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Abstract 

Empirical applications of real options models in competitive environments implicitly exploit 

the optimality of myopic planning. In a seminal paper Leahy (1993) shows that the optimal 

investment strategy of a myopic planner, who ignores market entries and exits of competitors 

as well as the resulting price effects, also constitutes a market equilibrium under rather gen-

eral conditions. As a result, the calculation of optimal investment strategies is simplified con-

siderably because competition does not have to be taken into account. In this paper, however, 

we demonstrate that myopic planning may lead to non-optimal investment strategies. This is 

due to the fact that it is difficult, or even impossible, to specify the correct or equivalent price 

process for the myopic investor using real world data. The myopic investor acts on the as-

sumption of an unregulated (exogenous) price process. But what we observe in the real (com-

petitive) world is indeed the outcome of a regulated (endogenous) price process. Hence, an 

estimation of parameters which is based on the unregulated form of stochastic process is in-

consistent. This misconception, whose outcome we call “competitive bias”, has been widely 

ignored in the literature. Our paper quantifies this bias, analyses its determinants and shows 

the outcome of alternative estimation procedures which could be used to get around it. It turns 

out that due to the “competitive bias” the widely acknowledged “reluctance to invest” is over-

estimated. The suitability of alternative estimation methods depends on their respective speci-

fications. 
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the optimality of myopic planning. In a seminal paper Leahy (1993) shows that the optimal 

investment strategy of a myopic planner, who ignores market entries and exits of competitors 

as well as the resulting price effects, also constitutes a market equilibrium under rather gen-

eral conditions. As a result, the calculation of optimal investment strategies is simplified con-

siderably because competition does not have to be taken into account. In this paper, however, 

we demonstrate that myopic planning may lead to non-optimal investment strategies. This is 

due to the fact that it is difficult, or even impossible, to specify the correct or equivalent price 

process for the myopic investor using real world data. The myopic investor acts on the as-

sumption of an unregulated (exogenous) price process. But what we observe in the real (com-

petitive) world is indeed the outcome of a regulated (endogenous) price process. Hence, an 

estimation of parameters which is based on the unregulated form of stochastic process is in-

consistent. This misconception, whose outcome we call “competitive bias”, has been widely 

ignored in the literature. Our paper quantifies this bias, analyses its determinants and shows 

the outcome of alternative estimation procedures which could be used to get around it. It turns 

out that due to the “competitive bias” the widely acknowledged “reluctance to invest” is over-

estimated. The suitability of alternative estimation methods depends on their respective speci-

fications. 
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A. Introduction 

The analysis of investment decisions is important from a prescriptive as well as from a de-

scriptive viewpoint. Investments pin down a firm’s capital for a long time period and repre-

sent an important factor for the economic development both on firm and sector level. In the 

last two decades, investment theory has largely focused on the simultaneous consideration of 

uncertainty, irreversibility and managerial flexibility when asking for the optimal timing of 
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capital stock adjustments, i.e. investments and disinvestments. In particular real options mod-

els are used to address these aspects1. Real options models exploit the analogy between a fi-

nancial option and an investment project. The following statement applies: Irreversible in-

vestments under uncertainty should only be realized if the expected (and discounted) invest-

ment returns exceed the initial investment cost by a significant amount. In other words, in-

vestment triggers derived from real options models deviate from traditional investment crite-

ria like net present value or internal rate of return. Real options theory thereby offers a poten-

tial explanation for economic hysteresis. In recent history, the real options approach has be-

come increasingly popular for analyzing investment problems in general (see e.g. Carey & 

Zilberman (2002), Dias (2001) and Pinches (1998)). Almost all of these applications empha-

size the potential of real options for explaining an empirically observed reluctance to 

(dis)invest. 

