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RETURN DISTRIBUTIONS  
OF STRATEGIC GROWTH OPTIONS 

 

ABSTRACT 
In this study we develop implications for the return distribution of firms with 

embedded strategic growth options. In our model we integrate real option theory with a 

Cournot-Nash framework where two firms choose output levels endogenously and may 

have investment-timing differences. Simulations of the returns of the strategic growth 

option show that traditional option variables, such as the value of the project relative to 

the investment (i.e., moneyness of the growth option), the return interval relative to the 

period the project can be deferred (i.e., maturity), and uncertainty in demand for the 

product are significant determinants for the moments of the distribution of the option 

returns. In addition to these option variables, uncertain preemption may introduce 

discontinuities in the payoff of our model and consequently further enhance skewness 

and kurtosis. Investment-timing differences between competitors may even lead to 

bimodal return distributions, where the firm with a first-mover advantage has a high 

probability to generate high returns. 

 



 

 3 

INTRODUCTION 

 This paper aims to understand the return distribution of strategic growth options 

under imperfect competition. Growth stocks exhibit a typical behavior that is 

distinguishably different from value stocks. High volatility, discontinuities and value 

asymmetries characterize growth stocks, while these characteristics are to a lesser extent 

observed for value stocks. We propose that some of the return dynamics of growth stocks 

can be attributed to real options characteristics and the competitive environment the firm 

faces. The implicit leverage and nonlinear payoff profile of embedded growth options 

amplify uncertainty and introduce skewness and kurtosis in the return distribution. 

Furthermore, the ability of the firm to capitalize on its growth opportunities is subject to 

competition and competitive interaction may introduce discontinuities in the value of the 

firm. Investment-timing differences may even cause bimodal distributions of strategic 

growth option returns. 

The early real options literature shows that the option value of waiting leads firms 

to invest only at a substantial premium over the net present value of immediate 

investment.1 Often the models are based on the critical assumption that the investment 

opportunity presents itself in either a monopoly or a perfectly competitive market. 

However, competition for shared growth opportunities can dramatically erode the value of 

waiting and often leads to investment near the zero net present value threshold. New 

literature integrates the real options approach with game theory and makes a more 

complete assessment of strategic growth options under imperfect competition.  

In the early real option game literature, Smit and Trigeorgis (1997) analyze a two-

staged game where growth option value depends on endogenous competitive reactions. 

Kulatilaka and Perotti (1998) show that when firms can acquire a strategic advantage by 

investing in a growth option, higher uncertainty encourages immediate investment as 

profits are a convex function of uncertain demand. Perotti and Kulatilaka (1999) examine 

the valuation of a Stackelberg growth option in a Cournot-Nash framework where a firm 

has a time-to-market advantage. The authors show that the value of such strategic 

investment is unambiguously increasing in demand uncertainty, thereby justifying the 

early exercise of the strategic option. Grenadier (1996) develops an equilibrium 
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framework for option exercise games and applies it to real estate market. The model 

provides a rational equilibrium foundation for the development cascades and overbuilding 

in real estate markets. Grenadier (1999) analyzes the case of strategic equilibrium exercise 

strategies under asymmetric information over the underlying option parameters. Grenadier 

(2000) provides a general and tractable solution approach for deriving the equilibrium 

investment strategies of firms in a Cournot-Nash framework in a continuous-time 

stochastic setting.2 Lambrecht and Perraudin (2003) provide an exercise game in which 

firms take preemption effects and incomplete information into account.  

Another strand of literature that is related to this paper is focused on option and 

real option returns (e.g. Rubinstein (1984), Berk, Green and Naik (1998) and Shackleton 

and Wojakowski (2000)). Cox, Ross and Rubinstein (1979) and Galai and Masulis (1976) 

show that the expected rate of return of a European option is related to the expected rate of 

return of the underlying asset and the option elasticity. Coval and Shumway (2001) 

empirically analyze the expected return of options traded in financial markets. In the real 

options literature, Berk, Green and Naik (2003) simulate the return distributions of a 

multi-stage investment project and capture many option features of R&D-ventures and 

start-up companies that affect return distributions. Their research shows that the required 

rate of return of an investment is high in its early life and will decrease as it approaches a 

state of completion. This is a result of the changing implicit leverage of a compound 

option and the resolution of technical uncertainty over time. Furthermore they show that 

the option to abandon combined with technological uncertainty produces bimodal return 

distributions as one may expect in high-risk, technological ventures.  

