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We optimize network flow by minimizing network blocking and/or delay and by modeling 

network routing possibilities as real options. The uncertainties in the network are driven by 

stochastic point-to-point demands and we consider correlations among them in a general 

network structure. We derive an analytical approximation for the blocking/delay probabilities 

and solve the optimal network flows by using a global optimization technique. We illustrate 

the model with examples. 
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1.  Introduction 

The basic goal of network routing is to respond randomly fluctuating network demands by 

rerouting traffics and reallocating resources. Nowadays many network systems, for instance 

telecommunications networks, are able to do this so well that in many respects large-scale 

networks appear as coherent and almost intelligent organisms. However, as network structures 

become more complicated and new network services and products are developed, the more efficient 

methodologies for network routing selection and the estimation of network blocking and delay 

probabilities are needed. The development of such methodologies presents challenges of a 

mathematical, engineering, and economic nature. 
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In this paper we optimize network flows by minimizing network blocking/delay in a general 

network and under stochastic point-to-point demands. Our network optimization method is based 

on real option modeling. We assume that point-to-point transmission times are independent of 

network routings and the network capacities are constant. That is, regardless of the selected point-

to-point connection, transmission time is constant and we do not optimize the network capacities. 

This is the case in telecommunications networks and, thus, this paper is a real option application 

to telecommunications network routing. If the network under consideration is a calling network 

then our method minimizes the network blocking, and if the network has buffers, such as Internet 

network, then we minimize the network delays. The network blocking/delay can be approximated 

analytically by using a financial basket option formula. The network has an option to change its 

routing and this flexibility is a real option. That is, routing alternatives are real options and, 

therefore, a routing change corresponds to the exercise of one of these options. Basic real option 

results imply that the network routers have high value if there is a high uncertainty in the 

network demands since in this case there is a high probability that network routing is changed. 

Further, if a network has lot of nodes and routers then the value of the network is high because it 

has lot of routing options. The network optimization model of this paper maximizes the value of 

network and, hence, the value of the routing options. Real option theory is summarized, e.g., in 

Dixit and Pindyck (1994) and telecommunications applications are considered, for instance, in 

Alleman and Noam (1999) and Keppo (2001, 2003). After the real option modeling we solve 

optimal network routing by using routing probabilities and the analytical representation of 

network blocking/delay. The optimization of routing probabilities is a nonconvex optimization 

problem and we utilize global optimization techniques [for global optimization methods see, e.g., 

Horst and Pardalos (1995) and Neumaier (2004)] 

Many papers have analyzed network traffics. Caceres, Danzig, Jamin, and Mitzel (1991), 

Leland, Taqqu, Willinger, and Wilson (1994), and Feldmann (1996) have shown that 

telecommunications traffic is quite complex, exhibiting phenomena such as long-tail probability 

distributions, long-range dependence, and self-similarity. Therefore, various assumptions on traffic 

processes are made to simplify the network routing models. For instance, Kelly (1991, 1996) 

assumes an independent Poisson process for actual network traffic demand and Norros (1994) 
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models traffic with a fractional Brownian motion. In this paper we consider Brownian motion 

driven network demands and this way we are able to apply real option framework and derive the 

analytical approximation for network’s blockings/delays. A similar demand model is used, e.g., in 

Zhao and Kockelman (2002), Ryan (2002), and Gune and Keppo (2002). Gune and Keppo show 

empirically that dial-up demand is usually distributed according to a log-normal distribution. 

They also show that there are cycles in the demand and hence the parameters of the distribution 

depend on time. In the present paper we utilize this result and model network point-to-point 

demands with log normal distributions. 

Network routing is carried out along various routes. Routing has been studied extensively 

over the last few decades. For instance, some telecommunication companies have extended 

traditional static call routing methods to dynamic strategies. These strategies route calls 

depending on the given network load and, therefore, they guarantee better quality [see e.g. Ash 

and Oberer (1989), Ash, Chen, Frey, and Huang (1991), Ash (1998), and Gune and Keppo (2002)]. 

For instance, DAR (Dynamic Alternate Routing) by British Telecom routes calls along the direct 

routing between the start and end points as long as there is free capacity and if the direct 

connection is blocked, the call is routed along an alternative route. Further, if there exist several 

alternative routing possibilities, the alternative routing is selected by using the historical blocking 

data. Our model can be seen as an extension to DAR since we use a similar routing strategy. 

