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This article extends the three models in Schwartz (1997) to describe the
stochastic behavior of commodity prices in the presence of mean reversion
and shadow costs of incomplete information. The implications of the models
are studied with respect to the valuation of financial and real assets. We
extend the analysis in Schwartz (1997) to account for the effects of shadow
costs of incomplete information as defined in Merton (1987).
The first one-factor model assumes that the logarithm of the spot commod-
ity price follows a mean reverting process. The second model is a two-factor
model in which the convenience yield is stochastic. The third model accounts
for stochastic interest rates. The implications of the models are studied for
capital budgeting decisions.
We develop also a one-factor model for the stochastic behavior of commod-
ity prices which preserves the main properties of more complex two-factor
models. When applied for the valuation of long-term commodity projects,
the model gives practically the same results as more complex models.
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Introduction
The stochastic behavior of commodity prices plays a crucial role in the pricing
of commodity derivatives and in capital budgeting decisions. Earlier studies
are based on constant interest rates and convenience yields in the pricing of
financial and real commodity derivatives. This assumption implies that the
distribution of future spot prices has a variance that increases without bound
as the horizon increases.

This article uses and compares three models of the stochastic behavior of
commodity prices in the presence of shadow costs of incomplete information.
In the first model, the logarithm of the spot commodity price is assumed
to follow a mean reverting process of the Ornstein-Uhlenbeck type. In the
second model, the convenience yield is also assumed to follow a mean revert-
ing process. In the third model, the interest rate is assumed to follow mean
reverting process. Closed-form solutions are derived in these three models
for forward and futures contracts.

The implications of the model are studied for the term structure of fu-
tures prices and for hedging contracts for future delivery.
The real options methodology to investment under uncertainty and in partic-
ular, the determination of optimal investment rules depend on the stochastic
process for the underlying commodity. The value and the investment rules
are determined in the context of the three models by accounting for shadow
costs of incomplete information.

These costs are defined as in Merton (1987). For an introduction to the
basic concepts for the pricing of derivative assets and real options under un-
certainty and incomplete information, we can refer to Bellalah and Jacquillat
(1995), Bellalah (1999, 20001). The application of option concepts to value
real assets such as copper mines and oil deposits has been successful because
of the existence of well-developed futures markets for these commodities.
These markets allow the extraction of the essential information.
The traditional approach for the valuation of investment projects is the net
present value approach. An alternative approach is the certainty-equivalent
approach which avoids the computation of a risk-adjusted discount factor,
using instead the relevant risk-free rate of interest.
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Brennan and Schwartz (1985) apply the option pricing theory to value
investment projects in natural resources where the spot price of the commod-
ity follows a geometric Brownian motion. The option pricing theory uses the
information contained in futures prices since these prices are used in the esti-
mation of the convenience yield. The approach is based on the use of the risk
free rate rather than a risk-adjusted discount rate and allows for managerial
flexibility in the form of options.

Schwartz (1997) compared three models of the stochastic behavior of com-
modity prices : a one-factor model, a two-factor model and a three-factor
model.
Schwartz (1998) develops a one-factor model that preserves the main charac-
teristics of two-factor models. We extend the analysis in these two papers to
account for the effects of incomplete information as it appears in the models
of Merton (1987) and Bellalah (2001).

The paper is organized as follows.
Section 1 presents the valuation models.
Section 2 looks at the implications of the different models for investment
under uncertainty.
Section 3 presents the valuation models and the long term model. An appli-
cation is provided for the valuation of European options.
Section 4 compares the simple model and the two-factor model with respect
to their optimal exercise criteria.

1. The Valuation Models for commodity futures under incomplete
information

This section presents three models of commodity prices and the formulas
for futures contracts. The models allow for closed form solutions for futures
prices.