                                                                                                                                                                               
1 The books by Dixit and Pindyck (1994) and Trigeorgis (1996) provide a nice treatment of real option investment and valuation under 
uncertainty. The books of Grenadier (2000) and Smit and Trigeorgis (2004) provide an overview of the literature and applications of 
real option games.   
2 Grenadier (2000) shows that the Nash equilibrium exercise strategies are identical to those obtained in an “artificial” perfectly 
competitive equilibrium with a slightly modified demand function. 
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By introducing imperfect competition with uncertain preemption effects and 

investment-timing differences, we aim to take another step in understanding the risk and 

return characteristics of strategic options. We simulate the return distribution of the 

strategic growth option in a Cournot-Nash setting, where two firms share the growth 

opportunity in the industry. We find that continuous-time option returns are negatively 

skewed and have fat tails due to the asymmetrical payoff structure inherent to the option’s 

nature. The return interval relative to the maturity of the growth option, the moneyness of 

the growth option and uncertainty in demand are significant determinants of its return 

distribution. Strategic interaction and preemption effects may cause discontinuities in the 

payoff function of growth options and introduce more skewness and kurtosis in the return 

distribution. When investment-timing differences are important, bimodal distributions of 

growth option returns may even result. 

This paper is organized as follows. In section I we develop a model for valuing a 

growth option under imperfect competition in a sequential investment game where the 

existence of a first-mover advantage may result in investment-timing differences. In 

section II we simulate the return distribution of the strategic growth option and derive 

implications for the return distribution based on the different option and strategic 

parameters. Section III offers some concluding remarks. 
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I.  VALUATION OF A SEQUENTIAL GROWTH OPTION GAME 

 
In this section we develop a valuation model for a shared growth option. The 

market structure of this sequential investment game is endogenous as a consequence of 

investment-timing differences and preemption of the market opportunity.  

 

A.  Sequential Investment Game with Endogenous Quantity and Market Structure 

Suppose two firms (i = A or B) share a growth opportunity to make an investment, 

Ii, at t1 or t2 to capture a profit flow. If a firm doesn’t exercise the growth option at the end 

node, the investment opportunity expires worthless. Figure 1 shows the sequential 

investment game in extensive form. The alternative actions by each firm i to make the 

investment (I) or to defer (D) are shown by squares (�) along the tree branches. At t1 we 

can identify four investment-timing scenarios: (i) both firms invest resulting in a 

symmetrical Cournot payoff; (ii) when both firms defer they face an option on a 

symmetrical Cournot payoff in the next period; (iii) and (iv) when one firm invests and the 

other defers investment, the first mover becomes the leader (L), and thereby acquires a 

Stackelberg leader payoff. The follower (F) has an option on a Stackelberg follower 

payoff in the next period. The circles (o) show the resolution of the uncertain demand 

parameter (θ) over time. 

 We note that the payoff of the growth option involves different competitive 

interactions. This interaction exists due to endogenous quantities and investment-timing 

differences. In the extreme, the market structure may change altogether as a consequence of 

preemption of the opportunity. The optimal investment and production strategy of a firm In 

our model therefore not only depends on the level of demand but also on the production 

and investment decisions made by its competitor. Applying the process of backward 

induction and option valuation techniques we determine the equilibrium payoff as a 

function of the level of demand. The value of the shared growth option for each firm is 

then calculated by taking the risk-neutral expectation of the equilibrium payoff.  

 

<Insert Figure 1 about here> 
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B.  Payoff Functions for Different Market Structures 

We assume that market demand for a product is linear in prices and an increasing 

function of the stochastic demand parameter θ. Let P(Q) be the inverse demand function, 

expressing the market price as a function of total output Q: P(Q,θ) = θ - Q, where θ  is 

distributed on (0,∞) with an expected value E(θ) ≡ θ > 0. In our model, θ follows a 

Geometric Brownian Motion, that is: 

 

d dt dzθ αθ σθ= +  (1)  

 

where, dθ is the change in θ for an infinitive small time period dt, α is the risk neutral drift 

rate of θ, σ is the instantaneous standard deviation and dz is an increment of a Wiener 

process.3 Suppose a firm has to decide to invest an amount I in order to capture the profit 

flow. Without an option to defer, a firm will invest if the present value of the profit flow 

exceeds investment outlay. For simplicity we assume the absence of cost and asymmetries 

in investment outlays. The optimal profit of firm i, πi, then equals: 

 
2

i n
θπ =  (2) 

 

where θ is the stochastic demand parameter and n reflects a parameter for the market 

structure. In case of a monopoly n = 4, for a Stackelberg leader n = 8, for symmetrical 

Cournot competitor n = 9, and for a Stackelberg follower n = 16.  

