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Abstract

This paper develops some results regarding the economic value added and real
options. We use Merton’s (1987) model of capital market equilibrium with in-
complete information to introduce information costs in the pricing of real assets.
This model allows a new definition of the cost of capital in the presence of in-
formation uncertainty. Using the methodology in Bellalah (2001, 2002) for the
pricing of real options, we extend the standard models to account for shadow
costs of incomplete information.
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Over the last two decades, a body of academic research takes the methodol-
ogy used in financial option pricing and applies it to real options in what is well
known as real options theory. This approach recognizes the importance of flex-
ibility in business activities. Today, options are worth more than ever because
of the new realities of the actual economy : information intensity, instantaneous
communications, high volatility, etc. Financial models based on complete infor-
mation might be inadequate to capture the complexity of rationality in action.
As shown in Merton (1987), the ”true” discounting rate for future risky cash
flows must be coherent with his simple model of capital market equilibrium with
incomplete information. This model can be used in the valuation of real assets. 2

Managers are interested not only in real options, but also in the latest out-
growth in DCF analysis; the Economic Value Added. EVA simply means that
the company is earning more than its cost of capital on its projects. EVA is pow-
erful in focusing senior management attention on shareholder value. Its main
message concerns whether the company is earning more than the cost of capital.
It says nothing about the future and on the way the companies can capitalize
on different contingencies. Hence, a useful criterion must account for both the
DCF analysis and real options. The NPV and the EP (economic profit) ignore
the complex decision process in capital investment. In fact, business decisions
are in general implemented through deferral, abandonment, expansion or in se-
ries of stages. This paper accounts for the effects of information costs in the
valuation of derivatives as in Bellalah (2001).

The structure of the paper is as follows.
Section 1 presents a simple framework for the valuation of the firm and its assets
using the concept of economic value added in the presence of information costs.
Section 2 develops a simple analysis for the valuation of real options within
information uncertainty.
Section 3 develops a context for the pricing of real options in a continuous-time
setting using standard and complex options. In particular, we extend the model
in Triantis and Hodder (1990) for the valuation of flexibility as a complex option
within information uncertainty.
Section 4 develops some simple models for the pricing of real options in a discrete
time setting by accounting for the role of shadow costs of incomplete informa-
tion. We first extend the Cox, Ross and Rubinstein (1979) model to account for
information costs. Then, we use the generalization in Trigeorgis (1990) for the
pricing of several complex investment opportunities with embedded real options.

1. Firm valuation under incomplete information

2For a survey of important results in the standard literature, the reader can refer to Brealey
and Myers (1985) and Bellalah (1998). For the valuation in the presence of information costs,
we can refer to Bellalah (2001, 2002).
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We remind first Merton’s (1987) model and the definition of the shadow
costs of incomplete information.

1.1. Merton’s model

Merton’s model may be stated as follows :

R̄S − r = βS [R̄m − r] + λS − βSλm (1)

where :

• R̄S : the equilibrium expected return on security S,

• R̄m: the equilibrium expected return on the market portfolio,

• R: one plus the riskless rate of interest, r,

• βS =
cov(R̃S/R̃m)

var(R̃m)
: the beta of security S,

• λS : the equilibrium aggregate ” shadow cost” for the security S,

• λm: the weighted average shadow cost of incomplete information over all
securities in the market place.

The CAPM of Merton (1987), referred to as the CAPMI is an extension of the
standard CAPM to a context of incomplete information. When λm = λS = 0,
this model reduces to the standard CAPM of Sharpe (1964), Lintner (1965) and
Mossin (1966).

1.2. Economic Value Added, EVA, and Information costs

In standard financial theory, every company’s ultimate aim is to maximize
shareholders’ wealth. The maximization of value is equivalent to the maximiza-
tion of long-term yield on shareholders’ investment. Currently, EVA is the most
popular Value based measure.
A manager accepts a projet with positive NPV; i.e; for which the internal rate
of return IRR is higher than the cost of capital. With practical performance
measuring, the rate of return to capital is used because the IRR can not be
measured. However, the accounting rate of return is not an accurate estimate
of the true rate of return. As shown in several studies, ROI underestimates
the IRR in the beginning of the period and overestimates it at the end. This
phenomenon is known as wrong periodizing.
The EVA valuation technique provides the true value of the firm regardless of
how the accounting is done. The EVA is a simply a modified version of the
standard DCF analysis in a context where all of the adjustments in the EVA to
the DCF must result net to zero.
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EVA can be superior to accounting profits in the measurement of value creation.
In fact, EVA recognizes the cost of capital and, the riskiness of the company.
Maximizing EVA can be set as a target while maximizing an accounting profit
or accounting rate of return can lead to an undesired outcome.
The weighted average cost of capital, WACC, is computed using Merton’s (1987)
model of capital market equilibrium with incomplete information for the cost of
equity component. The WACC is computed using the CAPMI.
Stewart (1990) defines the EVA as the difference between the Net operating
profit after taxes (NOPAT) and the cost of capital. EVA gives the same results
as the Discounted cash flow techniques or the Net present value (NPV). It can
be described by one of the three equivalent formulas :
EVA = NOPAT - Cost of capital x(Capital employed)
or
EVA = Rate of return - Cost of capital x(capital employed)
or
EVA = (ROI - WACC) Capital employed

with
Rate of return = NOPAT/Capital,
Capital = Total balance sheet - non-interest bearing debt at the beginning of
the year.
ROI = the return on investment after taxes, i.e; an accounting rate of return.

The cost of capital is the WACC as in the Modigliani-Miller analysis where
the cost of equity is defined with respect to the CAPM of Sharpe (1964), Lint-
ner (1965) and Mossin (1966). In the presence of information costs, the cost of
capital can be determined in the context of Merton’s model of capital market
equilibrium as described above. In this case, the above formulas must be used.
Hence, the analysis in Stewart (1990) can be extended using the CAPMI of
Merton (1987) rather than the standard CAPM in the computation of EVA.
In the presence of taxes, EVA can also be calculated as :
EVA = [ NOP -((NOP - Excess depreciation - Other increase in reserves)x(Tax
rate))] - WACC x (Capital)
where NOP is the Net operating profit.
Stewart (1990) defines the Market Value Added, MVA, as the difference between
a company’s market and book values :
MVA = Total market asset value - Capital invested

When the book and the market values of debt are equal, MVA can be writ-
ten as :
MVA = Market value of equity - Book value of equity
The MVA can also be defined as :
MVA = the present value of all future EVA.
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Using the above definitions, it is evident that :
Market value of equity = Book value of equity + Present value of all future EVA.