A. Model 1
Schwartz (1997) assumed that the commodity spot price follows the stochas-
tic process

dS = κ(µ− lnS)Sdt+ σSdz (1)
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where dz is an increment to a standard Brownian motion and κ refers to the
speed of adjustment.
When X = lnS, applying Ito’s Lemma allows to characterize the log price
by an Ornstein-Uhlenbeck stochastic process

dX = κ(α−X)dt+ σdz (2)

with

α = µ− σ2

2κ
(3)

where κ measures the degree of mean reversion to the long run mean log
price α.

Under standard assumptions, Schwartz (1997) gives the following dy-
namics of the Ornstein-Uhlenbeck stochastic process under the equivalent
martingale measure

dX = κ(α∗ −X)dt+ σdz∗ (4)

where α∗ = α− λ where λ is the market price of risk.
From equation (4), the conditional distribution of X at time T under the
equivalent martingale measure is normal. The mean of X is

E0[X(T )] = e
−κTX(0) + (1− e−κT )α∗

The variance of X is

V ar0[X(T )] =
σ2

2κ
(1− e−2κT ) (5)

When the interest rate is constant, the futures or the forward price of
the commodity corresponds to the expected price of the commodity for the
maturity T .
Using the properties of the log-normal distribution, the futures or the forward
price is given by

F (S, T ) = E[S(T )] = exp(E0[X(T )] +
1

2
V ar0[X(T )]) (6)

and

F (S, T ) = exp(e−κT lnS + (1− e−κT )α∗ + σ2

4κ
(1− e−2κT )) (7)
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This equation can be written in a log form as

lnF (S, T ) = e−κT lnS + (1− e−κT )α∗ + σ2

4κ
(1− e−2κT ) (8)

Equation (7) is solution to the partial differential equation

1

2
σ2S2FSS + κ(µ− λ− lnS)SFS − FT = 0 (9)

under the terminal boundary condition F (S, 0) = S.

B. Model 2
In this two-factor model, the first factor corresponds to the spot price of the
commodity with the following dynamics

dS = (µ− δ)Sdt+ σ1Sdz1 10)

where δ is the instantaneous convenience yield which can be seen as the flow
of services accruing to the holder of the commodity rather than the buyer of
the futures contract.

The second factor corresponds to the convenience yield with the following
dynamics

dδ = κ(α− δ)dt+ σ2dz2 (11)

where
dz1dz2 = ρdt (12)

. Hence, equation (10) allows for a stochastic convenience yield, which fol-
lows an Ornstein-Uhlenbeck stochastic process.
When δ is a deterministic function of S, δ(S) = κ lnS, this model reduces to
model 1.
When δ is a constant, this model reduces to the Brennan and Schwartz (1985).

When X = lnS, applying Ito’s Lemma allows to characterize the log
price as

dX = (µ− δ − 1
2
σ21)dt+ σ1dz1 (13)

The commodity is viewed as an asset paying a stochastic dividend yield δ
and the risk adjusted drift of the commodity is (r+λS−δ) where λS refers to
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an information cost for the asset S. In fact, we can show as in Bellalah (2001)
that under the equivalent martingale measure, the stochastic processes for
the two factors can be written as

dS = (r + λS − δ)Sdt+ σ1Sdz
∗
1 (14)

dδ = [κ(α− δ)− λ]dt+ σ2dz
∗
2 (15)

dz∗1dz
∗
1 = ρdt (16)

where λ refers in this model to the market price of convenience yield risk.

Using the same approach as in Bellalah (2001), Futures prices satisfy the
following PDE

1

2
σ21S

2FSS+
1

2
σ22Fδδ+σ1σ2ρSFSδ+(r+λS−δ)SFS+[κ(α−δ)−λ]Fδ−FT = 0 (17)

under the terminal boundary condition F (S, δ, 0) = S.

