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Abstract

A firm has to decide sequentially to replace its technology and to implement a new
one chosen among an increasing range over time under technological and market uncer-
tainty. The optimal decision rule is a (s, S) style policy where the trigger and target
technology levels are positively correlated with boom persistence and negatively related
with recession persistence and technological uncertainty. The average time between two
adoptions is governed by several factors. Bounded technological progress imposes a lim-
itation on the best grade available, which can accelerate updating when the firm wishes
to continue to operate an advanced technology. Technological uncertainty reinforces
depreciation and thus hastens replacement. Moreover, both types of uncertainty have
an impact on the scrapping and upgrading levels. Overall, adoption is more frequent
for economies spending a large fraction of time in booms. The likelihood of switching
during a recession is negatively affected by the arrival rate of booms. The end of a re-
cession can trigger updating since the firm will want to operate an efficient technology
in order to seize the high cash flows associated with the forthcoming boom. This result
implies that investment spikes are procyclical.
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1. INTRODUCTION

In the May 1999 issue of “Communications of the ACM”, the computer science magazine
tried to explore the following dilemma: how often should a firm buy a new computer
and what type of machine should it buy? The article reached the conclusion that a firm
should replace its PC at regular intervals using two dominating strategies: either buy high-
end machines every 36 months for organizations seeking substantial computer performance
or buy intermediate-level computers every 36 months, a cheaper alternative. Changing
configurations and declining prices lead to an important characteristic of the PC market:
computers must be replaced at regular intervals.

This paper investigates the effects of both technological and market uncertainty on the
size and frequency of adoption of technology at the plant level.

There are two fundamental aspects in the adoption of a new technology:

1. lumpiness: firms occasionally adjust their capital in discrete bursts. Doms and Dunne
(1998) study capital adjustments over a sample of 13,702 US manufacturing plants
focusing on the lumpy nature of investment. They find that half of the plant’s total
investment over the 1973-1988 period occurred in just three years. Cooper, Halti-
wanger and Power (1999) estimate that the largest investment episode for each plant
contributes to 17% of cumulative aggregate investment, and the top five investments
to more than 50% of the latter. Cooper and Haltiwanger (1993) stress the importance
of non-convexity in machine replacement by automobile producers inducing invest-
ment bursts. Goolsbee and Gross (1997) estimate the adjustment cost function for
the US airline industry and present clear evidence of important non-convexities: 60%
of the total acquisitions of an aircraft type by a given airline occur in the largest
two-year investment episode and desired output must differ from actual output by
between 10% and 40% to trigger investment or disinvestment;

2. Uncertainty is a key element in the process of selecting and adopting a technology.
The literature has examined several aspects of the role of uncertainty:

- demand uncertainty. Market uncertainty may both delay adoption and affect the
size of innovations. Why improve one production tool if markets are expected to be
depressed?

- innovation uncertainty. There are many kinds of uncertainty surrounding a new
technology. For instance, the speed of arrival and the size of future innovations sig-
nificantly matter. Rosenberg (1976) and Farzin, Huisman and Kort (1998) point out
that since the sunk cost of investing prematurely in a given technology is usually un-
recoverable, a manager expecting a major technological breakthrough may choose to
delay adoption as she tries to avoid to lock herself in. Alternatively, uncertainty may
lie in the quality of the new technology or, more generally, in its profitability. The
moment when a technological curiosity becomes a commercial one is hard to define.
Mansfield (1968) mentions that in the case of a new piece of equipment, both the
supplier and the user often take a considerable risk.
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These observations raise an interesting set of questions. How do different sources of un-
certainty in the economy affect scrapping of obsolete technologies? What are their impacts
on the type of technologies adopted? Does uncertainty increase or decrease the frequency
of adoptions? Is the adoption of new technologies more likely to occur in recessions or in
periods of boom?

This paper constructs a model in which a firm (plant), confronted with market and
technological uncertainty, must choose sequentially when to scrap its old technology and
the size of its technology leap forward.

1.1. Related Literature

A common feature of all technology adoption models is the trade-off between waiting and
upgrading. An update in technology is costly and usually irreversible, so a natural concern
for the manager is: how will the market evolve and how fast will technological progress
occur? When adoption is decided, the manager may hesitate over the type of new technology
to implement: Does the new piece of equipment require specific knowledge to be operated
properly? How large will the gains in efficiency be? Adoption of a new technology is by no
means a simple issue to study so the literature has tried to disentangle independently the
role of several factors.

A large class of models focus on the complementarity between technology and skills.
There is a trade-off between improving expertise and experience by continuing to operate a
given technology (learning by doing) and switching to a more profitable production process
that is not fully mastered by the firm right after adoption (Jovanovic and Nyarko (1996),
Chari and Hopenhayn (1991)). Parente (1994) proposes a model where learning exhibiting
decreasing returns takes time and switching technology induces a loss in know how. These
authors emphasize the link between the low pace of diffusion of a technology and the time
required to acquire the skills to use it.

Another class of models tries to capture the uncertainty surrounding the arrival of a
new technology. Does new necessarily mean more efficient, and if yes for how long? To
overcome the first difficulty, Jensen (1982) proposes a model in which the plant manager
observes signals from which she can infer the quality of the technology and, therefore,
updates her beliefs over time. Similarly, Jensen (1983) presents a firm undertaking trials
to evaluate the quality of two competing innovations. Both Balcer and Lippman (1984)
and Farzin, Huisman and Kort (1997) examine the optimal timing of technology adoption
in a context of uncertainty regarding the arrival speed of innovations and the efficiency of
improvements. They show that significant technological improvements and a high rate of
innovations delay adoption.

The link between technology adoption and the business cycle has also been examined in
the literature. Klenow (1998) develops a model where technology updates are more likely in
a boom than in a recession since learning (by doing) about the new technology rises faster
in periods of high production. He demonstrates that the sensitivity of technology upgrades
to demand shocks depends on the persistence of the shocks. In particular, when shocks
are persistent, firms may prefer to upgrade in recessions. Cooper and Haltiwanger (1993)
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analyze machine replacement in the automobile industry within a framework of deterministic
cycles and show that retooling is likely to occur at the end of the downturn whereas new
machines begin operation at the beginning of the boom following (for sure) the trough of the
cycle. Goolsbee (1998), investigating the airline industry, concludes that capital retirement
affects in priority old vintages; older planes are much likely to be scrapped in recessions
when the cost of capital is low. Goolsbee and Gross (1997) show that for the airline industry
capital retirement is associated with significant adjustment costs and rises during recessions
whereas companies concentrate purchases of new planes during expansions.

One important restriction of these models is that the firm has no choice but adopting the
cutting edge technology. Few attempts have been made to relax this assumption. Jovanovic
and Rob (1998) construct a deterministic general equilibrium model in which a manager
can choose to upgrade among an increasing range of vintages as technological progress
continues. Yet since the production function considered exhibits constant returns to scale,
the state of the art technology is always purchased. Bar-Ilan and Mainon (1993) introduce
a stochastic environment in which the firm must adjust its technological level with respect
to the frontier technology. Indeed, in reality, managers pay attention to what type of
technology to implement. Why adopt the frontier technology in a recession time?

We propose a tractable model in which a firm can select the size of its technological leap
among an increasing range over time without being certain of the innovation’s profitability.
This analysis is justified for two reasons. First, the economic environment may change: de-
mand for the product can be low (high) as in a recession (boom); as adoption is irreversible,
this induces a risk of adopting an under(over)performing technology depending on the evo-
lution of the market. We aim at studying the impact of the duration of each regime on the
firm’s adoption decisions when the manager of the firm can identify these regimes in real
time. Second, the efficiency gains from the new technology are uncertain: the technology
itself may not be reliable over time or the firm may not have the necessary human capital to
operate it properly. Our approach focuses on the option value of waiting to adopt a suitable
technology as there is uncertainty and the decision taken is irreversible. We lie in the vein
of models developed by Abel and Eberly (1996) and (1998), Abel et al. (1996), Bertola and
Caballero (1994), Dixit and Pindyck (1994) or in a context of indivisible durable goods by
Grossman and Laroque (1990). Some of the central issues of this paper are related to the
work by Cooper, Haltiwanger and Power (1999), who investigate the links between machine
replacement and the business cycle. While they consider both investment at the plant and
aggregate levels, we restrict our attention to the plant level but allow implementation of
any technology available at the adoption time, in particular, inferior technologies.

The main contribution of the paper is to provide an analytical solution to the technology
adoption problem in the presence of bounded technological progress under both demand and
idiosyncratic uncertainty. We are thus able to analyze and disentangle the specific effects of
the two types of uncertainty on the decision to scrap technology, on the size of the upgrading
and on the timing and frequency of adoption of new technologies. The predictions of our
model seem consistent with some empirical evidence.
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1.2. Results

Adoption of new technologies is the result of both physical and economic depreciations as
new technologies are exogenously introduced in the economy. We show that the manager of
the firm chooses (optimally) a (s, S) style policy. More precisely, in an economy experiencing
recessions (state 1) and booms (state 2), she uses the following policy: Whatever the market
conditions, she remains passive as long as the technology is above a scrapping level a∗2. If
the economy is in a boom when the technology level reaches a∗2, she updates to a target
level b∗2 that may (but need not) be the cutting edge technology. If a recession prevails, she
decides to continue operating the same technology for a while. As soon as the recession
ends and a boom occurs, she switches technology on the spot: booms can trigger technology
adoption. If the economy remains in recession, ultimately she scraps at level a∗1 < a∗2 and
upgrades to a target level b∗1. As a recession reduces current cash flows, the firm has less of a
need for highly performing technology. Consequently, the manager tends to delay scrapping
and adopts a less sophisticated technology during recessions, b∗1 ≤ b∗2. The scrapping and
target thresholds depend in particular on three parameters: the arrival rate of booms φ1,
the arrival rate of recessions φ2 and the technological uncertainty σ. Non-lasting booms
provide few incentives to the manager for implementing a sophisticated technology since a
recession is looming. Conversely, adopting in a non-lasting recession, the manager would
like to seize the opportunity of forthcoming high cash flows by implementing a fairly good
technology. The purchase of new technologies depends not only on market conditions, but
also on the persistence of the cycles.

In an attempt to answer Doms and Dunne’s question - how lumpy is investment? - we
analyze the impact of regime persistence on the frequency of switches. We find that for
economies where recessions are persistent, machine replacement is slower than for economies
enjoying lasting expansions. In addition, when we impose a common rate φ of arrival of
regimes, economies experiencing more stability (low φ) display more frequent adoptions.
Technological uncertainty plays two distinct roles. One direct effect is to alter the fea-
tures of technology itself. In the presence of decreasing returns, the instantaneous expected
operating profit and, therefore, the value of operating the same technology forever are re-
duced. More technological uncertainty hastens adoption; a higher technological uncertainty
increases the chances that the technology level of the firm reaches its scrapping thresholds
sooner by amplifying the technological process fluctuations. In short, technological uncer-
tainty reinforces physical depreciation. One indirect effect is to shift the band [a∗i , b

∗
i ] as

it lowers both thresholds. The firm has a wary attitude: if technological uncertainty is
significant, it buys a moderate technology and chooses to keep on operating a more depre-
ciated technology. The magnitude of the indirect effect is captured by the ratio b∗i

a∗i
of the

upgrading level b∗i over the scrapping level a
∗
i . Numerical simulations show that this ratio

rises with technological uncertainty, indicating that the scrapping level is relatively more
sensitive. As a consequence, the indirect effect tends to slow down adoption of new tech-
nologies. Surprisingly (or not), the overall effect of technological uncertainty is to accelerate
adoption. One implication is that firms with a low ability in operating new technologies

5



should buy intermediate technologies and update often.
In an attempt to shed some light on the ongoing debate, “Are technology adoptions more

likely to take place in recessions versus booms?”, the model turns out to be tractable enough
so that the probability to update in a recession versus boom can be computed explicitly.
Since scrapping occurs at an earlier stage during an expansion, the arrival rate of booms
is a key factor in determining whether adoption of technology is more likely in a boom or
in a recession. Unless the arrival rate of recessions is quite significant with respect to the
arrival rate of expansions, investment spikes are likely to be procyclical. In particular, this
result is true when the economy spends on average an even fraction of time in a recession
and in a boom.