However, our routing selection is based on the future network blocking that depends on the 

current network demands, their stochastic processes, and the correlations between the demands. 

For instance, one point-to-point blocking probability might be high even though there have not 

been any blockings in the history if the point-to-point demand is currently high first time. Further, 

in contrast to DAR we also consider explicitly the interactions between the point-to-point routing 

decisions. That is, if one point-to-point routing is changed then it affects the blocking probabilities 

of the other point-to-point connections and in order to find the optimal routing these effects have 

to be considered. Mitra, Morrison and Ramakrishnan (1996, 1999) consider network optimization 

in multi-service broadband networks. They maximize network revenue by using Poisson processes 

and the corresponding end-to-end loss probabilities for each service and route. They assume no 

buffer, i.e., if there is insufficient bandwidth on a link an arriving call is blocked and lost. In this 
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paper we also maximize the revenues of the network but we use Brownian motion driven network 

demands in order to model the correlations between the demands and interactions between the 

routing decisions.  

In addition to calling networks, our network model can also be used in the optimization of 

Internet’s backbone network. Currently the routing of this network is static. However, for instance, 

Rai and Samaddar (1998) and Bieler and Stevensen (1998) predict that the amount of transmitted 

data and the number of Internet hosts and connections increase exponentially. This creates 

network delays in the future and, because routing optimization is a cheap alternative to capacity 

investments, backbone network optimization becomes important. This paper suggests a framework 

to the backbone network optimization by minimizing the network delays. 

The rest of the paper is divided as follows: Section 2 introduces the underlying models used 

in the paper and derives a representation for the point-to-point traffic. The stochastic processes for 

the demands are defined and these processes are then used in the network optimization in Section 

3. Section 4 illustrates the model with examples. Section 5 discusses the implementation of the 

optimization method and finally Section 6 concludes. 

2.  Network flow representation 

Telecommunications and Internet networks are in general modeled as graphs, which have nodes 

(verticals) and edges. Graphs are a natural choice for telecommunications and Internet networks, 

because the networks are not fully meshed. Fully or almost fully meshed networks can be modeled 

with transition matrices as is done, e.g. in Harrison (1988) with processing networks. In the graph, 

nodes act as endpoints for point-to-point connections. A direct point-to-point connection 

constitutes an edge also known as a link. Other connections are modeled as a sequence of links, 

often referred as routes, and correspond to paths in the graph. In this research, we consider 

blocking probabilities, capacities, and traffic on network links. We make the following assumption 

on network capacities. 

ASSUMPTION 2.1 Network capacities are constant. 
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According to Assumption 2.1 in our model, we are not able to optimize the capacities. An 

investment model where also capacities are optimized is considered, e.g., in Keppo (2003). The 

point-to-point demands follow stochastic processes and we specify these processes in Section 3. 

2.1 Simple three point-to-point network structure 

In this section we consider a simple network of three fixed point-to-point capacities (C) and 

demands (D). For example, the points could be New York, Los Angeles, and Atlanta, and all the 

point-to-point capacities are OC-3 (155.52 Mbps). Figure 2.1 illustrates the situation.  
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Figure 2.1 Network costs (S), capacities (C), and demands (D)
 

The S-costs in Figure 2.1 are costs from the blocking/delay of the links. For instance, S1 is 

locking/delay cost between the up and left points by using the direct routing between them. 

 that S1 does not necessarily equal the realized cost between the up and left points because if 

ave S2 + S3 ≤ S1 then it is optimal to use the longer routing and, therefore, the realized cost 

een the up and left points equals S2 + S3. 

According to Assumption 2.1 each link’s capacity is constant. However, the demands are 

astic and, therefore, the network routing might be changing all the time. For instance, part 

mand D1 might be routed via the alternative routing due to the limited capacity on the direct 
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routing. This means that using Figure 2.1 we can represent the routing possibilities with the 

following table. 
 

Table 2.1 Routing alternatives. The numbers represent the routing numbers. 

 Link 1 Link 2 Link 3 

Demand 1 1 2 2 

Demand 2 2 1 2 

Demand 3 2 2 1 

 

In Table 2.1, the first row implies that Link 1 is used as D1’s first routing possibility 

(routing number 1) and links 2 and 3 construct the second routing possibility (routing number 2). 

