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Abstract. In this paper scientific uncertainty is defined as the 
impossibility to choose the correct stochastic process for the value of a 
public policy. The real option value of waiting under scientific uncertainty 
is derived using the difference between the geometric Brownian motion 
and the mean reverting process by applying contingent claim analysis. The 
results are compared with those generated by either using a geometric 
Brownian motion or a mean-reverting process only. The results show that 
scientific uncertainty is less important than one would expect at first hand. 
The small effect of scientific uncertainty adds confidence to the use of a 
geometric Brownian motion for the kind of public policy decisions 
discussed in this paper. 
The paper contributes to the suggestion made by scientists to analyze the 
sensitivity public policy valuations, provides insights about the magnitude 
of error that can be made by choosing the wrong process, provides a 
solution to the problem and highlights the implication for public policy 
decision making.  
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On the Real Option Value of Scientific Uncertainty for Public Policies 

 

1. Introduction 

Economists have proposed the real option theory for the ex-ante valuation of costs and 

benefits from public policies. Morel et al. (2003) and Wesseler (2003) suggested the 

use for the valuation of releasing transgenic crops, Pindyck (2000) for the timing of 

environmental policies and Leitzel and Weisman (1999) for policy reforms to name 

only a few. 

One of the problems applying the real option approach is the correct 

identification of the process the stochastic decision variable follows. A solution to the 

problem would be simple if by using an appropriate econometric method time series 

data could be tested to decide which process to use. As Dixit and Pindyck (1994) and 

others (e.g. Gjolberg and Guttormsen, 2002) have pointed out the results are 

ambiguous. Depending on the time frame used, the tests either lead to a rejection or 

acceptance of a non-stationary process. They recommend choosing the process not 

based on time series analysis but based on theoretical grounds. This is a 

straightforward recommendation, if scientists can agree about the relevant theory. But 

as the case for releasing transgenic crops shows (Gilligan 2003), there is no scientific 

agreement about the stochastic benefits from transgenic crops. The same can be said 

for other cases, like opening of areas for resource exploitation or benefits from 

environmental policies.  

Scientists are aware of the problem, but have no method available that tells them 

which model to choose. This is what in this context will be called scientific 

uncertainty.  



From a decision makers point of view this may not be important if different 

processes do not lead to different recommendations. As Wesseler (2001) has pointed 

out, the choice of a stochastic process may but not necessarily will lead to different 

recommendations. Figure 1 shows a comparison between a geometric Brownian 

motion and a mean reverting process and a policy decision, where it is assumed that 

each process represents a scientific belief or view about the benefits. The situations 

depicted under quadrant I and quadrant IV lead to unequivocal decisions: either 

immediate implementation, quadrant I, or postponement, quadrant IV. On the other, 

hand the situations depicted in quadrant II and III are equivocal: depending on the 

stochastic processes either immediate implementation or postponement is economical. 

Specifically the situation in quadrant III is of importance as the geometric Brownian 

process dominates the mean reverting process by almost first degree of stochastic 

dominance (FSD).1 
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1GB: geometric Brownian motion; 2MR: mean reverting process. 

                                                           
1 For a definition of almost first degree of stochastic dominance see Anderson et al. (1989). 



Figure 1: Possible Combinations of Results Under Different Belief Systems 

(adopted from Wesseler, 2001). 

 

These observations lead to an important question: Do we have to choose 

between different processes or is it possible to combine the processes to also capture 

the uncertainty about the choice of the stochastic process? This is what will be 

discussed in this paper. 

In the following, the option value of waiting under scientific uncertainty as 

illustrated in quadrant III of figure 1 will be derived using the difference between the 

geometric Brownian motion and the mean reverting process by applying contingent 

claim analysis. The results will be compared with those generated by either using a 

geometric Brownian motion or a mean-reverting process only.  

The paper contributes to the suggestion made by scientists to further analyze the 

sensitivity of policy valuation, provides insights about the magnitude of error that can 

be made by choosing the wrong process, provides a solution to the problem and 

highlights the implication for public policy decisions under uncertainty and 

irreversibility. 

