riskless
debt rate is appropriate. However, we show that it is incorrect to carry
this practice over to a real options setting, where certainty-equivalents
that are financed by equity should be financed by an equity rate that
differs (and is typically lower than) the debt rate.

The fact that a financial market maker does not use the same dis-
count rate to value an investment as a long-term capital investor would
use does seem to lead to some arbitrage opportunities that we do not
explore. It may be difficult to take advantage of these arbitrage oppor-
tunities because a dynamic hedge based on the long term capital value
may generate adverse tax consequences, or may be had to form because



of incomplete markets.

Most capital budgeting projects are financed partly by debt and partly
by equity. Finally, there are some cash flows from a project, like the tax
advantage to debt due to the deduction of interest payments from the
taxable income, that are contingent on the cash flow of the project and
are lost in case the firm default on debt service. For this case, a suitable
valuation approach is needed, based on certainty equivalent operators
taking into account personal taxation.

In this work we introduce a continuous-time valuation framework for
cash flows emerging in capital budgeting, taking into account personal
and corporate taxes, under the assumption that taxes do not introduce
tax timing options due to the taxation of capital gains. We do show broad
circumstances under which taxes do not affect the equivalent martingale
measure.

This paper shows how to adjust the value of discretionary and asym-
metric cash flows, in order to apply the real options approach, for the
value of debt and taxes under two different types of settings. In the first,
we assume that debt is default-free because of the ability of the manage-
ment to constantly adapt the debt level of the firm. This assumption,
first due to Miles and Ezzell (1980, 1985), is widely accepted in capital
budgeting (see recently on this Grinblatt and Liu (2002)), and is here con-
sidered as the benchmark case. In the second setting, we assume that
debt is defaultable and incorporate the effect of the probability of default
into the valuation. In this respect, our work extends previous research
by Merton (1974), incorporating tax shields; by Brennan and Schwartz
(1978), Leland (1994) and Leland and Toft (1996), considering personal
and corporate taxation.

Lastly, the paper aims at describing the influence of debt financing on
the value of the project and on the decision to invest. The are few other
contributions in the real options literature that deal with the interaction
between investment and financing decisions.

An early contribution was given by Trigeorgis (1993), who analyzed
the option to default on debt payments, noting potential interactions
with operating flexibility, but with no reference to tax benefits from debt
financing. Another important contribution is Mauer and Triantis (1994),
who presented a real options model of a flexible production plant with
a capital structure changing over time as a consequence of an optimal
dynamic financing policy, but with the important limitation that default is
ruled out by the ability to reduce the debt. They do not find any influence
of debt financing on the investment policy. In contrast, we show that debt



financing, also in the default free case, have a deep impact both on the
value of the option to invest and on the probability of investing.

A third line of research was started by Mello and Parsons (1992), who
studied the effect of agency problems of debt (underinvestment or over-
investment) on the optimal operating policy for the firm with different
operating modes and provides a measure of the agency cost of debt.
Mauer and Ott (2000) and Childs et al. (2000) extend these results to
the case of expansion options. We do not analyze potential conflicts of
interest between equity-holders and debt-holders.

Our model is more general than these contributions in that we prop-
erly incorporate personal taxation and that we do no assume that debt
level is a predetermined function independent of the operating policy (as
in Mello and Parsons (1992)) or of the strategic policy (as in Mauer and
Ott (2000) and Childs et al. (2000)).

An outline of our work is as follows. First, in Section 2, we provide an
equilibrium valuation approach in continuous-time for real and financial
assets in an economy with personal and corporate taxes, where tax rates
on bonds and stocks are different. In Section 3 we present a continuous-
time valuation approach for levered and unlevered real assets for capital
budgeting purposes. We study first a case with no default risk, and then
we incorporate the possibility that the firm can default on debt payments.
In Section 4 we introduce the basic real option to delay an investment un-
der the assumption that the incremental debt to finance the real asset is
issued conditional on the decision to invest. In Section 5 we analyze the
effect of debt financing on the value of the real option and on the optimal
investment policy. The results are sharply different in the default-free
case and in the defaultable case. In the first, a higher leverage for a supra-
marginal firm/project (i.e., a firm/project which has a tax advantage to
debt) increases the value of the option to delay investment and increases
the probability of investing, thus reducing the time-value of the option
to defer investment. In the second case, the positive effect of debt for a
supra-marginal firm/project, because of the tax benefit on interest pay-
ments, can be completely offset when uncertainty is high and the firm is
close to default.



2 Asset valuation in a generalized Miller economy

2.1 Tax equilibrium

This section discusses the valuation framework for capital budgeting pur-
poses in a continuous-time Miller economy that is generalized to allow
for cross-sectional variation in corporate tax rates. Miller (1977) assumes
that the personal tax rate for bond investment income is different from
the personal tax rate for stock investment income. He assumes that there
is cross-sectional variation in personal tax rates, but not corporate tax
rates. Thus, in his tax equilibrium, all corporations are indifferent about
capital structure, but individual investors have a tax-induced preference
for debt or equity, leading to tax clienteles. By allowing cross-sectional
variation in corporate tax rates, as in Sick (1990), only firms at the mar-
gin are indifferent (on a tax basis) between issuing debt and equity, and
supra-marginal firms with a tax rate below the marginal rate prefer to
issue equity and infra-marginal firms with a tax rate above the marginal
rate prefer to issue equity.

A cash flow is valued according to an equivalent martingale measure
(EMM) that, in principle, may be specific to the form in which the cash
flow is conveyed to the investor. We establish circumstances where the
tax system is neutral, in the sense that it does not affect the EMM (valu-
ation neutrality). We also establish conditions where the holding-period
timing options (as in Constantinides (1983)) have no value (holding-period
neutrality). This is crucial when valuing corporate investments, because
their cash flow streams must be valued from the point of view of bond-
holders and equity-holders of the corporation. Although there are several
neutral personal tax systems,! we will achieve a neutral tax system with
a linear personal taxation scheme (symmetric in gains in losses) that also
has a mark-to-market feature that taxes capital gains as accrued rather
than when they are realized.? Of course, the relevant personal tax sys-
tem for any capital budgeting valuation may not be exactly neutral, but
it will often be close enough to neutral that the techniques here are the
appropriate starting point for valuation and policy decisions.

The setting is an economy with complete financial markets that has
both personal and corporate taxes. We assume an underlying complete
probability space (Q, F, P) and a (possibly infinite) time horizon T, Q is

1See Auerbach and Bradford (2001).
2In Jensen (2003), the proof of valuation neutrality and holding-period neutrality is
provided also for other cash flow-based taxation schemes.



the set of possible realizations of the economy, F is the o-field of dis-
tinguishable events at T, and P is the actual probability on F. We denote
F = {F:,t €[0,T]} the augmented filtration or information generated
by the process of security prices, with Fr = F.

We denote by T¢ the marginal tax rate for a company; T? the personal
tax rate for income from bonds, and 7°¢ the personal tax rate for income
from equities. We assume that, for the individual investor, capital gains
and coupons in bond markets are taxed at the same rate, and capital
gains and dividends in equity markets are taxed at the same rate. The
personal tax operators are linear at any date t (i.e., for each investor,
income and losses are taxed, or generate tax relief, at the same rate).
On the other hand, the tax scheme for corporations need not be linear.
We allow ¢, 7% and T¢ to be F-adapted stochastic processes, i.e. they
are determined as a function of the (stochastic) factors underlying the
economy, but they must have continuous sample paths, almost surely.
The stochastic nature of tax rates is not essential to achieve the results
of this paper and readers may find it more convenient to think of the
tax rates as being deterministic or even constant. In general, T and T¢
are different. Ross (1987) established the existence of equilibrium and of
an EMM for an economy with personal taxes and a convex tax schedule.
These assumptions are satisfied in our setting.

Consider a firm with tax rate T¢ that is deciding whether to issue
debt or equity to an investor who has tax rates 7€ and T? on equity and
debt respectively. If (1 — T€)(1 — T¢) > (1 — T?), the firm has incentives
to issue equity. It can even issue equity at a slightly higher after-all-tax
rate of return, thereby attracting a new investor with a higher tax rate
on equity (relative to debt), who formerly would have purchased debt.
(It does this while still paying a lower after-corporate-tax rate of return
on the new equity than on the debt.) This switch in marginal investors
reduces the gap between (1 — 7¢)(1 — 7¢) and (1 — v?). Similarly, if
(1 =T°)(1 —7°) < (1 —TP), the firm has incentives to issue debt. This
attracts investors who are taxed more heavily on debt.

Equilibrium is achieved by adjusting relative prices on debt and eq-
uity, which affects the expected rates of return on these securities. In
equilibrium, the marginal firm, with marginal tax rate ¢ = ™, will be
indifferent between issuing debt and equity and the marginal investor
(with tax rates ¢ and T?%) will be indifferent between buying debt and
equity. In this equilibrium, security prices (and expected returns) are
such that the after-all-tax returns are the same for the marginal firm and
the marginal investor, so that there is no overall gain from debt in this



economy,
(1-71M)(1-1°) =(1-1b).

Since there is cross-sectional variation in corporate tax rates t¢, there
will be supra- and infra-marginal firms, i.e., firms that have a gain (¢ >
T™)or aloss (T¢ < T™) from leverage, respectively.? We can characterize
the marginal firm’s tax rate T by the equation

1-1" = L-7f ,
1-Te

(2.1)

The equilibrium entails setting the expected rates of return on the se-
curities. To set aside risk premia for a moment, we consider riskless debt
offering a yield of v/ and riskless equity offering a yield of ¥Z. In equilib-
rium, these yields must achieve the same rate of after-all-tax return for
the marginal investor investing in the marginal firm:

(1-7197r% =1 -1

Thus, we can characterize (2.1) in terms of market rates of return by:

1-™=—. (2.2)

Tax arbitrage has a tendency to make all firms behave as if they have
the same tax rate. At the corporate level, an arbitrage scheme could
involve a highly taxed firm with 7¢ > 7" issuing debt to acquire its own
equity, for example. Or, it could involve a low-tax firm issuing equity to
buy back debt. We assume that there are tax laws and agency costs?* that
prevent a firm from undertaking such an arbitrage transaction. Thus,
there will generally be supra- and infra-marginal firms in this generalized
Miller tax equilibrium.

It is more difficult to generate tax arbitrage opportunities that would
have all investors facing the same effective personal tax rate as that held
by the marginal investor. This is because personal tax laws identify the
individual and generally change when a financial entity (such as a corpo-
ration, mutual fund or trust) is inserted between the investor and the in-
vestment vehicle. Thus, there will generally be supra- and infra-marginal
investors in this generalized Miller tax equilibrium. Indeed, Miller (1977)

3The fact that some firms have unlevered capital structure can be interpreted as
an evidence that there are infra-marginal firms, although an infra-marginal can have
leverage because of agency costs in issuing equity.