The paper is organized as follows. Section 2 describes the economic setting and provides
some insights on the structure of the optimal decision rule. Section 3 contains the derivation
of the optimal policy and outlines the relationships between uncertainty, the frequency of
adoptions and the likelihood of upgrading during recessions. Section 4 presents numerical
simulations showing the effects of market and technological uncertainty on the decisions
and the timing of adoption as well as the chances of switching during a recession versus an
expansion. Section 5 concludes.

2. THE GENERAL ECONOMIC SETTING

We consider an infinite horizon economy in which a firm has to decide sequentially the
quality of the technology it should operate.

2.1. Uncertainty and Information Structure

Uncertainty in this paper arises from two independent sources:
- The firm environment (demand for the product) represented by the variable Xi may

change: recessions follow booms and vice versa. Index i refers to the state of the economy,
with i = 1 for a recession and i = 2 for an expansion;

- On average, the firm can only expect to adopt a better performing technology. Buying
a superior technology is not the same thing as having the know-how to operate it efficiently.
For instance, workers may not be able to master fully the newly implemented technology
potentially due to some organizational issues or, simply, a lack of human capital. Campbell
(1998) outlines that different plants implement the same technology with varying degrees
of success as they are subject to idiosyncratic productivity shocks. Another aspect is the
reliability of the new technology. Manufacturing defects or unexpected complications may
arise. For example, running the machine for a certain amount of time without interruption
may cause overheating and then require it to be stopped for a while. This obviously slows
down one production line, inducing delays and reducing the operating profit. Alternatively,
a new version of a computer software may contain some bugs or may not be fully compat-
ible with the existing code used by the firm. More generally, we denote by “technological
uncertainty” the fact that the contribution of technology to operating cash flows is not
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perfectly known at the time of adoption and can fluctuate over time. The relative tech-
nological position of the firm with respect to the frontier technology u follows a geometric
one-dimensional Brownian Motion that is independent of the state of the economy.

We assume that the manager takes decisions at time t based only on the information
available to her at time t. All the stochastic processes considered in this paper are Markov
processes. Therefore, the only relevant information for the manager is the current relative
level of the firm technology u and the current state i of the economy, i.e., an element of
R+ × {1, 2}.1

2.2. Technological Progress

Technology is embodied in new capital goods. A single variable a ≥ 0 captures all the
relevant attributes of a production process to the operating cash flow. Roughly speaking, a
represents the grade of the technology. A(t) denotes the state of the art technology available
in the economy at time t. This frontier technology evolves exogenously at a constant rate
µ according to the following deterministic law of motion

dA(t) = µA(t)dt, (2.1)

with A(0) > 0.
The firm can only operate one technology at one time. ak(t) denotes the grade in

efficiency units of the kth technology adopted at time tk operated at time t, with tk <
t ≤ tk+1. As the contribution of technology to cash flows is uncertain, ak(t) is a random
variable that follows a geometric Brownian Motion

dak(t) = ak(t) [−κdt+ σdw(t)] , (2.2)

where dw(t) is the increment of a standard Wiener process, κ represents the rate of physical
depreciation and the parameter σ captures the magnitude of the technological uncertainty.2

When switching technology at time τ , the feasible set of available technologies is A(τ) =
{a(τ) ∈ R+, a(τ) ≤ A(τ)}. The relative position of the firm with respect to the frontier
technology at time t is uk(t) =

ak(t)
A(t) . Considering equations (2.1) and (2.2), uk follows the

law of motion
duk(t) = uk(t) [−(µ+ κ)dt+ σdw(t)] . (2.3)

Define the overall rate of depreciation λ = µ+κ. In this model, a technology becomes obso-
lete because it physically depreciates at rate κ and it economically depreciates at rate µ, as
the introduction of more advanced technologies renders existing ones obsolete technologies.

1More formally, we define a probability space (R+ ×{1, 2},F ,F, P ) where F denotes the tribe of subsets
of the state space R+×{1, 2} that are events over which the probability measure P is assigned. The filtration
F = {Ft, t ≥ 0} represents how the information is revealed over time. At time t, the information available
is Ft = σ ((u(s),X(s)); 0 ≤ s ≤ t) ⊂ F , the smallest sigma field generated by observations of u(s) and X(s)
up to time t. If t ≤ s, the information set Ft is included in Fs: information is not forgotten over time. To
be more precise, we should consider the completion of (R+ × {1, 2},F ,F, P ).

2 In a discrete time framework, an equivalent formulation is ak, t+1 = (1−κ)ak, t+ak, tσεt+1, where εt+1
is i.i.d. and normally distributed.
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Remark 1. Note that uk(tk) cannot be more than 1 but for t ≥ tk, according to (2.3), uk(t)
may be greater than 1. We now provide a justification for the apparent striking feature of
the model. At the time of adoption tk, ak(tk) is the grade, but when the technology is used
by the firm for t ≥ tk, ak(t) measures the effective contribution of the kth technology to the
production process. For instance, a firm familiar with operating an old vintage may have
a higher productivity than if using the less familiar state of the art technology. However,
note that on average u declines to zero.

2.3. Market Structure

2.3.1. Demand Side

As in Abel and Eberly (1996) and Caballero and Dixit (1992), the demand for the product
is taken to be isoelastic

Qd(t) = z(t)p(t)−ε, (2.4)

where z(t) is an exogenous stochastic process that captures demand shocks and ε > 1 is
the price elasticity. For convenience, we define X ≡ 1

ε (1 − 1
ε )

ε−1z and since X is simply
proportional to z, we will refer to X as the level of demand in what follows.

2.3.2. Supply Side

A monopolist produces the same good over time. Technology is cost reducing. When using
technology of grade a, the cost of producing q units of output is a−χq with χ > 0. Using
equation (2.4) and dropping the time dependence, the instantaneous profit π is simply

π = max
q≥0

z1/εq1−
1
ε − a−χq.

After maximization, we obtain that
π = Xaα,

where α = χ(ε− 1). We assume α < 1.

2.3.3. A Closer Look at the Market Uncertainty

In order to keep things as simple as possible, we assume that X can only take two values.
When the economy is experiencing a recession, X = X1, and when the economy is experi-
encing a boom, X = X2 with X1 < X2. Such a framework allows the manager to identify
recessions and booms in real time. Regime changes are driven by independent exponential
probability laws. Being in a recession, φ1 denotes the instantaneous arrival rate of a boom
and being in a boom, φ2 denotes the instantaneous arrival rate of a recession. The parame-
ters φ1 and φ2 measure the persistence of the states: The lower the parameter φ1 (φ2), the
more persistent are recessions (booms) and the expected duration of regime i is 1

φi
. More
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precisely, between time t and t+ h, the change of states can be described by the following
transition matrix

time t+ h

time t
X1 X2

X1 1− φ1h+ o(h) φ1h+ o(h)

X2 φ2h+ o(h) 1− φ2h+ o(h)

The corresponding conditional probability Pij(t) = P (X(t) = Xj |X(0) = Xi) is given by

P11(t) = 1− φ1
φ2 + φ1

h
1− e−(φ2+φ1)t

i
and P21(t) =

φ2
φ2 + φ1

h
1− e−(φ2+φ1)t

i
.

Using these analytical expressions, it can be shown that the average fraction of time spent
in regime i is

φj
φi+φj

. Our framework shares some common features with the one developed

by Hasset and Metcalf (1994) in a context of investment with uncertain tax policy where
changes occur according to some Poisson processes. However, in their model, the firm can
only select one project whereas we allow multiple technology adoptions here. The variables
u,A and X enable us to rewrite the profit

π(u,X,A) = AαXuα.

2.4. Timing of Adoption

We follow Jovanovic and Rob (1998). Denoting one particular adoption time by τ , switching
technology requires two steps:

- At time τ−, the firm has to scrap its old technology a(τ−). The underlying idea is that
technologies are fully incompatible. We assume thin markets for used machines: the firm
activity may be so specific that capital resales only occur at heavy discounts. In our case,
the resale price is simply zero and scrapping is costless. In some industry, capital retirement
can be associated with significant financial burden: Goolsbee and Gross (1997) point out
that firing costs of pilot per plane can represent more than 15% of the cost of the average
plane of their sample.

- At time τ+, the firm decides which technology to adopt a(τ+) in [0, A(τ)]. Obviously,
the manager will always pick up a(τ+) > a(τ−). Cooley, Greenwood and Yorukoglu (1997)
as well as Greenwood, Hercowitz and Krusell (1997) outline that the relative price of an
efficiency unit of equipment dropped off steadily and rapidly in the postwar US economy.
In our set-up, the price of one efficiency unit of technology declines at a constant rate ψ,
p(t) = p0e

−ψt where p0 is a constant.

2.5. The Firm’s Problem

An alternative and equivalent approach to the problem is to let the manager decide of the
relative technological position of the firm u with an upgrading level u(τ+) in [0, 1] . This
formulation turns out to be easier to analyze.
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Switching technology implies giving up the cumulative discounted profit at the interest
rate ρ that could have been realized with the technology already in use. The manager is
therefore facing an opportunity cost: upgrading cannot be continuous across time. Here,
we capture the lumpiness of technology adoption. The firm optimally chooses an increasing
sequence of stopping times3 {τk}∞k=0 and a sequence of positive random variables {vk}∞k=0 ∈
[0, 1] , where vk represents the relative level of the kth technology adopted at τk. By
convention, τ0 = 0 and v0 = u0. This is a typical impulse control problem (see Harisson,
Sellke and Taylor (1983) and Brekke and Oksendal (1994)).

Denote by Ei
0 the expectation operator conditional on the initial state to be (u0, i) and

Ji(u0, A0, p0) the value of the firm at the initial date t = 0 when the initial state of the
world is (u0, A0, p0, i). The firm’s problem can be formalized as follows

Ji(u0, A0, p0) = sup
({τk≥0, vk∈[0,1]}∞k=1)

Ei
0

·Z τ1

0
X(s)A(s)αu0(s)

αe−ρsds

+
∞X
k=1

·Z τk+1

τk

A(s)αX(s)uk(s)
αe−ρsds− p(τk)A(τk)vke

−ρτk
¸#

.

ASSUMPTION: ψ = (1− α)µ

It seems reasonable to think that the faster technological progress is, the larger the
economic depreciation of existing technologies. This implies that the growth rate of techno-
logical progress µ and the rate of decline in the price of the technology ψ must be positively
related. In order to avoid a race between these two rates which, as time passes, would lead
to a degenerate decision rule such as the cutting edge technology is always or never imple-
mented when adoption takes place, we assume that ψ = (1− α)µ. This assumption allows
us to express scrapping and adoption decisions in terms of relative position with respect to
the technological frontier.

For all time t, the quantity p(t)A(t)1−α is now a constant denoted c. Recall that the
profit function is A(t)αX(t)u(t)α and the cost of adoption of relative technology v(t) can be
rewritten cA(t)αv(t). Exploiting the linearity of the law of motion of the process A as well
as the homogeneity of degree α of the profit and cost functions in A, we can define a new
value function Vi such that Ji(u,A) = AαVi(u). The firm’s problem can be reformulated
using the new value function Vi characterized by

3A stopping time τ is a measurable function from the state space (R+ × {1, 2}, F) to R+ such that
{(a, i) ∈ R+ × {1, 2}, τ(a, i) ≤ t} ∈ Ft for all t ≥ 0. It means that the stopping rule is a non anticipated
strategy or in other terms the decision of switching technology only depends on the information available
up to the time of the adoption.
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Vi(u0) = sup
({τk≥0, vk∈[0,1]}∞k=1)

Ei
0

·Z τ1

0
X(s)u0(s)

αe−rsds

+
∞X
k=1

·Z τk+1

τk

X(s)uk(s)
αe−rsds− cvke

−rτk
¸#

s.t. duk(t) = uk(t) [−λdt+ σdw(t)] and uk(τ
+
k ) = vk

X(t) ∈ {X1,X2},
with r = ρ−αµ. We assume r > 0 to guarantee that the value function takes finite values.