However, there is a difference between financial options and investment projects that seems 

to hamper a transfer of option pricing methods. Whereas financial options constitute exclusive 

rights for their owners, real investment opportunities are rarely unique. Due to the non-

exclusiveness of investment options likewise responses of competitors can be expected when 

they are faced with aggregate uncertainty2. Their combined reactions change sectoral supply 

and hence equilibrium prices. As a consequence, the price process, which determines option 

values and optimal investment triggers, can no longer be considered to be exogenous. This 

reasoning has given rise to real options models which consider competition explicitly3. Leahy 

(1993) demonstrates in a seminal paper that under general conditions perfect competition 

need not to be considered in the producer’s investment decision in terms of trigger prices4. 

The implications of Leahy’s theorem are interesting: Provided that the correct parameters of 

the price process can be determined, the burdensome and iterative determination of an en-

dogenous equilibrium price process can be avoided, when dealing with competitive markets. 

Accordingly, an investor can decide myopically and ignore market entries of competitors. 

Although the decision of such a myopic planner is based on wrong expectations concerning 

the stochastic price process, he will find the correct investment strategy in terms of a trigger 

price which constitutes a competitive equilibrium. In other words: The myopic planner is right 

for the wrong reasons. This statement is the starting point of the present contribution. Our 

paper addresses problems which may arise when applying real options models to competitive 

markets. More concretely, we quantify estimation errors and biases that may occur when a 

myopic planner estimates parameters of the (wrongly assumed) unregulated price process 

from real world data. This problem will necessarily occur because the price process assumed 
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by the myopic planner does not exist and hence, cannot be observed in reality. In fact, empiri-

cal price data are always the outcome of an endogenous equilibrium process. Caballero und 

Pindyck (1996) mention possible biases when estimating the price dynamics assumed by the 

myopic investor from real world data. However, they do not quantify the magnitude of this 

error.  

Our paper has the following structure: The subsequent section B defines and compares the 

decision problem of a competitive investor (small investor) with the decision problem of a 

myopic investor. Following Leahy (1993) the equivalence of both problems is stated. Sec-

tion C assesses the performance of different procedures to estimate the parameters of the price 

process from time series of prices. Additionally it illustrates the magnitude of the random er-

ror emerging in practical applications whatever method used. Section D completes the paper 

with conclusions concerning the specification and interpretation of applications of real options 

models. 

B. Problem Statement 

We consider a perfectly competitive industry consisting of homogenous risk neutral firms. All 

firms are small and hence price takers. They all produce with the same constant-returns-to-

scale technology at constant variable costs c per unit. Capital is the only input. One unit of 

capital allows producing one unit of output. The capital stock can be increased by investments 

It. Investments are irreversible and infinitely divisible. Furthermore, the capital stock is sub-

ject to depreciation with rate γ. Under these assumptions the capital stock of the industry at 

time t which equals the market supply and is denoted by qt. The relation between output price 

pt at time t on the one hand and the current supply and an exogenous demand shock xt on the 

other hand is defined by a time invariant inverse demand function D. Without loss of general-

ity, we subsequently assume an isoeleastic demand function.  
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η denotes the price elasticity of demand. The demand shock xt follows a diffusion process: 

(2) dzxdtxdx ⋅⋅+⋅⋅= σµ   



 4

µ and σ are the drift rate and the volatility, respectively; dz stands for a Wiener-process. Ac-

cording to Ito’s Lemma the stochastic demand process (2) translates into the stochastic price 

process: 

(3) dt
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Replacing x by η−⋅= pqx  and substituting dx by (2) allows to express the price process (3) 

in terms of prices and quantities. After some algebraic manipulation we get  

(4) ( ) dzpdtpdqqpdp ⋅⋅+⋅⋅+⋅= σµδ ˆˆ,ˆ   
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(4) describes a regulated stochastic process. The first term in (4) reflects the price changes 

which are induced by market entries and exits of competitors. Since all firms will react in the 

same way the price process will be truncated when the stochastic price reaches either a spe-

cific entry threshold p  or an exit threshold p. A myopic investor, however, ignores such ef-

fects. His investment strategy is based on the assumption of an exogenous unregulated price 

process:  

(5) dzpdtppd ⋅⋅+⋅⋅= ~ˆ~ˆ~ σµ  

Figure 1 illustrates the difference between the regulated endogenous price process (4) and the 

unregulated exogenous price process (5) for the case of a geometric Brownian motion (GBM), 

where parameters refer to relative price changes. Both price simulations utilize identical pa-

rameters µ̂  and σ̂ . Nevertheless, the sample paths look completely different. 