In the same way, the second row implies that Link 2 is D2’s first routing possibility and links 1 

and 3 are the second routing possibility. On the other hand, the first column implies that the 

traffic on Link 1 consists of D1’s first routing, D2’s second routing, and D3’s second routing. 

We denote β  as the proportion of demand D1
1

1D

1 that is routed through its first routing 

possibility and, therefore, (1  as the proportion that is routed via the second routing. 

Thus, demand β  is for the first routing and β  for the second. For demands D

1
1 )β β− = 2

1

2

3

1
1

2
1 1D

1
3 Dβ

2 and D3 we 

have similar representation. Therefore, β  and  are for their first routings and β  and 

 for the second routings. Then we can represent the flow on the links as follows 

1
2 D 3

2
2 2D

2
3 Dβ

(2.1)  , 

1 2 2
1 1 1 2 2 3 3

1 2 2
2 2 2 1 1 3 3

1 2 2
3 3 3 1 1 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

F t D t D t D t

F t D t D t D t

F t D t D t D t

β β β

β β β

β β β

= + +

= + +

= + +

where Fi(t) is the flow on Link i at time t and  for all i ∈ {1,2,3}. 
2

1

1j
i

j

β
=

=∑

According to (2.1) F1 consists of the first routing part of D1 and the second routing parts of 

D2 and D3. Thus, we just read the first column of Table 2.1. In the same way, F2 and F3 are given 

by the second and third columns of Table 2.1. Note that D-processes are demands between the 
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start and end nodes over all possible routings and F-processes are total flows on the physical links 

between the nodes.  

2.2 General network structure 

With a more complex network structure, the flow representation on each link is similar as in the 

previous simple model. We first construct the routing table and then from that table we get the 

flow representation for each link as a function of betas and demands. 

We consider a general telecommunications network with n point-to-point connections. 

Therefore, there exist n point-to-point capacities (C) and demands (D) and the problem is to 

construct the corresponding flow representation. As expected, this flow representation depends on 

the structure of the network, i.e., even though there is the same number of point-to-point 

connections, the representation can be different with different network structures. First, we 

consider a seven point-to-point connections’ network example as an extension to Section 2.1. The 

network structure for this example is illustrated in Figure 2.2.  
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Figure 2.2 Network costs (S), capacities (C), and demands (D) 
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From Figure 2.2, we can construct the routing table, Table 2.2. We use the following rule 

in numbering the routings. The less links in the route the smaller is the routing number and the 

routings with the same number of links have an arbitrary sequence among them. For instance, for 

D1, Link 1 gets the routing number 1, Link 2 + Link 3 and Link 4 + Link 5 get the routing 

number 2 or 3, and Link 4 + Link 6 + Link 7 gets the routing number 4. 

 

Table 2.2 Routing alternatives. The numbers represent the routing numbers. 

 Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 

D1 1 2 2 3, 4 3 4 4 

D2 2 1 2, 3 3, 4 3 4 4 

D3 2 2, 3, 4 1 3, 4 3 4 4 

D4 2, 4 3, 5 3, 5 1 2, 3 4, 5 4, 5 

D5 2 4 4 2, 4 1 3 3 

D6 3 4 4 3, 4 2 1 2, 3, 4 

D7 3 4 4 3, 4 2 2, 3, 4 1 

 

The first row of Table 2.2 indicates that Link 1 is used as the first routing of D1. Links 2 

and 3 are the second routing of D1, links 4 and 5 are the third, and links 4, 6, and 7 are the fourth 

routing. The other demands can be analyzed in the same way. On the other hand, the first column 

of Table 2.2 implies that the flow on Link 1 consists of the D1’s routing 1, D2’s routing 2, D3’s 

routing 2, D4’s routings 2 and 4, D5’s routing 2, D6’s routing 3, and D7’s routing 3. Thus, the 

amount of flow on Link 1 can be represented as a linear combination of the demands. The 

parameters of the linear mapping are our decision parameters, betas. The construction of the 

routing table is again the first step in the flow representation. This table is created row by row by 

using the point-to-point demand representations and then the corresponding flows are the columns 

of that table. 
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As in Section 2.1, we can create the flow representation from Table 2.2’s columns. For 

instance, the total flow on Link 1 is demand D1 multiplied by the direct routing probability ( )11β  

plus the flow from other demands, i.e., 

(2.2) , 1 2 2 2 4 2 3 3
1 1 1 2 2 3 3 4 4 4 5 5 6 6 7 7( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )F t D t D t D t D t D t D t D tβ β β β β β β β= + + + + + + +

where 0 1j
iβ≤ ≤  for all i ∈ {1, …, 7} and j ∈ {1, …, 4}, and 

4

1

1j
i

j

β
=

=∑  for all i ∈ {1, …, 7}. 