In this context, this formula is always equivalent to Discounted cash flow and
Net present value. Again, the cost of capital with information costs represents
an appropriate rate for the discounting of all the future EVA. Hence, the main
concepts in Stewart (1990) can be extended without difficulties to account for
the shadow costs of incomplete information in the spirit of Merton’s model.

1.3. The cost of capital, the firm’s value and Information costs

The cost of capital or the weighted average cost of capital, (WACC), is a
central concept in corporate finance. It is used in the computation of the Net
present value, NPV, and in the discounting of future risky streams. The stan-
dard analysis in Modigliani-Miller (1958, 1963) ignores the presence of market
frictions and assumes that information is costless. Or, as it is well known in
practice, information costs represent a significant component in the determi-
nation of returns from investments in financial and real assets. Merton (1987)
provides a simple context to account for these costs by discounting future risky
cash flows at a rate that accounts for these costs. In this context, the cost of
capital and the firm’s value can be computed in an economy similar to that in
Merton (1987). We denote respectively by :
D: the face value of debt ,
B: the market value of debt,
S: the market value of equity,
O: perpetual operating earnings ,
τ : the corporate tax rate,
Vu: the value of the unlevered firm,
V : the value of the levered firm,
kd: the cost of debt,
kb: the current market yield on the debt,
ke: the cost of equity or the required return for levered equity,
ko: the market value-weighted of these components known as the WACC,
ρ: the market cost of equity for an unlevered firm in the presence of incomplete
information.

Using the main results in the Modigliani and Miller analysis and Merton’s
λ, it is clear that discounting factors must account for the shadow cost of infor-
mation regarding the firm and its assets. By adding Merton’s λ in the analysis
of Modigliani Miller in the discounting of the different streams of cash-flows for
levered and unlevered firms, similar very simple formulas can be derived in an
extended Modigliani-Miller-Merton context. The formulas follow directly from
the analysis in Modigliani-Miller and the fact that future risky streams must be
discounted at a rate that accounts for Merton’s λ. The following Table presents
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the main results regarding the components of the costs of capital and the values
of the levered and unlevered firms with information costs.

Table 1 : Summary of the main results regarding the components of the costs
of capital and the values of the levered and unlevered firms with information

uncertainty

No tax corporate tax

ρ = O
Su
+ λu ρ = ( OSu + λu)(1− τ)

B = D
k
I
d

k
I
b

B = D
k
I
d

k
I
b

ke =
[O−kIdD]

S ke =
[(O−kIdD)(1−τ)]

S

ke = ρ+ B
S (ρ− k

I
b) [ρ+ B

S (ρ− k
I
b)](1− τ)

Vu =
O
ρ = Su Vu = (1− τ)Oρ

V = Vu V = Vu + τB

ko = ke
S
V + k

I
b
B
V k0 = ke

S
V + k

I
b(1− τ)BV

ko =
O
V k0 =

O
V (1− τ)

ko = ρ ko = ρ(1− τ BV )

with k
I
b = kb + λd and k

I
d = kd + λd.

The term λd indicates the information cost for the debt and the term λu corre-
sponds to the information cost for the unlevered firm.

These results show the components of cost of capital and the values of the
firms in the presence of information costs. When these costs are equal to zero,
this Table is equivalent to the results in the Modigliani-Miller analysis.
The results show how to calculate the firm’s value, the weighted average cost of
capital, and the Net present value of future risky cash flows in the presence of
information costs.
The above formulas are simulated for an illustrative purpose using : O =
2000, D = 10000, B = 10000, S = 10000, V = 20000, τ = 40%, ρ = 10% and
kd = 5%, λu = 0%,λd = 0%. These figures represent the standard benchmark
case. The simulations allow to appreciate the impact of information costs on
the computation of the different values of the levered and unlevered firm and
the costs of capital with corporate taxes.

Table 2 : Summary of the main results regarding the components of the costs
of capital and the values of the levered and unlevered firms with information

costs : the standard case

O = 2000, D = 10000, B = 10000, S = 10000, V = 20000, τ = 40%, ρ = 10%
and kd = 5%, λu = 0%,λd = 0%.
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No tax Corporate tax
ρ = 10% ρ = 10%
B = 10000 B = 10000
ke = 15% ke = 15%
ke = 15% ke = 15%
Vu = 20000 Vu = 12000
V = 20000 V = 16000
S = 10000 S = 6000
ko = 10% ko = 7.5%
ko = 10% ko = 7.50%
ko = 10% ko = 7.5%

The fact that ke is equal to 15 % in this case is consistent with the MM
assumptions. The effect of incomplete information on the firm value and the
cost of capital is simulated using the following data : O = 2000,D = 10000, B =
10000, S = 10000, V = 20000, τ = 40%, ρ = 10%, kd = 5%, λu = 3%,λd = 1%.

Table 3 : The main results for the cost of capital and the values of the levered
and unlevered firms with information costs

O = 2000, D = 10000, B = 10000, S = 10000, V = 20000, τ = 40%, ρ =
10%, kd = 5%, λu = 3%,λd = 1%.

No tax Corporate tax
ρ = 13% ρ = 13%
B = 10000 B = 10000
ke = 26% ke = 26%
ke = 26% ke = 26%

Vu = 15384.62 Vu = 9230.77
V = 15384.62 V = 13230.77
S = 5384.62 S = 3230.77
ko = 13% ko = 9.07%
ko = 13% ko = 9.07%
ko = 13% ko = 9.07%

The value of ke is equal to 26 % in this case. Every scenario is consistent with
the Modigliani-Miller assumptions and the Merton’s shadow cost (λ). When
compared to the benchmark case with no information costs, we see that infor-
mation costs increase significantly ke. These shadow costs reduce the value of
the firm in the two cases : with no tax and with corporate tax.

2. The valuation of real options with information costs in a continuous-
time setting
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Several models in financial economics are proposed to deal with the ability
to delay an irreversible investment expenditure. 3 Information costs are used
in the valuation of real options in Bellalah (2001, 2002).