                                                           
3 The risk neutral drift rate, α can be determined by subtracting the risk premium, γ, from the risk averse drift rate in θ, µ. The risk 
premium can be determined as follows: γ = ρθ,m σ / σm ϕ . Where ρθ,m is the correlation between the return on the market portfolio and 
the return on θ,  σ is the standard deviation of the return of θ, σm is the standard deviation of the return of the market portfolio and ϕ is 
the market risk premium. 
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The present value of the profit flow, V, can be found by discounting the risk 

neutral profits with the risk free rate, according to: 

 
2

0 0

( ) f fr t r tt
i t

t t

V e dt e dt
n
θπ θ

∞ ∞
− −

= =

= =∫ ∫  (3) 

 

where, rf is the risk free rate. Solving this integral yields the following equation for the 

present value of the profit flow:4  

 
2

2( 2 )f

V
n r

θ
α σ

=
− −

 (4) 

 

Note that 2α + s2 < rf in order for the value to converge. A firm will invest only if the 

present value of the profit flow exceeds the investment outlay, that is if V > I. Based on 

this investment rule we can derive a general investment threshold function, θ*, for each 

market structure:  

 

* 2( 2 )fn r Iθ α σ= − −
 (5) 

 

In Equation 5 the investment threshold is an increasing function of the risk free rate, rf, 

and the investment outlay, I, while it is negatively related to the risk neutral drift, α, the 

market structure, n, and uncertainty in demand, σ.5 Table 1 presents an overview of the 

profit function, the value function and the investment thresholds for different market 

structures. 

 

<Insert Table 1 about here> 
 
 

                                                           
4 For the proof we refer to Appendix 1, see also Dixit and Pindyck (1994) pp. 82, Equations 33-34. 
5 Because profits are convex in demand, a negative relationship between the investment threshold and uncertainty in demand exists 
(Jensens Inequality). In other words, under imperfect competition profits are convex in demand, since firms respond to better market 
conditions by increasing both output and prices. Thus expected profits increase with volatility as high marginal revenues at higher 
levels of demand more than compensate for low revenues at low levels of demand.  
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Ad i) Both firms invest, NPVC(θt1)  

When both firms invest at t1, the outcome is a symmetrical Cournot Nash-equilibrium 

where each firm reacts optimally to the other firm’s quantity. The net present value, 

NPVC(θt1), for each firm then equals  

 

1

1

2

2( )
9( 2 )

t
C t

f

NPV I
r

θ
θ

α σ
= −

− −
 (6) 

 

Ad ii) Both firms defer investment, FC(θt1)  

When both firms defer investment at t1 they face an option on a symmetrical Cournot 

payoff in the next period, t2. The value of the option to defer, FC(θt1), assuming that the 

market structure will be symmetrical Cournot competition at t2, can be obtained by the 

following equation:6 

 

[ ] [ ]
2

2 1

2 11

1

( 2 )( )2
( )

1 22( )
9( 2 )

f

f

r t t
r t tt

C t
f

e
F N d Ie N d

r

σ αθ
θ

α σ

+ − −
− −= −

− −
             (7) 

 

with 

 

1 2
2 1

1 2 1 2 1
2 1

3ln ( )( )
2

   and    2

t

C

t t
d d d t t

t t

θ
α σ

θ
σ

σ

 
+ + − 

 = = − −
−

                

   

Ad iii and iv) Leader/follower payoff, NPVL(θt1), FF(θt1) 

When a firm defers at t1, it acquires an option to invest at t2 and becomes a follower, F. 