In the following, somewhat abusing language, we will refer to u as the grade of the
technology instead of the relative grade with respect to the frontier and c as the adoption
cost of technology per efficiency unit.

3. RESOLUTION OF THE MODEL

3.1. Inaction Region and Conjecture of the Optimal Policy

Due to the Markovian structure of the problem and the infinite time horizon, the optimal
policies are stationary functions of the current state of the world depicted by a couple (u, i).

The key point to notice is that whatever technology is operated, the profit of the firm
remains positive. When scrapping its technology the firm actually incurs a cost equal to
the cumulative expected discounted profit that could have been generated by operating the
old technology. If the state of the world is (u0, i), we can define an opportunity cost of
scrapping at time τ SCi(u0) = Ei

0

£R∞
τ X(s)u0(s)

αe−rsds
¤
. As in Grossman and Laroque

(1990) who assume a linear transaction cost for home purchases, this acts like a fixed cost in
an optimal stopping problem. This opportunity cost implies that it cannot be optimal for
the firm to switch technology continuously. Adoption of technology displays some lumpy
features. Using Bellman’s principle, we have the following recursive formulation

Vi(u0) = sup
(τ≥0, v(τ)∈[0,1], j∈{1,2})

Ei
0

·Z τ

0
X(s)u0(s)

αe−rsds+ e−rτ [Vj(v(τ))− cv(τ)]

¸
, (3.1)

where τ is the first stopping time from date 0. Note that j may be different than i if the
first switch occurs in a state different state than the initial one. The relationship (3.1) is
useful to understand how the manager decides to remain inactive. Given the state of the
economy i, there exists an inaction region IRi defined as the range of technology levels for
which the firm has no incentive to switch

IRi =

(
u ∈ R+, Vi(u) > sup

v∈[0,1]
Vi(v)− cv

)
. (3.2)

We conjecture that each inaction region IRi is connected and its boundary ∂IRi is
characterized by a critical value u∗i . Given the state i of the economy, the firm remains
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passive as long as its technology level u exceeds u∗i . Economic intuition suggests that
during a boom, the firm should have more incentives to operate performing technologies
and to scrap less depreciated technologies than it does during a recession in order to enjoy
higher operating cash flows. Thus we expect u∗1 < u∗2 and therefore IR2 ⊂ IR1. We also
anticipate that the firm adopts a better technology during a boom than it does during a
recession, i.e., v∗1 ≤ v∗2. This intuition is confirmed by studying the limiting case of an
economy continuously experiencing a recession or a boom, i.e., X is constant over time.
Both scrapping and upgrading thresholds are found to be increasing with X.4 So at least,
for small values of φ1 and φ2, relying on a continuity argument, the threshold values should
remain in a neighborhood of their corresponding unique regime values.

We now study and interpret some properties of the value function in order to characterize
the optimal decision rule.

3.2. Derivation of the Optimal Policy

3.2.1. Some Properties of the Value Function and Option Value

The value of the firm Vi has two components: operating a certain technology generates some
cash flows and in addition the manager has the option to update the firm’s technology, which
is also valuable. The value of operating forever the same technology u0 adopted at time 0
when the initial state of the economy is i is

Gi(u0) = Ei
0

Z ∞

0
X(s)u0(s)

αe−rsds.

The option value is
Fi(u0) = Vi(u0)−Gi(u0).

It represents the cumulative discounted gap between cash flows obtained after sequentially
implementing new technologies minus the cost of adoption and cash flows that would have
been realized by sticking to the initial technology.

Proposition 3.1. The value of the firm Vi takes finite values and switching occurs within
a finite time almost surely. Vi and the value of operating forever the same technology Gi

are increasing in the technology level u. The option value function Fi is decreasing in u.
Moreover, given u, the value of the firm, the option value and the value of operating forever
the same technology when starting in a boom is higher than when starting in recession, i.e.,
V1 ≤ V2, F1 ≤ F2 and G1 ≤ G2.

Proof. See appendix 1.
The value of operating forever the same technology Gi is increasing in u and the option

value Fi is decreasing in u since when u is high there is less room for benefits from improving
technology. There is a trade-off between Gi and Fi. Right after the adoption of new

4See appendix 3
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technology and for a while, Gi is “dominating” Fi. As time passes, technology level u
declines and, at some point, Fi will “dominate” Gi. A new adoption will occur.

We now characterize the inaction region IRi.

13



Proposition 3.2. Given the state of the world i, the inaction region IRi is connected and
characterized by

IRi =
©
u ∈ R+, 0 < V 0i (u)

ª
.

The manager does not upgrade as long as the marginal value of operating the technology
remains positive. Moreover, in the inaction region, the value function Vi satisfies the usual
no arbitrage relationship

rVi(u) = π (u,Xi) +
Ei
t [dV ]

dt
.

The return from investing in a firm of value Vi at the risk free rate r during a period of
time dt is the sum of the instantaneous dividend, or profit, π (u,Xi) dt plus the expected
capital gain Ei

t [dV ].

Proof. See appendix 1.

Proposition 3.3. Scrapping occurs at an earlier stage in a boom with respect to a reces-
sion, i.e., u∗1 < u∗2.

Proof. See appendix 1.
From the instantaneous profit function Xuα, it is easy to see that the marginal profit

αXuα−1 is higher in a boom than in a recession. Thus, booms provide more incentives to
operate a technology close to the frontier, leading to scrap at an earlier stage.

We now decompose the analysis of the firm’s problem in two parts:

1. We investigate the shape of the value function Vi in three regions: the first one is when
u ∈ IR1 ∩ IR2, i.e., u > u∗2, the second one is when u ∈ IR1\IR2, i.e., u∗1 < u ≤ u∗2
and the last one is when u /∈ IR1 ∪ IR2, i.e., u ≤ u∗1.

2. We solve the free boundary problem, i.e., determine the boundary ∂IRi of the inaction
region IRi for i = 1, 2.

3.2.2. Derivation of the Value Function

Region u∗2 < u. Starting in the state (u, i) with u in IR1 ∩ IR2, the value function Vi
over a small internal of time dt needs to satisfy the following Bellman equation

Vi(u)e
rdt = π(u,Xi)dt+ (1− φidt)Eu [Vi(u+ du)] + (φidt)Eu [Vj(u+ du)] . (3.3)

Expanding the right hand side of (3.3) using Ito’s lemma and retaining only terms in dt, after
simplification, V1 and V2 are characterized by the following system of differential equations:

rV1(u) = X1u
α − λuV 01(u) +

σ2

2
u2V 001 (u) + φ1 [V2(u)− V1(u)]

rV2(u) = X2u
α − λuV 02(u) +

σ2

2
u2V 002 (u) + φ2 [V1(u)− V2(u)] .

14



Details of the derivation of the analytical expressions for V1 and V2 are presented in appendix
1. We obtain:

V1(u) = B1u
α +Hu−γ − φ1Ku−δ (3.4)

V2(u) = B2u
α +Hu−γ + φ2Ku−δ . (3.5)

where

B1 =
1

φ2 + φ1
[(φ2B + φ1A)X1 + φ1(B −A)X2]

B2 =
1

φ2 + φ1
[φ2(B −A)X1 + (φ1B + φ2A)X2] ,

A =
1

r + φ1 + φ2 + αλ+ α(1−α)σ2
2

and B =
1

r + αλ+ α(1−α)σ2
2

,

γ and δ are the positive roots of the following quadratic equations

σ2

2
γ2 + (

σ2

2
+ λ)γ = r

σ2

2
δ2 + (

σ2

2
+ λ)δ = r + φ1 + φ2 ,

and finally, (K,H) are two constants to be determined.
As mentioned, the value function is the sum of the value of operating forever the same

technology Gi and the option value Fi. By identification, we obtain

G1(u) = B1u
α (3.6)

G2(u) = B2u
α . (3.7)

From (3.6) and (3.7), we verify that G2(u) > G1(u) for all u as B2 > B1.
The option value is

F1(u) = Hu−γ − φ1Ku−δ (3.8)

F2(u) = Hu−γ + φ2Ku−δ . (3.9)

Since γ < δ, when u becomes large, Fi(u) behaves as Hu−γ. Since the option value of the
firm has to be positive, H must also be positive. In addition, since F1 ≤ F2, from (3.8) and
(3.9), it follows that K ≥ 0.

Region u∗1 < u ≤ u∗2. The evolution of V2 is now different. In fact, for all u ≤ u∗2, V2(u) is
a constant equal to V2(u∗2). To see this, note that if u ≤ u∗2 and the economy is experiencing
a boom, the adoption of a new technology occurs on the spot. As the value of the firm
before adoption V2(u) has to be equal to the value of the firm after adoption minus the
cost of adoption, we must have V2(v∗2) − cv∗2 = V2(u

∗
2). This implies that for all u ≤ u∗2,
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V2(u) = V2(u
∗
2). In this sense, the optimal policy differs from regular (s, S) policies. There

is a whole range of technologies [u∗1, u∗2] within which switching is optimal as soon as the
economy turns into a boom. Hence, V1 evolves as follows

rV1(u) = X1u
α − λuV 01(u) +

σ2

2
u2V 001 (u) + φ1 [V2(u

∗
2)− V1(u)] . (3.10)

The general solution to the differential equation (3.10) is

V1(u) =
φ1V2(u

∗
2)

r + φ1
+ C1u

α +Duθ +Euη , (3.11)

where θ and η are respectively the positive and the negative roots of the following quadratic

σ2

2
x2 − (σ

2

2
+ λ)x = r + φ1 ,

C1 =
X1

r + φ1 + αλ+ α(1−α)σ2
2

,

and D and E are two constants to be determined.

Region u ≤ u∗1. In this region, whatever the state of the economy is, scrapping occurs on
the spot and by continuity V1 and V2 are given by

V1(u) = V1(u
∗
1)

V2(u) = V2(u
∗
2) .

It remains to determine the four constants D,E,H,K and the four thresholds u∗1, v∗1, u∗2 and
v∗2.

3.2.3. Derivation of the Boundaries

There are eight unknowns to be determined: the four thresholds and the four constants.
We start to derive the optimal conditions for the scrapping and target levels of technology.

Proposition 3.4. For all the possible states i ∈ {1, 2} of the economy, the decision of
adopting a new technology is characterized by a scrapping threshold u∗i and a target up-
grading level v∗i satisfying the following optimal conditions

u∗i ∈ argmin
u∈[0,1]

Vi(u)

v∗i ∈ argmax
v∈[0,1]

Vi(v)− cv

Vi(u
∗
i ) = Vi(v

∗
i )− cv∗i .

The first and second conditions are called smooth pasting conditions. The first condition
actually means that the manager decides to upgrade exactly when the operated technology

16



u∗i achieved a minimum for Vi, thus G
0
i(u

∗
i )+F 0i (u

∗
i ) = 0. The interpretation goes as follows:

the marginal benefit of continuing to operate the same technology forever, G0i(u
∗
i ), is equal to

the marginal opportunity cost of scrapping, −F 0i (u∗i ).5 The second condition is a “natural”
maximization condition and for further details, see Harisson, Sellke and Taylor (1983)). The
third condition is the matching condition and simply says that when switching technology
occurs, the value of the firm must satisfy the relationship min

u∈[0,1]
Vi(u) = max

v∈[0,1]
Vi(v) − cv,

which is a straightforward condition given equation (3.2) defining the inaction region IRi.

Proof. See appendix 2.
So far, we have six equations (two times three optimal conditions for each regime). We

need two more relationships. At the point u∗2, we require V1 to be continuously differentiable
(matching and smooth pasting conditions) using the analytical expressions found in (3.4)
and (3.11). Consequently, we obtain a non linear system of eight equations with eight
unknowns.

The next paragraph summarizes the results obtained and provides a complete description
of the optimal policy.

3.2.4. The Optimal Decision Rule

We first characterize the optimal policy of the firm. Then, we stress the existence of two
cases depending on whether the upgrading level in recession v∗1 is greater or lower than the
scrapping level in boom u∗2. We interpret these two cases in terms of relative magnitude of
fluctuations of the cycles.