2.1. The pricing of derivatives in the presence of information costs

As in Bellalah (2001), let’s denote by C the price of a derivative security on
a stock with a continuous dividend yield δ. The underlying asset price dynamics
are :

dS = µSdt+ σSdz

where the drift term µ and the volatility σ are constants and dz is a Wiener
process. Using Ito’s lemma, we have :

dC =
∂C

dS
µS +

dC

dt
+
1

2

∂2C

∂S2
σ2S2 dt+

∂C

∂S
σSdz

We construct a portfolio Π using a position in the derivative security and a
number of units of the underlying asset Π = −C + ∂C

dS S. The change in the

portfolio value is ∆Π = −∂C
∂t − 1

2
∂2C
∂S2 σ

2S2 ∆t. Over the same time interval,

dividends are given by δS ∂C∂S∆t. Let us denote by ∆W the change in the wealth
of the portfolio holder. We have

∆W = −∂C
∂t
− 1
2

∂2C

∂S2
σ2S2 + δS

∂C

dS
∆t

The portfolio is instantaneously risk-less and must earn the risk-free rate plus
information costs or

−∂C
∂t
− 1
2

∂2C

∂S2
σ2S2 + δS

∂C

∂S
∆t = −(r + λc)C∆t+ (r + λS)S

∂C

∂S
∆t

where λi refers to these costs. This gives

∂C

∂t
+ (r + λS − δ)S ∂C

∂S
+
1

2

∂2C

∂S2
σ2S2 = (r + λc)C

Bellalah (1999) provides the following equation for the pricing of commodity
options :

1

2
σ2S2CSS + (b+ λS)SCS − (r + λC)C + Ct = 0

3These models undermine the theoretical foundation of standard neoclassical investment
models and invalidate the net present value criteria in investment choice under uncertainty.
For a survey of this literature, the reader can refer to Pindyck (1991), Trigeorgis (1993 a, b,
c 1996), Dixit (1995), Luehrman (1997, 1998) and the references in that paper.
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When the information costs λS and λC are set equal to zero, this equation
collapses to that in Barone-Adesi and Whaley (1987). The term b indicates the
cost of carrying the commodity. The value of a European commodity call is:

C(S, T ) = Se((b−r−(λC−λS))T )N(d1)−Ke−(r+λC)TN(d2)
with:

d1 = [ln(
S

K
) + (b+

1

2
σ2 + λS)T ]/σ

√
T

d2 = d1 − σ
√
T

and where N(.) is the cumulative normal density function.

When λS and λC are equal to zero and b = r, this formula is the same as
that in Black and Scholes. A direct application of the approach in Barone-Adesi
and Whaley (1987), allows to write down immediately the formulas for Amer-
ican commodity options with information costs. The following Tables provide
simulations results regarding our model with incomplete information and the
Black and Scholes model. Option values are compared for different levels of the
underlying asset (from 70 to 120) and different information costs regarding the
option and its underlying asset.

Table 4
Call options values using the following parameters:

K =100, r=0.08, t=0.25, σ=0.2

Black & Scholes Incomplete Information (λs, λc)

S:70 .0000
S:80 .0000
S:90 0.8972
S:100 5.0177
S:110 12.6520
S:120 22.0877

.01 ,.001 .01 , 0 .03 ,.001 .03 , 0 .2 , .01 .2 , 0

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000
0.9009 0.8949 0.8964 0.8904 0.8533 0.8534
5.0202 5.0052 4.9551 4.9802 4.7872 4.7730
12.6448 12.6204 12.5817 12.5574 12.058 12.034
22.0619 22.0326 21.9586 21.9227 21.038 21.010

Table 5
Europeen Futures Call values using the following parameters:

K =100, r=0.08, T=0.5, σ=0.4
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Complete Information Incomplete Information
Black’s model model
Futures price Option price
F=70 0.0000
F=80 2.6940
F=90 6.1331
F=100 10.8051
F=110 16.7917
F=120 19.9557

λc=1% λc=5%
0.0000 0.0000
2.6806 2.6275
6.1025 5.9817
10.7512 10.5383
16.7080 16.3772
23.7766 23.3058

2.2. Investment timing, project valuation and the pricing of real
assets with compound options within information uncertainty

The timing option gives the right to the manager to choose the most advan-
tageous moment to implement the investment project and allows him to pull
out of the project when the economic environment turns out to be unfavorable.
Several standard models are proposed in the literature for the pricing of these
options.
Lee (1988) proposes a model for the valuation of the timing option arising from
the uncertainty of the project value and for the detection of the optimal timing.
He considers three cases: the optimal timing of plant and equipment replace-
ment, the real estate development and the marketing of a new product.
The investment project is interpreted as the replacement of a capital asset, the
inauguration of a new product and the development of real estate. The manager
has the option to implement the project in the time interval [0, T ] where T is
the option’s maturity. The possibility to implement an investment project in
[0, T ] can be seen as an American call option on a security with no dividend
payments.
Let us denote by :
V : the present value of the project implemented,
S: the present value of the project not yet implemented,
I : the cost of the project,
D : a known anticipated jump in the project’s value,
C(S, 0, T, I) : an American call without dividend where 0 refers to the starting
time,
c(S, 0, T, I) : a European call option,
PTi(0, T ) : the value of timing option.

The value of PTi(0, T ) corresponds to the difference between the value of the
deferrable investment opportunity when the timing option is ”alive” and when
the timing option is ”dead”. The project’s value if it is implemented now is :

C(S, 0, 0, I) =Max[V − I, 0]
where the NPV of the implemented investment opportunity is (V − I).
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In this case, the timing option value is given by:

PTi(0, T ) = C(S, 0, T, I)− C(S, 0, 0, I)
PTi(0, T ) = min[C(S, 0, T, I), C(S, 0, T, I)− (V − I)] ≥ 0 (2)

This equation shows that it is profitable to implement the project now (V −I >
0) when the value of the timing option is equal to the value of the deferrable
investment opportunity minus NPV. The cost of waiting D can be seen as a
dividend in the pricing of American call options. It is possible to study three
different specifications.

Specification 1 :
(i) : the present value changes of the not-yet-implemented project is :

dS/S = µdt+ σdz

(ii) If the project is implemented before t∗, it generates an extra cash-flow at t∗ :

Vt∗ = St∗ +D (3)

This specification corresponds for example to the real estate development. In
fact, leaving property vacant can be seen as holding a timing option on the real
estate development. The cost of development is I.