The value of the growth option for the follower at t1, FF(θt1), can be determined along the 

lines of the valuation of Cournot competition using Equation (7):7 

 

                                                           
6 For proof see Appendix 2. 
7 A similar formula can be applied for valuing the growth option assuming that both firms defer investment. However, the investment 
threshold will be that of a Stackelberg follower, θF, as the quantity set by a follower will be lower than that of symmetrical Cournot 
competitor and we have to replace n = 9 with n = 16. 
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2

2 1

2 11

1

( 2 )( )2
( )

3 42( )
16( 2 )

f

f

r t t
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F t
f

e
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with 

 

1 2
2 1

3 4 3 2 1
2 1

3ln ( )( )
2

   and    2

t

F

t t
d d d t t

t t

θ
α σ

θ
σ

σ

 
+ + − 

 = = − −
−

                

 

The valuation function for the leader, L, is more complicated as a consequence of 

uncertain preemption. If firm L invests at t1, it will generate a monopoly profit flow of 

πM(θ) over [t1 , t2]. The market structure that the leader will face at t2 will depend on the 

investment decision made by the follower. The leader will generate an infinitive monopoly 

profit if the follower does not invest at t2, that is if θt2 < θF. However, if the follower does 

invest at t2, implying θt2 > θF, the leader will generate a Stackelberg leader profit flow 

from t2 onwards. The net present value of the profit flow of the leader, NPVL(θt1), can 

therefore be written as the net present value of an infinitive monopoly profit flow minus 

an written option reflecting the possibility that the follower exercises its growth option at 

t2, changing the market structure from a Monopoly to that of a Stackelberg leader/follower 

game. The payoff of the leader can therefore be calculated as follows: 

 

[ ]
2

2 1

1 1

1

( 2 )( )2 2

42 2( )
4( 2 ) 8( 2 )

fr t t
t t

L t
f f

e
NPV N d I

r r

σ αθ θ
θ

α σ α σ

+ − −

= − −
− − − −

 (9) 

 

C. Solution of the Sequential Investment Game 

The equilibrium payoff and optimal investment strategy at t1 is a function of the 

level of demand. We expect that for high levels of demand both firms invest, while for 

low levels of demand both firms defer investment. For intermediate levels of demand, 

market demand is not sufficient to accommodate both firms. In this demand region an 

equilibrium results where only one firm invests (leader), while the other firm (follower) 

defers the investment decision to the next period. The investment thresholds that trigger 
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certain investment policies (both invest, both defer and leader invests and follower defers) 

and determine the market structure, can be found by elimination of strictly dominated 

strategies. 

For a given level of demand, both firms will invest if the following conditions are 

met on t1: NPVC(θt1) > FF(θt1) and NPVL(θt1) > FC(θt1). This situation will occur if  

θt1 > θII, where θII is the investment threshold that satisfies both conditions. Therefore  

θII = max[θ1; θ2], where θ1
 and θ2 can be numerically found by solving the value equations 

with NPVC(θ1) = FF(θ1) and NPVL(θ2) = FC(θ2). Both firms will defer investment if the 

following conditions are met on t1: NPVL(θt1) < FC(θt1) and NPVC(θt1) < FF(θt1). This 

situation will occur if θt1 < θWW, where θWW = min[θ1; θ2]. Thus for θt1 > θII and  

θt1 < θWW firms will pursue pure investment strategies: either both invest or both defer.  

However, there is a region of demand, θt1 ∈ [θWW  , θII ],  where multiple equilibria 

may exist and the notion of a simultanous or dynamic game is critical. Firms will pursue 

mixed investment strategies in the intermediate demand zone if they move simultanous 

and don’t observe each others actions. In the dynamic version of the game, firms will 

invest sequentially and the second mover observes and reacts optimally to the first-

mover’s investment strategy. In the intermediate demand zone the first mover invests, 

because FF(θ) < NPVL(θ) for θt1 ∈ [θWW  , θII ], while the follower defers the investment 

decision to the next period. Figure 2 illustrates the demand zones and equilibrium payoff 

functions in our sequential investment game for different levels of demand.  

 

<Insert Figure 2 about here> 

 

After we have determined the critical thresholds, θWW and θII, we are able to value 

the growth option by solving the following integral using the risk neutral valuation 

approach:8  

 

[ ]1

1 1 1
0

( ) ( ) (1 ) ( ) ( )
WW II

f

WW II

r t
i C t i L i F t C tF e F p d NPV F p d NPV p d

θ θ

θ θ

θ θ θ ζ ζ θ θ θ θ
∞

−  
= + + − + 

  
∫ ∫ ∫  (10) 

                                                           
8 Because the thresholds θWW and θII can only be found numerically, there exists no closed form solution for the value of the growth 
option. 
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where Fi(θ) is the value of the shared growth option for firm i and ζi is a parameter that 

indicates whether the firm is a first mover (ζi = 1) or a follower (ζi = 0).  