Proposition 3.5. Denoting by u = a
A the relative technological position of the firm, the

manager chooses the following optimal policy illustrated by the graph below:

5Recall that the opportunity cost of scrapping at date 0 is SCi(u0) = Ei
0

£R∞
0

π (u(u0, s),X(s)) e
−rsds

¤
,

where for convenient reasons we denote here u0(s) by u(u0, s) and the current profit X(s)uα0 (s)
by π (u(u0, s),X(s)). Thus, the marginal opportunity cost at u0 = u∗i is: MSCi(u

∗
i ) =

Ei
0

hR∞
0

π1 (u(u
∗
i , s),X(s))

∂u(u∗i ,s)
∂u0

e−rsds
i
and as shown in appendix 1, when τ∗ = 0, F 0

i (u
∗
i ) =

−Ei
0

hR∞
0

π1 (u(u
∗
i , s),X(s))

∂u(u∗i ,s)
∂u0

e−rsds
i
.
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Whatever market conditions are, the manager remains inactive as long as the technology
of the firm is above a threshold u∗2. When the level of technology operated reaches u∗2, she
upgrades the firm’s relative technology to v∗2 providing the economy is in a boom (upgrading
during a boom on the graph), otherwise she waits. If the economy is in a recession and the
level of technology operated is in the interval [u∗1, u∗2], switching occurs at any level as soon
as the economy moves into a boom (boom triggering adoption on the graph). Finally, if the
recession continues, the manager upgrades to level v∗1 when the technology level reaches u∗1
(upgrading during a recession on the graph). Moreover, the four thresholds (u∗1, v∗1, u∗2, v∗2)
are fully characterized by the following system

V 01(u∗1) = 0 (1) V 02(u∗2) = 0 (4) V1(u
∗
2
−) = V1(u

∗
2
+) (7)

V 01(v∗1) = c or v∗1 = 1 (2) V 02(v∗2) = c or v∗2 = 1 (5) V 01(u∗2−) = V 01(u∗2+) . (8)
V1(u

∗
1) = V1(v

∗
1)− cv∗1 (3) V2(u

∗
2) = V2(v

∗
2)− cv∗2 (6)

Proof.
Using relationships (3.4), (3.5) and (3.11), it suffices to write the six optimal conditions

and the two smooth pasting conditions for V1 at u∗2. The corresponding analytical equations
are reported in appendix 2.

Equation (1) and (2) characterize the scrapping level u∗1 and upgrading level v∗1 relevant
for recessions, with potentially adoption of the cutting edge technology. Equation (3) simply
means that the value of the firm before switching in a recession plus the cost of switching
is equal to the value of the firm after upgrading. Equations (4), (5) and (6) are mirror
conditions for the case when upgrading occurs in a boom. Equations (7) and (8) formalize
the smooth pasting conditions for the value of the firm V1 at the point u∗2.
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We now examine the two possible cases mentioned above. Since V1 has different ana-
lytical expressions when u ≤ u∗2 (equation (3.11)) and u ≥ u∗2 (equation (3.4)), we need
to be specific in the way of writing the optimal condition (2) regarding the quality of the
technology adopted in a recession. The case v∗1 < u∗2 implies that the manager of the firm is
not willing to operate a technology even recently adopted in a recession if a boom occurs.
This means that the demand level must be much higher in a boom than in a recession so it
is worth incurring again the opportunity cost of scrapping technology. It is convenient to
define a new parameter m = X2

X1
> 1 that captures the relative magnitude of booms with

respect to recessions. The case v∗1 < u∗2 occur when m is very large. We have chosen to
focus on the second case where v∗1 > u∗2 or equivalently when m is not too large as it seems
more plausible from an empirical point of view.6 The following diagram illustrates the two
cases.

u1
* u2

* v1
* v2

*

u1
* v1

* u2
* v2

*

Cycles of low magnitude: small m

Cycles of high magnitude: large m

We now examine some sufficient conditions to ensure v∗1 > u∗2. Denoting by u1 and v1 (u2
and v2) the scrapping and upgrading thresholds for an economy always in a recession
(boom) respectively, one way to ensure the desired condition is to choose the parameters
of the model in such a way that u1 < u2 < v1 < v2. To see this, recall that we have u1 < u∗1,
u∗2 < u2, v1 < v∗1 and v∗2 < v2. Indeed, it implies v∗1 > u∗2. A necessary condition for u∗2 < v∗1
is given by the following lemma.

Lemma 3.6. Assume that v∗2 < 1. Define implicitly the number x > 1 as the unique root
in the interval [1,∞) of the equation

γ(1− α)xα+γ − (α+ γ)xγ + α(1 + γ) = 0.

When the ratio of the demand levels m = X2
X1
satisfies

m < x1−α,
6As reported in appendix 2, the optimal condition (2) is therefore obtained using relationship (3.4) or is

v∗1 = 1 in the corner solution case.
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then u2 < v1 and therefore u∗2 < v∗1. When v∗2 = 1, a necessary condition is

Φ(

·
(α+ γ)B [1− x−α]

(1 + γ)c
X1

¸ 1
1−α
) < 0,

with
Φ(y) = αyα+γ − (α+ γ)yα + γ(1− c

BX2
).

Proof. See appendix 3.

In section 4, numerical simulations are run for the case when m is small. We briefly
indicate how the comparative static results greatly differ in the case when m is very large.

3.2.5. Benchmark Case: Unique Regime

This case is interesting per se as it provides a good approximation for economies where
a regime is very persistent. As we impose X1 = X2 = X, it is easy to see that V1(u) =
V2(u) , V (u) and u∗1 = u∗2 , u∗, v∗1 = v∗2 , v∗. It follows that V (u) = BXuα + Hu−γ.
Economies in recessions differ from economies in expansion as the frontier technology may
not be adopted when the market demand is too weak. We distinguish two cases.

Recessions When the demand is low, the firm may not have enough incentives to imple-
ment the cutting edge technology.7 Formally, we have an interior solution and the thresholds
(u∗, v∗) are characterized by the following system

(α+ γ)BX [(v∗)α − (u∗)α] = (1 + γ)cv∗ (3.12)

αBX
£
(v∗)α+γ − (u∗)α+γ¤ = c(v∗)1+γ . (3.13)

Expansions Conversely when the demand is high enough (X ≥ X), the firm buys the
leading technology. We have a corner solution, v∗ = 1 and the scrapping threshold u∗ is the
unique root in (0, 1) of the equation

αBXuα+γ − (α+ γ)BXuα + γBX − γc = 0 . (3.14)

During periods of expansion, the firm aims at operating a technology close to the top of
the line in order to enjoy high profits. The implication is that the frequency of adoptions is
enhanced for economies experiencing booms. In appendix 3, existence and uniqueness of the
thresholds for both recessions and expansions are proved and we show that both scrapping
and upgrading levels are non decreasing in the demand level X and non increasing in the
adoption cost c. Jovanovic and Rob (1998) also obtain that the price of machines lowers the
scrapping trigger.

7More precisely, the recession case corresponds to a market in which the demand X is less than an upper
bound X obtained by setting v∗ = 1 and eliminating u∗ in equations (3.12) and (3.13).
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Remark 2. In the extreme case where φ1 = φ2 = ∞, since the operators E10 and E20
are the same, then V1 and V2 are equal and the scrapping thresholds and adoption levels
are also the same. This implies K = 0 and G(u) = 1

2(X1 + X2)Bu
α. It follows that

V (u) = 1
2B(X1 + X2)u

α +Hu−γ. The resolution of the problem is similar to the unique
regime case.

We now aim at examining the effects of uncertainty on the frequency of adoptions. Our
next step is to determine the expected time between two consecutive adoptions.

3.3. Expected Time between Two Adoptions

Starting from an upgrading level v∗i , the expected time between two adoptions is the average
time it takes to the technology process to reach a scrapping level in [u∗1, u∗2]. The frequency
of adoption is governed by three factors:

- Technological uncertainty affects the law of motion of the technology process u altering
the velocity at which technology declines from the upgrading level down to the scrapping
level. We will refer to this change in velocity as the direct effect ;

- Both market and technological uncertainty affect the range of operation of a given
technology by having an impact on the scrapping and upgrading levels. As we consider a
geometric Brownian Motion for modeling technology, only the geometric distance, i.e., the
ratio between the upgrading and scrapping levels actually matters. Since scrapping does
not occur at a fixed level, this effect is hard to access directly. Nevertheless, determining
the effects of uncertainty on the ratio v∗i

u∗i
is a good proxy for estimating the strength of this

factor. We will refer to the shift in the operation range as the indirect effect ;
- Finally, since technological progress is limited in our framework, we may encounter a

corner effect when the manager is constrained to implement the cutting edge technology
even though she wishes that a more advanced technology had been invented. This effect
is likely to arise when adoption takes place during a persistent boom. As a consequence,
economies experiencing lasting periods of high activity should display frequent adoptions
as the firm aims at operating a technology close to the cutting edge technology to enjoy
high profits levels. The firm can at most adopt the frontier technology. If the frontier
is not moving fast enough, the firm may have incentives to upgrade frequently. Cooper,
Haltiwanger and Power (1999) establish some empirical evidence of a higher frequency of
investment bursts during period of expansions.

Unlike most of the models dealing with adoption of technology developed in the literature
such as Cooley, Greenwood and Yorukoglu (1997), Caballero and Hammour (1994), Farzin,
Huisman and Kort (1998), Goolsbee (1998) among others, here the manager is free to
choose what type of new technology to implement, provided it has been invented at the
time of adoption. Abel and Eberly (1998) modeling demand uncertainty by a geometric
Brownian Motion show that the direct and the indirect effects of market uncertainty are to
increase the expected time between two investments but do not impose any restriction on
the size of capital purchases. We now express the average time between two adoptions.
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Proposition 3.7. Adopting a new technology v∗1 in a recession, respectively v∗2 in a boom,
the expected time until the next adoption E1(τ), respectively E2(τ), has the following
expression

E1(τ) =
ln

v∗1
u∗2

λ+ σ2

2

+ φ1Λ

µ
φ2
φ1
+ (

v∗1
u∗2
)−β

¶
(3.15)

E2(τ) =
ln

v∗2
u∗2

λ+ σ2

2

+ φ2Λ

µ
1− (v

∗
2

u∗2
)−β

¶
, (3.16)

with β being the positive root of the quadratic

σ2

2
x2 + (λ+

σ2

2
)x− (φ1 + φ2) = 0 ,

ξ and ζ the roots of the quadratic

σ2

2
x2 − (λ+ σ2

2
)x− φ1 = 0 ,

and

Λ =
1

φ1

 1

φ2 + φ1
+

(ξ − ζ) + φ1

µ
1

λ+σ2

2

− β
φ2+φ1

¶³
(
u∗1
u∗2
)ξ − (u∗1u∗2 )

ζ
´

((φ2 + φ1)ξ + βφ1) (
u∗1
u∗2
)ζ − ((φ2 + φ1)ζ + βφ1) (

u∗1
u∗2
)ξ

 ≥ 0 .
Proof. The central idea of the proof relies on the construction of an appropriate martingale
in order to be able to use the Optional Stopping Theorem. A complete proof is provided in
appendix 4.

From relationships (3.15) and (3.16), we observe that the expected time Ei(τ) has two

components. The first term
ln

v∗i
u∗2

λ+σ2

2

represents the average time between adoption at level v∗i
and scrapping at levels u∗2 relevant for booms. The second term is some additional time
since scrapping may occur at a lower level than u∗2 if the economy is in a recession when
u reaches u∗2. Recall that we show that the inaction region IRi is an interval with lower
bound u∗i for i = 1, 2. Conditional on holding technology u, the average time until the next
adoption must be increasing in u which implies that the older the technology operated, the
sooner the firm will upgrade. Goolsbee (1998) finds that older planes are more likely to be
retired that younger ones.

Usually, empirical data on the frequency of technology adoptions conditional on the
initial state of the economy are not available. Recall that the fraction of time spent in
regime i is

φj
φi+φj

. The overall average time between two consecutive adoptions is8

8This relationship can also be obtained in a more formal way using the ergodicity of the Markov chain
X and applying the Mean Ergodic Theorem.
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E(τ) =
φ2

φ1 + φ2
E1(τ) +

φ1
φ1 + φ2

E2(τ) .