Here Figure 1 

The myopic investor faces the problem to determine an optimal (profit maximizing) adjust-

ment strategy for his capital stock, i.e. an optimal (dis)investment policy: 
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(6) ( )( ) max~
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q  indicates that price expectations of the myopic planner are based on the assumption of a 

constant market supply and r is a discount rate. For this setting, the solution of the investment 

problem is given by a pair of constant price thresholds p  and p. An explicit solution for the 

trigger prices is presented in the next section. 

A small competitive investor faces a decision problem which is quite similar to (6). The only 

difference is that the exogenous price process (5) is replaced by (4). Surprisingly, the com-

petitive investor and the myopic planner find identical optimal trigger prices which represent 

the competitive equilibrium (Leahy 1993). The reason is that the myopic planner commits two 

errors which offset each other exactly. On the one hand, he ignores the truncation of the price 

process. He therefore overestimates the profitability when contemplating an investment. On 

the other hand, he wrongly assumes to have an exclusive option to defer the investment. The 

value of waiting which comes along with the latter makes it less attractive to invest immedi-

ately. 

However, empirical applications of real options models dealing with competitive markets 

cannot proceed in the way outlined above. Neither the diffusion process of demand shocks (2) 

nor the parameters of the demand function ( )tt xqD ,  (1) are known and data to estimate them 

are not available. Therefore, it is virtually impossible to derive the parameters µ̂  and σ̂  of 

the price process (5) from the underlying parameters σ, µ, γ and η using (4). One way out is to 

estimate the parameters µ̂ and σ̂  directly from empirical price data and to use these estimates 

to calculate the sought-after trigger price for the myopic planner. However, such a procedure 

ignores the following fact: Even accepting necessary simplifications and assuming e.g. perfect 

competition, empirical price data originating from a competitive market are necessarily reali-

zations of the regulated price process (4) and not of the unregulated process (5). Hence, the 

estimation procedure using standard GBM-estimators is not consistent, since the first term in 

(4), which actually takes into account the price effects induced by competitive entry and exit, 

is disregarded. Estimates of the parameters µ̂ and σ̂  will be biased, since they spuriously 

capture this effect. Obviously, the resulting trigger price will also be affected by this bias. The 

wrong estimates are designated µ
~̂

, σ
~̂

, and p~ , respectively. We emphasize that this bias dif-

fers from commonly known estimation or specification errors insofar as it occurs “by con-
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struction”. It is an immediate consequence of competition which causes regulated price proc-

esses.  

C. Assessment of estimating errors 

In this section we will asses the magnitude of errors caused by different procedures to esti-

mate the parameters µ̂ and σ̂  directly from price data which are, in fact, realizations of the 

regulated price process (4). Such an examination cannot be accomplished with real world data 

since the true parameters are unknown. Therefore, we have to resort to simulation experi-

ments. Starting from the aforementioned bias we examine in detail the errors resulting from 

the following procedures: 

Experiment 1 assumes an unregulated GBM and is based on all simulated price data of a 

regulated GBM. 

Experiment 2 also uses standard GBM-estimators for an unregulated process, but is based on 

simulated price data from non-capped periods of a regulated GBM only. 

Experiment 3 estimates a mean reverting process (MRP) and is based on simulated price data 

of a regulated GBM. 

Experiment 4 estimates an unregulated GBM, but is based on only one simulated random 

realization (i.e. one price path) of a regulated GBM. 

