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“ MARKET AND PROCESS UNCERATINTY OPERATIONS” 

 
 
 
 

ABSTRACT 
 
By adopting a real options framework, we develop and analyze a production control model that jointly 
incorporates process and market risks. In our model, process risk is typified by random yield variability 
while market risk is defined through demand uncertainty. The stochastic processes used to depict 
uncertainty in these state variables reflect a wide variety of distributional forms and are not confined to 
the traditional processes typically used in the real options literature.  In our approach, the production 
inputs represent renewable, partially renewable or non-renewable resources. Furthermore, the 
production outputs are treated as non-traded assets, so that the model has a much broader range of 
applicability beyond that of standard commodities for which futures contracts trade. 
 
 
Given this setting, techniques of contingent claims analysis and stochastic control theory are employed 
to obtain value maximizing production policies in a constrained capacity environment. In light of the 
stochastic nature of the state variables, the rate of production is modeled as an adapted positive real-
valued process and analogously evaluated as a sequence of complex real options.  As the optimal 
adjustments to the rate of production also depend on the outputs’ yield, we establish and explore 
“flexibility triggers” justifying variations to the rate of production over time.  This is achieved by 
providing closed form analytic results in the presence of generalized diffusion processes including mean 
reverting processes for the state variables to follow. We also use a numerical example to highlight the 
model’s sensitivity and contingent features. 
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 ( I )   INTRODUCTION 
 
The integration of uncertainty and management of risk has been, unequivocally, one the most important 
aspects of recent research in the operations arena. Research on this front essentially addresses two basic, 
though significant questions. First, how operating uncertainty and its consequent risk affect operating 
policies? Second, what are the ensuing economic ramifications and insights when uncertainty is 
explicitly accounted for and related risk(s) are truncated.  In this paper, besides addressing these 
questions within a specific context, we also provide a link between them. In particular, given explicit 
sources of uncertainty, we explore economic triggers that justify operating flexibility and establish how 
flexibility in operating policies has economic value. 
 
In most operational environments, commonly encountered sources of uncertainty can be generically 
classified by time, quantity, and price (or exchange rate).  Time uncertainty is primarily due to 
variations in lead-times, arrival times, or processing times. Traditionally, decision makers have 
eliminated such risks by early placement of orders, by stockpiling needed material or by installing 
additional resources, all at the expense of higher inventory, resource acquisition and placement costs.  
Quantity uncertainty can be either external or internal. The former is typified by forecast errors of future 
sales or by random demand fluctuations. In the latter case, quality, design, or technology factors and 
complexities in processing often result in random variations in the actual yields observed.  Frequently, 
managers protect against the downside exposure effects to either type of quantity risk by producing 
larger lots and through maintaining inventories from which their contractual obligations could be met.  
However, this too comes at the expense of an increased overhead, as manifest by higher wages, 
maintenance, production, and inventory costs.  Price uncertainty for any input or output in competitive 
markets results from fluctuations in supply and demand.  In situations where the inputs or outputs reflect 
standard commodities for which (e.g., futures) contracts are traded, their downside risk be blocked by 
taking a hedged position in the financial markets. Production efforts in mining, memory chip 
manufacturing (using copper, silver or gold), special metal alloys for use in the aviation and aerospace 
industries are prime examples of this situation.  In almost all other cases, the risk of price uncertainty is  
borne by the producer. In such cases, the typical protective strategy is an “operational hedge”. Carrying 
additional input or output inventories is an example; of course, this too comes at the usual expense of 
increased holding costs. The only exception reflects instances where prices are contractually established 
and fixed, and in effect, a forward contract is at hand.  
 
In this paper, we exclusively focus on quantity uncertainty, its risk ramifications and impact on 
production policies. In particular, we consider production settings characterized by both demand and 
production yield uncertainty. Given this premise, we establish and explore production “flexibility 
triggers”. That is, the conditions under which altering production policies become economically 
justifiable. In this context, the value additive nature of such policy revisions is also explored. By 
assuming that both demand and yield variables follow well behaved and tractable stochastic processes 
(e.g. Brownian motions), techniques of Contingent Claims Analysis-CCA (real options) and stochastic 
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control theory are employed to properly take into account the opportunity’s risk structure and to 
optimally establish production policies in a manner consistent with a value maximization objective.  
 
Several factors, some interrelated, motivate the objectives of the paper and the approach taken in 
reaching them.  Although, the simultaneous inclusion of demand and yield uncertainty in the operations 
literature is not a new concept, their concurrent treatment as generalized stochastic processes and within 
the context of a real options framework is a new contribution.  By way of tradition, the operations 
literature on this front has characterized demand and/or the yield as random variables. This approach is 
essentially static. Thus, the impact of time on the assumed distributions’ moments and the resulting 
production policies is effectively ignored, or at least dampened. In contrast, the use of stochastic 
processes in depicting the random behavior of the demand and yield variables obviates these 
shortcomings.  As a consequence, this choice not only accommodates the higher moments’ influence on 
the analysis, it also captures the impact of time dynamics on the resulting optimal policies and their 
values. Furthermore, if adjustments to production policies are to reflect the management’s reaction to 
process and/or market uncertainty, then the flexibility to adjust policies in response to the uncertainties 
encountered must be value additive. Clearly, the framework adopted for such a model dictates the 
soundness of the results. That is, the model capturing the effects of risk truncation and the value of 
flexibility must be consistent with an equilibrium value structure.  Otherwise, any anomalies 
encountered in the results obtained are unlikely to be due to the specific policies or actions considered. 
Rather, they will reflect the inconsistencies in the model’s equilibrium structure. In this context, the 
operations literature has typically treated many of the factors that implicitly affect equilibrium as given. 
These concerns signify our choice of a real options (contingent claims) and control theory approach to 
the analysis. 
 