4See for instance, Myers and Majluf (1984).



also assumed this. For example, suppose an investor pays little or no tax
on any investment (e.g. a pension fund), but the marginal investor pays
higher tax on debt than on equity. The untaxed infra-marginal investor
would prefer the tax benefits of debt, but this will prevent the investor
from earning risk premia paid on equity investments. We assume that
any attempt to convert an equity investment with a risk premium to a
debt instrument for tax purposes is prevented by tax law.

Taxes introduce a risk sharing mechanism between government and
taxed investors. This could cause a difference between the equilibrium
pricing measure with and without personal taxes. We will assume a valua-
tion neutral tax scheme, in the sense that, although individual investors
have different tax rates, the market stays in equilibrium since no arbi-
trage opportunities are introduced and the equilibrium pricing measure
is unchanged by the presence of taxation. For valuation purposes, this
means that the expected (under the EMM) pre-tax cash flow stream of a
security, discounted at a pre-tax rate, is equal to the expected (under the
same EMM) after-tax cash flow stream, discounted at an after-tax rate.

A second important issue introduced by taxation of security returns
is the presence of timing options related to taxation of capital gains, as
pointed out by Constantinides (1983). Taxation of capital gains produces
timing options due to a (rational) delay of liquidation of positions in fi-
nancial securities, until a date of forced liquidation, if the accrued capital
gain is positive and the anticipation of liquidation of the position if the
capital gain is negative, to take advantage of the tax credit.

We assume a holding-period neutral tax scheme,” i.e. a tax scheme that
does not introduce any timing options related to taxation of capital gains
and so it does not change portfolio strategies of individual investors.
Auerbach (1991) and Auerbach and Bradford (2001) describe a general-
ized tax scheme that prevent tax arbitrages and realizes holding-period
neutrality. Within this class of valuation and holding-period neutral tax
schemes, we will consider the mark-to-market personal taxation. Mark-

>To the best of our knowledge, the definition of holding-period neutrality is due to
Auerbach (1991, p. 169):

“A realization-based tax system is holding-period neutral if it leads each
investor in an asset to require a before-tax return having a certainty-
equivalent value that is not a function of the length of holding period
or the asset’s past pattern of return.”

6Jensen (2003) provides an exhaustive characterization of the class of taxation
schemes that satisfy the requirements of valuation and holding-period neutrality in
a discrete-time setting.



to-market taxation of a security consists of accrual of taxes on capital
gains on a separate account as if the security were actually traded. The
realization of the accrued tax on capital gain is deferred until the date
the security is actually traded. There are several practical problems re-
lated to this scheme, especially when related to illiquid (or inefficiently
traded) securities. As far as a no-arbitrage financial market is concerned,
the main drawback of mark-to-market taxation is related to the liquidity
constraints it imposes on the individual investors. Nevertheless, mark-
to-market taxation is a reasonable benchmark and has been used for this
in the public finance literature.”

2.2 Security price dynamics

In the economy described above,® let Q be an EMM on ‘F.? We denote the
risk-neutral expectation operator with respect to Q as EQ[ - | F¢] = E¢[-].

The price of an arbitrary stock, denoted S, is an adapted It6 process
{S;} with dynamic (under Q)

dSt = (TtZSt - Xt) dt + O'tdZt S0) = S(). (23)

(r#, X; and oy are adapted processes which satisfy the usual integrability
conditions) where 77 is the time-t certainty equivalent (CE) instantaneous
rate of return for a stock at the market level (before-personal taxes) under
the EMM, and where the adapted process X; is the flow of dividends. We
make the assumption that taxes on dividends are levied at the same rate
as taxes on capital gains as far as the same investor is concerned.

We define also a money market account,!© at the market level, of value

7An extension of the results presented below to other neutral taxation scheme is
beyond the scope of this paper and will be the subject of future research. We will
provide our results in a continuous-time Miller (1977) setting, where the tax rate for
bonds and the tax rate for stocks can be different even if they are traded by the same
agent. Our results significantly extend Jensen (2003) results to an economy where
personal tax rates can be cross-sectionally different and bonds are taxed differently
from bonds.

8We skip the description of the other technical hypotheses suited for the existence
of an EMM for valuing the securities. Interested readers can refer to Duffie (2001).

9Since in principle the EMM can be affected by personal taxation, our choice of Q
is arbitrary for the time being. As we will prove later, under the mark-to-market sym-
metric tax scheme the EMM is not affected by taxation. Hence, Q will be legitimately
defined as the equilibrium EMM.

10Here we will concentrate on default-free bonds. We postpone the valuation of de-
faultable bonds, like corporate bonds, until Section 3.3, where we introduce endoge-
nous default and the valuation formula will be more easily introduced.



B with dynamics (before personal tax):

dB; =r/Bidt  Bo=1. (2.4)
where the riskless rate of return or CE rate, th , is an adapted process
(and satisfies the standard conditions). thus

Ly
B; = exp (J i du) .
0

The equilibrium rates of return on the money market and stock mar-
ket are the same after all taxes for the marginal investor, so, at any date
t we have (generalized Miller equilibrium relation) that yields a common

after-all-tax riskless CE return r/*

rtz’atzrtf(l—Tf)Zth(l—Tf) (2.5)
Orll
¥? = (1- Tm)Tf. (2.6)

Generally v# < rf, since the marginal firm’s tax rate " > 0. This re-
quires that the marginal investor’s debt tax rate exceeds her equity tax
rate: TY > T¢. Only if TY = T¢ (or equivalently, T, = 0) can we have
rZ = /.12 In what follows, we only require that all tax rates be between
Oand 1: 0 < %, TP ¢, 7™ < 1. Thus, taxation is never confiscatory. For

convenience, we define
t
Bf = exp Jo rdu

to be the accumulated value of an investment in the CE equity account.

HEquation (2.6) provides also a way to estimate the marginal tax rate T™, since 72
and »/ can either be observed or derived from security prices.

12The assumption that T = T¢ is very common in the literature. For example, it was
used by Modigliani and Miller (1963) and underlies most of the standard exposition
of the CAPM, such as Sharpe (1964) and APT as in Ross (1976). The more accurate
assumption, as in Miller (1977) and others is differential taxation of debt and equity
income, typically T% > T¢. This forces us to deal with differential riskless rates in debt
and equity markets. Typically +/ = 72, although our results do not depend on this
condition.



2.3 Valuation neutrality and holding-period neutrality

Using the martingale valuation results,'3 given a maturity date T' > t
(where T’ is a stopping time with respect to F) the market price of the
stock at time t (i.e., before personal taxes) is

<[ Sy " x,
= BfE J — , 2.7
St ;e |:B72—/ + , Bﬁ du] ( )

which is the value of the stock at the market level (i.e., before personal
taxes), given by the CE price at T” discounted at the CE equity rate. Let

t
Btz,at = exp (J ri(1 - Tﬁ)du)
0

be the time-t value of one dollar invested at time 0 and earning the CE
rate of return on equity 77 net of personal taxes 7§, for 0 < u < t.
Define the after-all-tax stock value S by

.| S T (1-18)Xy T e
sat — pzatf + J U= du - J L_dsat| . (2.8)
t t t B]zq,,at ‘ Bﬁ'at ‘ B,Z[at u

This is the value of the stock after personal taxes and is defined as the
certainty-equivalent after-personal-tax price at T’, and all after tax diev-
idends, discounted at the after-tax CE equity rate. This is a recursive
definition, initially defining Si* = St for t = T’ and working backwards
for earlier t. Note that the definition uses the same risk-neutral expecta-
tions E;[-] and probability measure Q as is used for the pretax value S;.
We will show that this is the same as the pre-personal-tax value of the
stock.

Equation (2.8) implements a mark-to-market taxation rule. That is,
each period, capital gains (or losses, if negative) are taxed as accrued

13Ross (1987) shows that there is an equivalent martingale pricing operator in the
presence of taxes. His results are general and, in our setting, establish a pricing opera-
tor after all taxes, as well as pricing operators for debt flows before personal tax and for
equity flows before personal tax. Even if each of these three pricing operators is unique
within its own setting, there is no immediate guarantee that these pricing operators
are related or equivalent. Sick (1990) raised this question in a discrete-time setting and
showed that the certainty equivalent operators associated with these pricing operators
are all identical to each other. That is, taxes and tax shields do not generate a risk
premium. We establish an equivalent result in continuous time, but initially, we must
be careful to distinguish the source of any pricing operator. For the time being, we
take the martingale pricing operator that prices equity cash flows after corporate tax
and before personal tax.

10



even though they are not realized. This tax scheme requires that, at the
date of liquidation, the capital gains in the interval [t, T'] are considered
at the date they occur and then interest accrues on the tax on capital
gains at the after-personal tax rate of return until T’. The tax on capital

gains (on the after-tax stock price S) accrued from t to T" and paid at

the liquidation date T’ is Bf"™ ftT T¢/B5;*'dS2, This amount is specific

to the realized path for Sft. In Equation (2.8), the present value at t of the
tax on capital gains realized at time u > t is computed by discounting by
the factor B;"*'/B;;*". The expectation of this discounted value is taken
with respect to the (risk-neutral) probability of all future paths for S
For the money market account, we denote the value of a unit-dollar

amount accrued at the after-personal-tax rate rtf (1-12) by
fat -
B/ = exp (J ri (1 - Tﬂ)dtt) )
0

Since the equilibrium relation in (2.5) holds at any t, we have Bfat =
B#ayt. Analogous to definition (2.8) for stocks, we define the after-all-
tax bond value B by

T b
t _ pfatg | Br Tu t
T [Bi;at ‘L Baf'atdBa} | =

Proposition 1. Under the linear mark-to-market taxation rule:

1. the value of the stock at the market level equals the value of the stock
after personal taxes: Sy = Sft, and

2. the value of the money market account before personal taxes is equal
to the value of the money market account after personal taxes: By =
B,

This result is often described as a system of taxation that is value
neutral. In fact, the next result is an extension of Sick (1990, Proposition
1) to a continuous-time setting.

Corollary 2. The martingale expectation operator £, or equivalently, the
risk-neutral measure Q correctly values both equity (and money market)
payoffs that are after personal taxes as well as equity (and money market)
payoffs that are before personal taxes.

11



We have implicitly assumed that the personal equity tax rate 17 is the
tax rate of the marginal investor, because we have been developing rela-
tionships for equilibrium prices. However, the same result holds true for
any investor, whether or not he is marginal, provided that the tax sched-
ule is locally linear. That is to say that the marginal payoffs provided by
the investment under consideration will cause variation along a portion
of the tax schedule that has a constant marginal tax rate.