Specification 2:
Same as (i) of specification 1.
The cost of the project increases by D when implemented after t∗:
It∗+h = I for all h > 0

Xt∗−h = I −D, for, h > 0 (4)

It is possible to use the formula in Whaley (1981) to compute the value of the
optimal timing option and the optimal timing of project implementation. It is
possible to show that the value of an American call in the presence of a cash
discrete dividend and information costs is given by :

C = S[e((b−r−(λC−λS))t
∗)N(b1)+e

((b−r−(λC−λS))t∗)N2(a1,−b1,− t∗

T
)]−I[e−(r+λC)t∗N(b2)+

e−(r+λC)t
∗
N2(a2,−b2,− t∗

T
)] +De−(r+λC)t

∗
N(b2) (5)

with :
a1 = [ln(S/I) + (b+

1
2σ

2 + λS)t
∗]/σ
√
t∗

a2 = a1 − σ
√
t∗

b1 = [ln(S/Scr,t∗) + (b+
1
2σ

2 + λS)ti]/σ
√
t∗
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b2 = b1 − σ
√
t∗

where Scr,t∗ corresponds to the trigger point present value, N(.) stands for the
cumulative normal distribution and N2(., ., ) is the bivariate cumulative normal
density function with upper integral limits a and b and a correlation coefficient
ρ.4

The ”trigger point” for specification 1 is given by :

PTi(t
∗, T ) = c(Scr,t∗ , t∗, T, I)− (Scr,t∗ +D − I) = 0 (6)

This case fits well with the replacement of plant and equipment. If we denote
by S, I and T the present value, the cost of replacement and the remaining life,
then a firm keeping the equipment in operation will face expenditures at time
t∗ of amount D. In this case, formula (5) can be applied to compute the value
of the timing option and trigger point present value. These two specifications
allow a single occurrence of discrete cash flow at time t∗. It is possible to gener-
alize the results using specification 3. Formula (5) is simulated in the following
Tables 6, 7 and 8.
The parameters are S = 175 , D = 1.5, r = 0.1 and the constant ”carrying
cost” is 0.6. We use different values for the information costs λS and λC . The
option has a maturity date of one month. The volatility is σ = 0.32 and the
”dividend” is paid in 24 days.
Table 6 uses these parameters with no information costs. It gives the computa-
tion of the American call value referred to as Call, the option ca, the option cb,
the option cc, the algebraic sum of the three options (ca+cb−cc) and the critical
underlying asset price. The results are given for different ”strike prices” varying
from 100 to 240. Table 6 shows that the algebraic sum of the three options is
equal to the American call price. The ”critical asset price” corresponding to an
early exercise is an increasing function of the strike price.
Table 7 uses the same data except for information costs. Information costs are
set equal to λS = 0.01 and λC = 0.001. The reader can check that the algebraic

4The formula can be derived using a similar context as that in Roll (1977), Geske (1979),
Whaley (1981) and Bellalah (1999). The valuation by duplication technique can be imple-
mented. Consider the following portfolio of options :
a/ the purchase of a European call ca having a strike price I and a maturity date T ,
b/ the purchase of a European call cb with a strike price Scr,t∗ and a maturity date (t∗ − 6),
c/ the sale of a European call option cc on the option defined in a/ with a strike price
(Scr,t∗ +D − I) and a maturity date (t∗ − 6).
The contingent payoff of this portfolio of options is identical to that of an American call. In
a perfect market, the absence of costless arbitrage opportunities ensures that the American
call value is identical to that of this portfolio. The American call value must be equal to the
sum of the three options in the portfolio.
The option ca, can be valued using an extension of the Merton’s (1973) commodity option
formula or the model in Bellalah (1999). The option cb can be priced using Bellalah (1999)
formula for which the strike price is Scr,t∗ . The option cc can be priced using an extension
of the compound option formula proposed in Geske (1979). Since the value of the American
call is equivalent to the algebraic sum of the three options in the portfolio, we have :
C = ca + cb − cc

12



sum of the three options is exactly equal to the American call price. With these
costs, the call price is slightly higher than in Table 6.
Table 8 uses the same parameters except for the information costs which are set
equal to λS = 0.1 and λC = 0.05.
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Table 6 : Simulations of option values for the continuous-time model using the
following parameters :

S = 175, r = 0, 1, D = 1, 5, T = 30, t = 24,σ = 0, 32,λc = 0,λs = 0.

Strike Call ca cb cc ca + cb − cc S∗

100 76.03 74.42 74.25 72.65 76.03 100.02
105 71.06 69.46 69.11 67.51 71.06 105.00
110 66.09 64.51 63.96 62.37 66.09 110.00
115 61.13 59.55 59.07 57.49 61.13 115.00
120 56.16 54.59 53.65 52.07 556.16 120.00
125 51.19 49.63 48.48 46.92 51.19 125.00
130 46.22 44.67 43.32 41.76 46.23 130.00
135 41.26 39.72 38.49 36.94 41.26 135.00
140 36.30 34.79 32.99 31.47 36.30 140.00
145 31.37 29.90 27.87 26.39 31.37 145.00
150 26.50 25.11 22.85 21.46 26.50 150.00
155 21.78 20.52 18.05 16.80 21.78 154.99
160 17.31 16.23 13.64 12.56 17.31 159.99
165 13.25 12.38 9.78 8.92 13.25 164.99
170 9.72 9.07 6.63 5.98 9.72 169.99
175 6.82 6.37 4.22 3.77 6.82 174.99
180 4.56 4.27 2.52 2.23 4.56 179.99
185 2.91 2.74 1.41 1.24 2.91 184.99
190 1.77 1.68 0.74 0.64 1.77 189.99
195 1.03 0.98 0.36 0.31 1.03 194.99
200 0.57 0.55 0.16 0.14 0.57 200.00
240 0.00 0.00 0.00 0.00 0.00 240.00

Table 7 : Simulations of option values for the continuous-time model using the
following parameters :

S = 175, r = 0, 1, D = 1, 5, T = 30, t = 24,σ = 0, 32,λc = 0, 001,λs = 0, 01.
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Strike Call ca cb cc ca + cb − cc S∗

100 76.14 74.56 74.34 72.76 76.14 100.02
120 56.427 54.73 53.73 52.19 56.27 120.00
140 36.41 34.93 33.06 31.57 36.41 140.01
145 31.48 30.04 27.94 26.49 31.48 145.00
150 26.61 25.25 22.92 21.55 26.61 150.00
155 21.89 20.65 18.11 16.87 21.89 154.99
160 17.42 16.35 13.67 12.61 17.42 159.99
165 13.34 12.49 9.83 8.97 13.34 164.99
170 9.80 9.16 6.66 6.02 9.80 169.99
175 6.89 6.44 4.24 3.80 6.89 174.99
180 4.62 4.33 2.53 2.25 4.62 179.99
185 2.95 2.78 1.42 1.25 2.95 184.99
190 1.80 1.71 0.74 0.65 1.80 189.99
195 1.05 1.00 0.36 0.32 1.05 194.99
200 0.58 0.56 0.17 0.14 0.58 200.00
240 0.00 0.00 0.00 0.00 0.00 240.00

Table 8: Simulations of option values for the continuous-time model using the
following parameters :

S = 175, r = 0, 1, D = 1, 5, T = 30, t = 24,σ = 0, 32,λc = 0, 05,λs = 0, 1.