Review of the real options literature indicates that the majority of real options (CCA) applications 
involve production efforts in mining or extraction based projects where outputs reflect traded 
commodities and with output prices as the typical source of uncertainty. Other measures of market risk 
including exchange rate or demand uncertainty have, albeit to a lesser extent, also found their way into 
the current (real options) literature. However, a notable void in this literature concerns process risk 
typified by reliability issues, lead-time uncertainty, system breakdowns or output yield variability. 
Another omission is the application of CCA methodology to a broader set of production-based problems 
where the output(s) are not traded commodities. Specifically, the analysis of manufacturing or other 
production related projects in the presence of both market and process uncertainty is of tremendous 
interest. Accordingly, a further objective of this paper is to also broaden the scope of the real options 
applicability in the operations arena, by specifically including outputs that are not traded commodities.  
 
To that end, we consider the problem of analyzing and valuing production opportunities (primarily 
manufacturing) characterized by significant “market” and “process” uncertainty. In our analysis, market 
uncertainty is defined by demand variability1.  The notion of “process” or “operating” risk is captured 

                                                 
1  Since the output is not a traded commodity and in that sense its market risk cannot be hedged through other traded assets. 
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by yield uncertainty: which we define as a random multiplier to the output quantity, reflecting the usable 
portion of the output levels which are then sold in competitive markets. Here, variability in the output 
yield is introduced to allow for the inevitable variations that arise in the pattern of output quantities 
typically due to quality or processing reasons. By incorporating output yield as an uncertain factor in 
our analysis, we can also explicitly allow for the inherent operating options that may be available to 
managers in the more severe cases of yield variability. For example, in a manufacturing setting such an 
option may be manifest as a trigger for system or technology choice alternatives: that is, upgrading, or 
new facility acquisitions, etc.  
 
The literature on yield problems in production enjoys a noteworthy and rich heritage. Initially, and 
motivated by yield variations in agricultural crops, Karlin (1958) considered the inventory implications 
of uncertain outputs.  By considering a multi-period ordering environment and assuming that production 
yields are binomially distributed, Mazzola, McCoy, and Wagner (1987) derive an EOQ model that 
allows for backlogging.  Given demand uncertainty and defective shipment quantities, Moinzadeh and 
Lee (1987) provide an analysis of a continuous review model. The inventory implications of a finite 
horizon, single product production model in the presence of demand and yield uncertainty is due to 
Gerchak, Vickson and Parlar (1988). By assuming a single period, single product, multistage production 
setting with random production yields at each stage, Lee and Yano (1988) develop a model indicating 
that stage dependent costs and a convex function of each stage’s production. Bitran and Dasu (1992) 
develop a model for establishing ordering policies in the presence of stochastic yields and demand 
substitutability. An extensive and rich review of the random yield literature can be found in Yano and 
Lee (1995). 
 
As the recent literature in real options (CCA) reveals, most applications typically involve projects with 
well-defined risk characteristics. Essentially this typifies the class of projects whose costs or revenues 
directly depend on, or can be linked to, the prices of traded assets or commodities so that data for 
quantifying their risk is, at least partially, available.  For these and other similar type projects, CCA 
methods can be applied to obtain an arbitrage free valuation model where financial risks may be fully 
eliminated through proper hedging in the futures market. This arbitrage valuation framework is 
attractive since in the absence of priced risk elements the model’s complexity in terms of parameter 
estimates and discount rate derivations is substantially reduced.   The advantages of a CCA approach to 
the analysis of real options have been well cited in the literature. Brennan and Schwartz (1985) consider 
production flexibility issues in mining projects with multiple options to open, close and to subsequently 
abandon the project. In their paper, the notion of market risk is captured through output prices, which 
are assumed random in nature. Furthermore, the output is also taken to be homogenous in its 
composition and therefore, not subject to yield variability. Kamrad and Ernst (2001) extend their elegant 
analysis to additionally reflect yield variability in the outputs. The general solution to the classical 
“duration” problem of a long-term renewable resource is provided by Morck, Schwartz and Stangeland 
(1990). In their production control model, price and the level of inventories reflect the sources of 
uncertainty. Audreou (1990) provides a model for valuing flexible plant capacity when demand 
conditions are uncertain whereas He and Pindyck (1992) consider an investment model of flexible 
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production capacity. More recently, Kamrad and Lele (1998) consider price uncertainty and system 
failure risk and develop an optimal production and maintenance expenditure policy in light of a 
warranty on shared failure repair costs. Investment mode options and exchange rate uncertainty, is 
addressed by Kouvelis and Sinha (1994).  Exchange rate related work includes Dasu and Li (1997) who 
develop optimal operating policies; Huchezermeier and Cohen (1996) addressing operational flexibility 
concerns for the purposes of strategic global manufacturing; and Kogut and Kulatilaka (1994) who 
consider production shifts among plants in a network of manufacturing centers. Kamrad and Siddique 
(2003) also consider supply contract valuation problems in the presence of multiple exchange rates and 
supplier reaction options.  
 
Through adopting a CCA framework, we develop a production control model for the analysis of 
manufacturing and other production-based projects typified by market and process risk. In what follows, 
market risk is characterized by output demand uncertainty.  The depiction of market risk by demand 
uncertainty is in part motivated by the fact that for a large class of production based outputs, typically 
manufactured items, price uncertainty is not a serious risk issue, where as demand uncertainty is critical. 
In addition, this choice also addresses the general “non-tradability” concern pertaining to manufactured 
outputs. In this context, our paper extends the conceptual contributions thus far provided by the 
literature.  Process uncertainty is characterized by output yield reflecting the refined or the usable output 
portions. By incorporating the yield factor into the analysis, we can explicitly account for the inherent 
heterogeneity problem existing in many production processes. For instance, in the case of mining 
projects, some reserves may be less accessible and more costly to extract (i.e. the resource to be 
exploited is non-homogeneous), therefore, inducing an abandonment option consideration. In a 
manufacturing environment, on the other hand, yield variability may induce a system replacement or 
repair, or an overhaul option if system calibration fails to regulate the yield problem. Though vastly 
different from the more traditional models of yield variability encountered in the operations and 
manufacturing literature, our approach maintains the similarity that the yield variable is modeled as an 
independent multiplier to the output quantity. In this light, we formulate a production control model 
maximizing the value of the operations in an environment typified by operating options. For this 
purpose, the techniques of stochastic control theory are employed to optimally adjust the rate of 
production in a manner consistent with a value-maximizing criterion.  Given appropriate yet 
straightforward modifications, the yield variability problem may also be modeled as uncertainty in the 
quality (or usability) of locally supplied inputs in the broader context of a supply chain problem. 
 