Corollary 3. If an investor has a tax schedule that is locally linear in equity
(bond) income at rate T¢ (t7), then the personal valuation of the risk-
neutral expectation of a pretax stream of equity (money market account)
flows discounted at the CE discount rate for equity v{ (atrtf ) has the same
value as a stream of equity (money market account) values net of mark-to-
market capital gains tax, if discounted at the investor’s personal after-tax
equity (bond) rate rj™ (rtf’at).

It should be clear now also that the choice of a given EMM, Q, was
just for the sake of definiteness, since the argument could be applied for
any EMM. Hence, under a mark-to-market linear personal tax system, the
EMM is not affected by taxes.

We have discussed the valuation neutrality property of a linear mark-
to-market taxation scheme. We will also show that such a scheme is
holding-period neutral, in the sense that it does not change the set of
opportunities available to the investor by inducing timing options.

Proposition 4. Under the linear mark-to-market taxation rule and in equi-
librium, for the marginal investor no further incentives for liquidating a
position are introduced by taxation; i.e., tax options are worthless.

We remark that the assumption of Miller equilibrium (i.e., condition
(2.5)) is crucial for this result, since this permits us to “transfer” the tax
account back and forth over time at the unique after-personal taxes rate
of return v/ (1 — T?) = v#(1 — 7°) for the marginal investor.

The above results, and in particular the valuation equations at the
market level (i.e., after corporate taxes and before personal taxes) for
bonds and stocks, will be useful to evaluate general cash flows to equity-
holders and debt-holders (at the market level) generated by capital bud-
geting projects. In this sense, Propositions 1 and 4 make sure that the
value of these general cash flows are the same even if we introduce a
symmetric mark-to-market taxation (although at cross-sectionally differ-
ent rates) for bond-holders and debt-holders.

12



3 Capital budgeting with exogenous capital structure
in a generalized Miller economy

In the framework described in Section 2, we introduce capital budget-
ing valuation, assuming that the corporation has an exogenously given
capital structure. The capital structure can be the one proposed by
Modigliani and Miller (1958), with constant level of debt, or the one pro-
posed by Miles and Ezzell (1985), with constant debt proportion, or a
more general class proposed by Grinblatt and Liu (2002).14 We will ex-
amine both the default-free case (constant debt proportion or Miles and
Ezzell (1980) debt policy) and the case with defaultable debt (constant
debt level or Modigliani and Miller (1958) debt policy), assuming that the
default threshold is predetermined.

For capital budgeting valuation, since the interest payments on debt
are tax deductible, it is important to evaluate the interest tax shield to
determine the cost of capital. The tax shield is a function of the leverage
of the firm/project and is contingent on the cash flow process, since it
is lost in case of financial distress.!®> Hence, a proper valuation of tax
shield can be done only in a risk-neutral setting.!® Moreover, the interest
tax shield can be positive (for a supra-marginal firm, ¢ > ™) or nega-
tive (for an infra-marginal firm, T¢ < ™) as a consequence of the level
of the equilibrium marginal tax rate, 7.1/ This makes the framework
described in Section 2 appropriate for capital budgeting valuation.

l4we will not consider model with endogenous capital structure, as Fisher et al.
(1989), Mauer and Triantis (1994), Goldstein et al. (2001), Dangl and Zechner (2003),
Christensen et al. (2002). Capital budgeting valuation with endogenous financial deci-
sions will be the subject for future research.

15This is witnessed also by Leland (1994, p. 1220): under the U.S. tax code, the tax
benefit on coupon payment is allowed only if EBIT is grater than coupon.

160f course, there can be other contingent claims in capital budgeting, like real op-
tions. The extension of the results of this section to real options are in Section 4.

17 Although we will focus on the supra-marginal case, our results holds true also for
the infra-marginal case.
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3.1 Valuation of tax shields

Let there be given a firm/project,'® with marginal corporate tax rate T€.
We assume that 7€ is independent of earnings.

The firm/project has duration T? (possibly, infinite) and the EBIT
(Earning Before Interest and Taxes, i.e. a before-corporate taxes free cash
flow) rate, X;. The EBIT rate follows the adapted process, under the EMM

adXs = g(Xs,s)ds + 0(Xs,s)dZs, Xt = Xx, (3.1)

where g is the instantaneous CE growth rate and o is the diffusion.

For convenience, we derive first the value of the firm/project assum-
ingitis unlevered. The after-personal tax total cash flow from the firm/project
is X¢(1 — 77)(1 — 7). Since in Propositions 1 and 4 we established the
equivalence of a before- and after- personal taxes valuation for equity
income, assuming that the after corporate tax earning are immediately
paid to equity-holders, the value of the unlevered firm/project, denoted
U, by straightforward applications of the pricing relations is Section 2, is

TP c
U(t,x) = B?E, U st] (3.2)
t Bs
forO0<t<TP.

In what follows we determine the Adjusted Present Value (APV), i.e.
the value of the firm/project including the value of the tax advantage to
debt, in case operations are financed also with debt: we will analyze first
the default-free case and than we will consider the case with defaultable
debt.

3.2 Default-free debt

In this section we will assume also that there is no default, because of the
ability of the management to constantly adapt, at zero adjustment costs,
the debt level in order to avoid default. This implies that the coupon rate
for corporate bonds is the risk free rate.

Since the firm/project is financed also by issuing coupon bonds, as-
suming interest on debt is paid out immediately, given the total coupon

18Note that, for the time being, and in the sake of simplicity, our setting is different
from the case of an ongoing company with its own capital structure and growth options.
We will show that the cost of capital for the option to delay investment in the project is
independent of the current capital structure of the company, so our choice is legitimate.
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rate paid to bond-holders R;, then the (instantaneous) cash flow to equity-
holders is (X; — R¢)(1 — 7f) (1 — 7f) and to debt-holders is R; (1 — Ttb), SO
that the total cash flow from the project is, after-personal taxes,

(X¢ —R)(1 =151 —T8) + R (1 - 7))
=X (1-1)A-71) + 7R (1 —77), (3.3

for 0 <t < T%, where T* = 7€ — 7™ and T™ is the marginal tax rate
defined in (2.1). We assume that the principal is paid back at T4 < T?.
Alternatively, if we are valuing an infinite-horizon project we will assume
that it is financed by issuing consol bonds (T4 = ). Moreover, for sim-
plicity we assume that debt is always valued at par. Since debt is default-

free, R; = rth(t, x), where D(t, x) is the market value of debt. Hence,
R; is an adapted process.

In equation (3.3), while X;(1 — 77)(1 — 7f) coincides with the after
personal taxes flow for an all-equity financed project, the (net) tax shield,
T/ R;, is taxed at the equity rate because it accrues to equity-holders.!9
Hence, the right-hand-side of (3.3) must be discounted using the after-
personal taxes discount factor for stocks, B?2'. From Propositions 1 and
4, we know that this is equivalent to a before-personal taxes valuation
using the discount factor B#. This intuition is made precise in the sub-
sequent proposition. We denote V the APV of the levered firm/project.
Hence, the levered project (and in particular, the tax shield) is a contin-
gent claim of the free cash flow.

Proposition 5. The APV, incorporating the value of the tax shield, satisfies

equation
0%V oV oV
axz TIXDop + 50+ Xe(1 - ) + TR =vFV. (3.4)
19Gjck (1990) was the first to point out this fact. A possible interpretation of (3.3)
is the following: a bond can be interpreted as a swap between equity-holders and
the marginal investor, who is indifferent between receiving cash flow from equities
and cash flows from bonds. At t = 0, equity-holders swap B dollars of equity for an
equivalent amount (at the market value) of debt, so, the initial net position for equity-
holders is equal to 0. At every coupon date, they save to pay a required rate of return
rZB and pay /(1 — T¢)B to debt-holders, so the net position for equity-holders is
rZB —rf (1 — 7°)B. Since the generalized Miller equilibrium relation (2.6) holds for the
marginal investor, the net position for equity-holders is ¥/B(7¢ — v™), where /B is
the CE coupon (which coincides with the actual coupon at the current date), derived
from the valuation equation for debt.

%UZ(X,t)
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with boundary conditions V(T%, X7a) = U(T4, X7a) and U(T?, X1r) = 0,
and is

T4 c * d
X (1 — R T4 X
Vi) Bf[Et“ o TB)+T s, U ;Td)]
s

T4
. T4 *R
= U(t,x) + BZE, J Ts S gs |,
t Bs

for 0 < t < T%, where the second term in the right-hand-side is the tax
shield.

(3.5)

The APV in (3.5) can be computed in the general case, for general
processes for X; and Ry, for the risk-free rate and for the tax rates, using
some numerical methods.2? Nevertheless, to obtain a default-free debt,
we have to properly define the debt policy: in particular, we assume that
D(t, x) is a linear function of APV: D = LV, where L is the constant debt
ratio, 0 < L < 1. This is the Miles and Ezzell (1980, 1985) (M-E) debt
policy.2!

By replacing this condition in equation (3.4) we obtain

1 o2 0%V ov. oV
(X, t)aX2 g(X, t)—+E+Xt(1—TtC)=ptV (3.6)
where
pr=7{—-T rfL— (I—L)th-l—[.(l—th)th (3.7)

is the tax-adjusted certainty equivalent cost of capital, i.e., the cost of cap-
ital under the EMM that incorporates also the effect of tax shield. From
the right-hand-side of equation (3.7) we notice that p; is also a weighted
average cost of capital (wacc) under the EMM. This is an extension of the
tax-adjusted rate of return in Sick (1990) to a continuous-time setting.

Applying conditions V(Td,XTd) = U(Td,XTd) and U(T?P,Xtr) = 0,
and considering that, for t > T4, D = 0 (since R = 0),22 we have that the
APV of the firm/project is

T4 _ —+C R d
V(t,x) = BYE, U XS(les)ds} + BZE, [U(TZXT”‘)] . (3.8)
t BS T4

20Monte Carlo simulation is particularly suited for solving this types of problems.

2l'we will prove below that M-E debt policy is actually consistent with the assumption
of absence of default.

22The argument is the same used in the proof of Proposition 5.
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for 0 < t < T4, where Bl = exp fé pudu is the time-t value of one dol-
lar accrued at the tax-adjusted CE cost of capital. Equation (3.8) when
compared to (3.2) clarifies the role of the tax-adjusted CE cost of capi-
tal, p, as the stochastic instantaneous discount rate that generates the
levered asset value when applied to the unlevered cash flow process.?3
In particular, the randomness of p; derives from the randomness of »/

and th , but not from the leverage ratio. Hence, equation (3.8) provides a
time-consistent pricing operator for levered cash flows.

Equation (3.8) can be use, employing some numerical methods, to
compute the APV of the firm/project using a stochastic wacc under gen-
eral hypotheses on the relevant stochastic processes.