The implementation of “Experiment 1” is motivated by the fact that, due to mathematical 

convenience, many empirical applications of the real options approach seem to rely on the 

unquestioned assumption that parameters of the price process may be smoothly estimated 

using standard estimators although they require in fact a GBM. “Experiment 2” is imple-

mented because it seems highly probable that the impact of such an erroneous use of standard 

GBM-estimators for price data originating from a regulated process depends on the frequency 

and length of regulated (capped) periods. Subsequently, we abandon the a priori assumption 

of GBM altogether and use statistical tests for an unprejudiced determination of the type of 

stochastic process. According to the results, we estimate in “Experiment 3” a MRP and assess 

the performance of such a procedure. “Experiments 1 to 3 have one feature in common: The 

suitability of different estimators is tested by isolating the bias “by construction” which is due 

to the unavoidable fact that these estimators are not completely consistent with the underlying 

data. In contrast, we assess with “Experiment 4” the magnitude of random errors which in 

practical applications add to the bias “by construction” whatever estimators used. 
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I Experiment 1: Standard GBM-estimation of process parameters based on 
data stemming from the regulated price process 

Design of experiment 1: 
Our first experiment aims at isolating and measuring the bias induced by a direct estimation of 

the parameters µ̂ and σ̂  from price data using standard GBM-estimators. The simulation ex-

periment is based on the following train of thought: 

(1) We use an artificially generated test bed of price data; i.e. we know the “true parameters”. 

We assume a highly simplified and perfect competitive market with homogenous, small and 

risk neutral firms which all produce with the same constant-returns-to-scale-technology. We 

also suppose that stochastic demand shocks follow a GBM according to (2) with known pa-

rameters µ and σ.  We also predefine the elasticity of demand η and the depreciation γ. 

(2) In order to obtain a simple closed form solution for the dynamic investment problem (6) 

we additionally assume variable costs 0=c . In that case the exit barrier p equals the absorb-

ing barrier of the geometric Brownian motion p = 0. The optimal entry barrier (investment 

trigger) for a myopic planner is given by (Dixit and Pindyck 1994, p. 201): 

(7) ( )Irp γµ
β

β
+−

−
= ˆ

11

1   

1β  is the positive root of the quadratic equation: 

(8) ( ) ( ) 0ˆ1ˆ
2
1

1
2 =+−+− γβµββσ r   

A myopic planner who ignores the price effects of competition (i.e. the time variable market 

supply) will find the correct strategy in terms of a trigger price, if he succeeds in defining the 

equivalent price process with correct parameters µ̂  and σ̂  according to (5). 

(3) In the real world, however, he has limited knowledge concerning the determinants of the 

stochastic price process mentioned above (i.e. composition of the market and characteristics 

of competitors, type and parameters of the stochastic demand process, elasticity of demand, 

depreciation). Therefore, he has to resort to an estimation of the parameters of the stochastic 

price process which is based on empirically observed price data. The attempt to estimate the 

parameters of the price process from empirically observed price data which are in fact realiza-

tions of a regulated process causes a general problem: No estimators for such a process are 
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known. Therefore, we have to approximate the parameters even if we were fully aware of 

competition. In order to evaluate the performance of such an approximation we have to com-

pare, firstly, the true values µ̂  and σ̂  with the wrong estimates µ
~̂

 and σ
~̂

. Secondly, the true 

trigger price p  which is computed according to (7) is compared to the wrong p~ . The wrong 

trigger price p~  is computed analogous to p , but with µ̂  and σ̂  replaced by µ
~̂

 and σ
~̂

.  

We implement the simulation experiment by the steps given below:  

Step 1: We first derive the correct parameters µ̂  and σ̂  of the regulated and the unregulated 

price process according to the transformation given in (4) from the exogenous parameters σ, 

µ, γ and η. We subsequently calculate p  according to (7). 