The paper is organized as follows. In the next section we define the notation, state the necessary 
assumptions and develop an options based production control model resulting in a Bellman equation 
subject to appropriate boundary conditions. Within this framework, we assume there are no finished 
goods inventories and that the producer, in response to market and process uncertainty, produces at the 
rate that maximizes the value of production.  However, we assume that the producer maintains an 
inventory of the needed raw materials through which the finished goods are produced. We model this 
inventory system in such a way to allow for the full characterization of the resource to be exploited. 
That is, whether or not the resource in question is renewable. This is important since within our setup 
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we can easily distinguish the type of industry within which the production effort lies. For instance, if the 
raw material inventory is a renewable resource, the production effort represents a manufacturing 
operation. On the other hand, if the reserves reflect a nonrenewable resource, the case at hand typifies 
mining or extraction based operations. Our inventory setup also accommodates situations reflecting 
partially renewable resources: as in timber production with required replanting.   
 
We assume that the risk associated with the output’s yield is not priced, and therefore does not induce 
an additional premium. Here, our model is derived in a general equilibrium context that parallels the 
findings of Constantinides (1978) and McDonald and Siegel (1985). Since the resulting model (Bellman 
valuation equation) does not yield an analytic solution, it must be solved numerically to obtain results. 
Nonetheless, closed form solutions for the optimal production policies are obtained.  In the next section, 
by invoking the Feynman-Kac results, we show how to derive the solution numerically along with the 
resulting optimal production policy to be followed. To that end, a multinomial lattice approach provides 
the basis for approximating the stochastic evolution of the state variables. By superimposing a dynamic 
programming algorithm on the lattice numerical solutions are obtained recursively. This procedure is 
then illustrated through a stylized example. Section V provides concluding remarks. 
 
The contributions of this paper are as follows. First, it introduces a framework for analyzing production 
based projects characterized by both market (demand) and process (yield) uncertainty. The framework 
introduced can be easily modified to accommodate other sources of market and process uncertainty.  
Second, the paper further extends the current literature’s findings to a much broader class of production 
problems. In particular, we examine manufacturing or other non-extraction based production control 
problems where the inputs may reflect renewable, partially renewable or non-renewable resources. 
Third, the class of production outputs considered herein reflect non-traded assets, and thus generalize 
the scope of applicability of this approach beyond that of commodities for which futures and other 
financial contracts trade. This is important since it fills a void in the existing literature, in light of the set 
up considered. In that capacity, this paper also provides for future research opportunities in the 
operations arena using a CCA approach. Fourth, the base model developed draws from generalized 
stochastic processes (Brownian motion) to depict the sources of uncertainty considered and to obtain 
closed form results. Finally, and in light of quite robust numerical results, the model presented in this 
paper is sufficiently adaptable to allow for the inclusion of other sources of market or process 
uncertainty and the stochastic processes characterizing such uncertainty.  
 
( II )  Assumptions and Model Development  
 
Let ( )DZ t ∈ and ( )YZ t ∈ define standard Brownian motions that are martingales with respect to the 

probability space,(Ω,F,ℑ,P). The filtered probability space, (Ω,F,ℑ,P) is defined over the pre-
established time interval [0, ]τ  where the augmented filtration, ℑ = {Ft :t∈[0,τ ]}, is right-continuous 

and increasing.  In general, let the process depicting uncertainty be defined by {X(t): t ≥ 0},  where its 
sample path is posited by an Ito differential equation of the form:  
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( ) ( , ) ( , ) ( )XdX t M X t dt S X t dZ t= +                                                             (1) 

The drift function, ( , )M X t denotes the instantaneous change in X(t).  The volatility function, 
( , )S X t denotes the standard deviation of the growth rate, and ( )XdZ t is an instantaneous increment to the 

Brownian motion; ( )XZ t ∈ , defined above.  We now specify the model assumptions. The output’s 
demand process { ( ) : 0}D t t ≥ is depicted by the following forms of equation (1): 

             ( ) ( ){ } ( ) 0( ) 0 0D D DdD t D t dt dZ t            D Dα σ= + = >                              (2a) 

         ( ) [ ( )] [ ( )] ( )D D DdD t D t dt D t dZ t= − + ηκ µ σ       0(0) 0D D= >                              (2b)   

In expression (2a), the constant drift parameter Dα represents the instantaneous expected growth rate in 

demand; the constant per unit variance of the growth rate is 2
Dσ and the Brownian increment 

is ( )DdZ t which was defined earlier. The demand process captured by (2a) implies that the conditional 

distribution of D(t) given D(s), [0, ]t s τ> ∈ , is lognormal and that D(t) > 0 for all [0, ]t τ∈ , if 0 0D > .  
Note too, that a simple log-transform would imply a corresponding conditional normal distribution for 
the demand process.  Expression (2b) reflects a generalized “mean reverting” process.  The mean 
reversion constant, 0κ ≥ can be thought of an elastic force that pulls D(t) to its long run mean Dµ which 

is assumed to be positive. As 0κ ≥ becomes smaller, the excursions around the mean become longer. In 
general,η is arbitrary. For 1η = , the process is known as an Ornstein− Uhlenbeck process or an 

inhomogeneous geometric mean reverting process. When 1 / 2η = , D(t) follows a non-central 2χ (Chi-
squared) distribution with finite mean and variance parameters.  The above specifications accommodate 
a wide range of probability distributions for the demand process depending on the parametric choices. 
 
We assume demand substitutability is not an alternative and that backlogging is not allowed. 
Furthermore, the producer does not stockpile finished products and hence there are no finished goods 
inventory concerns.  This implies that given the available production capacity, the producer aims to 
meet as much of the demand as possible. To reduce the potential for the overage costs, we implicitly 
impose a penalty constraint to that effect.  We also assume that the producer’s actions do not affect the 
market demand for the output and that the producer is a value maximizer.  In the current context, 
producer’s actions are depicted by the rate of production, ( , , )q D I t ≡ ( ), [0, ]q t t τ∈ with ( ) ( )0,∈q t Q and 
where Q defines the current available production capacity. In our set up, { ( ) : [0, ]}q q t t τ= ∈ is an adapted 
positive real-valued process. The flexibility afforded by having the option to revise operating policies in 
reaction to both market (i.e.,demand) and process (i.e.,yield) uncertainty is value additive and as such is 
viewed as a sequence of  (real) nested options.  
 