For convenience of analysis, in what remains of this part we derive
some closed-form formulas for the tax shield under more restrictive as-
sumptions on the stochastic process for X and the model parameters.
In details: the corporate (7€) and the personal (¢ and TP) tax rates are
constant; the CE rates for bonds (/) and equities (Z) are constant;2* for
the EBIT process in (3.1), the growth rate, g(X, t) = gX, and the volatility,
o(X,t) = 0X,where g and o are given constant.

Under these hypotheses, the value of the unlevered firm/project in
(3.2) becomes

1 — e (r#=g)(T?-t)
U(t,x) =x(1-1° . (3.9)
rYZ—g

In order to derive the APV of the firm/project, we observe that the solu-
tion is of the type
V(t,x) =U(t,x) + k(t)x (3.10)

(where k is a function of time to be determined) and hence debt tax shield
at t is related to the current value of X;. By replacing (3.10) in (3.4) (and

23Grinblatt and Liu (2002) have an analogue definition of wacc, although they limit
the analysis to a less general setting with constant rate of returns and with T = 0.

24This hypothesis implies in particular that the yield curve for bonds is flat and hence
maturity for corporate bonds is irrelevant.
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considering that D = LV) we have?>

(1 _ e—(rZ—g)(Td—w)

+
(rz—-g)r? —vrf1t*L - g)
(1 _e(rfT*L)(Td—t))

k(t) = (1 - 1)rft*L

+ (1 =T -9 T-D (3.11)

(rz —rft*L - g)

for 0 <t < T%. We remark that for a marginal firm/project T¢ = ™ (or
T* = 0), and hence k = 0. Replacing k(t) from (3.11) in (3.10) and after
few manipulations we obtain

1 — elP-)(T9-1)
p—g

V(t,x) =x(1-1T°)

. 1 — e~ (r*=g) (17 -T%)
Lo Tt (1 _ ey 2T (3.12)
rZ—g

with p = p; for all t from equation (3.7), which is the analogue of equation
(3.8) under the current more restrictive assumptions.

Equation (3.12) and condition D = LV permit us to prove that the M-E
debt policy is consistent with the assumption of absence of default, since
R; is a linear function of X;: R; = y(t)X;, where y(t) is determined by
the results stated above. Hence, in case X — 0, also R — 0, and the debt
is default-free.

In capital budgeting it is customary to use the (current) wacc to dis-
count expected free cash flows in order to obtain the levered asset value.
Under the current more restrictive hypotheses, wacc from equation (3.7)
is non-stochastic and hence it can be used for valuation purposes as long
as the firm/project is financed also with debt.26

25To obtain equation (3.11) we note that U from equation (3.2) satisfies the pde

2
%O'Z(X, t)g% +g(X,t)g—g + aa—lt] + X (1-7° =7vU.

Moreover, we consider the terminal condition k(T4) = 0.

26This is in contrast with the conclusions of Grinblatt and Liu (2002), who show
that the circumstances for a non-stochastic wacc are, besides the fact that debt is
default-free, X following a geometric Brownian motion with constant parameters and
constant risk-free rate, that the firm/project is perpetual. Here we have just proved
that the constant (initial) wacc can be used, under the M-E scheme, also if debt has
finite maturity.
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If the firm/project (and debt) is infinite-lived, T4 = TP = o, assuming
that the conditions for convergence, ¥? — v/ T*L > g and ? > g,%7 hold
true, then from equation (3.12) (note that D = LV and R; = v/ D(x))

ES
TR (3.13)
rZ—g

Vix)=U(x) +

with U(x) = x(1 — 1) /(r? — g). Equation (3.13) is the analogue of
equation (3.5) when debt is default-free, using the M-E constant leverage
ratio and the EBIT process is a geometric Brownian motion with constant
parameters.

3.3 Defaultable debt

If default can be prevented, the effect of debt for a supra-marginal firm
is always positive, and only the equilibrium of the financial market (and
potential agency costs and tax laws) prevents the realization of a tax
arbitrage, as in Miller (1977). On the other hand, if default can actually
happen, then the cost of debt is influenced by the credit risk and this
tends to reduce the tax advantage to debt. We will show that this affects
also the investment policy.

We will limit the analysis to the case of exogenous default; i.e., we
assume that there is a given barrier, denoted xp, such that, when the
EBIT process X; breaches the barrier, the firm is in default.?8 In this
case, the bond-holders file for bankruptcy and receive the value of the
unlevered asset net of bankruptcy costs. Bankruptcy costs are assumed
to be proportional to the unlevered asset value, with known proportion
.

As long as the EBIT process X; is above the default threshold xp,
the total cash flow generated by the firm is, after personal taxes, as in
equation (3.3). On the other hand, if at date t, X; = xp, the firm defaults
on the coupon payment and so the tax shield is lost. In this case, the
value of the levered asset is used to pay bond-holders, who receive (1 —
x)U(t,xp). When bond-holders file for bankruptcy, they become owners
of the firm. Hence they receive the present value of EBIT after corporate
taxes and after personal taxes for equity flows. From Proposition 1 and
4, the valuation on an after personal tax basis is equivalent to a before-
personal taxes valuation using the discount factor B#. This is stated in
the following proposition.

27 Note that, for a supra-marginal firm, ¥? — v/ 1T*L > g implies ¥ > g.
28See Leland (1994) for a discussion on what a plausible level for xp should be.
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Proposition 6. The APV, incorporating the value of tax shield, satisfies
equation (3.4) with boundary conditionsV (T%,x) = U(T%,x) andU (TP, x) =
0andV(s,xp) = (1-x)U(s,xp) forallt <s < T < TP and is, assuming

X > Xp,

. TpAT4 T*R
V(t,x) = U(t,x) + B E; J SBZSds
t s

£ U(Tp,xp)
— O(Bfﬂ':t |:X{EIS€[I,Td],XS—XD}B% (3.14)
D

where Tp = inf {s e[t, T4, X, = xD}, is the first time X; = xp, and x  is
the indicator function for event A.29

In the right-hand-side of equation (3.14), the second term is the tax
shield taking into account the risk it is lost in case of default, i.e. the first
time the process X; hits xp from above; the third term is the value of the
bankruptcy costs incurred at the date of default, which are proportional
to the current value of the unlevered asset. Equation (3.14) can be easily
implemented using some numerical methods.

In subsequent sections we will need also D, the market value of corpo-
rate bonds, in the generalized Miller equilibrium economy. As above, we
denote R the coupon payment and P the principal payment (face value)
paid back at maturity T4. Under the assumption of exogenous default at
the threshold xp, debt is a contingent claim on X, the EBIT of the firm.
The next proposition determines, under the hypothesis of a generalized
Miller equilibrium, the value of defaultable debt.

Proposition 7. The market value of debt satisfies equation

1o2x. D oD 0D b _f
20 (X,t)aX2 +g(X,t)aX + T +R;=7v/D (3.15)

with boundary conditions D(Td,XTd) =P, D(s,xp) = (1 —o)U(s,xp)
forallt <s < T% < TP and, assuming x > Xp, is

. TpAT? R R P
D(t,x) = Bif[Et {L ;ds] + B{[Et |:X{VS€[t,Td],X5>XD}Bf:|
T4

Bs
- U(Tp,xp)
+(1- ‘X)B{[Et |:X{E|s€[t,Td],XS=XD}];vD:| (3.16)
Tp

Pxa(w) = 1if w € A, xa(w) = 0 otherwise. We denote x A y = inf{x, y}.
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where Tp < T4 is the first time X; = xp.

As in the default-free case, we will introduce more restrictive assump-
tions on our model in order to derive convenient closed-form formulas
for the sake of the subsequent analysis. Hence, 7¢, T¢, T2, v/, v are
constant; moreover, in (3.1) g(X,t) = gX, o(X,t) = 0X, and g and o
are constant; lastly, we assume that the operations are financed with a
coupon bond with constant coupon payment, R, and principal, P, payable
at maturity T4 < T?. This is the Modigliani and Miller (1958) constant
debt extended to the case of defaultable debt.

Under these assumptions, from (3.14) and considering the analytic
formula for the density of the hitting time Tp, the value of the firm is,
for x > xp,3°

Vit,x) =U(t,x) +

B x _ C
T*R T R N oxp(l —T°) G(Td,XD,X,t,TZ)
"/'Z TZ /l/'Z_g

_ C
L XD =T rzg) (170G (T4, xp x, tg)
rYZ—g

R,
— e T (1 H(TY, xp, x,0)) (3.17)

where U (t, x) is defined in equation (3.9),

2g/0%-1
ad ) (3.18)

H(T% xp,x,t) = N (=p1)) + N (-p2) (XD

_log%Jr(g—%Z) (T? —t)

pl - o Td _ t ’
2

~ log 2 - (g— %) (TP —t)

pZ - o /7’1"61 _ t ’

with 2N (-) denoting the cumulative Normal distribution, and where
B1(r) B2(r)
X X
G(T4, xp,x,t,7) = (*) N (—a1(r)) + (7) N (-a2(r)),

XD XD

(3.19)
with

s =~ (&-3) (&3 e

30This formula is derived in Appendix A.
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32(7’)=—(%—%) —\/(52—;)2+2;2<0,

log & + \/21’02 + (g - %Z)Z(Td —t)
oNTd —t

log 2 —\/21’02 + (g - %Z)Z(Td —t)

o+/(T4 - t)

Note that in equation (3.17), for x > xp, V(t,x) > 0.

In Section 5 we will need also the value of the tax shield and debt in
the defaultable case under the more restrictive assumptions introduced
above. As for the tax shield, from equation (3.17) we have

q1(r) =

a>(r) =

T*R B T*R

TS(t,x) = — —G(T? xp, x,t,77%)
v r

T*R e_,,,Z(Td_t)
1/'Z
where H and G are defined respectively in (3.18) and (3.19).
As for debt, from Proposition 7:

(1-H(T% xp,x,1)) (3.20)

R
rf
n e_yf(Td—t) (P _ %) (1 — H(Td,xD,X, t))

v

D(t,x) = —%G(Td,xp,x,t,rf)

N (1 — O()XD(l — TC)
r:—g
4o~ =M -DG(Td xp o t, g+ rf'rm)) (3.21)

(G(r4,xp,x,t,7/)

where H and G are defined respectively in (3.18) and (3.19). The valua-
tion formula for bond in (3.21) should be compared to the ones in Leland
(1994, Eq. (7)) and Leland and Toft (1996, Eq. (3)). The first difference
with respect to those formulas are that here the value driver is the EBIT
process, whereas there the driver is the value of the asset. More impor-
tant is the difference induced by the differential taxation of equity flows
and bond flows.3!

