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Abstract

This article considers the value of information and optimal timing to acquire it in a model

of irreversible investment. There are two types of uncertainties: first, the value of the investment

project depends on an observable stochastic process, and second, it depends on an ex-ante uncertain

parameter, whose true value may be learnt at a cost. The former type of uncertainty implies that

the opportunity to acquire information has an option-like character: besides owning a real option

on the actual project, the firm also owns an option to learn. We derive and illustrate the value of

such learning options and the optimal timing to learn. Choosing the timing involves a trade-off: by

postponing it the firm benefits from the delayed cost, but on the other hand suffers from increased

likelihood that the revealed information would have been more beneficial earlier.
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1 Introduction

The standard theory of real options focuses on investment projects, whose values are subject to a given

exogenous stochastic process. By waiting and observing the development of the exogenous process,

the firm under consideration continuously updates the present value of the project. This continuously

resolving uncertainty induces a value to waiting, which makes the firm more reluctant to carry out the

investment than would be the case under certainty. For an extensive treatment on the topic, see Dixit

and Pindyck (1994).

This paper adds into this consideration another type of uncertainty, which is not resolved by passive

waiting. It is clear that such uncertainties are present in most real investment projects. Accordingly,

the net present values on which investment decisions are based, are estimates of eventual uncertain cash

flows. The reason why this is not emphasized in the standard real options theory is obvious: it would

not really change anything in the basic model as long as the only way to reveal such uncertainty is

to actually undertake the project. However, the situation changes substantially if it is also possible to

activate costly information acquisition prior to investing. Then it is reasonable to ask what the optimal

information acquisition strategy is like.

As an example, consider a firm, which is planning an oil field development. There are two types of

uncertainties associated with the project. First, the price of oil develops unpredictably, which is a typical

example of the type of uncertainty considered in standard real options models. Second, the amount of

oil in the field is uncertain. Assume that having a prior probability distribution on the amount of oil,

the firm faces the following decision problem: is it better to go directly ahead with the investment on the

basis of the prior estimate, or is it better to first carry out a costly exploratory drilling and then make the

actual investment decision on the basis of this additional information? The firm observes continuously

the development of oil price and faces two choices: 1) which of these two alternatives to take (exploratory

drilling or going straight ahead with the project) and 2) when to act. In this situation, the firm owns

not only a standard real option on the oil investment, but also an option to acquire more information.
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In this paper I consider the value of such learning options and the optimal timing of exercising them.

The value of learning actions in real options settings has earlier been studied by Martzoukos (2000).

He models the learning actions as random jumps in the underlying stochastic process, which are acti-

vated by the firm. While providing insight on how learning may potentially increase the value of the

investment opportunities, the model does not provide a fully satisfactory characterization of information

updating, because the sense in which new information changes the accuracy of the firm’s beliefs is not

defined. A more consistent framework would set a prior distribution on the unknown parameter, and

let new information change beliefs in Bayesian fashion (see Moscarini and Smith, 2002, for the value

of information under Bayesian updating). Along this line, Decamps et al. (2001) and Roche (2003)

consider models of investment, where the drift of the stochastic process describing the development of

the project value is unknown, and the firm updates its belief by Bayesian updating while observing the

process. However, such learning is passive in the sense that the firm updates its belief continuously as

long as it is waiting, whereas my focus is on active and discrete information acquisition, where the firm

must decide when to learn. Roberts and Weitzman (1981) and Weitzman (1981) consider sequential

development projects, where by completing subsequent stages of the project the firm updates its beliefs

over the final benefits of the project. In these models there is only uncertainty that is resolved by the

firm’s actions, whereas my focus is on the interaction of stochastically evolving environment (exogenous

uncertainty that resolves by waiting) and uncertainty that is resolved by the firm’s actions. This allows

one to focus on the conditions that determine when information actually becomes worthy.

The setting considered in this paper involves a single investment opportunity, the value of which is

subject to 1) an exogenous stochastic process and 2) a parameter on which the investor has incomplete

information. The firm may undertake a learning activity that reveals the true value of the parameter

at any moment by paying a given cost. On the other hand, the firm may also choose to neglect the

possibility to learn, and undertake the project on the basis of prior distribution of the parameter. The

main point is that since the value of the project develops in time according to the exogenous stochastic
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process, also the value of the option to learn depends on this process. The value of information depends

on the extent to which the firm’s optimal reaction in the face of information increases its payoffs under

different possible realizations of the learning outcome. When considering the optimal timing to learn,

the firm faces a basic trade-off: by postponing the learning activity the firm postpones the cost of

learning, but on the other hand increases the probability that learning will reveal information that

would have been more beneficial if received earlier. The firm must balance these two counteracting

effects in determining the optimal timing of learning.