Similarly with the other links we have from Table 2.2 

(2.3)  

1 2 2 3 4 3 5 4 4 4
2 2 2 1 1 3 3 3 3 4 4 4 5 5 6 6 7 7

1 4 4 4 4 5 3 2 3 4
7 7 7 1 1 2 2 3 3 4 4 4 5 5 6 6 6 6

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

F t D t D t D t D t D t D t D t

F t D t D t D t D t D t D t D t

β β β β β β β β β β

β β β β β β β β β β

= + + + + + + + + +

= + + + + + + + + +

#

where 0 1j
iβ≤ ≤  for all i ∈ {1, …,7} and j ∈ {1, …, mi}, and 

1

1
im

j
i

j

β
=

=∑  for all i ∈ {1, …,7}. 

Variable mi is the number of possible routings for demand i, and in this case, all the demands 

except D4 have four possible routings and D4 has five, therefore m4 = 5 and mi = 4 for i ∈ {1, 

…,7}-{4} in this example.  

For the general network problem, let I  be a network structure indicator and it is defined 

as follows 

,i j
k

(2.4)  . 
= 


,
1, if Link  is used in ' ' th routing

0, otherwise
ii j

k

k D s j
I

Note that this indicator corresponds to the routing tables, tables 2.1 and 2.2. 

Using this notation the total flow on the k’th link in a general network is represented as 

follows 

(2.5)  , 
1 21, 2, , ,

1 1 2 2
1 1 1 1 1

( ) ( ) ( ) ( ) ( )
n im m m mn

j j n jj j j j
k k k n k n i k

j j j i j

F t I D t I D t I D t I D tβ β β β
= = = = =

= + + + =∑ ∑ ∑ ∑∑ i j
i

1where n is the number of links in the network, 0 j
iβ≤ ≤  for all i ∈ {1, …,n} and j ∈ {1, …, mi}, 

and 
1

1
im

j
i

j

β
=

=∑  for all i ∈ {1, …, n}. 
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According to (2.5) the total flow on each link can be represented as a linear combination of 

the point-to-point demands. In Section 5, we consider m  as a parameter to increase the 

efficiency of the network optimization. 

max[ ]ii
= m

dt

)
)

3.  Network Routing Optimization 

In this section we optimize the network routing by using the flow representation of Section 2. The 

objective in the network routing is to maximize the network revenues minus the costs. That is, 

(3.1)  , [ ]
10

supE ( ) ( )
T n

rt
k k

k

e P t S t−

=

 
 −   

∑∫

where n is the number of links in the network, [0,T] is the planning horizon, r is a constant 

discount rate, Pk and Sk are the k’th point-to-point connection’s price and blocking/delay cost. The 

price Pk corresponds to the demand Dk and the cost Sk corresponds the network flow Fk. That is, 

Pk does not depend on the network structure because Dk is the total demand between the start 

and end points. Therefore, we make the following assumption.  

ASSUMPTION 3.1 The k’th point-to-point price Pk is independent of the network routing for all k ∈ 

{1, …,n}. 

Assumption 3.1 implies that Pk depends on network capacity C C  that is 

constant and on demand D D . Hence, we can write P

( 1, , nC= …

( 1, , nD= … k(t) = Pk(D(t),C) and, therefore, 

the uncertainties in Pk are only from the demand process D. Further, because only the capacities 

and the demands affect the point-to-point price, the capacity prices are independent of the 

network routing and they do not affect the routing optimization. Pricing of the network has been 

studied in many papers. For instance, Kelly (1997) considers the optimal pricing model of a 

network by maximizing users’ aggregated utility and shows a competitive equilibrium. Johari and 

Tsitsiklis (2004) extend Kelly’s research to a game model, where selfish users anticipate the price 

effects of their actions. 

If the network under consideration is a network with buffers, for instance Internet, then the 

blocked demands are added to the demand of the next period. That is, 
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  l( ) ( ) ( )D t D t B t= + − , 

where l( )D t  is the new demand at time t and B(t-) is the buffer prior to time t. Mikosch et al. 