31In Leland (1994, Footnote 27), personal taxation is introduced into the model, and
the effective tax advantage to debt, T*, is used in place of the corporate tax rate, T°¢.
Nevertheless, the same risk-free rate is used for valuing equity flows, like the tax shield,
and bond flows, like the coupon payment.
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If the firm/project and the debt are perpetual, T4 = TP = oo, then
(3.17) simplifies to32

* B2(r?) _ 4c B2(r?)
V(X)ZU(X)+T R<1_(X> )_O‘XD(IT)(X>
r? XD Y —g XD
(3.22)
for x > xp and where U(x) = x(1 —1°)/(r* — g), and (3.21) is reduced

to33

XD

D(x) = — + (3.23)
rZ—g rf

R (1-ao)xp(l-71¢) R x \ B2
rf ( )

for x > xp.34

4 Valuation of real options when the debt policy is
exogenous

This section addresses real options valuation under the general frame-
work introduced in Section 2, assuming that an exogenous debt policy
is given and the tax shield may be valuable according to the analysis of
Section 3. In particular, we will differentiate our analysis according to
the cases of default-free debt and defaultable debt.

We have the opportunity to delay investment in a project,?> whose
incremental EBIT follows the stochastic process in (3.1) under the EMM.

32 Alternatively, equation (3.22) can be derived also considering that, under the sim-
plifying assumptions introduced above and since V is independent of time because the
horizon is infinite, then the valuation pde in (3.4) reduces to

%O'ZX?VXX + XV + Xe(1 = T°) + T*R = r?V.
where subscripts of V denote partial derivatives. The general solution for this pde
is V(x) = AxP2®) + (1 — 1%)x/(r? — g) + T*R/¥?. By imposing the value-matching
condition, for X; = xp, V(xp) = (1 — x)(1 — %) xp/(r? — g), we solve for A and, by
replacing A into the expression of the general solution we obtain (3.22).

33The derivation of equation (3.23) can be done following the same argument used
in Footnote 32.

341t is possible to extend the discussion of the infinite horizon case to incorporate
an endogenous default, by selecting a threshold xp such that the value of equity is
maximized. This entails first the valuation of debt and next the valuation of equity.
Then by imposing the smooth-pasting condition on equity, the optimal value of xp
would be determined. For brevity we skip this part. The related equations are available
from the Authors on request.

35For definiteness, we will discuss the prototypical case of the option to delay an
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The project has duration T? (possibly, TP = ), so that the project starts
from the date the option is exercised, T;, and ends at T; + T?. The cost
to implement the project is I (an adapted process) and we have the op-
portunity to delay the investment until date T° (possibly, T° = ).36

We assume that the capital expenditure to implement the project is
financed also with incremental debt, and the incremental debt is issued
if and when the option to invest is exercised.3” This assumption is realis-
tic since there would be no reason to raise capital before investment, so
incurring in a (useless) opportunity cost of capital. The optimal exercise
policy depends on X;, the EBIT process, and consequently the date we will
issue debt is a stopping time. Issuance of incremental debt is contingent
on the decision to invest, so yielding that the financing decision is in-
fluenced by the investment decision. On the other hand, the investment
decision is influenced by the financing decision, since the former is made
if the expected free cash flow from the project can remunerate the cost
of capital. The debt policy is alternatively the one in Section 3.2 (default-
free) or the one in Section 3.3 (defaultable). The debt has duration T4,
so that it is issued at T; and is paid-back at T; + T4.

The value of the levered project, at the date it is implemented, is
V(t, X¢) from equation (3.5) in the case with default-free debt or from
equation (3.14) with defaultable debt. In case default is possible, given
the above assumption that debt is issued conditional on the investment
decision, we assume that default can happen only after the investment
date. Let IT denote the payoff of the option at the exercise date,

I1(t, X)) = max{V(t, X¢) — 1,0}, (4.1)

and let F(t, X;) denote the value of the investment project including the
time-value of the option to postpone the decision.

investment decision, although our approach can be applied to a broader class of real
options. See Dixit and Pindyck (1994) and Trigeorgis (1996) for a general classification
of real options.

36To simplify our analysis, we assume perfect information of shareholders and
equity-holders and the absence of agency costs between shareholders and equity-
holders and equity-holders and management. Hence, investment is implemented under
a first-best investment policy (i.e., a policy aiming at maximizing the total project/firm
value as opposed to a policy in the sole interest of shareholders) by the managers.
The role of agency costs of debts on investment decisions have been analyzed among
others by Mello and Parsons (1992), Mauer and Ott (2000) and Childs et al. (2000).

37Mauer and Ott (2000) and Childs et al. (2000) assume that the incremental invest-
ment is financed only with equity. Their assumption is included in our framework by
posing that no incremental debt is issued at the time the investment decision is made.
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Proposition 8. The value of the option to invest satisfies equation

1, F oF OF
SO (X )5 + g (X 5 + r?F. 4.2)

52
2 0X ot
with boundary condition F (Tr, Xt1;) = (11, X1;), and is

[T, x
F(t,x) = B? sup £, [(’ZT’)} , (4.3)
T7 Tr

where T; < T? is the investment (stopping) time, i.e., the first time F (t, X;) =
II(t, X;).

If the investment option is owned by an ongoing firm, the CE dis-
count factor for equity flows, BZ, is used to discount the expectation of
the payoff independently of the financial structure while the option to
delay investment is kept unexercised, which can be different from the
capital structure of the firm after the project is implemented and from
the current capital structure of the firm.

Equation (4.3) suggests that the option to invest in a marginal project
(i.e., a project with corporate tax rate, T, equal to the marginal tax rate,
Tm, and no tax shield T* = 0) is evaluated according to Black, Scholes,
and Merton’s formula, but using 7 instead of rr. Note thatin our setting,
since a project cannot be all-debt financed, vy is never used but when
T¢ = 0 (which implies T, = 0).

5 Debt and the investment policy

In this section we will analyze the impact of the exogenous debt policy
on the time-value of the option to delay investment and hence on the in-
vestment policy. Differently from the previous sections, the analysis in
the current section will rely as much as possible on closed-form formu-
las for the value of the tax shields and for the value of the options. For
this reason we will confine ourselves to the case with T¢, ¢, T2, v/, 2
constant, and in (3.1), g(X,t) = gX, o (X,t) = 0 X, with constant g and
o. This is done in the interest of simplicity, since otherwise we would
have to present numerical valuations with no substantial additional eco-
nomic insight. Moreover, since the tax shield is valuable when 1€ > T4,
we will spell out the results for a supra-marginal firm/project, noticing
that the result are of the opposite sign for an infra-marginal firm/project
(T¢ < Tin).
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Starting from Proposition 8, which states the valuation principle for
the option to delay investment assuming that the project is financed also
with debt, we provide an approximate solution for equation (4.3) applying
an analytic approximation akin the one MacMillan (1986) and Barone-
Adesi and Whaley (1987) proposed for American options.

Assuming that the maturity of debt is equal to the maturity of the
project, T% = TP, given V(t, x), the value of the levered project from
equations (3.10) and (3.11) (or, if the M-E debt policy is assumed, D = LV,
from (3.12)) in the default-free case or from equation (3.17) in the default-
able case, we can approximate the value of the option to invest, F(t, x)
in (4.3), with payoff I1(t, X;) from (4.1) with constant I and maturity 79,
using an analytic approximation. In the default-free case, we assume also
that k(t) in (3.11) is strictly positive, so that V (t, x) > 0.38 In defaultable
case, we assume that x > xp, so that V(t,x) > 0.

Proposition 9. The value of the option to invest is approximated by

N n(1 = ri(1°-1) i *
F(t’x):{f(t,x)+mx <1 e ) if x < x; 5.1)

Vit,x) -1 if x > x[
for given constantsn > 1, @ > 0 and x; > 0, where
ft,x) = e =T DN (m)V(t,x) - e T "D N (m2)]

is the value of the (related) European option with maturity T° and payoff
II(t, X;) from (4.1), with

~ log Ltf") + (g + ‘772> (T° —t)
B oJTO —t ’

mi moy=m; —oVvT° —t.

Note that x;/ in Proposition 9 depends on t. This means that the
above approximation must be done at any time 0 < t < T to properly
define a time-dependent investment policy, {x;}.

To analyze also the effect of the debt policy on the exercise policy, we
compute the probability of investing (assuming that currently the oppor-
tunity is still available) within the time horizon T°. Since the probability
we are interested in is under the actual measure, and not under the EMM,

38Sufficient conditions for k(t) > 0 for a supra-marginal firm/project are r? —
r/T*L > g and T* > 0. See also footnote 27.
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we have to compute the risk premium, denoted &, for the stochastic pro-
cess X;.39 We will denote g = g + ® the drift for process X; under the
actual probability measure.

At t, assuming that the option to defer has not been exercised yet, this
is equivalent to compute the probability that X; touches (from below) the
investment threshold {x} | t < s < T}, as computed using the approx-
imation introduced in Proposition 9. According to Harrison (1985, pp.
11-14) this probability is*°

o 2g/0%-1
H(T?, x},x,t) = N (p1) + N (p2) (xf) (5.2)

where

R 2
ogZ+(9-%) (10 -0 o (38 ) oo
p1 = O_m , p2 = p1 o2 .

Equations (5.1) and (5.2) simplify if we assume that the time-horizon

for the project, the debt, and the investment option is infinite: T# = T4 =
TO = o0,

In the default-free case, (5.1) becomes*!
Kx* [ x \" *
= X <X 1
F(x)=1 " (" ) ., where x* = n =, (5.3)
Kx -1 x = x* n-1K

where K = (1 — 7¢)/(p — g) from equation (3.12) when assuming T? =
T4 = T° = .
In case debt is defaultable, (5.1) becomes

F(x) =

L (0ot B2 (TR, axpli=t) oy
(e () (7 =) ) (5)7 it < x <0
Vit,x) -1 if x > x*,

(5.4)

39In Appendix A, we present a way to determine the risk premium for the EBIT pro-
cess, X;.

40 Actually, Pis the probability of the first time X; = x/, with initial condition x; < x/".
Nevertheless, x/ is the current investment threshold. Since x} is decreasing over time,
H in equation (5.2) is actually a lower bound for the probability of investing.

4INote that in this case the solution is exact and not approximated: F® = F.
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where V (t,x) is defined in equation (3.22) and x* is the root of equa-
tion*?

1 (x0-719) o (x\P TR axp(1-T9))) _ B
(U () () v

and is independent of t.
Also (5.2) considerably simplifies when TP = T4 = T° = oo. By
straightforward algebra, the actual probability of investing simplifies to*3

1 ifg—-o2/2=0
H(x*,x) = (5.5)

o\ 251 .
(%)" ifg—o02/2<0,
when x < x*, with g = g + ®, where x* can be either the one in (5.3) in
the default-free case or the one in (5.4) in the defaultable case.