The paper considers an extreme form of learning, where through a single information acquisition

action the firm is able to learn perfectly the true value of the unknown parameter. As such, perfect

learning is of course consistent with Bayesian updating: the posterior distribution is completely concen-

trated on the true value of the parameter. More importantly, the ex-post project value as a function of

the revealed parameter value may be interpreted as the expected project value after purchasing a noisy

signal and adopting the posterior distribution by Bayesian updating. Thus, the assumption of perfect

learning is actually just a notational simplification. The benefit of this simplification is the fact that

it allows one to introduce the concept of option to learn in the most illuminating form with straight

forward formulas for the value of information and optimal timing of learning. The drawback is that the

model is now restricted to the purchase of only one signal with a predetermined precision. However,

since to my knowledge this type of information acquisition options have not been analyzed in a similar

setting before, it is natural to start with the simplest and most intuitive version. Naturally, it may be

a possible future direction to extend this kind of analysis to incorporate the purchase of multiple noisy

signals or the choice of signal precision.

The paper is organized as follows. Section 2 sets up the model. Section 3 derives the value of the

firm’s investment opportunity and the value of information. Section 4 derives the conditions for optimal

timing of learning. Section 5 presents a more specified version of the model in order to illustrate the

main points. Section 6 concludes.
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2 Model

A risk-neutral investor faces a single investment opportunity. The investment is irreversible, but its

timing can be freely chosen. Time is continuous, horizon is infinite, and the investor discounts cash flows

at rate r. Let the net present value of the investment project be defined by a function V : R+×R→ R.

The first argument to this function is a stochastic state variable X that shifts according to a geometric

Brownian motion:1

dX

X
= αdt+ σdz, (1)

where α and σ are constants and dz is the standard Brownian motion increment. More precisely, X

refers generally to a solution process of (1), Xt to the value of the process at time t, x to an arbitrary

value of the process at an undefined time, and {Xx
t } to a solution process of (1) that starts at X0 = x.

The second argument is a random variable θ that is distributed according to a piecewise continuous

density function f with a connected support Θ ⊆ R.2

Notice that the assumption of risk neutralily can be interpreted so that the investor acts so as to

maximize the market value of the investment opportunity given that there is a market for traded assets

that prices the risk associated with the fluctuations of X, and on the other hand uncertainty in θ is

fully diversifiable. In this case the firm’s objective is interpreted using equivalent risk-neutral valuation

principle, which in essence means that the drift rate in (1) is adjusted appropriately (e.g. Cox and

Ross, 1976). Since θ must be understood to represent project specific uncertainty, the assumption of

diversifiable risk seems reasonable.
1 It would perhaps seem more natural to use a standard Brownian motion as the state variable, but geometric Brownian

motion was chosen in order to make the notation easily comparable with standard real options literature. It does not

really matter which specification we use, since the state variable is simply an argument in the project value V , which is

the focus of the model. Standard Brownian motion and geometric Brownian motion can be made equivalent by a simple

transformation of the function V .
2 In other words, Θ is the set of possible values that the variable θ may take.
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Given the values of the two variables representing the state of the world, x and θ, the net present

value of the project is V (x, θ). We adopt the following assumptions on the function V (and parameters

α and σ):

Assumption 1:

∂V (x, θ)

∂x
> 0 for all x > 0, θ ∈ Θ,

∂V (x, θ)

∂θ
> 0 for all x > 0, θ ∈ Θ.

Assumption 2:

∃M ∈ R s.t. V (x, θ) > 0 for all θ ∈ Θ whenever x > M .

Assumption 3:

∃N ∈ R s.t.
αxV 0 (x, θ) + 1

2σ
2x2V 00 (x, θ)

V (x, θ)
< r for all x > N and θ ∈ Θ,

where V 0 (·, ·) and V 00 (·, ·) stand for the first and second derivatives of V with respect to the first

argument.

These assumptions ensure that the optimal stopping problems that will be considered have a certain

simple structure. Assumption 1 simply says that V is increasing in both of its arguments, meaning that

both variables X and θ represent something for which the investor prefers as high value as possible.

Assumption 2 means that no matter how low the value of θ, the net present value will be positive as

soon as X reaches a high enough level. This ensures that sooner or later the project will be profitable.

Assumption 3 is made in order to ensure that the project value does not increase too fast in X. The

main implication of this assumption is that the value of the investment opportunity can not appreciate

so fast that it would be optimal to wait forever.
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The main issue of the model is the information that the investor possesses. We assume that while

observing perfectly the development of X, the investor does not initially know the realization of θ. There

are two possibilities how the value of θ may be revealed. First, it is possible at any time to learn its

value by paying a fixed fee C. Alternatively, if no such information acquisition activity is undertaken,

the value of θ is ultimately revealed when the project is undertaken. The problem is to decide whether

to learn θ before going ahead with the project, or whether to invest in the project without learning θ in

advance. The timing of information acquisition and/or investment should be chosen optimally in order

to maximize the present value of the investment opportunity. Mathematically, given an initial value

X0 = x, the problem is to find the maximum:

max

½
sup
τ
Ex

µ
e−rτ

∙
Eθ

µ
sup
τ 0≥τ

Ex

h
e−rτ

0
V (Xx

τ 0 , θ)
i¶
− C

¸¶
; sup
τ 00

Ex

h
e−rτ

00
EθV (X

x
τ 00 , θ)

i¾
(2)

where τ , τ 0, and τ 00 are stopping times adapted to X. Here, τ stands for the moment of information

acquisition, τ 0 stands for the moment when the actual investment is undertaken once the value of θ

has been learnt, and τ 00 stands for the moment when the investment is undertaken without learning

θ in advance. Note that the left hand side term of (2) is the value of the investment opportunity in

case learning takes place, and the right hand side is the value of the investment opportunity in case

investment is undertaken without learning. Thus, whether or not learning is optimal depends on which

term is greater. The value of the investment opportunity is the maximum of these two terms as (2)

indicates. It should now be quite clear what the nature of the optimal behavior must be: either let X

rise to a certain level to trigger the investment without learning θ in advance (the right hand term is

greater) or let X rise to a certain level to trigger information acquisition, and subsequently depending

on the learning outcome invest in the actual project straight ahead or let X rise to an even higher level

to trigger the investment (the left hand term is greater).