(1991) showed that this kind of cumulative broadband network traffic is well modeled by 

fractional Brownian motion. If we consider calling network then B(t-) = 0 since there are no 

buffers. In both cases, we make the following assumption on the stochastic process for demands in 

order to use the real option framework.  

ASSUMPTION 3.2 The process of the expected i’th demand D t  is given by the following Itô 

stochastic differential equation 

( , )i T

(3.2)  { } [ ] [( , ) ( , ) ( , ) ( ) for all 1, , , 0, , 0,i i i idD t T D t T t T dB t i n t T Tσ τ= ∈ ∈… ]∈

where ( , ) ( )i iD t T E D T F=  t
  is the expected total demand of the i’th point-to-point connection at 

time T calculated with respect to the information at time t, σ  is deterministic and bounded, 

B

(, )i T⋅

i(⋅) is the Brownian motion corresponding to the i’th point-to-point connection on the probability 

space (Ω, F, P) along with the standard filtration {Ft: t ∈ [0,τ]}, and we denote by ρ  the 

correlation between the i’th and z’th Brownian motions.  
,i z

According to equation (3.2), the stochastic processes for the expected point-to-point 

demand over all possible routings follow an exponential process. The boundedness of the volatility 

parameter guarantees the existence and uniqueness of the solution to (3.2). Assumption 3.2 is 

valid, e.g., if we can model the number of network users with a lognormal distribution and assume 

that each user receives the same amount of capacity. In this case D T  is distributed according to 

a lognormal distribution with mean D t  and variance 

( )i

2 ) expi( , )i T 2( , ( , ) 1
T

i
t

D t T y T dyσ
   −    

∫ . Since we 

model expected value D t , the demand process D t  can be e.g. geometric Brownian motion 

or mean-reverting [see for instance Schwartz (1997)]. Similar demand models are used, e.g., in 

Zhao and Kockelman (2002), Ryan (2002), and Gune and Keppo (2002). Gune and Keppo show 

empirically that Assumption 3.2 usually holds with dial-up data that can be seen as a calling 

point-to-point demand. Therefore, Assumption 3.2 is most convenient for calling networks. 

However, for simplicity in this paper we use this log-normal assumption for all telecommunications 

( , )i T ( )i
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networks. Note that if the above assumption does not hold we can extend our real option modeling 

to other demands by changing the process in (3.2), e.g., to a Poisson process. 

Given Assumption 3.2 we can consider a QoS pricing example that is based on Keppo, 

Rinaz, and Shah (2002). In equation (3.1) we assumed that Pk(t) is independent of the routing at 

time t. This is the case, e.g., if the point-to-point prices are leasing contract prices (or forward 

prices), i.e., if the prices are fixed at time 0. Let us first assume that T is small and the network 

structure is given by Figure 2.1. In this case β  if D1 1i ≈ i(T) ≤ Ci and if Di(T) > Ci then 

. Further, the blocking indicator of demand D1 ( )i i iD T Cβ ≈ 1 is given by  

 1 1  { } ({ }
{ }

1 1 1
2,3

( ) 1 ( ) ( )k k
k

D T C D T C D T C
∈

  ≥ − ≤ − −   
∏ )1

2,3

where, 1 . Thus, if the above equation is equal to one then part of D{ }
1, if 

0, otherwise

X Y
X Y

 ≥≥ = 
1 is 

blocked. Based on this blocking equation we get that T-maturity price for the first point-to-point 

connection at time 0 is given by [see details and extensions from Keppo, Rinaz, and Shah (2002)] 

 P T  ( )0
1 1 1 1 2 3 1,2 1,3(0, ) ( ) , , , , ,P N d G d d d ρ ρ ρ = + − − −  

where  is a constant,  is a cumulative standard normal distribution, 

 is the area under a standard trivariate normal distribution function 

covering the region from -∞ to -d

0
1P

, ,d d

()N ⋅

)

ρ

( 1 2 3 1,2 1,3 2,3, , ,G d ρ ρ ρ− − −

1,2,ρ− 1,3ρ−
1, -∞ to d2, and -∞ to d3, the three random variables have 

correlations   and  the variables of the cumulative distributions , 2,3,

( )1

1(0,
C

D t

σ

21
2 1)

1
1

ln ( )
,

( )

T T
d

T T

σ+
=  

( )1 (0, ) 21
2(0, ) ( )

( )
k

C r T
kD T

k
k

T T
d

T T

σ
σ

− +ln
=

k

 for all k ∈ {2,3}, and 

( 1d σ+ ) (1 1( )T N d− )11 1D(0, )r T = −(0, )T N T −C . Note that the other point-to-point prices and 

other maturities are given in the same way. Thus, we can calculate point-to-point prices for all 

maturities and, because these prices are fixed at time 0, the future routing decisions do not affect 

the prices, i.e., Assumption 3.1 holds. 