Given that there are no finished good inventories in meeting the demand for the output, the producer 
simply produces at rate ( )q t in a manner that maximizes the operating profits. The producer, however, 
maintains an inventory of needed raw materials from which finished goods are produced. Let 
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( ), [0, ]I t t τ∈  define time t level of input inventory. Supposing 0(0) 0I I= >  defines the initial known 
level of the resource, we have, 

   ( ) ( ( )) ( )dI t q t q t
dt

φ= −               (3) 

The function (.)φ is used to determine whether or not the resource in question is renewable. Although, 
many forms for this function could be examined, in this paper we consider only the simple functional 
form, ( ( )) ( )q t q tφ ξ= with 0 1.0ξ ≤≤ . When 0ξ = , the resource considered is non-renewable and the RHS 
of equation (3) simply reduces to ( )q t− . When 1.0,ξ = the resource is instantaneously renewable: in other 
words, the supply is effectively infinite.  All other cases (i.e. 0 1ξ< < ) present a partially renewable 
resource with the RHS of equation (3) becoming ( 1) ( )q tξ − .  In this case, the rate of depletion or 
extraction is faster than the rate of replenishment.  Though not used in the context of this paper, it is also 
possible for 1ξ > , implying that rate of inventory replenishment is faster than the depletion rate; this 
case would be relevant if the capacity Q increased over time. The production cost function, ( ( ))q tK  is 
assumed to be non-linear. In particular, we assume that ( ( )) 0q tK ≥′′ , depicting increasing marginal cost of 
producing an additional unit of the output. 
 
The net usable output resulting from production at rate ( )q t is defined as ( ) ( )q t Y t .  The yield 
variable ( ), 0{ }Y t t ≥ is conceptualized as an independent multiplier to the output rate and is assumed to 
follow a stochastic process that is also characterized by an Ito differential equation: 

  ( ) ( , ) ( , ) ( )Y YdY t Y t dt Y t dZ tµ σ= +  0(0)Y Y= >0   (4) 

Thus, ( )Y t describes the state of the production process at time t and its realization is known at the 
instant that the incremental production decision is made. Expression (4) fully characterizes the process 
depending on the choice of the drift function, (.)µ and the volatility function, (.)Yσ . Furthermore, in light 
of specific functional forms for (.)µ and (.)Yσ , and conditional on time [0, ]s τ∈  information, it may be 
possible to define the probability distribution for ( )Y t with ( )Y s given, [0, ]s t τ< ∈ . We defer specifying 
functional forms for (.)µ and (.)Yσ and address this concern in our results’ section and in light of a 
contextually meaningful distribution for ( )Y t to follow.  We assume the Brownian increments defined 
earlier are orthogonal. That is, 

   ( )( ) ( ) 0DY D Ydt E dZ t dZ tρ = ⋅ =            (5)       

Let ( ), [0, ]t  tπ τ∈ define the deterministic output price so that the yield-affected revenue resulting from 
producing at rate ( )q t at time t, is ( ) ( ) ( )q t Y t tπ .  To develop the valuation model, let ( , , , ; )V D Y I t q  
represent the production value at time t given that the demand is ( )D t , the yield factor is ( )Y t , the level 
of input inventory (or remaining untapped resource level) is ( )I t , and where the production rate is set at 

( )q t . The function ( , , , ; )V D Y I t q  is taken to be Ito differentiable.   
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As a preliminary to developing our valuation model, we allow for the existence of a financial security 
that has the same covariance with market return as does demand2. Suppose ( )W t depicts the price of this 
traded security at time [0, ]t τ∈ and that the equilibrium growth rate on this financial asset is Wα . We 
assume that the instantaneous change in the price level of this security is characterized by the following 
stochastic differential equation, 

( ) ( ) ( ) ( )W W WdW t W t dt W t dZ tα σ= +                                (6) 

Expression (6) defines a geometric Brownian motion, with Wα  and Wσ reflecting the constant drift 

(expected rate of return) and volatility (standard deviation of rate of return) parameters. 
Here, Wα represents the equilibrium rate of return on a financial security having the same covariance 

with the market return as does the demand.  Let Mα and Mσ  define the instantaneous expected rate of 
return (drift) and the standard deviation of the rate of return on the market, respectively. The unexpected 
rate of return component defined by, ( )M MdZ tσ , with ( )M tZ ∈  as a standard Brownian motion that is 

also a martingale with respect to the probability space, (Ω,F,ℑ,P). The constant and riskless rate of 
return is depicted by r.  Employing Merton’s (1973) Intertemporal Capital Asset Pricing Model, the 
market premium on this financial security is given by WM Wλρ σ , which for valuation purposes is 
equivalent to DM Dλρ σ . Here, WMρ and DMρ define the instantaneous correlation on returns between the 
financial security and the market and that of the demand and the market, respectively3.  By definition,  

M

M

rαλ
σ
−

=                                                                                         (7) 

 Furthermore, let the rate of return shortfall be defined by W Dψ α α= − , withψ unrestricted in sign. By 

employing an intertemporal CAPM approach, the equilibrium rate of return on the financial security 
must reflect an adjustment for systematic risk.  In this context, we have:  

  W DM Drα λρ σ= +               (8) 

Recall, by definition, WM W DM Dλρ σ λρ σ= 4. Given this setup, we can obtain V(.) using a replicating portfolio 
approach. In particular, consider portfolio G(t) consisting of a long position in V(.) together with a short 
position ofδ  units in security, ( )W t . The instantaneous change in the value of this portfolio, in light of 
the necessary cash flow adjustment is, 

   ( ){ }( ) ( ) ( ) ( ) ( ) ( ) ( )dG t dV t dW t q t Y t t K q t dtδ π= − + −                                        (9) 