It is useful to emphasize here that even if the model has been formulated so that the learning reveals

fully the true value of θ, the model may be interpreted so that θ is the value of a noisy signal that allows
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one to update the posterior distribution of another underlying random variable. Thus, we have actually

a Bayesian learning model so long as V (x, θ) is interpreted as the expected value of the project after

optimally updating beliefs using the signal realization θ.

We will next consider in more detail the value of the investment opportunity proceeding through

two special cases (sections 3.1 and 3.2) to finally consider the maximum value of (2) in section 3.3.

3 Value of the investment opportunity

3.1 Full information

Proceeding backwards, consider first the case of full information, where the value of θ is already known.

Denote by F (x, θ) the value of such an investment opportunity with full information given the current

value Xt = x:

F (x, θ) = sup
τ
Ex

£
e−rτV (Xx

τ , θ)
¤
. (3)

Finding the optimal investment timing τ∗, that is, the stopping time that maximizes (3) is a standard

real-option problem analyzed in detail for example in Dixit and Pindyck (1994). It is well known that

the solution is characterized by an investment threshold such that it is optimal to invest at the first

moment when X hits this threshold from below. Note that this threshold depends now on the value of

θ, and we may thus denote the optimal investment threshold under full information by X∗ (θ). For a

given value of θ, X∗ (θ) can be solved by the principle of dynamic programming with an application of

Ito’s lemma and two special conditions (value-matching and smooth-pasting conditions, see Øksendal,

2000, or Dixit and Pindyck, 1994, for more details). It can be shown that X∗ (θ) must be continuous

in θ under the assumptions already made. However, to facilitate the analysis, we impose here one final

assumption to our model:

Assumption 4:
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∂X∗ (θ)

∂θ
< 0 for all θ ∈ Θ. (4)

Of course, this assumption concerns mainly the form of function V . To formulate it so that it explic-

itly derives conditions for V would be desirable, but it seems challenging to find reasonable restrictions

on V that imply it. However, it is easy to check that (4) holds under all typical situations, while on the

other hand it is also possible to construct examples of V for which it does not hold even if Assumptions

1-3 hold.

Since by Assumption 4 we restrict to cases whereX∗ (·) is monotonic, it has an inverse that we denote

by θ∗ (·). In other words, θ∗ (x) is the value of θ for which x = X∗ (θ∗ (x)). To simplicity notation in

the following sections, we now extend the definition of θ∗ to all X ∈ R:

θ∗ (x) ≡ −∞ for all x > X∗ (inf Θ) , (5)

θ∗ (x) ≡ ∞ for all x < X∗ (supΘ) . (6)

It is clear that

∂θ∗ (x)

∂x
< 0

for all such x that θ∗ (x) ∈ Θ.

The application of Bellman’s principle of optimality and Ito’s lemma results in a second order dif-

ferential equation for F with respect to x, which together with appropriate boundary conditions implies

that the full information value of the investment opportunity must be of the form (again, see Dixit and

Pindyck, 1994, for details) :
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F (x, θ) =

⎧⎪⎪⎨⎪⎪⎩
A (θ)xβ, x < X∗ (θ)

V (x, θ) , x ≥ X∗ (θ)

(7)

where

β ≡ 1
2
− α

σ2
+

s∙
α

σ2
− 1
2

¸2
+
2r

σ2
> 1 (8)

and A (θ) is some continuous function, whose exact form depends on the form of V (x, θ).

3.2 Incomplete information, no learning opportunity

Consider next a case, where θ is not known, and it is not even possible to learn it before the actual

investment is undertaken. This is also a standard real options problem, where the net present value

of the project is the expectation with respect to θ. We denote this expectation by V (x) ≡ EθV (x, θ).

Given the current value Xt = x, denote the value of the opportunity to undertake the project by F (x):

F (x) ≡ sup
τ
Ex

£
e−rτEθV (X

x
τ , θ)

¤
= sup

τ
Ex

£
e−rτV (Xx

τ )
¤
. (9)

Again, the optimal investment timing is the moment, when X crosses a certain threshold from below.

This optimal investment threshold, which we denote X, can be solved following the same principles as

in solving X∗ (θ). Consequently, F must take the form:

F (x) =

⎧⎪⎪⎨⎪⎪⎩
Axβ , x < X

V (x) , x ≥ X

, (10)

where β is as given in (8), and A is a constant whose value depends on the form of V .