Strike Call ca cb cc ca + cb − cc S∗

100 76.92 75.55 74.95 73.58 76.92 100.02
120 57.12 55.79 54.31 52.98 57.12 120.00
140 37.32 36.06 33.59 32.33 37.32 140.01
145 32.40 31.18 28.45 27.23 32.40 145.00
150 27.54 26.38 23.40 22.25 27.54 150.00
155 22.80 21.75 18.55 17.51 22.80 154.99
160 18.29 17.39 14.08 13.18 18.29 159.99
165 14.15 13.43 10.15 9.42 14.15 164.99
170 10.52 9.97 6.90 6.36 10.52 169.99
175 7.49 7.11 4.41 4.04 7.49 174.99
180 5.09 4.85 2.65 2.41 5.09 179.99
185 3.31 3.16 1.49 1.34 3.31 184.99
190 2.05 1.97 0.78 0.70 2.05 189.99
195 1.22 1.18 0.38 0.34 1.22 194.99
200 0.69 0.67 0.18 0.16 0.69 200.00
240 0.00 0.00 0.00 0.00 0.00 240.00

Specification 3 :
(i) The present value of the implemented project V follows the equation :
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dV/V = µdt+ σdz
(ii) If the project is not implemented immediately, its value will fall by a known
amount Di at time ti where i = 1, 2, ..., n.
(iii) If the project is implemented at time tk, its present value is given by :

Sk = V0 − k−1
i=1 Die

−(r+λs)ti , 0 ≤ ti < tk ≤ T
In this expression, Sk corresponds to the present value at time 0 for the project
to be implemented at tk. V0 corresponds to the present value of the project to
be implemented now. The cost of waiting is given by the difference between
the two present values. In this case, an extended version of the Black’s (1976)
approximation with information costs can be used :

C(S, 0, T, I) = max[c(Sk, 0, tk, I) | k = 1, 2, ..., n] (7)

At each instant th, just before the known present value decline, Dh, it is
possible to compute the trigger point project value, Vcr,h as in Lee (1988) using
the following equation :

Sk = Vcr,h −
k

i=1

Die
−(r+λs)(ti−th), k = h, h+ 1, ..., n (8)

where k∗ is the argument of k at which [c(Sk, th, I) | n ≥ k ≥ h] is a maximum
and :

c(Sk∗, th, tk∗ , I) = Vcr,h − I (9)

In this expression :
tk∗ : the planned optimal timing when the manager decides to wait,
Sk∗ : the present value at tk of the project when it is implemented at the optimal
planned time.
A firm has a timing option on the introduction of a product with a cost I for
a time horizon T . If a new product is introduced at time 0, its present value
V can be described by the above dynamics. Before a given firm introduces the
product, the introduction by the competitor at time tk can reduce the value of a
given firm new product by Dk. Each episode of innovation at time i can reduce
the value of the new planned product line by Di. This fits with specification 3.

3. Valuing Flexibility as a complex option within information un-
certainty

Triantis and Hodder (1990) propose an approach for the valuation of flexible
production systems using the option pricing theory. Their analysis concerns
mainly the switching between different operating states in the lines of Majd and
Pindyck (1987), McDonald and Siegel (1984, 1986), Pindyck (1988), Brennan
and Schwartz (1985), etc. They propose a model for the pricing of complex op-
tions that appear in the valuation of a flexible production system. The system
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allows the manager to switch the output mix over time. The model accounts for
the fact that real assets markets are monopolistic or oligopolistic by allowing
downward sloping demand curves for the underlying assets. 5

Consider the decision to purchase a production facility that can be costlessly
switched to produce some combinations of k products. The average variable
cost of product i is Ci(t) and its sale price is Pi(t). Hence, the per unit profit is
Ri(t) = Pi(t) − Ci(t). Using a production rate qi(t), the profit can be written
as a linear function :

Ri(t) = Ai −Bi(t)qi(t)
where Bi is a positive constant and Ai satisfies the equation :

dAi = αidt+ σidzi;Ai(0) = ai ; i = 1, 2, 3...k

where zi is the standard Brownian motion with ρi,j a correlation coefficient
between the processes for products i and j. The life of the production system
[0, T ] is split up into N periods of equal duration τ . At each period, a production
rate qi(τ) for the ith product during the period [nτ, (n+1)τ ] is chosen to define
the firm’s manufacturing program.
The cost of purchasing a system of capacity Q is I0(Q). a fixed cost CF (Q) per
unit time is suffered regardless of whether the system is operating. It is assumed
that portfolios of securities can be constructed and their price processes Mi are
given by :

dMi

Mi
= µMi

dt+ σidzi; i = 1, 2, 3...k

There exists also a riskless asset D such thatdDt = rDtdt where r is the riskless
rate. The value of the option to produce in [nτ, (n+ 1)τ ], expiring at time nτ
is Wnτ (A1(t), ..., Ak(t), t) at t ≤ nτ .
The option value Wnτ satisfies the following partial differential equation :

1

2

k

i=1

k

j=1

ρijσiσjW
nτ
ij +

k

i=1

(r − δi)Wnτ
i − rWnτ +Wnτ

t = 0

where δi = µMi
− αi for i = 1 to k and the subscripts on W

nτ refer to partial
derivatives. The terminal boundary condition for the option value is :

Wnτ (A1, ..., Ak, nτ) =
k

i=1

qi(Aiβ + ηi −Biqiβ)

where :

β =
(1− e−rτ )

r
, ηi =

r − δi
r

β − τe−rτ}, i = 1, 2, 3...k
5The use of such curves appear alo in Pindyck (1988) and He and Pindyck (1989).