In the unique regime case, Λ = 0 and we have

E(τ) =
ln v∗

u∗

λ+ σ2

2

.

In this case, E(τ) increases with the level of technology adopted v∗ and decreases with the
scrapping threshold u∗. The direct effect is encapsulated through the term in σ2 at the
denominator and the ratio v∗

u∗ captures the indirect effect.
The next paragraph deals with the timing of adoption and the business cycle. To address

the issue, we compute the probability that the next adoption takes place in a recession versus
a boom.
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3.4. Likelihood that the Next Adoption Occurs in a Recession

Answering the question —are replacement and adoption of technologies more likely to take
place in a recession versus an expansion?— is, indeed, a hard task. Using data from the
Automobile industry over the period 1978-1985, Cooper and Haltiwanger (1994) develop
and test a model in which retooling mainly occurs at the end of a downturn when the
opportunity cost of labor is low, i.e., when low seasonal demand (or high value of leisure)
and just prior to upturns where the benefits of replacement are high. They assume cycles
to be deterministic and the study mostly focuses on seasonal cycles rather than business
cycles which are more persistent. In a companion paper joined with Power (1999), using
a stochastic dynamic framework, they establish that the higher fixed adjustment costs and
shocks persistence, the more likely replacement investment is to be procyclical. Caballero
and Hammour (1994) introduce a vintage model of “creative destruction” showing that job
destruction is more cyclically responsive than job creation. They emphasize the cleansing
effect of recessions, period of times when outdated or relatively unprofitable techniques
exit the productive system. In Klenow (1998), learning by doing is faster when output is
high inducing firms to upgrade preferably during booms. Obviously, the more persistent
a state is, the higher will be the chances to adopt during such a state. It may also be
the case that companies choose recession times to get rid off their old pieces of equipment,
take advantage of low economic activity for restructuring, and concentrate the purchase
of new vintage during good times. Campbell (1998) finds positive correlation between the
exit rate and recessions and between the entry rate and expansions. Given the persistence
of the states, since in our model scrapping occurs earlier during a boom, it seems more
likely that adoption occurs during a boom. Nevertheless, if physical depreciation (due to
technological uncertainty) or economical depreciation (obsolescence) is significant, it may
be the case that having upgraded during a recession, the firm upgrades again in the same
recession. Two additional important factors on which our model remains silent need to be
outlined. The first one is time to build and the second one is time to learn. If there is a lag
between adoption and production at an efficient level, this reduces discounted benefits from
updating which might induces plants to scrap before periods of high economic activity to
be ready for good times. Bar Ilan and Strange (1996) discuss the effects of investment lags.
They find that with a short lag, a rise in uncertainty postpones investment. Conversely,
with a long lag (plant construction, specific training ...), it is possible that more uncertainty
hastens investment.

We know express the probability that the next adoption occurs in a recession.

24



Proposition 3.8. Being in a recession (respectively a boom) and operating technology level
u, the probability that the next switch occurs in a recession p11(u) (respectively p12(u)) is
given by:

For u∗1 ≤ u ≤ u∗2,

p11(u) =
((φ2 + φ1)ξ + βφ1) (

u
u∗2
)ζ − ((φ2 + φ1)ζ + βφ1) (

u
u∗2
)ξ

((φ2 + φ1)ξ + βφ1) (
u∗1
u∗2
)ζ − ((φ2 + φ1)ζ + βφ1) (

u∗1
u∗2
)ξ

(3.17)

p12(u) = 0 (3.18)

and for u∗2 ≤ u,

p11(u) =
(ξ − ζ)

³
φ2 + φ1(

u
u∗2
)−β

´
((φ2 + φ1)ξ + βφ1) (

u∗1
u∗2
)ζ − ((φ2 + φ1)ζ + βφ1) (

u∗1
u∗2
)ξ

(3.19)

p12(u) =
φ2(ξ − ζ)

³
1− ( uu∗2 )

−β
´

((φ2 + φ1)ξ + βφ1) (
u∗1
u∗2
)ζ − ((φ2 + φ1)ζ + βφ1) (

u∗1
u∗2
)ξ

(3.20)

Proof. See appendix 5.
We can also compute an unconditional probability that the next adoption occurs in a

recession, operating today technology level u,

p1(u) =
φ2

φ1 + φ2
p11(u) +

φ1
φ1 + φ2

p12(u) .

From equations (3.17) — (3.20), it is easy to show that for u∗2 ≤ u, p1 is independent of u
(u lies in the intersection of the inaction regions). For u∗1 ≤ u ≤ u∗2, p1 is decreasing in u: a
boom can trigger replacement and the farther u is from u∗1, the more likely such an event.
Moreover, for u ≤ u∗1, p1(u) =

φ2
φ2+φ1

.

In the next section, we present some numerical simulations displaying the effects of the
two types of uncertainty on the optimal policies and the frequency of adoptions.

4. COMPARATIVE STATICS AND NUMERICAL SIMULATIONS

In this section, we aim at investigating the effects of changes in regime persistence and
technological uncertainty on the decisions and frequency of adoption of new technologies.
We start by examining the effects of changes of uncertainty on the expected current profit
in order to get some intuition about the mechanisms of adoption decisions.
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4.1. Effects on the Regime Persistence and Technology Uncertainty on Instan-
taneous Expected Profit

Given an initial state of the economy, we analyze how current expected profit responds to
changes in market and technological uncertainty. We first examine the effects of independent
change in the arrival rate of booms and recessions φ1 and φ2. Then, we impose an equal
arrival rate of regimes φ and investigate changes in current expected cash flows. Finally, we
let technological uncertainty σ vary.

Proposition 4.1. Ceteris paribus, when the arrival rate of a boom φ1 (recession φ2) rises,
the current expected profit rises (falls); when the arrival rate of recessions and booms are
equal and rises, being in a recession, the current expected profit rises and being in a boom,
the current expected profit decreases. Finally, ceteris paribus, due to the decreasing return
in the technology grade of the profit function, when the technological uncertainty σ rises,
the current expected profit decreases.

Proof. See appendix 6.
These effects also apply to the value of operating the same technology Gi forever. In-

tuitively, one can expect that any change in the uncertainty parameter that increases the
current expected profit provides more incentives for the manager to invest in technology,
i.e., the firm should be willing to operate a sophisticated technology to enjoy high cash
flows. In particular, scrapping should occur early and the quality of the new technology
adopted should be increased.

We now display and comment some numerical simulations obtained for the following set
of parameters:

Rate of technological progress: µ = 0.025
Interest rate: ρ = 0.06125
Adoption cost per efficiency unit: c = 2
Rate of physical depreciation: κ = 0.075
Parameter: α = 0.5
Level of demand in recessions: X1 = 1

Relative magnitude of cycles: m =
√
2

This implies λ = 0.1 and r = 0.05. The rate of technological progress is the same as in
Klenow (1998). Other parameters have been selected such that during booms, the firm
adopts the frontier technology and during recessions, the firm upgrades to an intermediate
technology in general. All the results obtained making vary the arrival rate of recessions
φ2 are reversed results obtained when the arrival rate of booms φ1 varies, the economic
interpretation remaining valid. For the sake of completeness, corresponding graphs are
displayed at the end of the paper. The methodology used for the numerical computations
is described at the end of appendix 6.
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4.2. Effects of Changes in Uncertainty on Adoption Decisions

4.2.1. Effects of Regime Persistence
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Figure 1: Effects of the arrival rate of booms φ1; φ2 = 0.25 and σ = 1.

Ceteris paribus, when the arrival rate of booms φ1 increases, both scrapping and up-
grading levels rise. Since the expected profit is higher on average, the firm is concerned
with operating a highly performing technology which can be the cutting edge technology if
booms are frequent enough.
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Figure 2: Effects of equal arrival rates of regimes φ; σ = 1.

Two antagonistic effects arise: less persistent booms give fewer incentives for adopting
a good technology whereas less persistent recessions provide more incentives. When φ
increases, scrapping occurs in a recession at an earlier stage and the quality of the new
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technology adopted is higher as the manager expects a better economic activity. Conversely,
scrapping occurs in a boom at a later stage and the quality of the new technology adopted
may be reduced as the manager expects a drop of the cash flows caused by less persistent
booms. Indeed, discounting plays an important role: the manager is mainly concerned
with the degree of persistence of the state of the economy in which adoption takes place.
For instance, even though the manager knows that booms never last for very long, she
demonstrates a more optimistic behavior when switching in a non lasting recession.

4.2.2. Effects of Technological Uncertainty
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Figure 3: Effects of technological uncertainty σ; φ1 = φ2 = 0.25.

An increase in technological uncertainty σ reduced the current expected profit which
provides fewer incentives to the manager to invest in a good technology. Consequently, she
decides to delay scrapping and in general adopt a less sophisticated technology. Recall that
we interpret σ as a measure of the firm’s human capital: a low value for σ corresponds
to a firm employing high skilled workers. Many studies have outlined the technology-skill
complementarity. Doms, Dunne and Troske (1997) show that US. manufacturing plants
utilizing more advanced technologies employ more educated workers.

Numerical simulations are indeed consistent with the comparative static results depicted
in the previous paragraph: changes in parameters that increase current expected profit lead
to adoption of a more advanced technology and earlier scrapping.

Remark 3. We have also run some simulations when m is equal to 4, i.e., when cycles
display a high relative magnitude. In this case, it is possible to have u∗1 < v∗1 < u∗2 < v∗2.
The main difference with what precedes is that if recessions are not persistent enough, the
firm becomes very reluctant to upgrade technology within a recession. This does
not imply that it never does. Simply, the firm has incentives in delaying scrapping and
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adopting a low grade technology when choosing to upgrade within a recession. The optimal
policy consists of slightly improving the grade of the technology operated in order to wait
and switching again as soon as a boom occurs. As technologies are fully incompatible and it
is not optimal to keep on operating a technology adopted in a recession when the economy
turns into a boom, the firm tries to minimize the opportunity cost induced by scrapping.
When the arrival rate of booms φ1 increases, both scrapping level u

∗
1 and adoption level v

∗
1

go down. On the contrary, the levels u∗2 and v∗2 go up as the manager of the firm becomes
more optimistic when adopting during a boom.

4.3. Effects of Changes in Uncertainty on the Frequency of Adoptions

Numerical simulations (not displayed here) indicate that in general the conditional average
times E1(τ) and E2(τ) do not respond in a monotonic way to changes in uncertainty para-
meters and, both cases E1(τ) < E2(τ) and E1(τ) > E2(τ) can be encountered. As already
mentioned, we use as a proxy the ratio of the upgrading level divided by the scrapping
level corresponding to the state in which scrapping is most likely to occur. As a general
trend, when the cutting edge technology is not adopted, the scrapping threshold u∗j is more

sensitive to uncertainty than the upgrading level v∗i , i.e.,
¯̄̄
∆u∗j
u∗j

¯̄̄
>
¯̄̄
∆v∗i
v∗i

¯̄̄
. Consequently, the

indirect effect moves in the same direction as the scrapping level.9

We now concentrate our analysis on the overall average time E(τ) since empirical data
are only available for this variable.

4.3.1. Effects of Regime Persistence (Figures 4., 5., 6.)
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Figure 4: Effects of the arrival rate of booms φ1; φ2 = 0.25 and σ = 1.

9This result can be proved formally in the case of the unique regime case: the indirect effect of more
technological uncertainty is to rise the ratio v∗

u∗ , delaying adoption.
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Figure 4. shows that when the economy experiences more booms, the frequency of adop-
tions increases since E(τ) shrinks. We know that both scrapping and upgrading thresholds
go up but as mentioned above, the scrapping threshold rises (in relative terms) more than
the upgrading one which drives down the average time between two adoptions.
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Figure 5: Effects of equal arrival rates of regimes φ; σ = 1.