3.3 Incomplete information with possibility to learn

Finally, consider the case of our special interest where θ is not known, yet it is possible to learn it before

undertaking the project. We denote the value of the investment opportunity prior to learning by F 0 (x).
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Its value is given by (2), which using the definitions given in sections 3.1 and 3.2 can be written as:

F 0 (x) = max

½
sup
τ
Ex

¡
e−rτ [EθF (X

x
τ , θ)− C]

¢
; sup
τ 00

Ex

h
e−rτ

00
V (Xx

τ 00)
i¾

(11)

= max

½
sup
τ
Ex

¡
e−rτ [EθF (X

x
τ , θ)− C]

¢
;F (x)

¾
.

Note that this ex-ante value F 0 (x) is a function of x only, since the value of θ is not known. We

may now define the value of the option to learn as the difference between the value of the investment

project when learning is possible and when learning is not possible:

FI (x) ≡ F 0 (x)− F (x) . (12)

It is now easy to see that if the right hand side component of (11) is greater than the left hand side

component, it is not optimal to learn, and consequently F 0 (x) = F (x) implying that the option to

learn is worthless: FI (x) = 0. On the other hand, if the left hand side component is greater, we have

F 0 (x) > F (x) implying that the option to learn is valuable: FI (x) > 0.

Rearranging (12), we may write the total value of the firm’s investment opportunity as a sum of two

components:

F 0 (x) = FI (x) + F (x) , (13)

where FI (x) is the value of the option to learn the true value of θ before undertaking the project

and F (x) is the value of the option to undertake the project without the possibility to learn θ. It is

of course possible that information acquisition is too costly, and it is not optimal to learn at all before

undertaking the project, in which case we have FI (x) = 0 and F (x) = F 0 (x) for all x.

Having now defined what is meant by the value of the option to learn, consider next the actual

value of information. Learning θ gives the investor at the moment of information acquisition a standard
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opportunity to invest in a project with full information. As stated above, this ex-post value of the in-

vestment opportunity (the value under full information) is F (x, θ). Ex-ante, the value of this investment

opportunity is Eθ [F (x, θ)]. Therefore, given the state value x, the instantaneous ex-ante present value

of information is (hereafter referred as value of information):

VI (x) ≡ Eθ [F (x, θ)]− F (x) , (14)

where, using (7):

Eθ [F (x, θ)] =

∞Z
−∞

F (x, θ) f (θ) dθ =

θ∗(x)Z
−∞

A (θ)xβf (θ) dθ +

∞Z
θ∗(x)

V (x, θ) f (θ) dθ. (15)

As seen in (15), the ex-ante value of the full information investment opportunity, which is the

expected value of the asset obtained through learning, is composed of two terms. The first integral in

(15) reflects the possibility that the revealed value of θ is so low that it is not yet optimal to undertake

the project, while the second term reflects the possibility that θ is found so high that it is optimal to go

ahead with the project straight away. This latter alternative is the potential payoff from learning now

instead of doing so later, since it represents the case where the increased information immediately alters

the optimal behavior. It is clear that the probability of this latter alternative must be sufficiently high

in order to make information acquisition optimal, otherwise it would be better to delay costly learning

as the loss from doing so would be small.

Using (10) and (15), VI can be written in three separate parts:

VI (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞R
−∞

A (θ)xβf (θ) dθ −Axβ ,

θ∗(x)R
−∞

A (θ)xβf (θ) dθ +
∞R

θ∗(x)

V (x, θ) f (θ) dθ −Axβ,

θ∗(x)R
−∞

A (θ)xβf (θ) dθ +
∞R

θ∗(x)

V (x, θ) f (θ) dθ − V (x) ,

0 ≤ x < X∗ (supΘ)

X∗ (supΘ) ≤ x < X

x ≥ X

(16)

We now state the following proposition:
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Proposition 1 Value of information VI (x) as defined in (14) is a positive and continuous function

defined for all x > 0. It has the properties

lim
x→0+

VI (x) = lim
x→∞

VI (x) = 0,

implying that it attains a unique maximum value, which we denote

V ∗I ≡ max
x>0

VI (x) .

Proof. The properties of VI in question are easy to establish from (16). First, each of the three distinct

parts are clearly composed of continuous functions of x. Further, using (6),

lim
x→X∗(supΘ)−

⎡⎣ ∞Z
−∞

A (θ)xβf (θ) dθ

⎤⎦ = lim
x→X∗(supΘ)+

⎡⎢⎣ θ∗(x)Z
−∞

A (θ)xβf (θ) dθ +

∞Z
θ∗(x)

V (x, θ) f (θ) dθ

⎤⎥⎦
and from (10),

lim
x→X

−
Axβ = lim

x→X
−
V (x) ,

which means that VI (x) is continuous. That VI is positive is clear from the way how it is defined in

(14), and follows also quite easily by checking each of the three parts in (16) separately (but we do not

work this out in detail here).

Finally, note that
∞R
−∞

A (θ)xβf (θ) dθ − Axβ = xβ

Ã
∞R
−∞

A (θ) f (θ) dθ −A

!
, which obviously goes

to zero as x → 0+, meaning that lim
x→0+

VI (x) = 0, and on the other hand
θ∗(x)R
−∞

A (θ)xβf (θ) dθ +

∞R
θ∗(x)

V (x, θ) f (θ) dθ →
∞R
−∞

V (x, θ) f (θ) dθ = V (x) as x→∞, meaning that lim
x→∞

VI (x) = 0.