The next assumption gives the blocking/delay cost function. 

ASSUMPTION 3.3 Blocking/Delay cost Sk is given by  
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  . ( ) max[ ( ) , 0] for all [0, ],  {1, , }k k kS t F t C t T k n= − ∈ ∈ …

We assume that the investment cost for the fixed capacity is a sunk cost that is already 

paid. Therefore, our model considers only the costs from the blocking/delay of the network links 

that are due to the overflow of the links. Assumption 3.3 implies that this blocking/delay depends 

on the network demands and capacities as well as on the routing probabilities through Fk. Using 

(2.5) the cost Sk can be represented as follows 

(3.3)  
[ ] ,

1 1

,
1

( , ) max ( ) ,0 max ( ) ,0

max ( ) ( ) , 0 ,

imn
i jj

k k k i k i
i j

n

k i i k
i

S t F t C I D t C

w D t C

β β

β

= =

=

k

 
 = − = −   

 
 = −  

∑∑

∑
 

where w I  , 1
, 1

1

( ) , { , , }, and { , , }.
i

i

m
i jj m

k i i k n i i i
j

β β β β β β β β
=

= = =∑ … …

Equation (3.3) is similar as the payoff function of a financial basket call option where the 

demand processes are considered as the underlying assets, w  is the weight of the i’th underlying 

asset, and C
,k i

k is the strike price. By using the basket option pricing model of Gentle (1993) we get 

(3.4)  ( ) ( ) ( )1 2[ ( , )] ( ) ( ) ( , ) ( ) ( ) 1 ( , )k k k k kE S T F c N l T t K c N l T tβ β β β β β = − − + − −  
� β , 

where 

  2
, , , ,

, 1 1

1exp ( )
2

n n

k i j k i k j i j k j j
i j j

c w w wρ σ σ σ
= =

     = − −      
∑ ∑� � � T t , 

  
2

1,2
ln ln( 1) 0.5( ) k k k

k

c K c vl t
v t

− + − ±=
�

k t

i jσ

, 

  , 2
, , ,

, 1

( ) ( )
n
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β
=

=
∑
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r T t
k
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k i i
i

e C

w Sβ

− −

=

=
∑

�K ,  

and N(⋅) is a cumulative standard normal distribution. 
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Next we make the following assumption on the routing probabilities. 

ASSUMPTION 3.4 The routing probabilities are constants over the routing optimization time interval 

[0,T]. 

Assumption 3.4 implies that our routing optimization problem is static on [0,T]. This 

implies that we calculate and change the routing probabilities in discrete time e.g., every hour or 

every day. This is true in practice since network routing probabilities are changed in discrete time 

due to, e.g., data collection.  

Using assumptions 3.1-3.4 and equation (3.1) we get that the optimization problem can be 

represented as follows 

(3.5)   ( )
1 0

inf ,
Tn

rt
k

k

E e S t
β

β−

=

 
 
   
∑∫ dt

such that 0 1j
iβ≤ ≤  and 

1

1
im

j
i

j

β
=

=∑  for all i ∈ {1, …,n} and j ∈ {1, …, mi}. 

Equations (3.1) and (3.5) imply that because the point-to-point prices are independent of 

the network routing, the optimal network routing is solved by minimizing the point-to-point 

blocking/delay costs. Note that if we optimized each routing as follows 

(3.6)  , ( )
1 0

inf ,
i

Tn
rt

k
k

E e S t
β

β−

=

 
 
   
∑∫ dt

}where , then we would get a game equilibrium where each point-to-point demand 

is optimized according to (3.6) and the optimal network routing would correspond to a mixed 

strategy equilibrium. Note that we would have a game because the routing decision of a point-to-

point demand affects the routing of the other network demands and each point-to-point demand 

minimizes its own costs. There would exist a mixed strategy equilibrium for this problem [see 

Nash (1950)] since there is a finite number of demands and possible routings. However, the 

solution would not necessarily be unique and numerical techniques would be required to solve the 

game. For the network routing by using a game model see Lambert, Epelman, and Smith (2002). 