Recall that in this case, on average the economy is half of the time in a recession and half
of the time in a boom. Figure 5. shows that when the frequency of regime switches increases,
the average time between two adoptions rises. The fall in boom persistence which increases
the average time (see Figure 11. displayed at the end of the paper) has a stronger impact
than the antagonistic effect due to the drop in recession persistence (Figure 4.). When φ is
large, recessions are not persistent and since scrapping occurs at an earlier stage in a boom,
it is likely that adoption takes place in a boom as confirmed by Figure 8.. Alternatively,
when φ is large, booms are not persistent. Therefore the frequency of adoptions is reduced.
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4.3.2. Effects of Technological Uncertainty
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Figure 6: Effects of technological uncertainty σ; φ1 = φ2 = 0.25.

When recessions and booms are equally likely, simulations show that more technological
uncertainty hastens the adoption of new technologies. Fixing threshold levels at their unique
regime values, the direct effect of more technological uncertainty is a reduction in the average
time. The interpretation is the following. Higher technological uncertainty σ amplifies
the fluctuations of the technology process. Since the optimal switching rule of the firm
is -scrap as soon as the technology level goes below a given level — chances are that this level
may be hit earlier when fluctuations are high and consequently, adoption is hastened. It can
be shown that the ratio v∗i

u∗i
, i = 1, 2 rises indicating that the indirect effect of technological

uncertainty is to delay adoption. Overall, the direct effect is stronger that the indirect one:
more technological uncertainty accelerates adoption. One implication is that firms whose
ability to master new performing technologies is low should buy intermediate technologies
but update more frequently.

4.4. Effects of Changes in Uncertainty on the Likelihood of Updating in a Re-
cession

We examine the combined effects of the two types of uncertainty on the relationship between
replacement and the business cycle. The velocity of the decline of the relative position u
and the arrival rate of booms φ1 play a key role. We have chosen to display simulations
only about the unconditional probability p1 that the next updating occurs in a recession
since we aim at obtaining a global estimation of the likelihood of upgrading in a recession
versus a boom. We focus on the case u∗2 ≤ u. We have also run simulations for the case
u∗1 ≤ u ≤ u∗2 and the results obtained are similar to the one commented below.
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4.4.1. Effects of Regime Persistence (Figures 7., 8., 9.)
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Figure 7: Effects of the arrival rate of booms φ1; φ2 = 0.25 and σ = 1.

Decrease in recession persistence reduces the probability of switching in a recession next
time, not surprisingly.
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Figure 8: Effects of equal arrival rates of regimes φ; σ = 1.

Figure 8. indicates that adoption is more likely to occur in a boom and this likelihood
increases as the frequency of switches rises. This result is interesting as in this case, the
economy spends on average an even fraction of time in a recession and in a boom and still
upgrading is more likely to take in a boom. The key factor in the analysis is to bear in
mind that scrapping occurs at an earlier stage during a boom.
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4.4.2. Effects of Technological Uncertainty
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Figure 9: Effects of technological uncertainty σ; φ1 = φ2 = 0.25.

Figure 9 shows that an increase in technological uncertainty raises the probability to
upgrade in a recession but the latter remains less than 1

2 . More technological uncertainty
accelerates adoption, which increases the chances to upgrade in the same state as the current
one. Recall that upgrading always occurs at an earlier stage in a boom. Moreover, when
σ is small, the expected time between two adoptions is large. This reduces the chance to
update in the same state and therefore adoption is more likely to occur in a boom. As σ
rises, simulations (not displayed here) show that p11 goes up to 1 whereas p12 goes down to
0. Consequently, as σ increases, the probability to upgrade in a recession increases to 1

2 .

5. CONCLUSION

This paper analyzes the combined effects of market and technological uncertainty on the
decisions of scrapping and upgrading technologies. For the sake of simplicity, much of the
literature dealing with technology adoption in a dynamic framework chose to examine the
special case where the cutting edge technology is systematically purchased. We relax this
assumption and the firm is free to implement any technology available within an increasing
range across time due to exogenous technological progress. Upgrading is the result of
physical and economical depreciations. The two types of uncertainty play different roles.
Technological uncertainty affects the behavior of the law of motion of the technology process
to be controlled by the manager. Both technological uncertainty and demand uncertainty
have an impact on the optimal scrapping and upgrading levels and, therefore, alter the
range of operation of a given grade. Parameters increasing the expected profit provide
more incentives to scrap early and adopt a sophisticated technology in order to enjoy high
cash flows. In particular, more technological uncertainty discourages adoption of advanced
technologies and delays scrapping.
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We investigate the effects of uncertainty on the frequency of adoptions as well as the
likelihood of upgrading in a recession versus an expansion. Bounded technological progress
limits the range of available technologies, restricting the firm to adopt the best already
invented grade. During periods of high economic activity, the firm is eager to operate a
highly performing technology, and to achieve this, is willing to upgrade more often. Direct
and indirect effects can be antagonistic. Overall, economies spending a large fraction of time
in booms display more frequent adoptions. In contrast to what common intuition might at
first suggest, technological uncertainty σ hastens adoption because it reinforces depreciation.
Interpreting the parameter σ as the ability of a firm to operate properly a technology, one
implication of the model is that plants with less ability should buy intermediate technologies
and update frequently.

In an attempt to shed some light on the timing of adoption and the business cycle, we
find that technological uncertainty increases the chances to adopt in the same state as it
hastens upgrading. Consistent with Cooper and Haltiwanger (1993), scrapping can take
place at the end of a recession: booms trigger adoption. Recessions appear to be periods
of time where the firm delays replacement as cash flows are low (Goolsbee 1998) whereas
booms give incentives for adopting of a better technology as a promise of high benefits.
Unless the economy is in a recession most of the time, investment spikes at the plant level
are likely to be procyclical.

We have considered an extreme case where the new technology implemented is more
productive right after the adoption date. Lag effects such as time to build or time to learn
can have a significant impact of the timing of adoption of a new technology. In addition,
updating decisions are based on expectations about future available technologies. We have
taken the arrival of new grades as exogenous. A general equilibrium model would allow us
to endogenize it. This is left for further research.
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6. APPENDIX

Recall that u0(s) is the level of the initial relative technology at time s. For convenience,
we denote u0(s) by u(u0, s) and the instantaneous profit made at time s, X(s)u0(s)α, by
π (u(u0, s),X(s)) whenever needed.

6.1. APPENDIX 1

6.1.1. Vi takes finite values

Proof.
We observe that the maximum relative grade that can be adopted is 1. Therefore, at

any time t, the profit of a firm operating a technology level u is less than X(t)(1+u(t)α) ≤
X(t)u(t)α+X2. Moreover the value of the firm is less than if adoption was free. We obtain
that for all i ∈ {1, 2},

Vi(u) ≤ Ei
0

Z ∞

0
X(s)(1 + u(s)α)e−rsds

≤ Biu
α +

X2

r
<∞

6.1.2. Switching occurs within a finite time almost surely

Proof.
The value of a firm operating forever the same technology is Vi(u) = Biu

α. If the manager
decides to upgrade only once, the value of firm is max

v∈[0,1]
Biv

α − cv. It is never optimal to

upgrade if and only if for all u, we have Biu
α > max

v∈[0,1]
Biv

α− cv. We can compute explicitly
the RHS of the inequality and we obtain:

RHS =

(
αBi − c+ (1− α)Bi if c ≤ αBi

(1− α)Bi

³
αBi
c

´ α
1−α if c ≥ αBi

We observe that the RHS is bounded away from zero. As time passes, since the process u
has a negative drift, it will eventually reach any arbitrary positive value ε > 0, almost surely.
Therefore, the LHS goes to zero as time passes. This implies that the inequality cannot
always be satisfied and after some time switching becomes optimal. Since the problem is
stationary, the firm will actually upgrade an infinite number of times.

6.1.3. Vi is increasing in u and V1 ≤ V2.

Proof.
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We start proving that Vi is strictly increasing in its inaction region IRi. If u0 is in IRi,
using relationship (3.1), by the Envelope Theorem, we have

V 0i (u0) = Ei
0

"Z τ∗

0
π1 (u(u0, s),X(s))

∂u(u0, s)

∂u0
e−rsds

#
, (6.1)

where τ∗ denotes the first optimal stopping time from date 0. It follows immediately that
V 0i (u0) > 0 and V

0
i (u) = 0 exactly when τ

∗ = 0, i.e., exactly at the moment of the switch in
the state i. Another way to see that Vi is increasing is the following. Consider a given initial
level of technology u0 and its optimal strategy associated ({τk ≥ 0, vk ∈ [0, 1]}∞k=1). For any
initial level of technology u00 > u0, we have u(u00, s) > u(u0, s) for all s > 0 almost surely.
Therefore, π (u(u00, s),X(s)) > π (u(u0, s),X(s)) and Ei

0

£R τ1
0 π (u(u00, s),X(s)) e−rsds

¤ ≥
Ei
0

£R τ1
0 π (u(u0, s),X(s)) e

−rsds
¤
. Moreover for the initial level of technology u00, the strat-

egy ({τk ≥ 0, vk ∈ [0, 1]}∞k=1) is feasible though it may not be optimal. It follows easily
that Vi(u00) ≥ Vi(u0). In order to prove that V1 ≤ V2, we show that G1 ≤ G2 and F1 ≤ F2.

6.1.4. Gi is increasing in u and G1 ≤ G2.

Proof.
The properties of Gi follow directly from the properties of π and the process u. Direct

computations displayed in the main body of the paper show that G1 ≤ G2.

6.1.5. The option value Fi is decreasing in u and F1 < F2.

Proof.
Recall that Fi(u0) = Vi(u0)−Ei

0

R∞
0 π(u(u0, s),X(s))e

−rsds. It follows directly that

F 0i (u0) = −Ei
0

Z ∞

τ∗
π1(u(u0, s),X(s))

∂u(u0, s)

∂u0
e−rsds ≤ 0 .

In order to show that for all u, F2(u) ≥ F1(u), consider the optimal strategy {τ∗k ≥ 0, vk ∈ [0, 1]}∞k=1
of firm 1 starting in a recession (i = 1) with an initial level of technology u0. Since
F1(u) = V1(u)−G1(u), breaking into pieces the value of operated the same technology, we
can write

F1(u0) = E10

"Z τ∗1

0
X(s)u0(s)

αe−rsds+
∞X
k=1

"Z τ∗k+1

τ∗k
X(s)uk(s)

αe−rsds− cvke
−rτ∗k

##

−E10
·Z ∞

0
X(s)u0(s)

αe−rsds
¸

= E10

" ∞X
k=1

"Z τ∗k+1

τ∗k
(uk(s)

α − u0(s)
α)X(s)e−rsds− cvke

−rτ∗k
##

.
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Consider firm 2 that starts in a boom (i = 2) with the same initial technology u0, the
manager can use the same strategy {τ∗k ≥ 0, vk ∈ [0, 1]}∞k=1, which may not be optimal. It
follows that

F2(u0) ≥ E20

" ∞X
k=1

"Z τ∗k+1

τ∗k
(uk(s)

α − u0(s)
α)X(s)e−rsds− cvke

−rτ∗k
##

.

Define the random variable Yi(u0) =
∞P
k=1

hR τ∗k+1
τ∗k

(uk(s)
α − u0(s)

α)X(s)e−rsds− cvke
−rτ∗k

i
when the initial state is (u0, i). Recall that the processes u and X are independent. We
define two other stopping times: τ 1,2 as the first time starting at X(0) = X1, the process
X switches to the value X2 and τ 2,1 the first time starting at X(0) = X2, the process X
switches to the value X1. Then set θ = τ 1,2∧τ 2,1 the first time the two firms are in the same
state of the world. Before τ∗1 ∧ θ, Y2(u0) ≥ Y1(u0); after τ∗1 ∧ θ, by the Markov property of
the process X, the two random variables Y2(u0) and Y1(u0) have the same distribution. It
follows that E20 [Y2(u0)] ≥ E10 [Y1(u0)], which exactly means F2(u0) ≥ F1(u0).

6.1.6. The inaction region IRi is connected.

Proof.
From relationship (6.1), since π1 > 0 and ∂u(u0,s)

∂u0
> 0 for all s, then V 0i (u0) > 0 iff

τ∗ > 0. Scrapping at level u∗i means exactly τ
∗ = 0 : it follows immediately that V 0i (u

∗
i ) = 0.