Building on Proposition 1, it is now straight-forward to pose the following:

Proposition 2 It is optimal to undertake the information acquisition if and only if V ∗I > C. Expressed

in another way:

V ∗I > C ⇐⇒ F 0 (x) > 0 for small enough x.

Proof. The value of information as defined in (14) is derived from the assumption of maximizing (2).

Therefore, if VI would be greater than C without this implying that the information is ever used would
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contradict the very definition of VI . In other words, there can not be a positive net value for something

that does not affect the firm’s payoff. Conversely, if V ∗I < C, acquiring information at any moment

would incur a net loss to the firm, which would contradict value maximizing behavior.

Proposition 2 simply says that if the maximum value of information is greater than the cost of

acquiring it, it must be optimal at some point to acquire it, which is equivalent to the fact that the

option to learn is valuable for small values of x. The reason for this small values -condition lies in the

fact that if for some reason the investor fails to act optimally and lets X rise too high without doing

anything, the value of the option to learn disappears as the possibility to invest straight ahead in the

project begins to dominate the possibility to first check its value by learning.

Note that even if we have now shown that the question whether it is optimal to learn in the first

place can be answered by checking whether the maximum value of information is greater than the

cost of acquiring it, it would be wrong to conclude that the optimal moment to learn is the particular

moment when this maximum value is reached. We now turn to the issue of optimal timing of information

acquisition.

4 Optimal timing of learning

In this section the conditions for the optimal timing of information acquisition are derived. We proceed

as follows. First, the conditions that must hold at the optimal learning point are derived mathematically.

Then, a proposition is stated that clarifies the principle for which this optimal timing rule is based on.

Finally, the intuition behind this principle is discussed. Throughout this section it is assumed that the

cost of information acquisition is so small that V ∗I > C holds, and thus by Proposition 2 it is optimal

to learn.

Since the value of information develops in time according to X, it seems clear that the optimal time

to learn is when X hits some threshold level for the first time. We denote this optimal threshold to
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acquire information, hereafter referred as learning threshold, by XI . Setting up the Bellman equation

for FI , applying Ito’s lemma, and applying a boundary condition that requires lim
x→0

FI (x) = 0, determine

the value of the option to learn to be of the form:

FI (x) = AIx
β , when x < XI ,

where AI is a positive parameter to be solved and β is given by (8). Following the standard procedure

used in this type of optimal stopping problems (again, see Dixit and Pindyck, 1994), the optimal learning

threshold XI is obtained by setting AI and XI so that the following value matching and smooth pasting

conditions hold:

FI
¡
XI
¢
= VI

¡
XI
¢
− C = Eθ

£
F
¡
XI , θ

¢¤
− F

¡
XI
¢
− C (17)

=

θ∗(XI)Z
−∞

F
¡
XI , θ

¢
f (θ) dθ +

∞Z
θ∗(XI)

V
¡
XI , θ

¢
f (θ) dθ − F

¡
XI
¢
− C,

F 0I
¡
XI
¢
= V 0

I

¡
XI
¢
=

∂

∂x
[Eθ [F (x, θ)]]x=XI − F

0 ¡
XI
¢

(18)

=
∂

∂x

⎡⎢⎣ θ∗(x)Z
−∞

F (x, θ) f (θ) dθ +

∞Z
θ∗(XI)

V (x, θ) f (θ) dθ

⎤⎥⎦
x=XI

− F
0 ¡
XI
¢

=
∂θ∗

¡
XI
¢

∂x
F
¡
XI , θ∗

¡
XI
¢¢
f
¡
θ∗
¡
XI
¢¢
+

θ∗(XI)Z
−∞

∂F
¡
XI , θ

¢
∂x

f (θ) dθ

−
∂θ∗

¡
XI
¢

∂x
V
¡
XI , θ∗

¡
XI
¢¢
f
¡
θ∗
¡
XI
¢¢
+

∞Z
θ∗(XI)

∂V
¡
XI , θ

¢
∂x

f (θ) dθ − F
0 ¡
XI
¢

=

θ∗(XI)Z
−∞

∂F
¡
XI , θ

¢
∂x

f (θ) dθ +

∞Z
θ∗(XI)

∂V
¡
XI , θ

¢
∂x

f (θ) dθ − F
0 ¡
XI
¢
,

where primes denote derivatives with respect to x. It can be shown that XI < X .3 From (16), the

value of information is:
3This can be seen by noting that when x ≥ XI , VI (x) = Eθ (F (x, θ))− Eθ (V (x, θ)). Since

∂
∂x

F (x, θ) ≤ ∂
∂x

V (x, θ),

this implies that ∂
∂x

VI (x) ≤ 0 when x ≥ XI . Therefore, there is no point in delaying learning beyond XI , because the

value of information is already decreasing there.