The expression in curly brackets denotes the reward function ( ( )).R q t To ensure the existence of only 
diversifiable risks, set ( ) ( )( / ) ( / )tD W V Dδ ⋅ ⋅= ∂ ∂ . Absent arbitrage opportunities, this implies that the 

expected return on this portfolio, ( )( )E dG t should be the riskless rate so that, 

                                                 
2  We will use this condition to arrive at equations (8 and 10). 
3 By definition DM M D WM M Wρ σ σ ρ σ σ= , since the financial security has the same return covariance with the market as does the 

demand. Thus, DM D WM Wρ σ ρ σ= . That is, ( ( ) ( )) ( ( ) ( ))M D D M W WE dZ t dZ t E dZ t dZ tσ σ⋅ = ⋅ . We use this to obtain expression (8) using 
a CAPM framework. 
4 See also Constantinides (1979) and, McDonald and Siegel (1985).  Equation (8) is consistent with their findings. 
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   ( )( ) ( )E dG t rV t dt=                                       (10) 

Through applying Ito’s lemma to the right hand side of equation (9), taking the resulting expectations, 
and equating it to expression (10) we obtain the desired Bellman valuation equation. Using equation 
(2a), it follows without loss of generality that 5,  

2 2
2 2 2

2 2[0, ]

1 1( ) ( , ) ( , ) [ (1 )] ( )
2 2

0D Yq Q

V V V V V VD r Y t D Y t q Y K q rV
D Y t D Y I

Max ψ µ σ σ π ξ
∈

 ∂ ∂ ∂ ∂ ∂ ∂
− + + + + + − − − − ∂ ∂ ∂ ∂ ∂ ∂ 

=     

(11) 
 s.t.            

0
( , , , ; ) 0

→
=

Y
lim V D Y I t q        (12a) 

0
( , , , ; ) 0

→
=

D
limV D Y I t q        (12b) 

( , , , ; )
→∞

< ∞
D

V D Y I t q
D

lim        (12c) 

( ) [0, ]∈q t  Q         (12d) 
( , ,0, ; ) 0=V D Y t q        (12e) 
( , , , ; ) ( , )τ τ=V D Y I q C I         (12f) 
( , , , ; ) ( , ) 0+ ≥V D Y I t q P I t       (12g) 

Equations (12a-g) characterize the constraints to the above Bellman equation (11). First, we assume that 
the value goes to zero as the yield goes to zero. That is, ( ) 0Y t = is an absorbing state, since the 
production effort becomes valueless (12a). Likewise, ( ) 0D t = is an implied absorbing state given 
equation (2): i.e. equation (12b). We further assume that the value function is bounded above 
by ( )cD t where c < ∞ is a constant (12c). This regularity condition is stated for completeness; it is trivially 
satisfied since the production capacity is bounded above by Q, as indicated by equation (12d). We also 
assume that the value drops to zero when the input level inventory falls to zero. The terminal value at 
the close of the project is defined by function ( , )C I τ  via equation (12f). To account for shutdown as a 
flexibility option, equation (12g) ensures that the operating value of the production effort exceeds the 
corresponding shutdown cost, as reflected by ( , )P I t . Other constraints, besides expressions (12a-g), may 
also be relevant. For instance, penalty constraints on excessive production overage or underage or 
switching constraints on output level changes reflect a few examples.  To illustrate their impact these 
constraints will be incorporated into our model when we solve it numerically. Several issues regarding 
equation (11) are noteworthy. In particular, consider the first term in equation (11) reflecting the 
quantity ( )r ψ− . This quantity has effectively replaced the original drift term of the demand process as a 
result of a replicating strategy barring arbitrage opportunities (see equations (9) and (10)). In the current 
context, ( )r ψ−  is an equivalent martingale representing the average growth rate for the demand process. 
Specifically, ( )r ψ− characterizes the “market” adjusted instantaneous growth rate of demand with ψ  
unrestricted in its sign and where W Dψ α α= − . Recall that, Wα  is the expected rate of return on a 
financial asset having the same (financial) risk as the demand variable. When 0ψ < , it implies that the 
expected growth rate of demand is greater than the equilibrium rate of return on a security (here, 
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proxied by W) that has the same financial risk in the market as the  demand. In contrast, when 0ψ > , the 
expected growth rate of demand is less than the aforementioned equilibrium rate of return6. The above 
discussion and findings are consistent with results obtained by Constantinides (1978) and McDonald 
and Siegel (1985). The latter paper also includes a more detailed and intuitive discussion7. In light of the 
above setup and results, for valuation purposes the demand process can be depicted by, 
 

                  ( ) ( ){ } ( ) 0( ) ( ) 0 0D DdD t D t r dt dZ t         D Dψ σ= − + = >                                 (13) 

In what follows, closed form results regarding the optimal policies are provided. However, the value of the 
project, as characterized by equation (11), must be solved for numerically (as we demonstrate in section 
III.2) since the Bellman valuation equation does not yield closed form ‘value’ results.  We note that an 
alternative approach would be to formulate the valuation problem as a stochastic dynamic program, subject 
to the aforementioned or other relevant constraints.  Indeed, in section III.2 we adopt such an approach and 
include practical constraints to obtain results numerically. However, we believe that our CCA formulation 
provides additional and complementary insights as shown below. 
 