As in Schwartz (1997), the solution given is given by

F (S, δ, T ) = S exp[−δ1− e
−κT

κ
+A(T )] (18)

This can be written in a log form as

lnF (S, δ, T ) = lnS − δ
1− e−κT

κ
+A(T ) (19)

where

A(T ) = (r+λS−α̂+1
2

σ22
κ2
−σ1σ2ρ

κ
)T+

1

4
σ22
1− e−2κT

κ3
+(α̂κ+σ1σ2ρ−σ

2
2

κ
)
1− e−κT

κ2

and

α̂ = α− λ

κ
(20)

The main difference between this solution and that in Schwartz concerns
the discount rate in A(T ) which appears to be the interest rate plus the in-
formation cost on the asset S rather than the interest rate only.
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C. Model 3
In this three-factor model, the three factors are the spot price of the com-
modity, the instantaneous convenience yield, and the instantaneous interest
rate. When the interest rate follows a mean reverting process as in Vasicek
(1977), using equations (14) and (15), the joint stochastic process for the
three factors under the equivalent martingale measure can be written as

dS = (r + λS − δ)Sdt+ σ1Sdz
∗
1 (21)

dδ = κ(α̂− δ)dt+ σ2dz
∗
2 22)

dr = a(m∗ − r)dt+ σ3dz
∗
3 (23)

where dz∗1dz
∗
2 = ρ1dt, dz

∗
2dz

∗
3 = ρ2dt,

dz∗1dz
∗
3 = ρ3dt (24)

where a and m∗ refer respectively to the speed of adjustment coefficient and
the risk adjusted mean short rate of the interest rate process.
In this context, futures prices must satisfy the following PDE

1

2
σ21S

2FSS +
1

2
σ22Fδδ +

1

2
σ23Frr + σ1σ2ρ1SFSδ + σ2σ3ρ2Fδr

+σ1σ3ρ3SFSr+(r+λS− δ)SFS +[κ(α̂− δ)]Fδ+a(m∗− r)Fr−FT = 0 (25)

under the terminal boundary condition F (S, δ, r, 0) = S.

Following the analysis in Schwartz (1997), the solution is given by :

F (S, δ, r, T ) = S exp[
−δ(1− e−κT )

κ
+
(r + λS)(1− e−aT )

a
+ C(T )] (26)

This can be written in a log form as

lnF (S, δ, r, T ) = lnS − δ(1− e−κT )
κ

+
(r + λS)(1− e−aT )

a
+ C(T )] (27)

where

C(T ) =
(κα̂+ σ1σ2ρ1)[(1− e−κT )− κT ]

κ2
−σ

2
2(4(1− e−κT )− (1− e−2κT )− 2κT )

4κ3
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−(am
∗ + σ1σ3ρ3)[(1− e−aT )− aT ]

a2
− σ23(4(1− e−aT )− (1− e−2aT )− 2aT )

4a3

+σ2σ3ρ2
(1− e−κT ) + (1− e−aT )− (1− e−(κ+a)T )

κa(κ+ a)

+
κ2(1− e−aT ) + a2(1− e−κT )− κa2T − aκ2T )

κ2a2(κ+ a)
(28)

As it is well known, in the presence of stochastic interest rates, forward
prices are different from futures prices. The present value of a unit discount
bond payable at time T is given in Vasicek (1977) as

B(r, T ) = exp[−r (1− e
−aT )
a

+
m∗((1− e−aT )− aT )

a

−σ
2
3(4(1− e−aT )− (1− e−2aT )− 2aT )

4a3
] (29)

The present value of a forward commitment to deliver one unit of the
commodity, P (S, δ, r, T ) is solution to the PDE under boundary conditions
identical to equation (25) except that in the right-hand side, rP replaces
zero. The solution is

P (S, δ, r, T ) = S exp[
−δ(1− e−κT )

κ
+D(T )] (30)

where

D(T ) =
(κα̂+ σ1σ2ρ1)[(1− e−κT )− κT ]

κ2
−σ

2
2(4(1− e−κT )− (1− e−2κT )− 2κT )

4κ3
(31)

Equation (30) gives the present value of a forward commitment. Equation
(31) gives the present value of a unit discount bond. The forward price im-
plied by model 3 is obtained by dividing P (S, δ, r, T ) by B(r, T ).