In addition, we have proved in appendix 1 that Vi is (at least!) weakly increasing. So
according to (3.2), if u is in IRi then Vi(u) > sup

v∈[0,1]
Vi(v)− cv and for u0 > u, Vi(u0) ≥ Vi(u)

which implies Vi(u0) > sup
v∈[0,1]

Vi(v)− cv, i.e., u0 is also in IRi. This implies that the inaction

region is an interval is so is connected. We conclude that u is in the inaction region IRi

exactly means V 0i (u) > 0 and the frontier of the inaction region ∂IRi is characterized by a
lower bound u∗i such that V

0
i (u

∗
i ) = 0. The remaining part of the proposition is simply an

arbitrage condition.

6.1.7. u∗1 < u∗2.

Proof.
We start showing by contradiction that u∗2 6= u∗1. Assume that u∗2 = u∗1 , u∗. Starting

at an initial state i at time 0 , the assumption means that the optimal stopping time τ∗ is
independent of the state i. Writing symbolically Ei

0 = Eu0×Ei and using (6.1), we obtain:

V 0i (u0) = Eu0

hR τ∗
0 Ei (X(s)) ∂u(u0,s)∂u0

e−rsds
i
. Recall that P11(t) =

φ2
φ2+φ1

+ φ1
φ2+φ1

e−(φ2+φ1)t,
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it follows easily that:

V 01(u0) = Eu0

"Z τ∗

0

µ
φ2X1 + φ1X2

φ2 + φ1
+ φ1

X1 −X2
φ2 + φ1

e−(φ2+φ1)s
¶
∂u(u0, s)

∂u0
e−rsds

#

=
φ2X1 + φ1X2

φ2 + φ1
Eu0

"Z τ∗

0

∂u(u0, s)

∂u0
e−rsds

#

−φ1
X2 −X1

φ2 + φ1
Eu0

"Z τ∗

0

∂u(u0, s)

∂u0
e−(φ2+φ1+r)sds

#

In the same fashion, permuting indexes 1 and 2, we obtain:

V 02(u0) =
φ2X1 + φ1X2

φ2 + φ1
Eu0

"Z τ∗

0

∂u(u0, s)

∂u0
e−rsds

#

+φ2
X2 −X1
φ2 + φ1

Eu0

"Z τ∗

0

∂u(u0, s)

∂u0
e−(φ2+φ1+r)sds

#

This implies that there exist two positive real valued functions Φ and Ψ such that:

V 01(u) = Φ(u)− φ1Ψ(u)

V 02(u) = Φ(u) + φ2Ψ(u).

Such a decomposition is incompatible with the analytical expressions of V1 and V2 given by
equations (3.4) and (3.5) when u is in the intersection of the inaction regions. Therefore,
u∗2 6= u∗1 whatever the values of the parameters of the model, in particular φ1 and φ2.
Moreover, the thresholds u∗1 and u∗2 are smooth (in particular continuous) functions of the
parameters of the model; this can be shown using the Implicit Function Theorem applied
to the system of nine equations characterizing u∗1 and u∗2 displayed in appendix 3. Thus, we
must always have either u∗2 < u∗1 or u∗2 > u∗1. As proved in appendix 3 for the unique regime
case, the scrapping threshold is strictly increasing in the demand level. We conclude using
a continuity argument that u∗2 > u∗1.

6.1.8. Analytical expressions for V1 and V2 when u ≤ u∗2.

Recall that V1 and V2 satisfy the following ODE system:

rV1(u) = X1u
α − λuV 01(u) +

σ2

2
u2V 001 (u) + φ1 [V2(u)− V1(u)]

rV2(u) = X2u
α − λuV 02(u) +

σ2

2
u2V 002 (u) + φ2 [V1(u)− V2(u)] .
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We define two auxiliary functions ∆ ≡ V2 − V1 and Θ ≡ φ2V1 + φ1V2. They satisfy

r∆(u) = (X2 −X1)u
α − λu∆0(u) +

σ2

2
u2∆00(u)− (φ1 + φ2)∆(u)

rΘ(u) = (φ2X1 + φ1X2)u
α − λuΘ0(u) +

σ2

2
u2Θ00(u) .

The general solutions for ∆ and Θ are

∆(u) = A(X2 −X1)u
α +Ku−δ +K 0u−δ

0

Θ(u) = B(φ2X1 + φ1X2)u
α +Hu−γ +H 0u−γ

0
,

where
A =

1

r + φ1 + φ2 + αλ+ α(1−α)σ2
2

and B =
1

r + αλ+ α(1−α)σ2
2

,

(γ, γ0) and (δ, δ0) are respectively the positive and negative roots of the following quadratic
equations

σ2

2
γ2 + (

σ2

2
+ λ)γ = r

σ2

2
δ2 + (

σ2

2
+ λ)δ = r + φ1 + φ2 ,

and (K,H,K 0,H 0) are constants to be determined. To shorten notation, we set.

B1 =
1

φ2 + φ1
[(φ2B + φ1A)X1 + φ1(B −A)X2]

B2 =
1

φ2 + φ1
[φ2(B −A)X1 + (φ1B + φ2A)X2] .

Using the same notation for the constants, we obtain the following expressions for V1(u)
and V2(u)

V1(u) = B1u
α +Hu−γ +H 0u−γ

0 − φ1Ku−δ − φ1K
0u−δ

0

V2(u) = B2u
α +Hu−γ +H 0u−γ

0
+ φ2Ku−δ + φ2K

0u−δ
0
.

Using the decomposition Vi(u) = Gi(u)+Fi(u), by identification, we obtain that the option
value Fi is given by:

F1(u) = Hu−γ +H 0u−γ
0 − φ1Ku−δ − φ1K

0u−δ
0

F2(u) = Hu−γ +H 0u−γ
0
+ φ2Ku−δ + φ2K

0u−δ
0
.

Recall that the option value must be decreasing in u. Moreover, economic intuition
suggests that when u goes to infinity, the option value must goes to zero. This implies
K 0 = H 0 = 0.
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6.2. APPENDIX 2

6.2.1. Condition 1.

Proof.
Recall that from equation (6.1), we obtain V 0i (u0) = Ei

0

hR τ∗
0 π1 (u(u0, s),X(s))

∂u(u0,s)
∂u0

e−rsds
i
.

Switching exactly means τ∗ = 0, it follows immediately that V 0i (u
∗
i ) = 0. In addition for

u > u∗i , τ
∗ > 0, so V 0i (u) > 0. Henceforth, for all u ≥ u∗i , Vi(u) ≥ Vi(u

∗
i ), which exactly

means that u∗i is a minimum.

6.2.2. Condition 2.

Proof.
At the adoption date, since the set of relative feasible technologies is independent of

time, it is simply optimal to maximize over v the quantity Vi(v)− cv.

6.2.3. Condition 3.

Proof.
Recall that Vi(u0) = sup

(τ, v∈[0,1], j∈{1,2})
Ei
0

£R τ
0 π (u(u0, s),X(s)) e

−rsds+ e−rτ [Vj(u(v, τ))− cv]
¤
.

Just before the date of the switch, the state of the world is (u∗i , i) and right after (v
∗
i , i).

In addition, at the date of adoption, τ∗ = 0. Using the recursive formulation of the value
function immediately yields the desired result.

6.2.4. Analytical expressions characterizing the optimal policy.

Using the analytical expressions (3.5), (3.4) and (3.11) of the value function, the four thresh-
olds (u∗1, v∗1, u∗2, v∗2) are characterized by the following system:

αC1(u
∗
1)
α−1 + θD(u∗1)θ−1 + ηE(u∗1)η−1 = 0 (Eq. 1.)

αB1(v
∗
1)

α−1 − γH(v∗1)−γ−1 + δφ1K(v
∗
1)
−δ−1 = c or v∗1 = 1 (Eq. 2.)

φ1V2(u
∗
2)

r+φ1
+ C1(u

∗
1)
α +D(u∗1)θ +E(u∗1)η + cv∗1 = B1(v

∗
1)

α +H(u∗1)−γ − φ1K(u
∗
1)
−δ (Eq. 3.)

αB2(u
∗
2)
α−1 − γH(u∗2)−γ−1 − δφ2K(u

∗
2)
−δ−1 = 0 (Eq. 4.)

αB2(v
∗
2)

α−1 − γH(v∗2)−γ−1 − δφ2K(v
∗
2)
−δ−1 = c or v∗2 = 1 (Eq. 5.)

B2(u
∗
2)
α +H(u∗2)−γ + φ2K(u

∗
2)
−δ + cv∗2 = B2(v

∗
2)

α +H(v∗2)−γ + φ2K(v
∗
2)
−δ (Eq. 6.)

φ1V2(u
∗
2)

r+φ1
+ C1(u

∗
2)
α +D(u∗2)θ +E(u∗2)η = B1(u

∗
2)
α +H(u∗2)−γ − φ1K(u

∗
2)
−δ (Eq. 7.)

αC1(u
∗
2)
α−1 + θD(u∗2)θ−1 + ηE(u∗2)η−1 = αB1(u

∗
2)
α−1 − γH(u∗2)−γ−1 + δφ1K(u

∗
2)
−δ−1 (Eq. 8.)

V2(u
∗
2) = B2(u

∗
2)
α +H(u∗2)−γ + φ2K(u

∗
2)
−δ (Eq. 9.) .

6.3. APPENDIX 3

We start to show existence and uniqueness of the trigger and target thresholds (u∗, v∗) in
the recession case.
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Recessions. Define x = v∗
u∗ > 1. Manipulating equations (3.12) and (3.13), it is easy

to show that x has to satisfy the relationship γ(1 − α)xα+γ − (α + γ)xγ + α(1 + γ) = 0.
For y ≥ 1, define ϕ(y) = γ(1 − α)yα+γ − (α + γ)yγ + α(1 + γ). Note that ϕ(1) = 0 and
lim
+∞ϕ(y) =∞. Moreover, ϕ

0(y) = γ(α+γ)yγ−1 [(1− α)yα − 1]. Thus ϕ is decreasing on the

interval [1, y∗] and increasing on the interval [y∗,+∞), with y∗ =
³

1
1−α

´ 1
α . Since ϕ(1) = 0,

ϕ is continuous and lim
+∞ϕ(y) = ∞, there must be a unique x > 1 such that ϕ(x) = 0.

Note that x is independent of the cost c and the demand level X. Once we have existence

and uniqueness of x = v∗
u∗ , using (3.12), we get a unique v

∗ =
·
(α+γ)B[1−x−α]

(1+γ)c X

¸ 1
1−α

and

u∗ = v∗
x . Both u∗ and v∗ are increasing in X and decreasing in c.

Expansions. We want to show existence and uniqueness of u∗ as the unique root in (0, 1)
of the equation (3.14). For 0 ≤ y ≤ 1, define ψ(y) = αyα+γ− (α+γ)yα+γ−γcB−1X. Note
ψ(0) = γ(1 − cB−1X) and ψ(1) = −γcB−1X < 0. It can be shown that X > c

αB which
implies ψ(0) > 0 as X1 ≥ X > c

B . Moreover, ψ
0(y) = α(α + γ)yα−1 [yγ − 1] < 0. As ψ is

continuous, there is a unique value u in (0, 1) such that ψ(u) = 0. Since ψ0 is negative, by
the Implicit Function Theorem, we can write u∗(X) and totally differentiating with respect
to X relationship (3.14), we obtain∂u

∗(X)
∂X = − γcB−1

ψ0(u∗(X)) > 0. In the same fashion, we can
show that u∗ is decreasing in c.

6.4. APPENDIX 4

We define

τ(v, k) = inf{t ≥ 0 : (u(t),X(t)) = (u∗1,X1) or (u,X2) with u ≤ u∗2| u(0) = v,X(0) = Xk} ,
the stopping time that describes the date of the next adoption. We assume that P (τ <
∞) = 1. One way of obtaining the expected time between two adoptions is to define a
suitable martingaleM and exploit the following martingale property: E0 [M(τ)] =M(0).
This is the central idea of the Optional Stopping Theorem.