17



In order to obtain the maximum values functions of Ai for i = 1, ..., k, the
following quadratic programming problem gives the optimal production levels
q∗i :

max
qi

k

i=1

qi(Aiβ + ηi −Biqiβ)

subject to :
qi ≥ 0, i = 1, 2, 3...k

k

i=1

qi
yi
−Q ≤ 0

Denoting by Γi the Lagrange multipliers, the optimal production quantities
are determined using the following Kuhn-Tucker conditions :

Aiβ + ηi − 2Bi q∗i β − Γi +
Γk+1
y

The complementary slackness conditions are :

Γiqi = 0; i = 1, 2, 3...k

Γk+1
k
i
qi
yi
−Q = 0 6

To determine the option value Wnτ (a1, a2, 0), Triantis and Hodder(1990)
use the Harrison and Kreps (1979) approach and denote by f∗(A1, A2) the

6The solutions to the two last equations for two products involves seven types of feasable
solutions. The seven regions denoted by Roman numerals and optimal production quantities
for the (n+ 1)th period are :

I : Γ1 W= 0,Γ2 W= 0,Γ3 = 0, q∗1 = 0, q∗2 = 0
II : Γ1 = 0,Γ2 W= 0,Γ3 = 0; q∗1 = K1A1 +K2, q

∗
2 = 0

III : Γ1 W= 0,Γ2 = 0,Γ3 = 0 : q∗1 = 0, q∗2 = K3A2 +K4

IV : Γ1 = 0,Γ2 W= 0,Γ3 W= 0 : q∗1 = Qy1, q∗2 = 0
V : Γ1 W= 0,Γ2 = 0,Γ3 W= 0 : q∗1 = 0, q∗2 = Qy2

V I : Γ1 = 0,Γ2 = 0,Γ3 = 0 : q
∗
1 = K1A1 +K2, q

∗
2 = K3A2 +K4

V II : Γ1 = 0;Γ2 = 0,Γ3 W= 0 : q∗1 = K5A1 −K6A2 +K7, q
∗
2 = y2 Q− q∗1

y1
where :

K1 =
1

2B1
, K2 =

η1

2B1β
,K3

1

2B2
,K4

η2

2B2
,K5 =

1

2BI
, K6 =

y2

y1
K5

K7 =
K5

β
η1 − y2

y1
η2 +

y22
y1
2B2Qβ

BI = [B1 +
y22
y21
B2]
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transformed probability density over which the expected terminal value of the
option is calculated. The transformed bivariate density has means µi = ai +
(r − δi)nτ and variances σ2i nτ for i = 1, 2.
The boundaries of the areas in the regions I to VII are defined in terms of

the following coefficients :

ν1 =
−η1
β

, ν2 =
−η2
β

, ν3 =
Qy1 −K2

K1
ν4 =

Qy2 −K4

K3
ν5
Qy1 −K7

K5
ν6 =

K

6
K5

ν7 =
−K7

K5
, ν8 = ν3 − K4y1

K1y2
, ν9 = −K3y1

K1y2

Let Zi(Ai, q
∗
i ) = q

∗
i (Aiβ + ηi − Biq∗i β) with i = 1, 2. The expression of the

expected terminal value of the production option is given by :

E∗{Wnτ (A1, A2, nτ)} =
ν2

−∞

ν3

ν1

Z1(A1,K1A1 +K2)f
∗(A1, A2)dA1dA2(II)

+
ν4

ν2

ν1

−∞
Z2(A2,K3A2 +K4)f

∗(A1, A2)dA1dA2(III)

+
ν2

−∞

∞

ν3

Z1(A1, Qy1)f
∗(A1, A2)dA1dA2(IV )

+
∞

ν2

∞

ν5+ν6A2

Z1(A1, Qy1)f
∗(A1, A2)dA1dA2(IV )

+
∞

ν4

ν7+ν6A2

−∞
Z2(A2, Qy2)f

∗(A1, A2)dA1dA2(V )

+
ν4

ν2

ν8+ν9A2

ν1

{Z1(A1,K1A1 +K2) + Z2(A2,K3A2 +K4)}+

f∗(A1, A2)dA1dA2(V I)

+
ν4

ν2

ν5+ν6A2

ν8+ν9A2

{Z1(A1,K5A1 −K6A2 +K7)

Z2 A2, y2 Q− K5A1 −K6A2 +K7

y1
f∗(A1, A2)dA1dA2(V II)

+
∞

ν4

ν5+ν6A2

ν7+ν6A2

{Z1(A1,K5A1 −K6A2 +K7)+

Z2 A2, y2 Q− K5A1 −K6A2 +K7

y1
f∗(A1, A2)dA1dA2(V II)
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The net present value of manufacturing two products is the sum of the present
values for current and future production less the discounted stream of fixed costs
and the initial outlay. It is given by :

V (a1, a2, 0) =W
0(a1, a2, 0) +

N−1

n=1

Wnτ ((a1, a2, 0)−

CF (Q)(1− e−rT )
r

− I0(Q)
where W 0(a1, a2, 0) = Z1(a1, q

∗
1(0)) + Z2(a2, q

∗
2(0)) corrseponds to the value of

producing the first period.
Triantis and Hodder (1990) give an example to illustrate the above methodol-
ogy. They calculate the NPV of manufacturing two products and specify the
values of δi and µMi

for each product. They use the CAPM to determine the
µMi

. It is possible to extend all their results in the presence of information
costs by applying the CAPMI of Merton (1987) instead of the standard CAPM
in the determination of the term µMi . A similar analysis can then be used in
the presence of information costs.

4. The valuation of real options within information costs in a discrete-
time setting

The majority of the papers concerned with the pricing of real assets in a
discrete time setting derive from the models for financial options pioneered by
Cox, Ross and Rubinstein (1979).

4.1 The valuation of real assets in a simple discrete-time framework

Salkin (1991) extends the basic binomial option pricing methodology to de-
rive a consistent technique for the pricing of real hydrocarbon reserves. We
extend this analysis to account for the effect of information costs.
In the classic binomial model of Cox, Ross and Rubinstein (1979), the price of
the underlying asset goes up (u) or down (d) with a probability p and (1− p).
The use of this model is based on the presence of a ”twin security” which exactly
mimics the structure of the project.
Consider an investor who can either trade a commodity or invest in a project
which supplies the commodity. The use of the dynamics of prices of the com-
modity must provide a good foundation for the examination of the structure of
the cash flows of the project.
By introducing information costs, the probability of an upward movement in
the underlying asset price can be shown to be equal to :

p =
r + λc − d
u− d
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The price uncertainty is described by a lattice : Si,t = S0,0u
idi−t

where S0,0 is the price of the underlying commodity.