2. Investment Under Uncertainty and the value of the option
to invest
The dynamics of commodity prices present several implications for project
valuation (like mines, oil deposits, etc.) and the search of the optimal invest-
ment rule. This rule refers to the commodity price above which it is optimal
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to undertake the project immediately.

Example
Consider a copper mine that can produce one ounce of copper at the end of
each year for 10 years. The initial investment K = 2 and the unit cost of
production C = 0.40. Assume that once the investment is done, production
will go ahead for the next 10 years.
The first step determines the net present value of the project and the second
step values the option to invest.
The NPV once the investment has been decided is

NPV = Σ10T=1P (r, T, .)− CΣ10T=1B(r, T )−K (32)

where
P (r, T, .) : present value of the commodity to be received at time T when
the interest rate is r,
B(r, T ) : present value of one dollar to be received at time T when the in-
terest rate is constant, e−rT .

Discounted Cash Flow Criteria
The DCF approach needs the specification of the discount rate and the ex-
pected spot copper prices for the next ten years. In practice, spot prices are
assumed constant. The project’s value is very sensitive to the discount rate
used.

Constant Convenience Yield : Model 0
In the standard real option approach, instead of discounting at a risk-adjusted
rate, certainty equivalent cash flows are discounted at the riskless rate.
In a constant convenience yield model, Model 0, the spot commodity follows
the process

dS

S
= (r + λS − c)dt+ σdz∗ (33)

where c is the constant convenience yield to distinguish it from δ used in the
stochastic convenience yield models.
The NPV (32) becomes

NPV (S) = SΣ10T=1e
−cT − CΣ10T=1e−rT −K = Sβ1 − β2 (34)
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As in Bellalah (2001), we can show that the option to invest V (S) satisfies
the ordinary differential equation

1

2
σ2S2VSS + (r + λS − c)SVS − (r + λV )V = 0 (35)

under the boundary condition

V (S) ≥ max[Sβ1 − β2, 0] (53)

where λV refers to an information cost on asset V . The solution to this
equation is

V (S) = (S∗β1 − β2)(
S

S∗
)d

where the commodity price above which it is optimal to invest in the project
is given by

S∗ = (
β2d

β1(d− 1))

d =
1

2
− (r − c+ λV )

σ2
+ [

1

2
− (r − c+ λV )

σ2
]2 +

2(r + λS)

σ2
(37)

Mean Reverting Spot Price : Model 1

The NPV in Model 1 is computed using equation (32) by discounting the
prices given by equation (7).

NPV = Σ10T=1P (r, T, .)− CΣ10T=1B(r, T )−K (32)

where
P (r, T, .) : present value of the commodity to be received at time T when
the interest rate is r,
B(r, T ) : present value of one dollar to be received at time T when the
interest rate is constant, e−rT .
with

P (r, T, .) = e−(r+λS)TF (S, T )

and

F (S, T ) = exp(e−κT lnS + (1− e−κT )α∗ + σ2

4κ
(1− e−2κT ))
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The value of the investment option, V (S) can be obtained by solving
a PDE identical to equation (9) in which in the right-hand side we have
(r + λV )V instead of zero.
The boundary condition is the maximum of the NPV in this case and zero.
This can be written as

1

2
σ2S2VSS + κ(µ− λ− lnS)SVS − VT = (r + λV )V

under the terminal boundary condition

V (S, 0) =Max[NPV, 0]

Stochastic Convenience Yield : Model 2
The NPV in Model 2 is computed using equation (32) which depends on
the spot price, the convenience yield and the present value of one unit of
commodity (which is obtained by discounting the future or forward price in
equation (18).

NPV = Σ10T=1P (r, T, .)− CΣ10T=1B(r, T )−K (32)

where
P (r, T, .) : present value of the commodity to be received at time T when
the interest rate is r,
B(r, T ) : present value of one dollar to be received at time T when the
interest rate is constant, e−rT .
with

P (r, T, .) = e−(r+λS)TF (S, δ, T )

F (S, δ, T ) = S exp[−δ1− e
−κT

κ
+A(T )] (18)

The value of the option to invest V (S, δ) satisfies a PDE identical to
equation (17), except that the right-hand side is (r + λV )V instead of zero.