(III)  Results 
This section provides closed form results for the optimal operating policies. Later, numerical results for 
the project’s value are addressed and reviewed. To this end, we assume that the production cost 
function ( ( ))K q t  is non-decreasing (monotone) in the rate of production, ( )q t .  In particular, we assume 
that the production cost function is quadratic, having the functional form: 

2
0 1 2( ( )) ( ) ( )K q t k k q t k q t= + +                                                  (14) 

where the monoticity conditions imply that 1 2 0,k k ≥ .  We further assume that the drift and volatility 
functions to the yield process are defined by, 
                                                                 ( , ) ( , )Y YY t   and  Y tµ µ σ σ= =  
where  and µ σ  are constant parameters.  That is, 

( ) ( )Y YdY t dt dZ tµ σ= +                 0(0)Y Y= >0       (15) 

thereby implying that the distribution of the yield variable Y(t), given Y(s) with ,and , [0, ]t s t s τ> ∈  
follows a doubly truncated normal distribution with zero as an absorbing barrier and with one as a 
reflecting barrier for Y(t).   Furthermore, in some situations, a mean reverting process is a more appropriate 
description for the demand variable. Our model can easily accommodate this adjustment. In particular, if the 
demand process were defined according to expression (2b), then the resulting Bellman valuation equation is: 
 

2 2
2 2 2

2 2[0, ]

1 1
[ ( )] ( , ) ( , ) [ (1 )] ( )

2 2
0µ σ σ π ξψ

∈

∂ ∂ ∂ ∂ ∂ ∂
− + + + + + − − − −

∂ ∂ ∂ ∂ ∂ ∂

 
 
 

=D Yq Q

V V V V V V
D r Y t D Y t q Y K q rV

D Y t D Y I
Max  (16) 

                                                 
5 Note that changes in the economy are assumed independent of the overall economy and therefore not priced. 
6 If instead of demand uncertainty we were to represent market uncertainty through stochastic prices for the output and had it been 
the case that the output were a commodity for which futures contracts traded, then ψ would represent the commodity’s convenience 
yield instead. See Brennan and Schwartz (1985). 
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subject to the same constraints as before: that is (12a-g).  Note too that the only difference between the 
Bellman equations (11) and (16) is the first term inside the brackets involving the partial w.r.t. D(t) with;  

with ) and    (      W D D W WD
D

κ
ψ α α µ α α κα− = += =                                (17) 

where as in equation (8), W DM Drα λρ σ= +   
 
( III.1 )  Optimal Production Policies 
If the input inventory level at time [0, ]t τ∈ drops to zero, so will the value function as constraint (12e) 
indicates.  To ensure production remains a viable option, we assume that (input) inventory is strictly 
positive during the planning horizon.  If this were not the case, we would simply devise an optimal 
policy over time until the inventory is fully exhausted, and that would complete the analysis. Thus, we 
assume that the input inventory level remains positive over the period [0, ]τ . A sufficient condition for 
this assumption is that (0) (1 )I Qτ ξ> − . 
Theorem 1:  
Let (0) (1 )I Qτ ξ> − with 0 1ξ≤ < . Suppose that the demand process is defined by either expression (2a) 
or (2b). Also assume that the production cost function, ( ( ))K q t is an increasing convex quadratic 
function in the production rate, ( )q t . The optimal production policy { *( ), * [0, ]}, [0, ]τ∈ ∈q t  q  Q  t  is 
given by: 

* ( )

( )
( ) [ ( ), ]C

D t

Y t
q t Min q t=                                                       (18) 

                  

where                                               

( ) ( )
*( ) ( ) ( ) ( )

*0 ( ) ( )

( )C

Q if Y t Y t

q t if Y t Y t Y t

if Y t Y t  

q t

 ≥
= < <


≤

  

  
with 

1

2

( )( ) ( ) ( (1 ))
( )( )

2

Vt Y t k
I tq t

k

π ξ∂ ⋅
− + −

∂=      (19) 

2 1
( )2 ( (1 ))
( )( )

( )

Vk Q k
I tY t

t

ξ

π

∂ ⋅
+ + −

∂=      (20) 

 

1/ 2
1 0 2

*

( )( (1 )) 2( )
( )( )

( )

Vk k k
I tY t

t

ξ

π

∂ ⋅
+ − +
∂=  (21) 

Proof: See Appendix A 
Note that the demand process provides an effective upper bound for production.  The inventory level 
affects the production decision through the term ( ) ( )/ tV I⋅∂ ∂ . For example, when the relative price of raw 
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materials rises sharply, the firm may exercise its shutdown option and sell the input.  When 1ξ = , the 
supply of the input material is effectively infinite and the only relevant costs are the processing cost, 
which is absorbed into ( ( ))K q t .  
Corollary 1:  
Assume further that 1ξ = . In this case, the optimal production policy * *{ ( ), [0, ]}, [0, ]q t  q Q t τ∈ ∈  is 
given by: 

* ( )

( )
( ) [ ( ), ]C

D t

Y t
q t Min q t=                                                           (22) 

 

where                                         *

*

( ) ( )
( ) ( ) ( ) ( )

0 ( ) ( )
( )C

Q if Y t Y t
q t if Y t Y t Y t

if Y t Y t  
q t

 ≥


= < <
 ≤

    

 

with                                                      1

2

( )( )
2

Y t kq t
k

π −
=                                                                         (23) 

2 12( )
( )

k Q kY t
tπ
+

=                               (24) 

1/ 2
* 1 0 22( )( )

( )
k k kY t

tπ
+

=                                  (25) 

Proof: See Appendix A 
 
The above Corollary applies more appropriately to manufacturing opportunities wherein the infinite 
supply of resource levels cannot be fully depleted during the venture’s life due to typically limited 
production capacities.  As such, the problem may be analogously viewed and managed as an infinite 
resource case. 
Theorem 2:   
Let 2 0k = , and assume (0) (1 )I Qτ ξ> − with 0 1ξ≤ < .  Then, the optimal production policy 
{ *( ), * [0, ]}, [0, ] q t  q  Q  t τ∈ ∈ is given by: 

* ( )

( )
( ) [ ( ), ]C

D t

Y t
q t Min q t=                                                            (26) 

where                                        
*

*

( ) ( )
( )

0 ( ) ( )C

Q if Y t Y t
q t

if Y t Y t  

 ≥= 
<

    

with the critical yield factor, 

                                                             
1

*

( ) (1 )
( )

( )

V k
I tY

t

ξ

π

∂ ⋅
− +

∂=                            (27) 

Proof: See Appendix A 
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Equations (26) and (27) characterize a “bang-bang” production policy in that we produce at the 
maximum feasible rate of production, Q only if the yield factor exceeds the “profit adjusted” variable 
cost of raw material inventory and production.  To offer additional insight, recall that low realizations of 
the yield factor reduce profits relative to higher yield realizations.  In effect, only when yield adjusted 
revenues exceed the variable cost of inventory and production, as shown by the numerator of equation 
(26), it becomes profitable enough to produce at the maximum rate; otherwise, a no-production mode is 
optimal.  In the current context, the level of the raw material inventory is considered finite and 
therefore, the variable inventory cost or more appropriately “shadow price”, ( ) ( )/ tV I⋅∂ ∂ has a direct 
bearing on the optimal production policy.  As ( )I t defines the level of a renewable resource, its shadow 
price in this framework can be interpreted as the holding (or carrying) cost rate of the raw materials’ 
inventory, excluding the opportunity cost of capital.  The opportunity cost of capital has been indirectly 
incorporated into the analysis when considering the return shortfall rate, W Dψ α α= − , 

or W Dψ α α= − depending on which stochastic process is used to represent the demand uncertainty. 