 
II.  RETURN DISTRIBUTIONS OF STRATEGIC GROWTH OPTIONS 

 Based on our sequential investment game discussed in the previous section we 

simulate the return distribution of the shared growth option over a return interval, ∆t, 

where ∆t = t* - t0 and t* < t1. We simulate 100,000 trajectories of θ, where θ is lognormal 

distributed according to Equation (1):  

 

*
2

0

ln ( ) ,
2

t N t t
θ σµ σ
θ

   
− ∆ ∆   

  
∼  (11) 

 

where, µ is the risk adjusted drift rate of the stochastic demand parameter θ and t* is the 

return interval. Consistent with the option literature we calculate continuous-time value 

returns according to:  

 

*

,
0

( )
ln

( )
i t

i t
i

F
F
θ

γ
θ∆

 
=  

 
 (12) 

 

where, γi,∆t is the instantaneous return on the growth option of firm i over the return 

interval, ∆t, Fi(θ0) is the value of the growth option at t = 0 and Fi(θt*) is the value of the 

growth option at t = t*.  

We note that in the base case we automatically find negative skewness in the 

return distribution as a property of the log function of continuous-time returns. If the 

option expires worthless the option return will be minus infinity while this is not 

compensated by the positive returns of growth options that will be exercised.9  

 

                                                           
9 Our return interval is chosen such that t* < t1, thereby avoiding the situation that the growth option has a zero payoff and we cannot 
calculate continuous-time returns because ln(0) has no solution. 
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In our base case we use the following parameter setting:  

- θ0: initial level of demand equals 30; 

- σ:  uncertainty in the demand equals 10%; 

- µ:  risk adjusted instantaneous drift in demand is 0;10 

- α:  risk neutral instantaneous drift in demand is 0; 

- rf:  instantaneous risk free rate equals 10%; 

- I:  investment outlay equals 1000; 

- t1: first exercise moment of the growth option is after 1 year; 

- t2: second exercise moment of the growth option is after 2 years; 

- ∆t: return interval is 0.75 year. 
 
 

We construct simulated return distribution of strategic growth option returns for 

different parameter settings. We first simulate the base case, which is a special case 

without investment timing differences. Subsequently, we analyze the impact of first-

mover advantages on the growth option return distribution in a sequential exercise game. 

 

A. Return Interval Relative to the Life of the Growth Option (∆t) 

We simulate the return distribution over different return intervals, ∆t, where  

∆t = t* - t0 and t* < t1. The other option parameters, including the maturity date of the 

growth option t1, remain constant. The simulation shows that mean returns decrease when 

the return interval increases. There are two explanations for this relationship. First, the 

time value of the option Fi(θt*) decreases when ∆t increases and consequently results in 

lower mean returns. Second, when the return interval approaches the maturity of the 

growth option, some trajectories of demand are expected to expire worthless because the 

level of demand is below the investment threshold, yielding large negative returns. The 

returns generated from these trajectories are not compensated by high demand trajectories.  

When we consider the higher moments of the return distribution, we find that the 

standard deviation in simulated returns increases when the return interval increases. With 

an increasing cumulative volatility in demand, the distribution of value returns of the 

growth option widens. Skewness becomes more negative when the return interval 
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increases, due the large negative returns of the “out-of-the-money” trajectories. We note 

that this effect is amplified through continuous-time returns. The kurtosis will be 

positively influenced due to the same reason.  

 

B. The Level of Demand Relative to the Investment Threshold (θ0 /θ*) 

The “moneyness” of the strategic growth option, θ0 / θ* is positively related to the 

mean strategic growth option returns. Hence, the probability increases that the growth 

opportunity will be exercised. The standard deviation in option returns declines when θ0 / 

θ* increases. For high levels of demand the growth option will start to behave like the 

underlying asset because the implicit leverage effect inherent to options diminishes. We 

further find that when demand is near the investment threshold, skewness and kurtosis are 

highest. Hence the asymmetry in the payoff function is most pronounced for “at-the-

money” options (i.e.; the level of demand is near the investment threshold).  