In the infinite horizon case (TP = T4 = T° = o), it is easy to check
that, for a supra-marginal project/firm (t* > 0), assuming that debt is
default-free, the value of the option to invest and the probability of in-
vesting are increasing function of leverage, L. Actually, F and x* in
equation (5.3) are respectively increasing and decreasing with respect to
K, and K is an increasing function of L. Moreover, H from equation (5.5)
is a decreasing function of x*. The opposite is true for an infra-marginal
project. As we can see from subsequent numerical analysis, this is con-
firmed also in the finite horizon case. Things are completely different in
the case with defaultable debt. To show this we will resort to numerical
analysis.

In the finite horizon case, we will analyze the effect of debt and uncer-
tainty on the APV, on the value of the option to defer and on the exercise
policy, in the supra-marginal case T* > 0, by discussing a numerical ex-
ample and running a sensitivity analysis of the APV, of the value of the
real option and of the probability of investing on the uncertainty of EBIT,
o, and on the level of debt. Itis easy to check that F and P are not affected
by the debt policy when T* = 0.4* Although we chose a specific set of
parameters for presentation purposes, the results we show are general.
The base case parameters are in Table 1.

42This equation must be solved numerically.

43Since the investment threshold, x*, is independent of ¢, the valuation formula for
probability is exact.

44This is a motivation for having introduced the general Miller equilibrium framework
where tax shields may be valuable.
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[Table 1 about here]

For these parameters, T* = T¢ — 7™ > 0. Moreover, the APV of the
project in the default-free case is, from equation (3.12), V = 5.014 and
the market value of debt is D = L - V = 2.858. On the other hand,
in the defaultable case, the APV of the project, from equation (3.17), is
V = 5.197 and the market value of debt is, from equation (3.21), D =
2.960. We set the face value of debt P ~ R/¥/. To make the values in the
defaultable case comparable to the values in the default-free case, we set
the same initial debt proportion (at market values), L = D/V = 0.569 =
0.57, for both cases.

In the subsequent analyses we will make debt (i.e., total coupon pay-
ment, R) vary in a given range: accordingly, in the defaultable case, we
will assume that the default threshold xp is always equal to R. Hence,
for the given EBIT rate, x = 1, the higher R the closer to default is the
firm/project.

The first analysis concerns the effect of uncertainty and debt on the
APV and on the value of the tax shield. From Figure 1 (above) we can see
that in the default-free (M-E) case, leverage has always a positive effect
and uncertainty has no role in valuation.*> The outcome is completely
different in the defaultable case, Figure 1 (below). Here both uncertainty
and leverage have a role: for any level of uncertainty, there is a debt
level (represented by total coupon payment, R) that maximizes the APV.
Moreover, the lower the uncertainty the higher the optimal level of debt.
For high uncertainty and debt, the APV becomes negligible. For further
clarification, in Figure 2 (above) we plot the tax shield from equation
(3.20) for the same range of values for o and R. This shows that the
humped-shape of the APV is due to the tax shield. Actually, the base
value (Figure 2 (below)), defined as the APV less the tax shield, is almost
constant when R is low and default is unlikely and become negligible
when R is large and default is almost certain. The above represents a
generalization of the results provided by Brennan and Schwartz (1978).

[Figure 1 about here]

[Figure 2 about here]

45In our computations we are assuming that the additional uncertainty does not affect
the risk premium, and hence does not change the value of the project. On the other
hand, if there was an increment in systematic risk, the APV would be reduced. We are
not interested here to capture this effect in our analysis and concentrate on the effect
of uncertainty on the tax shield.
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We next explore the effect of uncertainty and debt on the value of
the real option to invest. From Figure 3 (above), it can be seen that, in
the default-free case, both volatility and leverage have a positive effect
on the value of the real option to invest. This can be easily explained
by observing that a higher leverage increases the tax shield and the APV
of the project, so increasing also the value of the option. On the other
hand, as usual, higher volatility increases the time value of the option.
In case of defaultable debt (see Figure 3 (below)), the effect of debt and
uncertainty is different from the default-free case. Still, for every level of
uncertainty, there is an optimal debt level which maximizes the value of
the option to invest. This is mostly due to the effect of the tax shield on
the APV of the project, which is the underlying asset of the option. Yet,
for low leverage, the value of the option to invest is an increasing function
of volatility, since the increased time value dominates the reduction of
value of tax shield due to the higher probability of default. On the other
hand, for high leverage, the value of the option to delay investment is
not a monotonic function of volatility of EBIT: when volatility is low, it
is the positive effect of lower default probability that dominates; when
volatility is high, it is the higher time value that dominates. By comparing
Figure 1 (below) and Figure 3 (below), we can see that the additional value
is the time-value of the option.

[Figure 3 about here]

Lastly, we analyze the probability of exercising the real option to de-
lay investment. As noted above, both in the default-free case and in
the defaultable case, uncertainty increases the time-value of the option,
so it is natural to ask whether also the probability of investing is in-
creased. In Figure 4 we plot the probability of investing before maturity
in the default-free case (above) and defaultable case (below). In the first
case, leverage increases the probability of investing for any level of un-
certainty, because the higher the leverage, the more risk is transferred to
bond-holders; on the other hand, for a given leverage, uncertainty first
has a positive and then a negative effect on the probability of investing.*%
In the defaultable case (Figure 4 (below)), the effect of debt is positive only
when o is low. Otherwise we have that, when the probability of default is
large (high coupon), more debt reduced the probability of investing and
uncertainty has only a negative effect.

46This behavior of the probability of investing with respect to volatility of the value-
driver is well know. See Sarkar (2000) and Cappuccio and Moretto (2001) for more
details.
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[Figure 4 about here]

Acknowledgements

The authors gratefully acknowledges the financial support of TransAlta
Research Visiting Scholar Program, Faculty of Management, University
of Calgary, the financial support of the University of Navarra and the
financial support of University of Verona.

We thank Alex Triantis, Steve Heston, Martino Grasselli, and the par-
ticipants at the International Conference of Finance, Hammamet 2003, at
the 7th Real Options Conference, Washington (DC) 2003, at the Northern
Finance Association conference, Quebec City 2003, at the Conference on
Quantitative Methods in Finance, Sydney 2003, and of the seminar at the
University of Maryland, April 2003, for their insightful comments. Any
remaining errors are our own.

31



References

Auerbach, A. J. (1991). Retrospective capital gain taxation. American
Economic Review, 81(1):167-178.

Auerbach, A. J. and Bradford, D. (2001). Generalized cash flow taxation.
Technical Report 8122, National Boreau of Economic Research.

Barone-Adesi, G. and Whaley, R. (1987). Efficient analytic approximation
of American option values. Journal of Finance, 42:301-320.

Brennan, M. J. and Schwartz, E. S. (1978). Corporate income taxes, valua-
tion, and the problem of optimal capital structure. Journal of Business,
51(1):103-114.

Cappuccio, N. and Moretto, M. (2001). Comments on the investment-
uncertainty relationship in a real option model. working paper 28-
2001, Fondazione ENI Enrico Mattei.

Childs, P. D., Mauer, D. C., and Ott, S. H. (2000). Interaction of corporate
financing and investment decisions: The effect of growth options to
exchange or expand. presented at the 4" Annual Conference on Real
Options, University of Cambridge.

Christensen, P. O., Flor, C. R., Lando, D., and Miltersen, K. R. (2002).
Dynamic capital structure with callable debt and debt renegotiations.
Technical report, Norvegian School of Economics and Business Admin-
istration.

Constantinides, G. M. (1983). Capital market equilibrium with personal
tax. Econometrica, 51:611-636.

Dangl, T. and Zechner, J. (2003). Credit risk and dynamic capital structure
choice. Technical Report 4132, CEPR.

Dixit, A. and Pindyck, R. (1994). Investment Under Uncertainty. Princeton
University Press, Princeton, NJ.

Duffie, D. (2001). Dynamic Asset Pricing Theory. Princeton University
Press, Princeton - NJ, third edition.

Fisher, E. O., Heinkel, R., and Zechner, J. (1989). Dynamic capital structure
choice: Theory and tests. Journal of Finance, 44(1):19-40.

32



Goldstein, R., Ju, N., and Leland, H. (2001). An EBIT-based model of dy-
namic capital structure. Journal of Business, 74(4340-01):483-512.

Grinblatt, M. and Liu, J. (2002). Debt policy, corporate taxes, and discount
rates. Technical report, Anderson School at UCLA.

Harrison, J. (1985). Brownian Motion and Stochastic Flow Systems. Krieger,
Malabar, FI.

Jensen, B. A. (2003). On valuation before and after tax in no arbitrage
models: tax neutrality in the discrete time model. Technical report,
Dept. of Finance - Copenhagen Business School.

Lamberton, D. and Lapeyre, B. (1996). Introduction to Stochastic Calculus
Applied to Finance. Chapman & Hall, London, UK.

Leland, H. E. (1994). Corporate debt value, bond covenants, and optimal
capital structure. Journal of Finance, 49(4):1213-1252.

Leland, H. E. and Toft, K. B. (1996). Optimal capital structure, endoge-
nous bankruptcy, and the term structure of credit spreads. Journal of
Finance, 51(3):987-1019.

MacMillan, L. (1986). Analytic approximation for the American put op-
tion. Advances in Futures and Options Research, 1:119-139.

Mauer, D. C. and Ott, S. H. (2000). Agency costs, underinvestment, and
optimal capital structure. In Brennan, M. J. and Trigeorgis, L., editors,
Project flexibility, Agency, and Competition, pages 151-179, New York,
NY. Oxford University Press.

Mauer, D. C. and Triantis, A. J. (1994). Interaction of corporate financing
and investment decisions: A dynamic framework. Journal of Finance,
49(4):1253-1277.

Mello, S. A. and Parsons, J. E. (1992). Measuring the agency cost of debt.
Journal of Finance, 47(5):1887-1904.

Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of
Economics and Management Science, 4:141-183.

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure
of interest rates. Journal of Finance, 29(2):449-470.

33



Miles, J. A. and Ezzell, J. R. (1980). The weighted average cost of capital,
perfect capital markets, and project life: a clarification. Journal of
Financial and Quantitative Analysis, 15(3):719-730.

Miles, J. A. and Ezzell, J. R. (1985). Reformulating tax shield valuation: A
note. Journal of Finance, 40(5):1485-1492.

Miller, M. H. (1977). Debt and taxes. Journal of Finance, 32:261-275.

Modigliani, F. and Miller, M. H. (1958). The cost of capital, corporation
finance and the theory of investment. American Economic Review,
48(3):261-297.

Modigliani, F. and Miller, M. H. (1963). Corporate income taxes and the
cost of capital: a correction. American Economic Review, 53(3):433-
443,

Myers, S. C. and Majluf, N. (1984). Corporate financing and investment de-
cisions when firms have information that investors do not have. Jour-
nal of Financial Economics, 5:187-221.

Reiner, E. and Rubinstein, M. (1991). Breaking down the barriers. RISK,
4:28-35.

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal
of Economic Theory, 13:341-360.

Ross, S. A. (1987). Arbitrage and martingales with taxation. Jjournal of
Political Economy, 95:371-393.