15



VI (x) =

θ∗(x)Z
−∞

A (θ)xβf (θ) dθ +

∞Z
θ∗(x)

V (x, θ) f (θ) dθ −Axβ, x < XI

and the conditions (17) and (18) for XI can be written as:

AI

¡
XI
¢β

=
¡
XI
¢β θ∗(XI)Z
−∞

A (θ) f (θ) dθ +

∞Z
θ∗(XI)

V
¡
XI , θ

¢
f (θ) dθ −A

¡
XI
¢β − C, (19)

βAI

¡
XI
¢β−1

= β
¡
XI
¢β−1 θ∗(XI)Z

−∞

A (θ) f (θ) dθ +

∞Z
θ∗(XI)

∂V
¡
XI , θ

¢
∂x

f (θ) dθ − βA
¡
XI
¢β−1

. (20)

This means that the optimal learning threshold can be found by solving XI together with parameter

AI from theses equations. To guide towards a more intuitive principle of determining XI , note that an

equivalent way to formulate the problem is to consider the value of the option to not only learn, but

also subsequently invest in the actual project: F 0 (x) = FI (x) + F (x). By exactly the same procedure

as with FI , it can be shown that this must be of the form:

F 0 (x) = A0x
β, when x < XI ,

where A0 is a parameter to be solved. If it is going to be optimal to learn before investing, then at

the optimal learning point XI , the following conditions must hold:

F 0
¡
XI
¢
= Eθ

£
F
¡
XI , θ

¢¤
− C (21)

=

θ∗(XI)Z
−∞

F
¡
XI , θ

¢
f (θ) dθ +

∞Z
θ∗(XI)

V
¡
XI , θ

¢
f (θ) dθ − C

¡
F 0
¢0 ¡

XI
¢
=

∂

∂x
[Eθ [F (x, θ)]]x=XI (22)

=

θ∗(XI)Z
−∞

∂F
¡
XI , θ

¢
∂x

f (θ) dθ +

∞Z
θ∗(XI)

∂V
¡
XI , θ

¢
∂x

f (θ) dθ
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or

A0
¡
XI
¢β

=
¡
XI
¢β θ∗(XI)Z
−∞

A (θ) f (θ) dθ +

∞Z
θ∗(XI)

V
¡
XI , θ

¢
f (θ) dθ − C, (23)

βA0
¡
XI
¢β−1

= β
¡
XI
¢β−1 θ∗(XI)Z

−∞

A (θ) f (θ) dθ +

∞Z
θ∗(XI)

∂V
¡
XI , θ

¢
∂x

f (θ) dθ. (24)

These are the same as (19) and (20) with A0 = AI + A. These conditions may be even further

simplified by defining a function

B
¡
θ0
¢
≡ A0 −

θ0Z
−∞

A (θ) f (θ) dθ. (25)

Substituting this in (23) and (24) yields:

B
¡
θ∗
¡
XI
¢¢
·
¡
XI
¢β

=

∞Z
θ∗(XI)

V
¡
XI , θ

¢
f (θ) dθ − C, (26)

β ·B
¡
θ∗
¡
XI
¢¢
·
¡
XI
¢β−1

=

∞Z
θ∗(XI)

∂V
¡
XI , θ

¢
∂x

f (θ) dθ. (27)

where B
¡
θ∗
¡
XI
¢¢
is the function (25) evaluated at θ∗

¡
XI
¢
. Therefore, to determine the optimal

learning rule, the problem is to find two positive real numbers XI and B
¡
θ∗
¡
XI
¢¢
such that (26) and

(27) are satisfied. ThenA0 andAI are easily found by evaluating A0 = B
¡
θ∗
¡
XI
¢¢
+
θ∗(XI)R
−∞

A (θ) f (θ) dθ

and AI = A0 −A.

Conditions (26) and (27) mean that the optimal investment threshold XI is equal to the optimal

threshold of a firm, which has an opportunity to invest in a project with present value
∞R

θ∗(XI)

V
¡
XI , θ

¢
f (θ) dθ

at an investment cost C. We elaborate this finding in a proposition, for which we need some new nota-

tion. Define

eV ¡x, θ0¢ ≡ ∞Z
θ0

V (x, θ) f (θ) dθ,

17



that is, eV ¡x, θ0¢ is the expected value of a special kind of a project, which pays exactly the same
as V (x, θ) if θ > θ0, but zero otherwise. Consider an auxiliary investment problem, where the investor

must choose the optimal time to invest in project eV ¡x, θ0¢ at cost C:

sup
τ
Ex

h
e−rτ

³eV ¡Xx
τ , θ

0¢− C
´i

. (28)

Define eX ¡θ0¢ to be the optimal investment threshold that solves this problem. The optimal learning
threshold of the original problem is now determined by the following proposition:

Proposition 3 The mapping eX ◦ θ∗ has a unique fixed point, which is the optimal learning threshold
XI . This means that the learning threshold XI satisfies:

XI = eX ¡θ∗ ¡XI
¢¢
.