A firm’s competitive position (e.g., Monopolist, Stackelberg leader or follower), 

assuming that it does not change over time, has a similar effect on the option return 

distribution. With a better competitive position the profit value of a firm increases for any 

given level of demand. The threshold demand level that triggers investment therefore 

declines and consequently increases the “moneyness” of the growth option. 

 

 C. Growth of Demand (µ) 

Similar to the “moneyness” of the growth option, strategic growth option returns 

are positively related to growth in demand, µ. The expected demand increases over time 

and makes it is more likely that the option will be exercised, resulting in positive option 

returns. Higher growth, will increase the likelihood of exercise and therefore lowers the 

standard deviation (skewness and kurtosis) of option returns.  

 

D. Demand Uncertainty (σ) 

Demand uncertainty, σ, has a mixed effect on the four moments of the option 

return distribution because it may indirectly affect the growth rate of demand in cases 

where the uncertainty is priced in the market. We therefore differentiate between specific 

                                                                                                                                                                               
10 Our findings remain the same for µ = ½ σ2 thereby simulating a mean preserving spread. 
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and market uncertainty. Furthermore, we note that demand uncertainty influences the 

investment threshold, as is shown in Equation (5). We control for this effect in the 

simulations.  

Specific demand uncertainty has a negative effect on mean returns of the strategic 

opportunity. Similar to the effect of cumulative volatility that we mentioned above, 

positive returns do not compensate the trajectories with large negative returns. Market 

uncertainty in demand is priced, and will affect the risk-adjusted drift in θ. In our model 

we assume that the risk premium associated with systematic demand uncertainty θ is 

proportional to its standard deviation, that is 

 

, ( )M
M f

M

R rθρµ σ
σ

= −  (13) 

 

where, ρθ,M is the correlation of changes in demand with the market return, RM is the 

return on the market portfolio and σM is the standard deviation of the returns of the market 

portfolio. In our base-case parameter setting the standard deviation of the market portfolio, 

σM, equals 20%, the risk premium, RM - rf, equals 5% and the correlation, ρθ,M, equals 1. In 

contrast to specific uncertainty in demand, market uncertainty in demand may have a 

positive effect on mean growth options returns. For low levels of market uncertainty in 

demand, mean option returns are increasing in demand uncertainty because it enhances the 

risk adjusted growth rate. However, for higher levels of demand uncertainty, the negative 

effect tends to dominate and mean growth option returns tend to decrease with total 

demand uncertainty. Skewness and kurtosis decrease when demand uncertainty increases 

even if we control for “moneyness” of the strategic growth option. 

 

E.  Potential Entry and Discontinuities in Payoff 

The payoff function of an incumbent may show discontinuities due to competitive 

interaction. In a low region of demand (θ < θM) no firm will invest, for an intermediate 

level of demand (θM < θ < θF) the first mover will act as a monopolist, while at a high level 

of demand (θ ≥ θF) a follower will enter, causing a negative jump in the value of the profit 

flow of the incumbent firm. We analyze the effect of potential entry on the return 
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distribution by comparing the proprietary growth option returns of a Monopolist with that 

of a Stackelberg leader which faces potential entry. Potential entry introduces more 

(negative) skewness and kurtosis in the return distribution of the strategic option of the 

incumbent (Stackelberg leader). Thus, the threat of competitive entry introduces more 

skewness and kurtosis in the growth options return distribution. 

 

F.  First-mover Advantages in a Sequential Option Game  

Simulations show that investment timing differences may result in bimodal growth 

option return distributions for the leader and the follower. Figure 3 illustrates the 

simulated return distributions for both firms. Panel A presents the return distribution for a 

firm who acts as a Cournot competitor or Stackelberg leader and Panel B presents the 

return distribution for a firm that acts as a Cournot competitor or Stackelberg follower 

(depending on the level of demand).  

At high levels of demand (θt1 > θII), both firms invest and act as a competitor in a 

symmetrical Cournot equilibrium. These return trajectories are presented by the peaks on 

the right-hand side in Panel A and Panel B. The high demand trajectories generate high 

returns for both firms and the returns of the “in-the-money” real options have relatively 

low skewness and kurtosis.  

At low levels of demand (θt1 < θWW), both firms defer investment to the next 

period. These returns generated by the low demand trajectories are presented by the peaks 

on the left hand side of Panel A and Panel B of Figure 3 respectively. These peaks are 

characterized by high volatility, skewness and kurtosis. 