Sarkar, S. (2000). On the investment-uncertainty relationship in a real
options model. journal of Economic Dynamics & Control, 24:219-225.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium
under condition of risk. Journal of Finance, 19:425-442.

Sick, G. (1990). Tax-adjusted discount rates. Management Science,
36:1432-1450.

Trigeorgis, L. (1993). Real option and interactions with financial flexibil-
ity. Financial Management, 22(3):202-224.

Trigeorgis, L. (1996). Real Options: managerial flexibility and strategy in
resource allocation. MIT Press, Cambridge, MA.

34



A Proofs of propositions

Proof of Proposition 1

For simplicity, we first prove the Proposition for equity assuming that no
dividend is paid. Then we extend the result to the case that dividend are
actually paid. Finally, we extend the result to the money market account.

If there is no dividend (X = 0), we first observe that setting t = T’
in equation (2.8) establishes that the two stock price processes are the
same at time T': S = S%t,. We will show that the price in (2.7) and the
price in (2.8) obey the same dynamic equation (under Q) with the riskless
discount rate for equity r=:

[Et [dSt] = TtZStdt (A.1)
and
E; [dSH] = r7Sdt . (A.2)

Then, by the Feynman-Kac solution to the valuation equation (see, e.g.
Duffie (2001, Ch. 5)), the security prices at a date t < T’ are the risk-
neutral expectations of the common terminal value S%t, =St

St = BZ [ST']

le
= s,
The proof that S; in equation (2.7) satisfies condition (A.1) is the standard
martingale result. Thus, it remains to prove that S?t defined in equation

(2.8) satisfies the equivalent relation (A.2). From equation (2.8) we have,
for small Af,

T e
~ ~ z,at St T
. [Staim] - [BHM[EHM [B%at - Jt+At Bf;gt dS,T]}
T e t+At e
~ z,at St T T
= [Et |:Bt+Al' <B]Z~’/at - J; Bf::;t dSﬁt + J; Bf;/gt dsat)]

¢ - t+At T
= (1 + e At) (5;’“ + By, U 5 u dsff]) +o(At) .
t

z,at
u

(A.3)
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Here o(At) denotes terms that converge to zero as At — 0. The second
equality comes from breaking out the tax term for the interval [t,t + At]
and applying E; [[Et+At[-]] = E¢[-]. The third equality comes from sub-
stituting for S from (2.8) after using the following Taylor approximation
for the riskless equity account value:*’

BZA, = exp(r AL BP™ + o (AL)

= By (1+77At) +o(Ab)

Since the tax rate 7§ varies continuously over time, we have that

t+At e T (S, — s&
J’ T, _ t<t+At t>+o(At),

Btz,at
SO we can rewrite (A.3) as:

Br [S8ar] = (1+r7%At) (S8t + ¢ £ [S2,, - S3]) +o(al) .
Rearranging, we get

(1—1f) B [S2 4 — SR = 7 S2AL + 0(AL)
=17 (1 - 19)SMAL + o(AtL) .
Since T < 1, dividing by (1 — 7f) gives
Er [Sita — S| = rPAtsit +o(at) .
By taking At — 0 we get condition (A.2).
If dividends are paid, (X # 0), the only thing that changes in the proof

is that instead of (A.1), the dynamic condition is

[Et [dS:] + Xidt = TtZSt.
We must establish the analogue of (A.2), which is

E; [dSR] + Xedt = S,

z,at

47We are also using the fact that /*" and 7¢ are adapted.
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Inserting the after-tax dividend term in the analogue of (A.3) yields
B [Sita] = (1+ 77" At) (Sf“

t+At e t+At e
. 1-18)X T
+Btz’at[Et [—J 4( wXu 1u J U dsﬁt])
t B

z,at z,at
t By "

+ o(At)

= (1+77"at) (S?t

R t+At
+BI M, [—(1 - Tf)J
t

+o(At) .

X t+At Te
tdu+ | sy

z
B’I/L u

The first equality follows from the development of (A.3) and the second
comes from the continuity of the tax rate T§,.
Rearranging as before, we have

. t+At X
(1-7¢) E [S;ﬁm - Sat 4 j B;gtdu] =17 (1 — T8)SMAL + o(AL) .
t u,
Dividing by (1 — 77) and letting At — 0 gives the desired result.
For the money market account, it is now straightforward to follow the

same steps as above and show that
¢ [dBi] = dB; = r¢Bidt (A4)

and
E; [dB] = rpBdt (A.5)

The first is simply our definition of bond price dynamics. The second
proof comes from appropriate modifications of the analogous result we
just established for stocks. Since we defined the after-all-tax bond value
so that it equals the bond value at T’ (i.e. By = B%t,, we can take the
risk-neutral expectations to get the desired result:
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Proof of Corollary 2

Note that the proof of Proposition 1 started with a risk-neutral measure
Q for stock Sy before personal taxes and evaluated payoffs after personal
taxes to derive a process of after-personal-tax stock prices S using the
same risk-neutral measure. This means that the CE operator is the same
before and after tax. O

Proof of Proposition 4

We will phrase the proof for a stock, but the argument is the same also
for a money market account.

Since the argument for proving holding-period neutrality is not af-
fected by the presence of dividends, because they are taxed at the date
they are paid, we will assume for simplicity X = 0 in equation (2.8). We
define the tax account at t as the value of the taxes on capital gains ac-
crued until ¢ at the after-tax rate of return:

t e
fat Ty
At =B

t t 0 Bﬁ'at

asSu.

By definition, equation (2.8) can be written as

S A .| St A
T~ e = Ee | 7 . (A.6)
B/ Bl

Assume that at the (arbitrarily chosen) stopping time ¢, 0 < t < T the
investor decides to liquidate the position. The net proceeds are the price
of the stock net of the taxes on capital gains accrued from ¢ = 0 until
that date: Sy — A;.

If A; > 0, then he can borrow an amount A; at an after-personal
tax cost48 {n{(l - Tﬁ)}azt and with the proceeds he can buy the same
stock at S;. At T, by liquidating the position in the stock, he will receive
St — B‘}C'at ftT Ts/ B{:’atdSu (i.e., the stock price less the tax on capital from

t to T), and paying back the loan, —AtBi’at /Btf A 5o that the net payoff

48This means that borrowing generates a tax saving proportional to T%. Note that,
from equilibrium, the after tax cost of borrowing is equal to ¥#(1 — T°).
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is

f,at
f,at B
ST - BT Jt f at dSu At f at
e
= Sr— BJ™ L fat Sy — B} atJ f”at dSy = St — At

which is equal to the payoff of the buy-and-hold strategy over the interval
[0, T].
On the other hand, if A; < 0, then by liquidating the position at t,
the amount —A; can be invested at the (after-personal tax) rate {r (1-
u) }u:t over the interval [t, T] and S; can be used to buy the same stock.
By applying the same argument, at T the net payoff is again ST— AT, which
is the same of the buy-and-hold strategy. O

Proof of Proposition 5

Consider the process for EBIT, under the actual probability measure,
dXt = Q(Xt, t)dt + O'(Xt, t)dZt.

Since the EBIT process is not traded, for valuation purposes we assume
that there is a spanning (twin) security/portfolio, whose price is denoted
S, with process, under the actual probability measure,

dS: = o(Xg, t)Sedt + B(X¢, t)Sd Zy (A.7)

and dividend rate 6 (X;, t). Moreover, a money market account is avail-
able, with value B/, following the process dBf = rtf Btf dt.

To derive the valuation equation

1 azv

a2x.H Y 4 g(x, t)av ov

50 e 5 P X =TH + TR = EV. (3.4)

we employ the standard replicating argument introduced by Modigliani
and Miller (1958) and extended to a continuous-time framework by Mer-
ton (1973), but on an after personal tax basis.

The rate of return of V,* using Itd’s Lemma, is (for notational sim-

49Note that, from (3.3), the value of the levered asset accrues to equity-holders, and
hence is taxed at the tax rate for equity flows, T°.
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plicity, we drop functional dependence when it is clear)

av +X(1 -1 +T*R

% (1-1° =
l _ - * al Aal 1 2827‘/ _ +e
V(X(l T)+ 71 R+at +gaX+20 3x2 (1 -T1%dt
10V e
+VaXO'(1—T YdZ:. (A.8)

Taking a long position in a portfolio with price W = n1Bf +1,S we obtain
a rate of return

_L25>f_b L25< 5) e naS o0 e
(1 P /(1 T)dt+W <x+S(1 T)dt+WB(1 TEZZ;)

Putting
nsS o ovV/oX

w BV
in (A.8), given the generalized Miller equilibrium relation (2.5) and after
some manipulations, we have

2 _ 2z
1207V (A—GOM/Sr)av av+X(1—TC)+T*R=1’ZV.

—0°—— + — + =
27 0X2 B oX ot
Considering the unit risk premium computed from the twin security/portfolio

_ z
A = x+0/S—r* (A.10)
B
we obtain equation (3.4) under the EMM, with g = g — Ao.
With condition V (T4, Xra) =U (T4, Xra) and using the Feynman-Kac
solution of (3.4), see Duffie (2001, pp. 340-346), we have (3.5). O

Proof of Proposition 6

The proof that the APV satisfies equation (3.4) while X; > xp is the same
as in Proposition 5. Considering the boundary conditions V(T4 x) =
U(T%,x) and U(T?,x) = 0 and V(s,xp) = (1 — a)U(s,X) for all t <
s < T4, the existence of the solution of this problem follows from the
application of a version of Feynman-Kac result for partial differential
equations on open bounded sets, see Lamberton and Lapeyre (1996, Th.
5.1.9).
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For verification of (3.14), we define

BZ
Ye==-LV(s, X
s Bs (s, Xs).

By applying It6’s Lemma, we have

ToAT Bz (1 32y 3V 3V
_ “t | 22V Y vV vy .z
YTDATd—V(t,X)+Jt B < ax2+gax+ 3t v V)ds
TD/\Td Z oV
L Bs ax odZ;. (A.11)

We take expectations of both sides of (A.11) and note that:

TD/\Td B A%
“t
[Et |:J‘t BS aX dZS - O,

t B? 0X? 0X ot

TpAT4 B?
=—[Et |:J (Xt(l—th)-i-T Rt)d:|

TpATY gz 2
Et [J B (;Uzav+gav+av—rzv) ds}

t Bs

from equation (3.4), and
Bf d
E; [YTD/\Td] = [E; X{Vse[t,Td],Xs>XD}Bzd V(T*, Xta)
T

E ifv Tp, X
t X{EISE[t,Td],XS=XD}Bz ( D, TD) .
Tp

Hence, from equation (A.11) and the boundary conditions of the problem,
we have

BZ
Vi(t,x) = E |:X{‘v’56[t,Td],X5>XD}BthU(Td’XTd)]
T
Bf
+ (1 — (X)[Et X{HSE[t,Td],XSZXD}B?U(TD’XTD)
Tp

TpAT? gz TpAT? B?
+E J P X (1 - to)ds | + Ee J T# Reds
t BS t BS

that is, after few manipulations, equation (3.14). O
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Proof of Proposition 7

To derive the valuation pde (3.15) for D, we follow the same argument
we used in the proof of Proposition 5 and create a portfolio whose return
replicates the return of the bond.