Proof. Function θ∗ is decreasing as discussed before. On the other hand, it is clear that eX is increasing,

since the greater its argument, the smaller the value of the project associated with (28), and thus less

anxious the investor is to invest in it. This implies that eX ◦ θ∗ is a decreasing mapping defined for all
x > 0. It is also straight forward to show that θ∗ and eX are continuous, implying that also eX ◦ θ∗ is
continuous. Consequently, eX ◦ θ∗ must have exactly one fixed point. Conditions (26) and (27) ensure
that XI is the fixed point of eX ◦ θ∗.
We now give some intuition for the optimal learning rule. Proposition 3 means that the optimal learn-

ing point is the same point where it would be optimal to invest in a project with value eV ¡x, θ∗ ¡XI
¢¢
,

which can be written as eV ¡x, θ∗ ¡XI
¢¢
=

∞R
θ∗(XI)

V (x, θ) f (θ) dθ = Eθ

£
V (x, θ)

¯̄
θ > θ∗

¡
XI
¢¤

P
¡
θ > θ∗

¡
XI
¢¢
,

thus representing the expected value of the project on condition that θ is so high that it is optimal to

invest as soon as X > XI , weighted by the probability that this is really the case. Thus, it can be

seen that the optimal timing to learn balances the cost of delaying the learning, which is due to the

possibility that the project is so valuable that the delay in learning causes also a delay in the actual

investment, and the payoff of delaying the learning, which is the standard riskless rate of return on the

18



cost C.

To strengthen the intuition, it is helpful to think of the project V as a portfolio of an infinite number

of indivisible small projects indexed by θ, each weighted by the probability density f . Then, the lack of

information on θ may be interpreted as a constraint that forces the investor to use a single decision rule

for all of these projects. The payoff from learning θ is due to the fact that it allows the investor to use a

separate decision rule for each project, which is obviously desirable. Thus, when considering the optimal

timing of learning, the investor must balance the fact that postponing learning decreases the present

value cost of learning, but on the other hand, it increases the “mass” of projects with high θ, which will

then be undertaken too late, because the constraint that hinders using separate decision rules for each

value of θ is removed too late. This explains why the optimal learning point can be characterized by a

solution to an auxiliary problem in which the investor only cares about the high values of θ.

In summary, the basic trade-off that the investor faces consists of two counteracting effects caused by

an additional delay in learning: 1) delayed cost of learning and 2) increased probability that the project

investment will be undertaken too late. In the next section, I illustrate the optimal learning policy with

a more specified version of the model.

5 Illustration

This section illustrates the main properties of the model. For this purpose, the model is specified further

by choosing a particular form for the function V and probability distribution of θ. In particular, it is

assumed that the present value of the investment is the product of θ and x, and there is a constant cost

of investment, I. Further, θ is assumed to be uniformly distributed along
£
0, θ
¤
, where without loss of

generality I pick θ = 2:
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V (x, θ) = θx− I, (29)

f (θ) =

⎧⎪⎪⎨⎪⎪⎩
0, when θ < 0 or θ > 2

1
2 , when 0 ≤ θ ≤ 2

. (30)

With the functional form of V in (29), it is standard to show that:

F (x, θ) =

⎧⎪⎪⎨⎪⎪⎩
A (θ)xβ, x < X∗ (θ)

θx− I, x ≥ X∗ (θ)

,

where

X∗ (θ) =
βI

(β − 1) θ , (31)

A (θ) =
(β − 1)β−1 I1−β

ββ
θβ .

From (30), E (θ) = 1, which implies that V (x) = x− I. Then:

F (x) =

⎧⎪⎪⎨⎪⎪⎩
Axβ , x < X

V (x) = x− I, x ≥ X

, (32)

where

X =
βI

(β − 1) ,

A =
(β − 1)β−1 I1−β

ββ
.

From (31),

θ∗ (x) =
βI

(β − 1)x when x ≥ βI

(β − 1) 2 . (33)

Figure 1 illustrates X∗ (θ), the optimal investment threshold under full information as a function of

θ. Note that the restriction x ≥ βI
(β−1)2 in (33) is due to the fact that for lower values of x it is not yet

optimal to invest even when the project is as good as it can be, that is, when θ = 2.
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Figure 1: Optimal investment threshold under full information. The parameter values are α = 0,

σ = 0.15, r = 0.05, I = 1.

From (14) and (15), the value of information is:

VI (x) =

θ∗(x)Z
−∞

A (θ)xβf (θ) dθ +

∞Z
θ∗(x)

V (x, θ) f (θ) dθ − F (x)

=
1

2
xβ
(β − 1)(β−1) I(1−β)

ββ

min( βI
(β−1)x ,2)Z
0

θβdθ +
1

2

2Z
min( βI

(β−1)x ,2)

(θx− I) dθ − F (x)

=

⎧⎪⎪⎨⎪⎪⎩
2βxβ (β − 1)β−1 I1−β β

−β

β+1 − F (x) ,

x− I + β2I2

4(β2−1)x − F (x) ,

0 ≤ x < βI
(β−1)2

x ≥ βI
(β−1)2

Inserting (32) we have:
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Figure 2: Value of information.

VI (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2βxβ (β − 1)β−1 I1−β β

−β

β+1 −
(β−1)β−1I1−β

ββ
xβ,

x− I + β2I2

4(β2−1)x −
(β−1)β−1I1−β

ββ
xβ ,

x− I + β2I2

4(β2−1)x − x+ I

0 ≤ x < βI
(β−1)2

βI
(β−1)2 ≤ x < βI

(β−1)

x ≥ βI
(β−1)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
xβ (β − 1)β−1 I1−β 2

ββ−β−β1−β−β−β
β+1 ,

x− I + β2I2

4(β2−1)x −
(β−1)β−1I1−β

ββ
xβ,

β2I2

4(β2−1)x ,

0 ≤ x < βI
(β−1)2

βI
(β−1)2 ≤ x < βI

(β−1)

x ≥ βI
(β−1)

(34)

Figure 2 shows VI with a given set of parameter values and illustrates that it is composed of three

different curves, as (34) indicates.