Corollary 2: 
 Assume further that 1ξ = . Then, the optimal production policy { *( ), * [0, ]}, [0, ]q t  q  Q  t τ∈ ∈ is : 

* ( )

( )
( ) ( ),[ ]= C

D t

Y t
q t Min q t                                                            (28) 

where                                           
*

*

( ) ( )
( )

0 ( ) ( ) C

Q if Y t Y t
q t

if Y t Y t




≥
=

<
     

with the critical yield factor,                 * 1( )
( )π

=
kY t

t
                                         (29) 

Proof: Follows the proof of Corollary 1 and Theorem 2. 
 
Theorem 3:  
Let, the demand process be defined by either stochastic process (2a) or (2b). Also, let 

* [ ( , , , : )]
q

Max V D Y I t qν = with ( ) (0, )q t Q∈ .    *ν is unique. 

  
Proof:  See Appendix B 

The approach taken in this paper may be viewed as complementary to that taken in Boone, Ganeshan, 
Guo and Ord (2000).  Those authors develop guidelines to determine suitable run times in the presence 
of imperfect production processes.  Thus, the Boone et al. results are applicable when set-up costs are 
considerable.  In the present research, we also recognize that production processes are imperfect, but 
operate in continuous time, making the decision at each point in time whether to continue production.  
In the manufacturing context, when the decision is to cease production, the opportunity exists to 
“retool”.  That is, the production facility may be repaired or restored to a better level of operation, and 
production restarted under the guidelines provided by our solutions. 
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( III.2 )  Numerical Results 
 Effectively, different numerical techniques can be used to obtain results. Given our set up, the most 
appropriate techniques employed are either the finite difference methods or the lattice techniques. The 
former methodology obtains numerical solutions through approximating the partial differential equation, 
which in our paper is the Bellman valuation equation. The latter, the lattice techniques, provide results 
by approximating the stochastic evolution of the underlying sources of uncertainty.  To obtain solutions 
numerically, and in light of two stochastic sources of variability, we adopt a multinomial lattice 
approach. This provides the basis to approximate the stochastic evolution of the demand and the yield 
processes.  To that end, note that the stochastic process used here for defining the demand variable is 
given by expression (2a) which implies that conditional distribution of demand is lognormal.  The yield 
process, as remarked earlier, implies a doubly truncated normal distribution for the yield factor. To 
employ the intended multinomial lattice approach appropriately, a simple log-transformation is needed 
and thereafter the multinomial lattice can be constructed easily. The relationship between these two 
processes is well established in Karlin and Taylor (1981). With two state variables, two types of 
multinomial lattices may be used. Here, we use the 4-jump model of Boyle, Evnine and Gibbs (1989).  
An alternative approach is the 5-jump lattice model of Kamrad and Ritchken (1991). In general, a 5-
jump lattice provides more accurate results.  However, for our purposes a 4-jump lattice is sufficiently 
accurate for the analysis considered. As stated earlier, a backward recursion is used to dynamically 
superimpose our production control problem on a 4-jumps lattice.8 We control for the upper and lower 
bound values on the yield process by establishing appropriate barriers at zero and one.  
 
 Since there is no finished goods inventory and that conditional on demand information the producer’s 
objective is to produce at a rate that maximizes profits, we impose a penalty cost to regulate overages or 
underages. For the purposes of this example, we useτ  = 1.0 year and n = 5 production periods. Table 
(2) below depicts the case parameters and functional forms.  We should like to make the following 
observation with regard to this example.  In particular, some of the constraints (i.e. 12a-g) differ slightly 
between the theoretical model and the numerical example.  This action was taken deliberately to 
demonstrate the more pragmatic features of the model when solving for practical solutions numerically.  
As such, and as stated earlier, two sets of constraints are introduced.  First, since the changes in the 
production level are costly, we introduce a switching cost to smooth out the production plan.  Of course, 
this cost could have been introduced earlier, but would have complicated the theoretical results without 
gaining much by way of additional insight.  Second, we introduce a penalty function to limit excess or 
deficient production. This is instead of using demand as an upper limit. For simplicity we take this 
function to be quadratic. It also helps smooth out production. 

                                                 
8 Due to space limitation, lattice details are omitted. However, they are available upon request. 
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Table (2) : Base Case Parameters and Function Coefficients 

 
Production Cost K(q) k0 = 100.00; k1 = 15.00; k2 = 5.00 

Price π  π  = $300.00 per unit 

Initial Inventory I I0 = 20 units 

Initial Demand D0 D0 = 10 units 

Initial Yield Y0 Y0 = 0.70 per annum 

Demand Volatility σD σD = 0.30 per annum 

Yield Volatility σY σY = 0.2 per annum 

Interest Rate R r = 0.08 per annum 

Average Output Yield µ µ = 0.10 per annum 

Adjustments to drift shortfall ψ ψ = 0.03 per annum 

Production Capacity Q Q = 5 units per period 

Renewable Resource constant ξ  0ξ =  

Switching Cost Function 2
11( )i iq q −−   

Penalty Cost Function 5.0 2( )i i iYD q−   

Shutdown Cost Function: ( , ) 0iP I t = , for 0,1, 2, ...,i n=  

Salvage Cost Function: ( , ) 0.50n n n nC I I Yτ π=  given the state at time tn 

     
The effect of increasing production capacity on the value function is shown in Figure-1 which 
demonstrates precisely the anticipated results. Namely, that the capacity constraint is relaxed (non-
binding) beyond a certain point.  The impact of increasing in the average yield on project value is 
depicted by Figure-2, showing the expected steady growth. 
 