The return of the bond is, by It6’s Lemma

dD+Rdt = 5, 1(1 ,0°D . 0D 0D )
— D 1-7 )—D (20 X2 +g—ax+—at +R)(1 T7)dt
10D b
+DaXO'(l—T YaZ;

A long position in a portfolio with price W = n1Bf + n»S, where Bf is
the value of the money market account and S, as of (A.7), is the price of a
(twin) security/portfolio for X have a rate of return as in equation (A.9).
Putting

n,S 9D/0X o (1-1P)

W D B(l-T7°

we obtain, after few manipulations and using the generalized Miller equi-
librium relation (2.5),

2 a2z
1 ,0°V (A_0a+5/ﬁs r)a\/+av+R=va

0X ot
that is (3.15) when g = g — Ao in (A.10).
The existence of the solution for this problem can be derived from
Lamberton and Lapeyre (1996, Th. 5.1.9).
To verify (3.16), let

B/
Y, = —;D(s,xs).
Bs

By It6’s Lemma, we have

=, — T

YTDATdZD(t!X)+J EO’ ﬁ_{—gﬁ_{— 3t

TpAT? Bf 1 ,02D oD oD

t 2 f

, —Bf ( D) ds
S

TpAT4 Bf
J t 0D dZ.. (A.12)

— =0
t Bl 0X
We take expectations of both sides of the above equation. We note the
following facts:
TpAT4 Bf oD
E L ZodZ| =0;
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since D satisfies the pde (3.15), then

TpAaTd pf 2
[Et[J B <10'28D+gaD+aD—rfD>ds}

e p/\2" ox2 7Yox ot
TD/\TdBf
:_[Et iRSdS,
S
t B

s

f
£y _ Bt et Xpa)
t TpaTd | = Lt X{VSE[t,Td];XS>xD}Bf AT
T4

S
B
+ Bt |:X{Els€[t,Td],X5—xD}B}D(TD,XTD):| :
Tp

From the above equations, using the boundary conditions D(T%, X;a) =
P and D(s,xp) = (1 — «)U(s,xp) forall t < s < T4, with X7, = xp, we
have

B!
Ee | X{vselt,141,x,>xp} BTP

Ta
B/
+ Bt | X{asert,r41,x,=xp} 5 (1 = U (Ip, Xp)

By,
TpAT4 Bf

= D(t,x) - E J —;des
t B!

that is, equation (3.16). O

Derivation of equation (3.17)

Under the restrictive assumptions that: 7¢, ¢, b, vf, ¥Z are constant;
in (3.1) g(X,t) = gX, o(X,t) = oX, with g and o constant; constant
coupon payment, R, and principal, P, from (3.14)
1 — e~ (rF=g)(TP=1)
rz-9

V(t,x) =x(1-1T°)

Td
+ T*RJ e "= (1 — H(s,xp,x,t))ds
t

r —rZ(s—t) el — e~ (r*=9)(17-s)
- e oaxp(l —T1°) h(s,xp,x,t)ds
t rZ—-g
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where h(s,xp, x,t) is the density and H(s,xp,x,t) is the cumulative
distribution function of the first hitting time s to xp for a geometric
Brownian motion, under the EMM, with starting point X; = x.

Integrating by parts the second term in the right-hand-side of the
above equation and after few manipulations we obtain

e SO n(s, xp, x, t)ds

c T4
V(t,x) = U(t,x)+T*R_<T*R L exp(l-1 )”

TZ 1/'2 /VZ _g t
axp (1 — 7€) rd
- D—e(”z‘g)(Tp‘t)J e 95V h(s,xp,x,t)ds
t

rYZ—g

*

C TR e 0 (1 H (s, xp, x, 1)
TZ

where U is defined in (3.9). We denote
Td
G(T4, xp,x,t,7) = J e " n(s, xp, x, t)ds. (A.13)
t

G is explicitly computed in equation (3.19) (details in Reiner and Rubin-
stein (1991)) and H from equation (3.18) can be found in Harrison (1985,
pp. 11-14). O

Derivation of equation (3.21)

Under the same restrictive assumptions of equation (3.17), from (3.16)
we have
T4 :
D(t,x) = RJ e 70 (1 = H(s,xp,x, ) ds
t

+e T -p1 — H(TY, xp, x,1))

+(1 - x)xp(l —T1°)
rYZ—g

Td
J e~ (s=0) (1 - e‘(”z‘g)(Tp‘S)) h(s,xp,x,t)ds.
t

44



Integrating by parts the first term in the right-hand-side of the equation
above and after few manipulations, we obtain

Td
D(t,x) = % B % ; e " SO n(s, xp, x, t)ds
+ efrfqd—t) (p _ 5) (1 — H(Td,xD,x,t))
rf
1- 1-19) (™
L0 -xpd =7 (J e " SO n(s, xp, x, t)ds
rZ—-g t

Td

to-(rF-@)(TP-t) J

e~ (! =49 =D (s xp, x, t)ds) )
t

Using definition (A.13) and from the generalized Miller equilibrium rela-
tion in (2.6), we have (3.21). O
Proof of Proposition 8

The proof that F satisfies equation (4.2) is the same as for the proof of
Proposition 5. The solution in (4.3) is derived using standard results (see
Duffie (2001, pp. 182-186)). O

Proof of Proposition 9

The value of the European option with maturity T° and payoff IT(t, X;)
from (4.1) is

f(t,X) = e =9I DN (m)V (L, x) — =T "D N (mp)1
with

log L'}’X) + <g + %2> (T° —t)
oJTO —t ’

mi(x) = mo> =mj —oVTO —t.
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where V(t,x) = xK(t) from equations (3.9), (3.10) and (3.11) in the
default-free case, with

1 — o-(r*=g)(TP-1)

K(t) =(1-1°
rzZ—-g

1 — e-(r*=g)(T9-1)

+ (1 =1L ( >

(rz-g)(r? —vr/T*L - g)
_ ,(rfT*L)(T4-1)

+(1— TC)e—(VZ—g)(Td—t) <1 e )

(rz—rft*L-g) "’

and V(t, x) as defined in equation (3.17) in the defaultable case.
The early-exercise premium of the real option to delay investment,
denoted E(t,x) = F(t,x) — f(t,x), satisfies equation

2

vt _ oz
27 Mt ox ox o ~TE (A1)

E is approximated by
E(t,x) = ox"h(T° — t),

where h(s) = 1—e~"2% and @ and n are parameters to be determined. By
replacing E in equation (A.14), we get

g re

o 2o - ¥

nn-1)+2

n is known and is the positive root of the above equation:

2
n(,,Z):nzl_ng\/(l_g) v T2 4 (A15)

= >
2 0?2 2 0?2 o2h(To —t)

At the critical level for the cash flow rate, denoted x/, the value of the
real options, F, must satisfies the value-matching and smooth-pasting
conditions. Hence, for the approximation F (t,x) = f(t,x) + E (t,x) the
following conditions hold:

Ft,x) +@ (x)"h(T° —t) =V(t,x}) -1 (A.16)
af (t,x) 01 o 4y _ OVI(t,x)
T e +@n (x{)" (T - 1) = =2 et A1
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We solve the above system for @ and x;*. In the defaultable case, we
have to rely on a numerical solution for both @ and x;". Existence and
uniqueness of solution is given by the strict monotonicity of V (t, x) with
respect to x, for x > xp.

On the other hand, in the default-free case, equation (A.17) can be
simplified as follows

e~ =T =D N (my (xF)K (1) + @n (xF)T R(T® - t) = K(t). (A18)
From (A.18) we solve for @:

K() (1 - e =0T =0 (my (x7))
()1 Tnh(T° ~ 1)

(p:

By replacing this in (A.16) we solve equation

K(t)x[

Fx) + (1 e =T 0N (my (x7))) = V(t,x) -1

for xt* (using a numerical method).

This completely determines the approximation Fasin equation (5.1).
O
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Table 1: Option to delay: base case parameters

TC

S~ 33 Feqe x LA

XD
1

CE return for stocks

corporate tax rate

tax rate for equity flows

tax rate for bond flows

current EBIT rate

risk-neutral growth rate of X;
volatility of X;

risk-premium rate for X;
duration of the project
duration of debt

expiry of the option to delay
bankruptcy (proportional) costs
leverage (in M-E)

total coupon payment (in M-M)
face value of bond (in M-M)
exogenous default threshold (in M-M)
capital expenditure

0.07
0.4
0.1
0.2

1
0.02
0.35
0.05
10
10

1
0.25
0.57
0.3
3.8
0.3

5

(years)
(years)
(years)

($)
($)

($)

For these parameters, from (2.1), T = 0.111, 7* = ¢ — ™ = 0.289, from (2.6),
rf =0.079, and, from equation (3.7), p = 0.057.
The APV of the project in the default-free case is, from equation (3.12), V = 5.014
and the market value of debtis D =L - V = 2.858.
The APV of the project in the defaultable case is, from equation (3.17), V = 5.197
and the market value of debt is, from equation (3.21), D = 2.960. Note that the
face value is set so that P ~ R/v/. The initial leverage in the defaultable case is
L=D/V =0.569 = 0.57, that is the same for the the default-free case.
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Coupon

Volatlity

Figure 1: APV of the project. Value of the project, V, including the debt
tax shield, vs volatility of EBIT pr(ﬁcess, o, and debt level (represented
by the coupon payment, R, in the de%aultable case and by leverage, L, in
the default-free case). Default-free case is above and defaultable case is
below. The other parameters are from Table 1.
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Figure 2: Tax Shield and Base Value - defaultable case. Value of the tax
shield, TS, and base value (defined_as the APV net of the tax shield), vs
volatility of EBIT process, o, and debt level (represented by the coupon
payment, R). The other parameters are from Table 1.
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Volatlity
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Figure 3: Option to invest. Value of the option to invest, F,vs volatility of
EBIT process, o, and debt level (represented by the coupon payment, R, in
the defaultable case and by leveragé,lL, in the default-free case). Default-
free case is above and defaultable case is below. The other parameters
are from Table 1.
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Volatility
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Figure 4: Probability of investing. Probability of exercising the option
to invest, H, vs volatility of EBIT p;é)gess, o, and debt level (represented
by the coupon payment, R, in the defaultable case and by leverage, L, in
the default-free case). Default-free case is above and defaultable case is
below. The other parameters are from Table 1.