Step 2: We generate a discrete sample path of the regulated price process using the parame-

ters µ ,σ, λ, α and r with time increments ∆t = 0.1. The simulation of regulated price process 

is based on Balmann and Mußhoff (2002) who determine the regulated price process as 

(9) 
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with p  as the trigger price which fulfils the zero-profit condition.5 The simulation is repeated 

5 000 times. This ensures that sampling errors will average out. Because the data we use 

really represents the reality we assume, the observed differences between the true and the es-

timated parameters indeed reflect the omission of the first term in (4). 

Step 3: We use the data stemming from the regulated price process which we generated in 

step 2. Nevertheless, we estimate the drift and volatility parameter of the unregulated price 

process (5) assumed by the myopic planner by using standard GBM-estimators (Luenberger 

1998, p. 310 and Hull 2000, p. 242): 

(10) 
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N is the total number of observations during a time span T (N = T / ∆t). We choose N = 1 000 

and T = 100. The asymptotic standard errors of these estimators are (Campbell 1997, p. 364):  

(12) [ ]
T

Var
2ˆ~̂ σα =   

(13) [ ]
N

Var
4

2 ˆ2~̂ σσ =   

Results of experiment 1 
Table 1 depicts the results. First, the effects of the transformation stated in (4) are illustrated. 

For instance, the volatility of the stochastic demand (i.e. the original source of uncertainty) is 

enhanced (dampened) by a low (high) absolute elasticity of demand. Furthermore, deprecia-

tion leads ceteris paribus to a reduction of aggregate supply and causes prices to rise. This 

effect is expressed by an increase of the drift parameter of the endogenous price process µ̂ . 

The parameters µ and σ of the stochastic demand process transform only into identical pa-

rameters µ̂  and σ̂  of the price process if η = -1 and γ = 0. 

Here Table 1 

Second, with respect to the estimation bias we find following results: p~  exceeds p  in all 

cases; i.e. the myopic planner systematically overestimates the optimal trigger price. An in-

crease of the drift rate µ of the stochastic demand x magnifies the difference between p  and 

p~  in absolute and in relative terms. An increase of the (absolute) price elasticity has an oppo-

site impact. The effects induced by a change of the volatility depend on the level of the other 

parameters. Finally, increasing depreciation enlarges the gap between the correct and the es-

timated investment trigger. The magnitude of the estimation error for different constellations 

of parameters is also remarkable. While e.g. the bias is negligible for an elasticity η = -2, a 

drift rate µ = –2.5%, a volatility σ = 10% and a depreciation rate γ = 0 it amounts to more 

than 15 percent for η = -1, µ = 0%, σ = 10%, and γ = 5. In markets (e.g. for agricultural prod-

ucts) that are characterized by an inelastic demand (|η| < 1) and depreciation rates of 5 % and 

more, significant estimation errors have to be expected in general. 

It is also interesting to trace back deviations between p  and p~  to biases of the parameters µ̂  

and σ̂ . Deviations of the trigger prices mainly go back to estimation errors in the drift pa-
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rameter which is systematically biased downwards ( µµ ˆ~̂
< ). Moreover, our results show that 

the estimation errors of the volatility parameter are quite small. Both a slight over- and a 

slight underestimation may occur. This finding contradicts Caballero and Pindyck (1996, 

p. 654) who conjecture that the volatility parameter of the regulated price process will be 

smaller than that of the unregulated price process.  

II Experiment 2: Standard GBM-estimation of process parameters based on 
data stemming from non-capped periods of the regulated price process 

Design of experiment 2 
The disregard of the fact that our data are indeed stemming from a regulated GBM was the 

cause of the bias demonstrated in experiment 1. The impact of the erroneous use of standard 

GBM-estimators and, for this reason, the magnitude of the estimation error ultimately de-

pends on the frequency and length of price-capped periods. This suggests a correction of the 

estimation procedure in such a way that all capped periods, when prices match the entry bar-

rier ( ppt = ), are excluded. A corresponding approach was already made by Caballero and 

Pindyck (1996). However, since they were using real world data, they could not assess the 

performance of such a method. 