1

2
σ21S

2VSS+
1

2
σ22S

2Vδδ+σ1σ2ρSVSδ+(r+λS−δ)SVS+[κ(α−δ)−λ]Vδ−VT = (r+λV )V

under the terminal boundary condition

V (S, δ, 0) =Max[NPV, 0]
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Stochastic Convenience Yield and Interest rates : Model 3

The NPV in Model 3 is computed using equation (32). It depends on the
spot price of the commodity, the convenience yield and the interest rate.

NPV = Σ10T=1P (r, T, .)− CΣ10T=1B(r, T )−K (32)

where
P (r, T, .) : present value of the commodity to be received at time T when
the interest rate is r,
B(r, T ) : present value of one dollar to be received at time T when the in-
terest rate is constant, e−rT .

The present value of a unit of the commodity is computed using equation
(30)

P (S, δ, r, T ) = S exp[
−δ(1− e−κT )

κ
+D(T )] (30)

where

D(T ) =
[κα̂+ σ1σ2ρ1)(1− e−κT )− κT ]

κ2
−σ

2
2(4(1− e−κT )− (1− e−2κT )− 2κT )

4κ3
(31)

The present value of a unit discount bond is computed using equation
(29).

B(r, T ) = exp[−r (1− e
−aT )
a

+
m∗((1− e−aT )− aT )

a

−σ
2
3(4(1− e−aT )− (1− e−2aT )− 2aT )

4a3
] (29)

The value of the option to invest V (S, δ, r) satisfies a PDE identical to
(25) except that the right-hand side is (r + λV )V instead of zero.

1

2
σ21S

2VSS +
1

2
σ22Vδδ +

1

2
σ23Vrr + σ1σ2ρ1SVSδ + σ2σ3ρ2Vδr

+σ1σ3ρ3SVSr+(r+λS−δ)SVS+[κ(α̂−δ)]Vδ+a(m∗−r)Vr−VT = (r+λV )V
under the terminal boundary condition

V (S, δ, r, 0) =Max[NPV, 0]
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3. The Valuation Models, the long term model and European op-
tion pricing
This section presents first the basic constant-convenience-yield model and
the two-factor stochastic convenience-yield model. Then, the basic model is
adjusted to account for the important features of the two-factor model. This
model is referred to as the ”long-term model”.

A. The basic Model

Schwartz (1998) assumed that the commodity spot price under the equiv-
alent martingale measure is given by

dS

S
= (r + λS − c)Sdt+ σdz (38)

where dz is an increment to a standard Brownian motion, r is the interest
rate, σ is the volatility of the rate of return and c is a constant convenience
yield.
The futures price F with a maturity T for a spot asset S is given by

F (S, T ) = Se(r+λS−c)T (39)

Applying Ito’s Lemma to equation (39) shows that the volatility of the futures
returns dS

S
is equal to σ.

The value of a contingent claim V (S, T ) must satisfy the following partial
differential equation

1

2
σ2S2VSS + (r + λS − c)SVS − VT − (r + λV )V = 0 (40)

under the appropriate boundary conditions.
If the contingent claim represents a project, then the cash flows on the project
CF (T ) must be added to equation (40).

B. The Two-Factor Model
In this two-factor model, the first factor corresponds to the spot price of the
commodity with the following dynamics

dS = (r + λS − δ)Sdt+ σ1Sdz1 (41)
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where δ is the instantaneous stochastic convenience yield. It can be seen as
the flow of services accruing to the holder of the commodity rather than the
buyer of the futures contract.

The second factor corresponds to the stochastic convenience yield with
the following dynamics

dδ = κ(α̂− δ)Sdt+ σ2dz2 (42)

where
dz1dz2 = ρdt (43)

In this formulation, the magnitude of the speed of adjustment κ > 0 mea-
sures the degree of mean reversion to the long-run mean convenience yield
α.