1{ im
i i iβ β β= …

14 

 



Since we use (3.5) we do not have a game and we solve the global optimum. This is a 

nonconvex optimization problem and numerical global optimization techniques have to be used. 

We use the generalized reduced gradient optimization method developed by Lasdon and Waren 

(1978). Fylstra, Lasdon, Watson, and Waren (1998) have analyzed this method in more detail. 

4.  Examples 

In this section we illustrate our optimization model with two examples, which are based on the 

network structures of figures 2.1 and 2.2.  

4.1 Three point-to-point network 

We consider first the simple three point-to-point network structure of Figure 2.1. The network 

flows are as follows 

(4.1)   

1 2 2
1 1 1 2 2 3

2 1 2
2 1 2 2 1 3

1 2 2
3 3 3 1 1 2

( , ) ( ) ( ) (

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( ).

F t D t D t D t

F t D t D t D t

F t D t D t D t

β β β β

β β β β

β β β β

= + +

= + +

= + +

3

3

2

)

β

T

Using (3.4), we get that the network costs are given by 

(4.2)  ( ) ( ) ( )
3 3

1 2
1 1

( , ) ( ) ( ) ( , ) ( ) ( ) 1 ( , )k k k k k
k k

S t F c N l T t K c N l T tβ β β β β β
= =

 = − − + − −  ∑ ∑ �

where  for all i ∈ {1,2,3}. 
2

1

1j
i

j

β
=

=∑

Let us assume that we can approximate equation (3.5) as follows 

(4.3)  . ( )
1

inf ,
n

rT
k

k

E S T e
β

β −

=

 
 
  
∑

That is, the cumulative discounted blocking/delay cost on [0,T] is approximated by the time T 

discounted cost. 

In order to solve this optimization problem we assume the following parameter values: time 

horizon T = 1, discount rate r = 0, expected demand Di(0,T) = 10, and capacity Ci = 12 for all i 
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∈ {1,2,3}. Note that with these values we have ( )0, 0k β =S  for all k and, therefore, equation (4.3) 

is a good approximation if T is small. We analyze the effect of correlations and the volatilities of 

D1, D2 and D3 on the optimal routing probabilities from (4.1) – (4.3).  
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the demand uncertainties the more the alternative routing is used and, therefore, the more 

valuable the network routing options. 

4.2 Seven point-to-point network 

Next we consider the seven point-to-point network structure of Figure 2.2. From Table 2.2, the 

network flows are given as follows 

1 2 2 2 4 2 3 3
1 1 1 2 2 3 3 4 4 4 5 5 6 6 7 7( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )F t D t D t D t D t D t D t D tβ β β β β β β β= + + + + + + +  

1 2 2 3 4 3 5 4 4 4
2 2 2 1 1 3 3 3 3 4 4 4 5 5 6 6 7 7

1 4 4 4 4 5 3 2 3 4
7 7 7 1 1 2 2 3 3 4 4 4 5 5 6 6 6 6

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

F t D t D t D t D t D t D t D t

F t D t D t D t D t D t D t D t

β β β β β β β β β β

β β β β β β β β β β

= + + + + + + + + +

= + + + + + + + + +

#  

where 0 1j
iβ≤ ≤  and 

1

1
im

j
i

j

β
=

=∑  for all i ∈ {1, …,7} and j ∈ {1, …,mi}. 

We have 7 demands and 29 betas (m4 = 5 and mi = 4 for i ∈ {1, …,7}-{4}) in this example. 

We consider direct routing probabilities for D1 on Figure 4.2 and assume that D2 and D3 are 

perfectly correlated with each other and D4, D6 and D7 are perfectly correlated with each other. 

That is, in addition to D1 we assume three sets of demands {D2, D3}, {D5}, and {D4, D6, D7}, 

where the demands in a same set are perfectly correlated. Then we consider the effects of the 

volatilities of D1, D2, …, D7 and the correlations between the demand sets to the optimal direct 

routing probabilities of D1. 
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Figure 4.4 Relationship between demand volatilities (s1 = s2 = … = s7) and the 

average blocking/delay costs of all the links with different correlations (network 

structure of Figure 2.2, r = r1,2, r1,3, …, r1,7). Parameter values: T = 1, r = 0, Di(0,T) 

= 10, and Ci = 12 for all i ∈ {1, …,7}. 