Our second experiment therefore explicitly considers this effect investment effect. Starting 

with the price rule (9), it is quite straightforward to consider only those values for the estima-

tion of µ̂  and σ̂  which are not affected by investment responses, i.e. those values generated 

by the lower rule. In other words: We resort to a modified price series where all periods are 

excluded in which the price is larger than a certain level. Ideally, we should consider only 

those values for which holds 

(14) [ ] ptp tt ⋅∆⋅−⋅−≤∆− ))-(1log(exp γµα   

Knowing the correct parameters (see step 1) and having truncated the price paths which were 

originally generated in step 2, we could estimate the drift and volatility parameter of the un-

regulated price process (5) as it is assumed by the myopic planner by using standard GBM-

estimators (see step 3). In practice, however, this knowledge is not given. Therefore, we use a 

simplified rule, which excludes a certain upper percentiles. 

Results of experiment 2 
Table 2 depicts the results for two simulations using drift rates of µ̂  = 2.5 % and µ̂  = 5 % 

respectively. It is evident that an increase of the truncation level reduces the initial underesti-
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mation of the drift ( µµ ˆ~̂
< ) caused by the use of standard GBM-estimators. Equally, the esti-

mation of the volatility improves. However, if we exclude to high a percentage of upper 

prices, the results reverse and the drift will e.g. be overestimated. Accordingly, there is, at 

first, a positive, and then a negative bias of the trigger price, which is calculated respectively.  

Figure 2 illustrates the fact that the percentage of upper prices which should indeed be omitted 

before using standard GBM-estimators depends on the constellation of parameters of the un-

derlying price process. In reality, these (true) parameters are not known. On the contrary, they 

are exactly the parameters which are to be estimated from an observed price series. Therefore, 

they can by no means be used for a specification of the estimation method intended to reduce 

the initial bias “by construction”. However, in terms of a cautious conclusion one might pro-

pose to omit a small percentage of upper prices; at least in cases where it seems to be realistic 

to assume generally that prices follow a regulated GBM with a positive drift rate µ̂ . How-

ever, it needs further investigation to determine the practical consequences such a conclusion 

might have for applications, since, in reality, one is in possession of one price path only. 

Here Table 2 

Here Figure 2 

III Experiment 3: Estimation of a MRP based on data stemming from the 
regulated price process 

Design of experiment 3 
Experiment 1 and 2 demonstrated the effects of an erroneous use of standard GBM-estimators 

(which are valid for an unregulated GBM only) for price data stemming from a regulated 

GBM. In order to isolate this estimation error “by construction” we used data of a price simu-

lation which was repeated 5000 times. Common sampling errors therefore averaged out.  

Still averaging out sampling errors we examine in experiment 3 a bias by construction caused 

by an alternative estimator. Such a bias will e.g. arise if we assume that the price process 

represents a MRP, namely an Ornstein-Uhlenbeck process. MRP are plausible because of two 

reasons: (i) their characteristic propensity to revert to equilibrium in the long run which is the 

reason why they are often proposed in the context of real options (e.g. Dixit and Pindyck 

1994, p. 74). (ii) the results of the Dickey-Fuller-Test according to which nearly 80 % of 

simulated paths of a regulated GBM are deemed to be stationary, whereas the respective result 

for an unregulated GBM is only 4 %. In both cases 5 000 simulated price paths (each consist-



 12

ing of 1000 price data) with a drift rate of 5 % and a standard deviation of 20 % were used as 

data base. The error probability used for the Dickey-Fuller Test was 5 %.  

The time continuous version of a MRP is given by Vasicek (1977): 

(15) ( ) dzdtppdp MRP ⋅+⋅−⋅= σκ *   

κ describes the speed or inclination of p to revert to the equilibrium level p*. MRPσ  is the 

standard deviation of the MRP. The time discrete version is defined by: 

(16) ( ) t

t

MRPtt
tt

t
epeepp ε

κ
σ

κ
κκ ⋅

⋅
−

⋅+⋅+−⋅=
∆⋅⋅−

∆−
∆⋅−∆⋅−

2
11

2
*   

εt is a standard normally distributed random variable. 