Futures prices F (S, δ, T ) are given by

F (S, δ, T ) = S exp[−δ1− e
−κT

κ
+A(T )] (44)

where

A(T ) = (r+λS−α̂+1
2

σ22
κ2
−σ1σ2ρ

κ
)T+

1

4
σ22
1− e−2κT

κ3
+(α̂κ+σ1σ2ρ−σ

2
2

κ
)
1− e−2κT

κ3

and where the risk-adjusted long-run mean of the convenience yield process
is given by

α̂ = α− λ

κ
(45)

where λ stands for the market price of convenience yield risk.

Applying Ito’s Lemma to equation (44), we can show that the variance
of the futures returns depends only on the time to maturity of the futures
contract

σ2FT = σ21 + σ22
(1− e−κT )

κ
− 2ρσ1σ2 (1− e

−κT )
κ

(46)

When the maturity of the futures contract tends to infinity, this variance
converges to a fixed value

σ2F (∞) = σ21 +
σ22
κ
− 2ρσ1σ2

κ
(47)
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The value of any contingent claim must satisfy the following PDE

1

2
σ21S

2VSS+
1

2
σ22Vδδ+σ1σ2ρSVSδ+(r+λS−δ)SVS+[κ(α̂−δ)]Vδ−VT−(r+λV )V = 0 (48)

under the appropriate terminal boundary conditions.

C. The Long-Term Model

Given equations (41) and (43), the risk-neutral distribution of spot prices
is log-normal with mean equal to the forward price in equation (44). The
variance can be obtained by integrating the variance in equation (46).
The objective is to develop a model which matches the term structure of
futures prices and volatilities implied by the two-factor model.

When maturity increases in the two-factor model, the rate of change in
the futures price converges to a fixed rate

1

F

∂F

∂T
(T →∞) = r + λS − α̂+

σ22
2κ2
− ρσ1σ2

κ
(49)

In the basic model of equation (2), the rate of change in the futures price
is

1

F

∂F

∂T
= r + λS − c (50)

If the constant convenience yield in the long-term model is defined as

c = α− σ22
2κ2

+
ρσ1σ2
κ

(51)

it will have the same rate of change in futures prices as the two-factor model.
Besides, since the objective is to match the futures prices, we must begin with
a spot price to give the futures prices in equation (44) when the convenience
yield in equation (51) is used. This starting price is referred to in Schwartz
(1998) as the shadow spot price Z given by

Z(S, δ) = lim
T→∞

e−(r+λS−c)TF (S, δ, T ) (52)

or

Z(S, δ) = Se
(c−δ)
κ
− σ22
4κ2 (53)

15



When the shadow spot price is used as a single state variable in a model
with a constant convenience yield c from equation (51), the model will show
futures prices F (Z, T ) close to F (S, δ, T ) for T greater than three years.

The dynamics of the shadow spot price are given by

dZ

Z
= (r + λS − c)dt+ σF (t)dz (54)

where the volatility is given by equation (46). In this case, the futures price
for the shadow spot price Z is

F (Z, T ) = Ze(r+λS−c)T (55)

Applying Ito’s Lemma allows to show that the volatility of futures returns
is σF (T ). The value of contingent claims in this model must satisfy the
following PDE

1

2
σ2F (T )Z

2VZZ + (r + λS − c)ZVZ − VT − (r + λV )V = 0 (56)

under the terminal boundary conditions.

Using a two-factor model to redefine a single state variable (the shadow
spot price), the resulting one-factor model is very similar to the basic model.
The main difference is volatility which is time dependent

ν(T ) =
T

0
σ2F (t)dt (57)

with a closed-form solution

ν(T ) = (σ21+
σ22
κ2
− 2ρσ1σ2

κ
)T+

σ22(1− e−2κT )
2κ3

+2σ2(σ1ρ−σ2
κ
)
(1− e−κT )

κ2
(58)

The risk-neutral distribution of the shadow spot price is log-normal. Its
mean is given by equation (55). Its variance is given by equation (58). This
variance is similar to that of the spot price in the two-factor model.