Average blocking/delay cost 

r = 1 

r = 0 

r = -1 

Demand Volatility 

Note that according to figures 4.3 and 4.4, when r = -1 the cost can decrease when the 

demand volatility is high enough. The reason is that, in this case if a direct routing is full then the 

probability that there is free capacity on the alternative routings increases, and with volatilities 

higher than 0.9 this probability reduces the average blocking/delay costs. This cost decreasing 

threshold of demand volatility depends on the initial values of demand and capacity, i.e., if initial 

demand is higher than the capacity in our example then there is blocking/delay cost at time 0 and 

the threshold is observed with the demand volatility lower than 0.9.  

5.  Discussions 

In the general routing problem, the number of parameters increases as a function of the number of 

nodes and paths. In Figure 5.1 we have four nodes and five links (demands). There are three betas 

for each demand and 15 betas total (mi = 3 for i ∈ {1, …, 5}). However, if the structure of the 
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network is different then even with the same number of nodes the number of betas may vary a lot. 

In Figure 5.2 there are four nodes and six demands, all of which have five betas. This gives 30 

betas total (mi = 5 for i ∈ {1, …, 6}). 
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us consider a general network. If there are a direct routing and some alternative routings with one 

or two intermediate nodes then the probability of using routings that have more than, for example, 

three intermediate nodes is quite small. This is because if the cost of at least one link goes up then 

the whole routing cost increases. For example, the probability of using the fifth routing of D4 in 

Figure 2.2 (Link 2+Link 3+Link 7+Link 6) is usually small at the network optimum (it is, in fact, 

zero in all the cases of Section 4.2). Therefore, in order to decrease the computational time in a 

general model, we can reduce the number of parameters in the network problem and simplify the 

calculations by reducing the maximum number of possible routings.  
 

Table 5.1 Loss of accuracy on delay cost by lowering the maximum number of routing 

possibilities (m). 

σ1 0.1 0.2 0.3 0.4 

Total cost  (m=5) 0.8310 3.1945 5.6661 7.8073 

Total cost  (m=3) 0.8310 3.1945 5.6661 7.8073 

Loss of accuracy 0.00% 0.00% 0.00% 0.00% 

 

 

 

 

 

 

 

 

σ1 0.5 0.6 0.7 0.8 0.9 

Total cost (m=5) 8.8087 9.5661 9.9886 10.1027 9.9496 

Total cost  (m=3) 8.8317 9.6193 10.0854 10.2521 10.1545 

Loss of accuracy 0.261% 0.561% 0.969% 1.479% 2.059% 

 

 

 

 

Table 5.1 shows the loss of accuracy in the seven point-to-point example (Figure 2.2) by 

lowering m  from 5 to 3 and by assuming negative correlation between Dmax[ ]ii
= m 1 and the other 

demands (r = -1). All the other parameter values are the same as in Section 4.2. The optimal 

routing probabilities are the same when m = 4 or 5 since the probability of using the fifth routing 

of D4 is zero. The blocking/delay cost in Table 5.1 is the sum of all links’ costs. From Table 5.1 

we can see that the loss of accuracy is negligible even though there are negative correlations 

between D1 and the other demands. These results are, of course, case-specific. We do not define an 
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efficient value for m since the loss of accuracy depends on the network and the parameter values. 

However, Table 5.1 indicates that analyzing m is important since it can reduce the computational 

time required to calculate the optimum. 

 

6.  Conclusion 

We have suggested a new method for network routing optimization by using real option modeling. 

Our approach can be divided into three steps. First, we represented the total flow on each link by 

using point-to-point demands and routing probabilities. Second, we calculated the blocking/delay 

costs by using the flow representation and a financial basket option model. Finally, we calculated 

the optimal network routing by using global optimization techniques. The fundamental idea is to 

use real option concepts in the modeling of network routings. Our approach considers demand 

correlations and the interactions between the routing decisions. Because we use routing 

probabilities in the network optimization, this routing strategy is similar to DAR (Dynamic 

Alternate Routing) and can be viewed as an extension to that. 

Numerical examples in Section 4 showed that the higher the demand uncertainties and 

correlations the higher the network blocking/delay probability. Further, we showed how the 

complexity of the network lowers the network blocking/delay and, therefore, increases the value of 

the network. 
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