Applying the value matching and smooth pasting conditions (17) and (18), we find:
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XI =
1

2

β

β − 1
³
I + C +

p
(2IC + C2)

´
AI =

XI − I + β2I2

4(β2−1)XI − (β−1)β−1I1−β
ββ

¡
XI
¢β − C

(XI)
β

Figure 3 illustrates the solution with a given set of parameters. It shows as functions of x the net

present value of information, VI (x)−C, the ex-ante present value of full information investment option

minus the cost of learning, Eθ [F (x, θ)]−C, and the net present value of the project with no possibility

to learn, V (x). The values of the corresponding options to take these assets, FI (x), F 0 (x), and F (x)

are also shown. Notice that the optimal learning threshold XI is lower than X, the optimal investment

threshold under the assumption that learning is not possible. It can also be seen that the smooth pasting

conditions hold for FI (x) and F 0 (x) at XI , as required by (17) and (18) for the former and (21) and

(22) for the latter. Note also that (13) holds, that is, F 0 (x) = FI (x) + F (x). Finally, note that the

value of the option to learn, FI (x), is quite a considerable fraction of the total option value F 0 (x). This

emphasizes the importance for the firm to manage optimally its learning options.

It is interesting to look at how the value of information is affected by changes in key parameters.

Figure 4 illustrates VI (x) − C and the corresponding option value FI (x) at different values of σ. It

is interesting to note that the increased uncertainty in the exogenous state variable x decreases the

value of the option to learn. This is in contrast with the usual effect of uncertainty on option values.

For example, it is well known that in the standard investment model with complete information on

the payoff, increased uncertainty increases the value of the option to invest. In our model, increased

uncertainty indeed increases the value of the option to undertake the project (as in standard models),

but on the other hand decreases the value of the learning option. The explanation is that the greater

the exogenous uncertainty, the less it seems to matter if the investment is undertaken at the wrong time,

thus less valuable the information that helps to make correct timing decisions. Note that if C is suitably

chosen, it may very well be the degree of exogenous uncertainty that determines whether it is optimal

23



-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,5 1 1,5 2

( ) CxVI −

( )xF 0

( )[ ] CxFE −θθ ,
( )xV

( )xF

( )xFI

XIX

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,5 1 1,5 2

( ) CxVI −

( )xF 0

( )[ ] CxFE −θθ ,
( )xV

( )xF

( )xFI

XIX

Figure 3: Optimal learning rule and the associated option values and payoff functions. The cost of

learning is C = 0.1, other parameters are as in Figure 1.

to learn in the first place.

Figure 5 illustrates VI (x) − C and the corresponding option value FI (x) at different values of α.

The effect is similar to that of σ: increased α decreases the value of the learning option. The intuition

can be explained as follows. When α is low, the prospects for high values of x in the future are low.

Thus, with low α, an underestimation of the true value of θ has a high cost, because it postpones the

investment further into the future than with high α. Therefore, the potential loss due to incomplete

information is high at low α, and thus the value of learning is high.

6 Conclusions

We have considered the optimal decision rule of a firm that faces an uncertain environment, and has

an opportunity to undertake an irreversible investment project on which it has incomplete information.

The firm is allowed to learn the true value of the unknown parameter at any time at a given cost. It has
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Figure 4: Value of information at different values of σ. The other parameters are as in Figure 3.
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Figure 5: Value of information at different values of α. The other parameters are as in Figure 3.

25



been shown that the instantaneous value of information is driven by the exogenous stochastic variable.

The value of the option to learn has been characterized, and the conditions for the optimal timing of

information acquisition have been identified. Through a more specified version of the model, it has been

demonstrated that the increased exogenous uncertainty and increased rate of growth of the project value

decrease the value of information.

There are some potential directions for further work. The possibility to extend the framework to

the purchase of multiple informative signals or the determination of the signal precision was already

mentioned in the introduction section. It is also possible to consider interaction of the learning options

with other decision variables besides timing of investment, for example the scale of investment or market

entry with a choice of quality level. An interesting, but more distant direction for future research would

be to incorporate market interactions and information externalities. One could envision the production

and sale of information to be conducted by other parties than the investor (see Admati and Pfleiderer,

1990, for the sale of information in a different context). There is also a recent literature that combines real

options analysis and game theory. Papers that incorporate incomplete information include Grenadier

(1999), which considers a setting where firms with private information update their beliefs by observing

each other’s investment decisions, and Lambrecht and Perraudin (2002), which considers competition

over a single investment project, where competing firms have incomplete information on each other’s

investment cost. On the other hand, there are numerous deterministic models that study strategic effects

of information externalities. A possible direction for future work would be to incorporate concepts from

such literature in our framework in order to consider the strategic value of learning options.
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