[Figure-1]    and    [Figure-2] 

 

Of particular interest is the case where increased volatility in the yield process produces a corresponding 
increase in the value function. As σY increases, so will the upside potential while the downside risks are 
truncated through a “no-production” or shutdown option. Thus, on an average basis the project’s value 
improves as the yield volatility increases, as shown in Figure-3. However, when the volatility of the 
demand is increased, the project’s value diminishes, as seen in Figure-4. This too is logical in light of 
the situation at hand. As σD increases, it becomes harder to satisfy demand due to limited production 
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capacity and the non-existence of finished goods inventory. Beyond this capacity, any discrepancy 
between demand realization and production levels are also penalized as constrained in Table (2). 
 

[Figure-3]    and    [Figure-4] 

 

In Figure-5, the effect of ψ on the value function is shown. As ψ increases, the implied average growth 
rate of the demand process drops. All things being equal, and in light of our capacity constraint, it 
becomes that much easier to meet demand. This reduction in the total operating costs is manifested by a 
corresponding increase in the project’s value. 

[Figure-5] 
 

V.  CONCLUSIONS 
 

By adopting a real options framework and by focusing exclusively on quantity risk, we have developed 
and analyzed a production-based valuation model in a constrained capacity environment. Given this 
setting, we have established and explored “flexibility triggers” justifying variations to the rate of 
production over time. In our approach, production rates are modeled as an adapted positive real-valued 
process and analogously evaluated as a sequence of real nested options. 
 
This paper contributes to the literature in the following ways.  First, it introduces a framework for 
analyzing production based projects characterized by both market (demand) and process (yield) 
uncertainty.  Second, the paper further extends the current literature’s findings to a much broader class 
of production problems in two specific ways. (i) To the analysis of manufacturing and other non-
extraction based production control problems where the inputs are renewable, partially renewable, or 
nonrenewable resources. (ii) To applications wherein the production outputs reflect non-traded 
commodities or assets.  (iii) In light of quite robust numerical results, the models presented in this paper 
are sufficiently flexible to allow for capturing other sources of market or process uncertainty. (iv) Our 
formulation covers a broad range of stochastic models, including both the geometric and arithmetic 
Brownian motion and a class of mean reverting processes. 
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Appendix A 
 
Proof of Theorem 1: 
We have from equation (11), 
 

2 2
2 2 2

2 2

1 1( ) ( (1 )) ( )
2 2D Y

V V V V V VD r D q Y K q rV
D Y t D Y I

ψ µ σ σ π ξ∂ ∂ ∂ ∂ ∂ ∂
− + + + + + − − − =

∂ ∂ ∂ ∂ ∂ ∂
                              (A1) 

From the above equation (A1) the necessary and sufficient conditions imply that for maximization purposes, 

1 2
(.)( ) 2 (1 ) 0
( )

VY t k k q
I t

π ξ∂
− − − − =

∂
                                (A2) 

Solving for q we obtain, 

1

2

( )( ) ( (1 ))
( )( )

2

VY t k
I tq t

k

π ξ∂ ⋅
− + −

∂
=                                                                            (A3) 

At ( )q t Q= , (A2) becomes, 

2 1
(.)2 ( ) (1 )
( )

Vk Q Y t k
I t

π ξ∂
= − − −

∂
                                                                   (A4) 

implying that the minimum yield level to induce production at capacity is, 

2 1
( )2 ( (1 )

( )

Vk Q k
IY t

ξ

π

∂ ⋅
+ + −

∂=                                                                             (A5) 

Solving (A1) with ( )q t results in 

1/ 2
1 0 2

*

( )( (1 )) 2( )
( )

Vk k k
IY t

ξ

π

∂ ⋅
+ − +

∂=                                                                  (A6) 

This completes the proof. 
 
Proof of Corollary 1: 
 
The proof follows from the above in a straightforward manner.  Specifically,  

00

( )( )   0
( )

Vq t dt Q I
I t

τ
τ ∂ ⋅

≤ < = ∞ ⇒ =
∂∫                                                          (A7) 

Substituting equation (A7) into equations (17)-(19) obtains the desired results.  
 
Proof of Theorem 2: 
 
From the Bellman equation (11), it follows that ( , , , : )V D Y I t q is maximized if q(t) is either zero or at 
maximum Q since by assumption the production cost function, ( ( ))K q t is linear. Specifically, * ( )q t Q= so long as: 

1
(.)( ) (1 )
( )

VY t k
I t

π ξ∂
≥ + −

∂
     (A8) 

which results in equation (25). However, if the marginal operating revenues are less than the corresponding 
operating costs then, * ( ) 0q t = . 
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Appendix B 
 
To prove *ν is unique, we will prove the concavity of the value function ( )V ⋅ in q .  Differentiating Bellman 

equation (11) successively with respect to ( )q t we obtain, 

( ) ( ) ( )( (1 ))V K q Vr Y
q q I

π ξ∂ ⋅ ∂ ∂ ⋅
= − + −

∂ ∂ ∂
    (B1) 

2 2

2 2

( ) ( )V K qr
q q

∂ ⋅ ∂
= −

∂ ∂
     (B2) 

The second derivative is negative by definition of ( ( ))K q t . Consider (B1) where in perfect competition, 
( ) ( ) (1 )K q VY
q I

π ξ∂ ∂ ⋅
= + −

∂ ∂
 

and in the case of monopoly, 
( ) ( ) (1 )K q VY
q I

π ξ∂ ∂ ⋅
> + −

∂ ∂
 

Therefore, the RHS of (B1) is at least zero.  Therefore, it can have at most one real maximum, that is *ν . 
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Figure - 1
Effect of Average Yield on Project Value
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Figure - 2
Effect of Production Capacity on Project Value
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Figure - 3
Effect of Yield Volatility on Project Value
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Figure - 4
Effect of Demand Volatility on Project Value
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Figure - 5
Effect ofψ on Project Value

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

ψ

Pr
oj

ec
t V

al
ue

, V
(0

) (
do

lla
rs

)

 
 
 

 

 

 