Starting right after adoption in state (v∗i , i), we are looking for a martingaleM of the
form M(t) = f(u(t), i) + t. Since i ∈ {1, 2}, for convenient reasons, we write M(t) =
fi(u(t)) + t and our goal is to determine two suitable functions f1 and f2. In addition, we
impose the following boundary conditions

fi(u
∗
i ) = 0, i = 1, 2. (6.2)

Now, if the initial state is (v∗i , i), given the boundary conditions fi(u(τ)) = 0 and the
martingale property, we have we would like to be able to write Ei

0 [M(τ)] = M(0) i.e.,
Ei
0 [τ ] = fi(v

∗
i ) since τ is a stopping time. Unfortunately, this is not true for any martingale

M. We need to impose some limiting growth conditions on the function fi as u can take
unbounded values.10

10The Optional Stopping Theorem may fail in this case if u can take arbitrary large values. One way to
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Case 1: u∗2 ≤ u. One necessary condition for M to be a martingale is11

−λuf 01(u) +
σ2

2
u2f 001 (u) + φ1 (f2(u)− f1(u)) = −1

−λuf 02(u) +
σ2

2
u2f 002 (u) + φ2 (f1(u)− f2(u)) = −1 .

We consider two auxiliary functions ∆ ≡ f2 − f1 and Γ ≡ φ1f2 + φ2f1 that must satisfy:

−λu∆0(u) + σ2

2
u2∆00(u)− (φ1 + φ2)∆(u) = 0

−λuΓ0(u) + σ2

2
u2Γ00(u) = −(φ2 + φ1) .

Solving these equations leads to

∆(u) = −Mu−β + fMu
eβ

Γ(u) =
φ2 + φ1

λ+ σ2

2

lnu+ eNu
2λ
σ2
+1 +N ,

where β and eβ are respectively the positive and the negative roots of the quadratic equation
σ2

2 β
2 + (λ+ σ2

2 )β − (φ1 + φ2) = 0. As limiting growth conditions, we impose fM = eN = 0
and therefore

∆(u) = −Mu−β

Γ(u) =
φ2 + φ1

λ+ σ2

2

lnu+N .

As f2(u∗2) = 0, we ultimately obtain

f1(u) =
ln u

u∗2

λ+ σ2

2

+
M

φ2 + φ1

³
φ1u

−β + φ2(u
∗
2)
−β
´

(6.3)

f2(u) =
ln u

u∗2

λ+ σ2

2

+
φ2M

φ2 + φ1

³
(u∗2)

−β − u−β
´
. (6.4)

Case 2: u∗1 ≤ u ≤ u∗2. In this case, we know that τ(u, 2) = 0, so we choose f2(u) = 0. It
follows that

−λuf 01(u) +
σ2

2
u2f 001 (u)− φ1f1(u) = −1 .

circumvent this difficulty is to consider the same problem and add an arbitrary upper bound U on u. Define
a new stopping time T being the first time u hits a scrapping level or u hits U . In this case, u remains in a
bounded domain and we can use safely the Optional Stopping Theorem. Then, let U goes to ∞.
11To be more formal, this is just imposing the infinitesimal generator ofM to be equal to 0.
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The general solution is

f1(u) =
1

φ1
+ Puξ +Quζ , (6.5)

where ξ and ζ are the roots of the quadratic σ2

2 x
2 − (λ + σ2

2 )x − φ1 = 0. It remains to
determine the three constants (M,P,Q). We use the boundary condition on f1 (6.2) and
the fact that f1 has to be continuously differentiable at u∗2 (matching and smooth pasting
conditions) relying on the relationships (6.3) and (6.5). This leads to the following system

(u∗1)
ξP + (u∗1)

ζQ+
1

φ1
= 0

(u∗2)
ξP + (u∗2)

ζQ+
1

φ1
= (u∗2)

−βM

ξ(u∗2)
ξP + ζ(u∗2)

ζQ =
1

λ+ σ2

2

− φ1β(u
∗
2)
−β

φ2 + φ1
M .

Solving this linear system and setting Λ =M(u∗2)−β provides the desired result.

6.5. APPENDIX 5

Define

τ1(v, k) = inf{t ≥ 0 : (u(t),X(t)) = (u∗1,X1)| (u(0) = v,X(0) = Xk)} and

τ2(v, k) = inf{t ≥ 0 : (u(t),X(t)) = (u,X2) and u ≤ u∗2 | (u(0) = v,X(0) = Xk)} ,

the two stopping times that describe respectively the time of the next switch occurring in
a recession (τ1) or in a boom (τ2), starting with an initial state of the world (v, k). Notice
that τ = min{τ1, τ2} is the random variable that describes the date of the next adoption.
Here, we are interested in τ1. We want to compute the probability p1(u, i) that being in
the state (u, i), the next adoption occurs in a recession. Again, we write p1(u, i) = p1i(u)
for i ∈ {1, 2} and our goal is to determine the two functions p11 and p12. We impose the
following boundary conditions p11(u∗1) = 1 and p12(u

∗
2) = 0.

Case 1: u∗2 ≤ u. It can be shown using the Markovian structure of the problem that p is
a martingale12 so

−λup011(u) +
σ2

2
u2p0011(u) + φ1 (p12(u)− p11(u)) = 0

−λup012(u) +
σ2

2
u2p0012(u) + φ2 (p11(u)− p12(u)) = 0 .

12To be more formal, this is just imposing the infinitesimal generator of p to be equal to 0.
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We solve this problem in the same way as for the derivation of average time displayed in
appendix 4. Using the boundary condition p12(u

∗
2) = 0, we obtain

p11(u) =
M 0

φ2 + φ1

³
φ1u

−β + φ2(u
∗
2)
−β
´

(6.6)

p12(u) =
φ2M

0

φ2 + φ1

³
(u∗2)

−β − u−β
´
, (6.7)

where M 0 ≥ 0 is a constant to be determined.

Case 2: u∗1 ≤ u ≤ u∗2. In this case, we have p12(u) = 0 as the switch occurs in a boom for
sure. It follows that

−λup011(u) +
σ2

2
u2p0011(u)− φ1p11(u) = 0 .

The general solution is
p11(u) = P 0uξ +Q0uζ , (6.8)

where ξ and ζ are the roots of the following quadratic

σ2

2
x2 − (λ+ σ2

2
)x− φ1 = 0 .

It remains to determine the three constants (M 0, P 0, Q0).We use the boundary condition on
p11 and the matching and smooth pasting conditions for p11 at u∗2 relying on the relationships
(6.6) and (6.8). This leads to the following system

(u∗1)
ξP 0 + (u∗1)

ζQ0 = 1

(u∗2)
ξP 0 + (u∗2)

ζQ0 = (u∗2)
−βM 0

ξ(u∗2)
ξP 0 + ζ(u∗2)

ζQ0 = −φ1β(u
∗
2)
−β

φ2 + φ1
M 0 .

Solving this linear system provides the desired result.

6.6. APPENDIX 6

6.6.1. Effect of uncertainty parameters on current expected profit.

We need to discriminate according to the initial state of the economy. As the processes u
and X are assumed to be independent, we can write symbolically Ei

0 = Eu0×Ei.

Initial state 1: P11(t) =
φ2

φ2+φ1
+ φ1

φ2+φ1
e−(φ2+φ1)t.

We compute

∂P11(t)

∂φ1
= − φ2

(φ2 + φ1)
2

h
1− e−(φ2+φ1)t

i
− te−(φ2+φ1)t

φ2 + φ1
< 0

∂P11(t)

∂φ2
=

φ1
(φ2 + φ1)

2

h
1− e−(φ2+φ1)t − t(φ2 + φ1)e

−(φ2+φ1)t
i
.
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Set x = t(φ2 + φ1) > 0 and Γ(x) = 1− e−x − xe−x. Since Γ(0) = 0 and Γ0(x) = xe−x > 0.

We can conclude that Γ(x) > 0, hence ∂P11(t)
∂φ2

> 0.

Given u, E1 [π(u(t),X(t))] = P11(t)X1u(t)
α + (1− P11(t))X2u(t)

α. Therefore,
· ∂
∂φ1

¡
E1 [π(u(t),X(t))]

¢
= u(t)α(X1 − X2)

∂P11(t)
∂φ1

> 0, as X1 < X2. In the same way,
∂
∂φ2

¡
E1 [π(u(t),X(t))]

¢
= u(t)α(X1 −X2)

∂P11(t)
∂φ2

< 0, as X1 < X2.

Initial state 2: P21(t) =
φ2

φ2+φ1

£
1− e−(φ2+φ1)t

¤
.

Permuting index 1 and 2, we obtain ∂P22(t)
∂φ1

> 0 and ∂P22(t)
∂φ2

< 0.Given u, E2 [π(u(t),X(t))] =

P12(t)X1u(t)
α + (1 − P22(t))X2u(t)

α. Therefore, ∂
∂φ1

¡
E2 [π(u(t),X(t))]

¢
= u(t)α(X2 −

X1)
∂P22(t)
∂φ1

> 0, as X1 < X2. In the same way, ∂
∂φ2

¡
E2 [π(u(t),X(t))]

¢
= u(t)α(X2 −

X1)
∂P22(t)
∂φ2

< 0, as X1 < X2.

Equal arrival rates: φ2 = φ1 = φ
Case 3.1.: initial state 1 so P11(t) = 1

2 +
1
2e
−2φt.

We obtain ∂P11(t)
∂φ < 0. It is easy to conclude that ∂

∂φ

¡
E1 [π(u(t),X(t))]

¢
= u(t)α(X1 −

X2)
∂P11(t)
∂φ > 0 since X1 < X2.

Case 3.2.: initial state 2 so P21(t) = 1
2

£
1− e−2φt

¤
.

We obtain ∂P21(t)
∂φ > 0. It is easy to conclude that ∂

∂φ

¡
E2 [π(u(t),X(t))]

¢
= u(t)α(X1 −

X2)
∂P21(t)
∂φ < 0 since X1 < X2.

Case 4: effects of σ.
Set y = uα. Using Ito’s lemma, dy(t) = y(t)

£¡−αλ− 1
2α(1− α)σ2

¢
dt+ σdw(t)

¤
. Thus

taking conditional expectation Eu0 of both sides yields

dEu0y(t) = −
µ
αλ+

1

2
α(1− α)σ2

¶
Eu0y(t)dt .

It follows that Eu0y(t) = y0e
−(αλ+ 1

2
α(1−α)σ2)t. Therefore, given X(t), the conditional ex-

pected instantaneous profit is given by

Eu0 (π(u(t),X(t)) = uα0X1(t)e
−(αλ+ 1

2
α(1−α)σ2)t .

Recall that 0 < α < 1, it is then easy to see that an increase in σ decreases the expected
current profit.

6.6.2. Methodology used for numerical simulations

We have used MATHEMATICA
R°
3.0. to solve numerically the eight by eight system of

equations. Since there is no guaranty to obtain a unique solution, we have proceeded in
the following way. Given a value for σ, we first determine the scrapping and upgrading
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levels for economies always in recession and economies always in expansion. We thus solve
a two by two non linear system that yields a unique solution for the range of values we
are interested. Given the smoothness of the relationships characterizing the scrapping and
upgrading levels, by the Implicit Function Theorem, scrapping and upgrading levels can be
expressed as smooth functions of (φ1, φ2, σ). Starting in the neighborhood of an economy
always in a unique regime, we increment little by little the value of the parameter φ1 (or
φ2), each time giving some relevant initial conditions for the values of the unknowns in order

to be sure that the algorithm used by MATHEMATICA
R°
3.0. converges to the desired

solution. To study the effect of the technological,uncertainty σ, we use the same approach
starting in the neighborhood of the values obtained for φ1 = φ2 = 0.25 and σ = 1.
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Figure 10: Effects of the arrival rate of recessions φ2; φ1 = 0.25 and σ = 1.
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Figure 11: Effects of the arrival rate of recessions φ2; φ1 = 0.25 and σ = 1.
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Figure 12: Effects of the arrival rate of recessions φ2; φ1 = 0.25 and σ = 1.
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