Let us denote by :
Pt : the production of a commodity at time t,
Ft : the fixed costs of production at time t,
Vt : the variable costs of production per unit of commodity at time t,
τ : corporation tax rate on positive cash flows at time t.

These profiles can be used to construct gross revenue, net revenue and post-
tax cash flows. Using a lattice of post-tax cash flows, it is possible to calculate
the Expected NPV of the project (ENPV). The lattice gross revenue Gi,t cor-
responds to the spot lattice Si,t times the production profile Pt for all time and
states t.

Gi,t = Si,tPt

The net revenue lattice Ni,t pre-taxation corresponds to the gross revenue
less the cost profiles Ft and Vt:

Ni,t = Gi,t − Ft − PtVt
The application of a taxation rate to all positive cash flows, gives a lattice that
describes the cash flows of the project :
Φi,t = Ni,t ≥ 0, Ni,t(1− τ)
Φi,t = Ni,t < 0, Ni,t
The resulting lattice describes the post tax cash flows of the project. The added
value to the project resulting from the ability to implement any decision con-
tingent on the cash flows, Φi,t.
In general, a decision rule is used to decide on the abandonment of a project,
the contraction of its scale, the expansion of its scale ,or capacity, etc. For ex-
ample, the decision to abandon is taken when both the post tax cash flows in
the current period are negative, and the expected future post cash flows from
the current time t and state i is negative.

The expected value of all future post tax cash flows from current time t can
be calculated by beginning at the end for T = N . If we denote by Ψi,t the
expected value of all future post tax cash flows for the current time t and state
i, then :

Ψi,t =
1

R+ λc
[p(Ψi+1,t+1 + Φi+1,t+1) + (1− p)(Ψi,t+1 + Φi,t+1)] (10)

where R refers to one plus the riskless rate of interest. Now, it is possible to get
a structure of cash flows that accounts for the abandonment decision :

Πi,t =Max[Φi,t;Ψi,t]
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Repeating this procedure for all states at each period gives the project’s
value Π0,0 with the embedded option to abandon the production. The process
by which Π0,0 is calculated is denoted by :

Π = Fn(Pt, Ft, Vt, τ,σ, r,λs,λc, S0,0)

4.2. The generalization of discrete time models

Trigeorgis (1991) proposed a Log-transformed binomial model for the pricing
of several complex investment opportunities with embedded real options. The
model can be extended to account for information costs. The value of the
expected cash flows or the underlying asset V satisfies the following dynamics :

dV

V
= αdt+ σdz

Consider the variable X = log V and K = σ2dt. If we divide the project’s life T
into N discrete intervals of length τ , then K can be approximated from σ2 TN .
Within each interval, X moves up by an amount ∆X = H with probability π or
down by the same amount ∆X = −H with probability (1−π). The mean of the
process is E(dX) = µK; and its variance is V ar(dX) = K with µ = (r+λS)

σ2 − 1
2 .

The mean and the variance of the discrete process are :
E(∆X) = 2πH −H and V ar(∆X) = H2 − [E(∆X)]2.

The discrete time process is consistent with the continuous diffusion process

when : 2πH −H = µK, with µ = (r+λs)
σ2 − 1

2 so

π = 1
2(1 +

µK
H ) and H2 − (µK)2 = K so that H = K + (µK)2.

The model can be implemented in four steps.
In the first step, the cash flows CF are specified.
In the second step, the model determines the following key variables :
the time-step :

Kfrom σ2T
N ,

the drift µ from (r+λS)

σ2− 1
2

,

the state-step H from K + (µK)2

and the probability π from 1
2(1 +

µK
H ).

Let ”j” be the integer of time steps (each of length K), i the integer index
for the state variable X (for the net number of ups less downs).
Let R(i) be the total investment opportunity value (the project plus its embed-
ded options).
In the third step, for each state i, the project’s values are V (i) = e(X0+iH).
The total investment opportunity values are given by the terminal condition
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R(i) = max[V (i), 0].

The fourth step follows an iterative procedure. Between two periods, the
value of the opportunity in the earlier period j at state i, RI(i) is given by :

RI(i) = e−(r+λc)(
K

σ2
)[πR(i+ 1) + (1− π)R(i− 1)]

In this setting, the values of the different real options can be calculated by
specifying their payoffs.
The payoff of the option to switch or abandon for salvage value S is :
RI = max(R,S).
The payoff of the option to expand by e by investing an amount I4 is :
R
I
= R+max(eV − I4, 0).

The payoff of the option to contract the project scale by c saving an amount I I3
is :
RI = R+max(I I3 − cV, 0).

The payoff of the option to abandon by defaulting on investment I2 is :
RI = max(R− I2, 0).
The payoff of the option to defer (until next period) is :
RI = max(e−(r+λc)TE(Rj+1), Rj).

When a real option is encountered in the backward procedure, then the total
opportunity value is revised to reflect the asymmetry introduced by that flexi-
bility or real option. This general procedure can be applied for the valuation of
several projects and firms in the presence of information costs.

Summary
This paper develops some results regarding the valuation of the firm and its
real options in the presence of information uncertainty. We propose some sim-
ple models for the analysis of the investment decision under uncertainty and
sunk costs. First, we use Merton (1987) model of capital market equilibrium
with incomplete information to determine the appropriate rate for the discount-
ing of risky cash flows under incomplete information. This allows the extension
of the EVA concept under incomplete information.
Second, we study potential applications of option pricing theory in continuous
time for the valuation of simple and complex real options.
Third, we extend the standard analysis for the valuation of flexibility as a com-
plex option within information uncertainty.
Fourth, a general context is proposed for the valuation of real options and the
pricing of real assets in a discrete-time setting. Salkin (1991) shows how to
apply the Cox, Ross and Rubinstein (1979) model for the valuation of complex
capital budgeting decisions. The methodology is applied to a hypothetical case
of a marginal natural resource project. The real benefit of this technique arises

23



in its ability to value more realistically situations in which traditional techniques
attributed little or no worth. Following the analysis in Salkin (1991), we develop
a simple context for the valuation of real options using option pricing techniques
in the presence of information costs. Then, using the Trigeorgis (1991) general
Log-transformed binomial model for the pricing of complex investment opportu-
nities, we provide a context for the valuation of these options under incomplete
information. It is possible to use the main results in exotic options to value
different real options. However, it is important to note that real options can
be sometimes more difficult to value in the presence of information costs and a
dependency between different real options in the same project.