 

2. The Option Value Under Scientific Uncertainty 

The full value of owning the right to implement a policy, F(B,t), depends on the 

incremental net-benefits B of the policy. Exercising the option to implement provides 

a benefit stream π(B,t) to the holder of the right2 and produces not only irreversible 

costs but also irreversible benefits (e.g. Pindyck, 2000; Wesseler, 2003). The owner of 

the option, the decision maker, likes to know the value of the option and if to exercise 



immediately that is implementing the policy. Let’s also assume the decision maker 

likes to implement the policy without bearing any economic risk. By replicating the 

uncertain returns with known values from the market e.g. will derive the riskless value 

of the option to implement the policy. This is one of the basic insights of real option 

theory.3 As Fisher (2000) has demonstrated this is equivalent to the quasi-option 

approach in environmental economics by Arrow and Fisher (1974) and Henry (1974) 

and further developed by Fisher and Hanemann (1986) and Hanemann (1989). 

If it is assumed that the incremental net-benefits B of the policy follow a mean 

reverting process, it should be implemented immediately if B is greater than the 

identified hurdle rate for a mean reverting process *
MRB . As B may also follow a 

geometric Brownian motion that dominates the mean reverting process the additional 

uncertainty of the difference between the two stochastic processes, the scientific 

uncertainty, *
SUB , can be added, resulting in a hurdle rate *

SUMRB + : 

*
SU

*
MR

*
SUMR BBB ⋅=+  (1) 

The hurdle for decision making under a mean-reverting process is already well-

known. Now, the steps to derive the real option value under scientific uncertainty and 

hence the hurdle for scientific uncertainty will be presented. Following the contingent 

claim approach a portfolio can be constructed that replicates the risk of the policy 

which consists of n units of incremental net-benefits from the policy, nB, and one 

Euro invested in a riskless asset. If this portfolio will be hold over a short time 

interval, dt, the value of the portfolio will change depending on the rate of return, r, of 

the riskless asset and the change in value of nB. The change in value of nB may pay a 

                                                                                                                                                                      
2 Think, e.g., of the EU-commission acting as the representative of EU citizens, similar to the manager 
of a private company acting on behalf of the stock owners. 
3 The seminal book by Dixit and Pindyck (1994) demonstrate the wide application possibilities of the 
real option approach. Nobel laureate Robert C. Merton (1998) provides an overview of the application 



dividend, δ, from holding it over the short time interval nδBdt and an uncertain return 

ndB. dB follows a process which is the difference between a geometric Brownian 

process and a mean reverting process, where the geometric Brownian process 

dominates the mean reverting process by FSD: 

( ) BdzBdtBBBdz~BdtdB σησα −−−+=  (2) 

with  B: incremental net-benefits of policy, 

 α: growth rate of incremental benefits assuming geometric Brownian motion, 

 σ~ : variance rate of the geometric Brownian motion, 

 η: speed of reversion, 

 σ : variance rate of the mean-reversion process, 

 B : reversion level, 

 dz: Wiener process 

The expected value of a percentage change in incremental net-benefits over a 

short time interval is ( )BB −−ηα  which is not constant as it depends on B which 

fluctuates stochastically. Therefore, as B has to provide an expected rate of return 

equal to the risk adjusted rare of return, µ, derived from the capital asset pricing 

model as otherwise it would be more economically to reallocate investments, the 

expected return of the investment has to equal ( ) δηαµ +−−= BB  and hence δ 

depends on B, ( ) ( )BBB −+−= ηαµδ  (McDonald and Siegel, 1986).  

The return per Euro invested in the whole portfolio is: 

( )( )
nB1

BdzBdtBBBdz~BdtnBdtnr
nB1

dBnr
+

−−−+++=
+

+ σησαδσ  

This can be rearranged to provide: 

                                                                                                                                                                      
of option pricing theory outside financial economics. The book by Amram and Kulatilaka (1999) 
includes several case studies of real option pricing. 



( )( ) ( )dz
nB1

~nBdt
nB1

BBBnr
+

−+
+

+−−+ σσδηα . (3) 

The first part of equation 3 is certain while the second part is uncertain. To 

simplify the notation we write BdzBdz~Bdz σσσ −= . This portfolio can be compared 

with implementing the policy instead of buying the results from e.g. other 

implementing organizations. Implementing the policy means exercising the option 

and hence, costs F(B,t). Exercising the option provides immediate incremental net-

benefits π(B,t)dt. At the time of release this benefits are known with certainty over the 

short time interval dt. Also, the value of the option to implement the policy changes 

over the time interval dt. This random change can be calculated by applying Ito’s 

Lemma:  

( )( ) dzBFdtFB
2
1BFBBFdF BBB

22
Bt σσηα +



 +−−+= . 