D. Valuing European Options
The one and two-factor models give very similar results for long-term options
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because of the their nearly equal means and variances.

The value of a European call for both models is given by

C(., T ) = e−(r+λS)T c(F (., T ), T ) (59)

where
c(F, T ) = FN [d]−KN [d− ν(T )] (60)

where d = [
ln F

K

ν(T )
+ 1

2
ν(T )] (61)

ν(T ) = (σ21+
σ22
κ2
− 2ρσ1σ2

κ
)T+

σ22(1− e−2κT )
2κ3

+2σ2(σ1ρ−σ2
κ
)
(1− e−κT )

κ2
(58)

The European call price and the futures price are functions of the spot
commodity price and the convenience yield for the two factor model.
The call price and the futures price are a function of the shadow spot price
in the long-term model. The variance is given by equation (57).

5. Implementation and optimal exercise criteria for American op-
tions

Schwartz (1998) implemented the long-term model using the estimated
parameters from the two-factor model in Schwartz (1997). The analysis in
these papers can be extended without major difficulties to account for the
effects of incomplete information.

Table 1 provides the parameters for copper and oil. Publicly futures
prices are used for copper for the period 1988-1995. Enron provided oil for-
ward curves for the period 1993-1996.

Table 1 : Parameter Values for Oil and Copper in the period 1988-1996 :
results of the two-factor model estimated in Schwartz (1997)
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Copper Oil
Period 7/29/88-6/13/95 1/15/93-5/16/96
Contracts F1,F3,F5,F7,F9 Enron-Data
N − observ 347 163

µ 0.326 (0.110) 0.082 (0.120)
κ 1.156 (0.041) 1.187 (0.026)
α 0.248 (0.098) 0.090 (0.086)
σ1 0.274 (0.012) 0.212 (0.011)
σ2 0.280 (0.017) 0.187 (0.012)
ρ 0.818 (0.020) 0.845 (0.024)
λ 0.256 (0.114) 0.093 (0.101)
ρ 0.06 0.05

Standard errors are in parenthesis.
The terms F1, F2,.. correspond to futures contracts with different maturities.
It is possible to use Equation (44) in a double grid search routine to estimate
the state variables S and δ, which minimize the squared deviation between
model and market prices. The term structure of futures prices implied by the
two-factor model can be constructed using equation (44) and the estimated
state variables S and δ.
Equation (53) is used to estimate the shadow spot price Z.
Equation (55) allows the estimation of the term structure of futures prices
implied by the long-term model.
Copper and oil futures contracts reported in the Wall Street Journal for
3/31/97 are used.
The extracted information is used to value European copper calls from

the two-factor model and the long-term model for a strike price of 1 dollar.
The two models provide very similar results when the maturity if higher than
three years.

The main question is : How the simple long-term model and the two-
factor model compare with respect to the optimal time to undertake a project
i.e. the optimal exercise of American options.

The critical spot price above which it is optimal to invest in the two-factor
model depends on the current instantaneous convenience yield. The critical
spot price in the long-term model is one critical shadow price.
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Example
Consider a copper mine that can produce one ounce of copper at the end of
each year for 10 years. The initial investment K = 2 and the unit cost of
production C = 0.40. Assume that investment is done for three years and
production starts at the end of the fourth year.
The first step determines the net present value of the project and the second
step values the option to invest.

The NPV once the investment has been made is

NPV = Σ13T=4e
−(r+λS)TF (., T )− CΣ13T=4e−rT −K (59)

The summation starts at time 4 as the production.