24



References

• Bellalah, M. and B. Jacquillat, 1995, Option Valuation With Information
Costs : Theory and Tests, Financial Review, 617-635.

• Bellalah M., 1998. Finance Moderne d’entreprise, Economica, Paris
• Bellalah M., 1999, The valuation of futures and commodity options with
information costs, Journal of Futures Markets, 19, 645-664

• Bellalah, M. 2000, Stratgies d’investissements technologiques, options relles
et information. In Gestion des risques dans un cadre International. Eco-
nomica.

• Bellalah, M. 2001, On Irreversibility, sunk costs and Investment under
incomplete information, R&D Management Journal, Vol 31.

• Bellalah M., 2001, ”Market imperfections, information costs and the val-
uation of derivatives : some general results ”, International Journal of
Finance, Vol 13, 1895-1928

• Bellalah, M. 2001, A Re-examination of Corporate Risks Under Incom-
plete Information. International Journal of Finance and Economics, 6,
59-67.

• Bellalah, M. 2002, Valuing lease contracts under incomplete information :
A Real-options approach, The Engineering Economist, Vol 47, 193-211,

• Bellalah, M. 2002, ”On investment in Technological Innovations Under In-
complete Information”, Real R&D Options options, Book edited by Dean
Paxson, Chapter 10

• Black F. and Scholes M., 1973, The pricing of options and corporate lia-
bilities, Journal of Political Economy, 81, 637-659.

• Brealey, R.A. and S.C. Myers, 1985. Principles of Corporate Finance,
third edition. McGraw-Hill.

• Brennan, M.J. and E. Schwartz, 1985, Evaluating natural resource invest-
ments, Journal of Business.

• Black, F., 1976, The Pricing of Commodity contracts, Journal of Financial
Economics, 79, Vol 3, 167-179.

• Cox, J. C. and M, Rubinstein, 1985, Options Markets, Prentice-Hall
• Cox, J.C. and S.A. Ross and M. Rubinstein, 1979, Option pricing: A
simplified approach, Journal of Financial Economics 7, No. 3, 229-263

25



• Dentskevich, P. and G. Salkin, 1991, Valuation of Real Projects Using Op-
tion Pricing Techniques, OMEGA International Journal of Management
Science, Vol. 19, No. 4, pp. 207-222

• Dixit, A. K, 1995, Irreversible investment with uncertainty and scale
economies, Journal of Economic Dynamics and Control, No. 19, 327-350

• Geske R., 1979, The Valuation of Compound Options, Journal of Financial
Economics 7, 375-380.

• Harrison J.M. and D. Kreps, 1979, Martingales and Arbitrage in multi-
period securities Markets, Journal of Economic Theory, 20, 381-408.

• He H. et Pindyck R., 1989, Investments in Flexible Production Capacity,
MIT, Sloan School of Management, Working Paper, N 2102-89, March,

• Kellogg D. and Charnes J.C. 1999., Using Real-Options Valuation Meth-
ods for a Biotechnology Firm, Working Paper, University of Kansas, School
of Business,

• Luehrman T., 1998, Investment opportunities as real options: getting
started on the numbers, Harvard Business Review, July-August

• Lintner, J., 1965, Security Prices, Risk and Maximal gains from Diversifi-
cation., Journal of Finance, 587-516.

• Majd S. et Pindyck R., 1987, Time to Build, Option Value, and Investment
Decisions, Journal of Financial Economics, 1987, pp 7-27.

• McDonald, R. and D. Siegel, 1984, Option pricing when the underlying
assets earns a below-equilibrium rate of return: a note, Journal of Finance.

• McDonald R. and Siegel D., 1986, The Value of Waitng to Invest, Quar-
terly Journal of Economics, 101, 707-728.

• Merton R.C., 1973, Theory of rational option pricing, Bell Journal of
Economics and Management Science, 4, pp. 141-183

• Merton RC., 1992, Continuous time finance, Blackwell publishers
• Merton, RC.,1987, A Simple Model of capital market equilibrium with
Incomplete Information, Journal of Finance 42, 483-510.

• Mossin J. (1966), Equilibrium in a Capital Asset Market, Econometrica,
October,

• Pindyck, R. S. 1991.,Irreversibility, Uncertainty, and Investment, Journal
of Economic Literature, Sept., pp. 1100-1148

26



• Pindyck R.S., 1988, Irreversible investment, capacity choice, and the value
of the firm, American Economic Review 78, 1988, pp.969-985.

• Roll R., 1977, An Analytical Valuation Formula for Unprotected American
Call Options with Known Dividends, Journal of Financial Economics 5,
251-258.

• Salkin G., 1991, Valuation of Real projects Using option pricing tech-
niques, OMEGA International Journal of Management Science, Vol 19,
pp. 207-222

• Sharpe, WF., 1964, Capital Asset Prices : A Theory of Market Equilib-
rium under Conditions of risk., Journal of Finance, 425-442.

• Stewart S., 1990., The Quest for value,
• Trigeorgis L., 1990, A Real Option Application in Natural-Resource In-
vestments, Advances in Futures and Options Research, Vol. 4, 153-156

• Trigeorgis L., 1993 a.,The Nature of Options Interactions and the Valua-
tion of Investments with Multiple Real Options, Journal of Financial and
Quantitative Analysis, Vol.28, no 1, March, 1-20

• Trigeorgis L., 1993 b, Real Options in Capital Investments, models, strate-
gies, and applications, Praeger Publishers, Westport

• Trigeorgis L.1993 c, Real options and interactions with financial flexibility,
Financial Management, 22, Autumn, 202-224

• Trigeorgis L. 1996., ”Real Options, Managerial Flexibility and Strategy in
Resource Allocation”, The MIT Press.

• Triantis A. and Hodder J., 1990, Valuing flexibility as a Complex Option,
Journal of Finance, N 2, June

• Whaley R., 1981, On the Valuation of American Call Options on Stocks
with Known Dividends, Journal of Financial Economics 9, 207-211.

27