The return per Euro invested than is: 

( )( )
dz

F
BF

dt
F

FB
2
1BFBBF

F
dFdt B

BB
22

Bt σ
σηαπ

π +




 +−−++

=+ . (4) 

As the portfolio should replicate the risk of implementing the policy, the 

uncertain part of the portfolio has to be equal to the uncertain part of the returns from 

releasing them:  

dz
F
BFdz

nB1
nB Bσσ =
+

. (5) 

The arbitrage pricing principle says that two assets in the market with the same 

risk have to have the same value. If the same line of thinking will be applied, than also 

the certain return of the portfolio and the certain return from the policy have to be the 

same: 



( )( ) ( )( )
dt

F

FB
2
1BFBBF

dt
nB1

BBBnr BB
22

Bt σηαπδηα +−−++
=

+
+−−+ . (6) 

If nB/(1+nB) is substituted on the right-hand side by dz
F

BFB  from equation 4 and δ 

substituted by ( )BB −+− ηαµ , equation 5 can be rearranged to provide: 

( )( ) 0rFBFBBrFB
2
1

BBB
22 =+−−−+−+ πηαµσ . (7) 

The term Ft dropped as an infinite stream of returns from the policy is assumed if 

once implemented. The boundary conditions for the differential equation 7 are the 

well-known ‘value matching’ (equation 9) and the ‘smooth pasting’ (equation 10) 

conditions and that the value of the option to implement the policy has no value if 

there are no incremental net-benefits (equation 8): 

0)0(F =  (8) 

RI*B*)B(F +−=  (9) 

*B*)B(F ′=′ . (10) 

A solution to the differential equation 7 and hence, the value of the option, can be 

found by defining a function of the form: 

( ) ( )BhABBF θ= , (11) 

where A and θ are constants that have to be chosen to solve equation 7. Following the 

steps provided by Dixit and Pindyck (1994, 162-163), first equation 11 will be 

substituted in equation 6. After rearrangement: 

( ) ( )

( ) .0hhBBrBh
2
1B

rBr1
2
1hB

B
2

BB
21

2

=



 ++−+−++

+



 −−+−+−

+ ηθηηαµθσσ

θηαµθθσ

θ

θ

 (12) 



Second, the terms in brackets both have to be equal to zero. The first bracketed term is 

a quadratic equation. As one of the boundary conditions is F(0) = 0, only the positive 

solutions will be considered. Solving the quadratic equation provides the following 

solution for θ: 

( )
2

2

22

r2
2
1BrBr

2
1

σσ
ηαµ

σ
ηαµθ +







 −−+−++−−+=  (13) 

Third, the second bracketed term can be transformed into a hypergeometric 

differential equation by the substitutions 2

B2x
σ

η−= , ( ) ( )xgBh = , x2B gB2h
σ

η−= , 

xx

2

2BB gB2h 




 −=

σ
η : 

( ) 0ggxbxg xxx =−−+ θ  (14) 

where  

( ) 2Br22b σηαµθ −+−+=  

Fourth, the solution to equation 14 is the confluent hypergeometric function 

( )b,;xH θ  (see Dixit and Pindyck 1994, p.163) which results in the following solution 

to equation 64: 

( ) 




 −= b,;B2HABBF 2 θ

σ
ηθ  (15) 

The values for A and the critical value B* where the release could be justified can be 

found numerically using the two remaining boundary conditions F(B*) = B*-I+R and 

FB(B) = 1. 

 

3. Application of the model 

                                                           
4 Note the difference to the result provided by Dixit and Pindyck for a mean-reverting process, where x 
is positive. 



The paper will be completed by providing the results of a numerical analysis for 

reasonable parameter ranges. 



4. Conclusion 

In this paper we address the problem of scientific uncertainty defined as the problem 

of identifying the correct stochastic process of incremental net-benefits from a policy. 

Combining a mean reversion process and a geometric Brownian motion reduces the 

problem of scientific uncertainty. A numerical analysis indicates only a small impact 

of scientific uncertainty. Ignoring scientific uncertainty on the other hand may lead to 

a wrong decision.  

The small impact of scientific uncertainty can be explained by the reduced variance 

rate of the combined two processes. The small effect of scientific uncertainty adds 

confidence to the use of a geometric Brownian motion for the kind of public policy 

decisions discussed in this paper.  
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