The option to invest and the computation of the critical copper price can
be determined by solving numerically the PDE (48) for the two-factor model

1

2
σ21S

2VSS+
1

2
σ22Vδδ+σ1σ2ρSVSδ+(r+λS−δ)SVS+[κ(α̂−δ)]Vδ−VT−(r+λV )V = 0

under the condition

NPV = Σ13T=4e
−(r+λS)TF (., T )− CΣ13T=4e−rT −K (59)

with

F (S, δ, T ) = S exp[−δ1− e
−κT

κ
+A(T )]

where

A(T ) = (r+λS−α̂+1
2

σ22
κ2
−σ1σ2ρ

κ
)T+

1

4
σ22
1− e−2κT

κ3
+(α̂κ+σ1σ2ρ−σ

2
2

κ
)
1− e−2κT

κ3

and where the risk-adjusted long-run mean of the convenience yield process
is given by

α̂ = α− λ

κ
where λ stands for the market price of convenience yield risk.

Equation (56) is solved for the long-term model

1

2
σ2F (T )Z

2VZZ + (r + λS − c)ZVZ − VT − (r + λV )V = 0 (56)
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under the boundary condition :

NPV = Σ13T=4e
−(r+λSTF (., T )− CΣ13T=4e−rT −K (59)

with :
F (Z, T ) = Ze(r+λS−c)T (55)

Z(S, δ) = Se
(c−δ)
κ
− σ22
4κ2 (53)

The boundary condition (59) must be applied.
The value of the mine in the two-factor model depends on the spot price and
the convenience yield.
The optimal shadow price (1.12) in the long-term model is similar to that ob-
tained from the two factor model. Hence, when valuing projects where cash
flows start a few years later, a simple one-factor model can give practically
the same results as a two-factor model. A similar analysis can be applied in
the presence of shadow costs of incomplete information.

Summary
The pricing and hedging of commodity derivatives and natural resource in-
vestments depend heavily on the dynamics of the underlying commodity.
Schwartz (1997) proposed three models which account for the mean reverting
nature of commodity prices. The analysis reveals the importance of mean
reversion in evaluating projects using the real options approach. The stan-
dard DCF approach seems to induce investment too early when prices are
low while the real options approach seems to induce investment too late when
prices are too high. This result appears when mean reversion is neglected.
This analysis is extended to account for the effects of incomplete information.

Schwartz (1997) showed that a two-factor model for the stochastic behav-
ior of commodity prices fitted quite well the term structure of futures prices
and futures return volatility in the case of copper and gold. However, this
model is difficult to apply for the valuation of projects with multiple options.
Schwartz (1998) proposed a simple one-factor model which gives nearly sim-
ilar results as the two-factor model. The constant convenience yield in the
simple model depends on the parameters of the two-factor model. The in-
puts to the model are the prices of all current futures contracts. The simple
model can be applied to the valuation of complex projects. This analysis
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is extended to account for the effects of incomplete information. We are
actually estimating the parameters of the models and conducting some sim-
ulations.

REFERENCES

• Bellalah, M. and B. Jacquillat, ” Option Valuation With Information
Costs : Theory and Tests.”, Financial Review, [1995], 617-635.

• Bellalah M., ”The valuation of futures and commodity options with
information costs”, Journal of Futures Markets, [1999 a], September

• Bellalah M., ”Les biais des modeles d’options revisites”, Revue Franaise
de Gestion, Juin, [1999 b] pp 94-100

• Bellalah M., ” Irreversibility, Sunk costs and Investment Under Uncer-
tainty”, R&D Management, [2001],

• Bellalah M., ” A Reexamination of Corporate Risks Under Incomplete
Information”, International Journal of Finance and Economics, [2001],

• Merton, R., ”A Simple Model of capital market equilibrium with In-
complete Information.”, Journal of Finance 42, [1987], 483-510.

• Schwartz E., ”The Stochastic Behavior of Commodity Prices : Impli-
cations for Valuation and Hedging”, Journal of Finance, Vol LII, No 3,
July, [1997] pp 923-972

• Schwartz E., ”Valuing Long-Term Commodity Assets”, Journal of En-
ergy Finance & development”, Vol 3, No 2, [1998], pp 85-99

21