In the intermediate zone (θWW < θt1 < θII), the leader preempts the market, 

introducing the differences in the return distribution in Panel A and B. The leader will 

invest at t1 and acquires a monopoly profit flow. However this competitive position can 

deteriorate if the follower enters the market in next period. The follower will not invest 

but acquires an option on a Stackelberg follower payoff in the next period. As a 

consequence, the follower will experience a significant reduction in growth option value 

when the leader preempts the market.  

To summarize our results, investment-timing differences and preemption can result 

in bimodal return distributions. The leader has a high probability of generating high 
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returns and a low probability of generating low returns, while the follower has a high 

probability of generating low returns and a low probability of generating high returns.  

 

<Insert Figure 3 about here> 

 

III  CONCLUDING REMARKS 
The stock price behavior of firms with embedded growth options is characterized 

by high volatility and strategic interactions. Preemption and option characteristics may 

contribute to the distinguishably different behavior of growth firms.  

In this paper we analyze the return dynamics of strategic growth options in a 

Cournot-Nash framework, where firms may have investment-timing differences. Option 

parameters (e.g. maturity, profit value relative to the investment, demand uncertainty and 

drift) and strategic parameters (competitive investment timing and preemption) introduce 

non-linearity and discontinuities in the payoff and are determinants for the higher 

moments of the return distribution. Simulations of the different option and strategic 

parameters provide the following insights: 

If the return interval relative to the time to maturity increases, the mean option 

return decreases, the standard deviation in option returns increases and the return 

distribution will be more negatively skewed with fatter tails.  

Demand relative to the investment trigger, positively influences mean option 

returns, while it negatively relates to the standard deviation of option returns. Skewness 

and kurtosis are highest for “at-the-money” growth options. We also observe this effect 

for growth in demand (drift). 

Uncertainty in demand negatively influences mean growth option returns. This 

relationship is ambiguous if higher uncertainty is caused by market uncertainty in demand 

because it indirectly affects the growth rate of demand. Skewness and kurtosis decrease 

when demand uncertainty increases even if we control for the moneyness of the strategic 

option. 

Discontinuities in payoff as a consequence of strategic interaction and preemption, 

further enhance (negative) skewness and kurtosis. If we allow for investment-timing 

differences, bimodal return distributions may result where the first mover (follower) has a 
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high (low) probability of generating high returns and a low (high) probability of 

generating low returns.  

The combination of options and game theory allows us to proper analyze uncertain 

strategic effects on returns. The insights in this paper could in principle be empirically 

tested in financial markets.  
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Appendix 1: Value of Infinitive Profit Flow in a Cournot Nash framework 
We assume that θ follows a Geometric Brownian Motion: 

 

d dt dzθ α σ
θ

= +   (A.1) 

 

where dθ is the change in θ for an infinitive small time period dt, α is the risk neutral drift 

rate of the stochastic variable θ, σ is the instantaneous standard deviation in the drift rate 

and dz is an increment of a Wiener process. The following equation holds for log changes 

in θ over a timeframe T: 

 
2

ln ( ) ,
2

T N T Tθ σα σ
θ

   −      
∼   (A.2) 

 

Thus at t = T, θ is distributed according to: 

 
2

0ln ln ( ) ,
2T N T Tσθ θ α σ

 
+ − 

 
∼

  (A.3) 

  

implying that θT has a lognormal distribution with parameters a = lnθ0 + (a - s2 / 2) T and 

b =  s2 T. For the expected value of a variable that is lognormal distributed the following 

equation holds: 
22 2 2 2 2

0ln ( )( ) 22 2 2( )
x b x b x Tx Txax xa

TE e e e e e
σ σθ α

θ
 

+ − +   = = =   (A.4) 

 

It shows that for x = 2 the following holds: 

 

( ) ( )
2 2

2 20 2
42 ln ( ) 2 222 2 2 22

0 0( )
TT T TT

TE e e e e e
σ σθ α α σ α σσθ θ θ

 
+ −  − +  = = =  (A.5) 
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For πi = θ2 / n, the expected profit flow at t = T therefore equals: 

 

[ ]
22 (2 )

0( )
T

i T
eE

n

α σθπ θ
+

=   (A.6) 

 

The present value of an infinitive profit flow can be found according to: 

 
2(2 )2 2

0 0
0 2

0 0

[ ( )]
( 2 )

f
f

r T
r T

T
fT T

eV e E dt dt
n n r

α σθ θπ
α σ

+ −∞ ∞
−

= =

= = =
− −∫ ∫  (A.7) 

 
 
where 2α + s2 > rf in order to converge. 
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Appendix 2: Value of the Option to Defer in a Cournot-Nash Framework 
Given the investment threshold, θ*, the following integral has to be solved for valuing the 

option to invest at t=T under a given market structure: 

 

*
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2( ) ( )
( 2 )

fr T T
i T T

f

F e I p d
n rθ

θ
θ θ θ

α σ

∞
−  

= − 
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∫  (A.8) 

 

where, p(θT) is the risk neutral probability density function of θT. Rearranging this integral 

yields the following result:  
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We define: 
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[ ]
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Second, we solve 
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It can be shown that in the risk neutral world the following holds:  
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Substitution Equations A.13-A.17 in A.9 results in: 
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Rearranging A.18 results in: 
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TABLE 1.  Profit Flow, Present Value of Profit Flow and Investment Thresholds for a Monopolist, 
  Cournot Competitor, Stackelberg Leader and Stackelberg Follower.  
 

 Monopolist Cournot Competition Stackelberg Leader Stackelberg Follower 

 

Profit flow 

 

πM(θ)= θ2/4 

 

πC(θ)= θ2/9 

 

πL(θ)= θ2/8 

 

πF(θT)= θ2/16 

 

PV Profit flow 

 

VM(θT)=θ 2/[4(rf-2α-s2)] 

 

VC(θT)=θ 2/[9(rf-2α-s2)] 

 

VL(θT)=θ 2/[8(rf-2α-s2)] 

 

VF(θ)=θ2/[16(rf-2α-s2)] 

 

Critical Thresholds 

 

θM=2[(rf-2α-s2)I]1/2 

 

θC=3[(rf-2α-s2)I]1/2 

 

θL=2[2(rf-2α-s2)I]1/2 

 

θF=4[(rf-2α-s2)I]1/2 

 

Where, π is the profit flow, θ is the uncertain demand parameter, rf is the risk free rate, α is the risk neutral growth rate in demand, σ is 

the uncertainty in demand, V is the value of the profit flow and θn is the investment threshold for market structure n. 

 



 

 27 

FIGURE 1. Extensive Form of the Sequential Investment Game 
 

 

 

If both firms invest at t1 the outcome will be Cournot competition (NPVC(θ)). If, at t1, one firm invests (L) and the other firm defers (F), 

the firm that invests will become a Monopolist (NPVLM(θ)). At t2 the firm will either remain a Monopolist (NPVM(θ)) if the follower 

doesn’t invests at t2 or act as a Stackelberg leader (NPVL(θ)) if the follower invests at t2. If a firm defers investment at t1 while the other 

firm invests, he will acquire an option on a Stackelberg follower payoff (FF(θ)). If both firms defer investment at t1 the game will be 

repeated at t2 and both firms will acquire an option on a symmetrical Cournot payoff (NPVC(θ)). If firms do not exercise the growth 

option on t2, the opportunity will expire worthless. 
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FIGURE 2. Equilibrium Payoffs as Function of Demand (θ) 

 
The equilibrium payoff of the growth option at t1 is a discontinous function of demand. For low levels of demand ( θt1  <  θWW ) both 

firms will defer investment. For intermediate levels of demand ( θWW  <  θt1  <  θII) the firm that moves first will invest while the 

follower will defer investment to the next period. For high levels of demand (θt1  > θII) both firms will invest. The game may results in 

discontinuities and jumps in the equilibrium payoff of the growth option because of investment-timing differences. 
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FIGURE 3. Return Distribution of Leader (left) and Follower (right) in a Sequential Investment Game 
 

 A. Cournot Competitor/Stackelberg Leader B. Cournot Competitor/Stackelberg Follower 

 

 

The return distribution in a two-staged investment game where the firm has a first mover advantage and ζi = 1 (left) or is a follower and 

ζi = 0 (right). Investment-timing differences may result in bimodial growth option return distributions where the firm having a first 

mover advantage has a high (low) probability of generating high (low) returns while the follower has a high (low) probability of 

generating low (high) returns. (σ = 10%, µ = 0, α = 0, I = 1000, rf = 10%, t1 = 1, t2 = 2, t* = 1, θ0  = 30, n=10.000) 