For the sake of convenience, we quote the complete sequence of steps:  

Step 1: We derive the correct parameters µ̂  and σ̂  according to (4). We subsequently calcu-

late p  according to (7). 

Step 2: We generate 5000 discrete sample paths of the regulated price process for 100 periods 

using the parameters We generate a discrete sample path of the regulated price process using 

the parameters µ ,σ, λ, α and r with time increments ∆t = 0.1.   

Step 3: We use the price data originating from the regulated process which were generated in 

step 2. Nevertheless, we estimate the drift and volatility parameter assuming that they are re-

alizations of a MRP as defined in (14). Estimators for the MRP can be derived by running a 

regression for the following first-order autoregressive process: 

(17) tRegttt paap εσ ⋅+⋅+= ∆−10 , with 

( )tepa ∆⋅−−⋅= κ1*
0 , tea ∆⋅−= κ

1  and 
κ

σσ
κ

⋅
−

⋅=
∆⋅⋅−

2
1 2 t

Reg
e   

Regσ  describes the standard deviation of the regression and ∆t the time interval between two 

observations. The parameters p*, κ and MRPσ  are calculated as follows: 

1

0*

1 a
a

p
−

= , ( )1ln1 a
t

⋅
∆

−=κ  and tRegMRP e ∆⋅⋅−−
⋅

⋅= κ
κσσ 21

2  
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Results of experiment 3 
Table 3 depicts the results. In contrast to experiment 1 and 2, where process parameters were 

estimated from simulated price paths, but trigger prices were determined analytically, the as-

sumption of a MRP requires a numerical determination of the trigger price. In the present 

case, we only consider a positive drift rate of 5 % and a volatility of demand of 20 %. First, 

the correct corresponding parameters of the unregulated stochastic price process according to 

(4) as well as the correct trigger price are given. For the sake of convenient comparison, we 

also restate the results of the procedure using standard GBM-estimators which were demon-

strated in simulation experiment 1. 

Here Table 3 

The results show that using the estimates of a MRP may lead to an even more pronounced 

overestimation of the trigger price (24.15 %) than using standard GBM-estimators (19.34 %). 

This is interesting because according to statistical tests we would deem nearly 77.9 % of our 

simulated paths to be stationary if we had no prior knowledge concerning the type of stochas-

tic process.  

However, it should be noted that so far we have been trying to isolate the error “by construc-

tion” (i.e. the error caused by using wrong estimators). Accordingly, we based the estimation 

of parameters on the information of all 5000 simulated sample paths in order to ensure that 

sampling errors would average out. Knowing which paths would statistically be deemed sta-

tionary we re-examine the error “by construction” induced by competition by using only sta-

tionary paths for the estimation of MRP-parameters. We find that in this case, the relative bias 

of the trigger price is reduced to 10.56 %. Using estimators which are consistent with statisti-

cal tests therefore seems to yield more reliable results, especially if there is no theoretically 

assured prior knowledge concerning the type of process in question. 

IV Experiment 4: The effects of random errors  
The design of the simulation experiments described so far enabled us to analyze the bias “by 

construction”, i.e. the bias caused by an erroneous assumption concerning the underlying sto-

chastic process when we estimate the parameters of the process. Apart from that, there may be 

a deficient estimation of parameters due to the unavoidable fact that one given past time series 

is always only one random realization of the stochastic process. We call this effect simply 

“random error”. This error will emerge in practical applications whatever estimation proce-

dures used. We explore the relevance of this error by giving standard statistics such as stan-
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dard deviation, maximum, minimum etc. for the conventional procedure which uses standard 

GBM-estimators (cf. experiment 1). 

Here Table 4 

Table 4 shows that apart from the general bias problem, there always is additional uncertainty 

concerning the trigger price. This is true even though we use a very long and well frequented 

price series consisting of 1000 price data. With realistic price data the importance of this ob-

stacle increases.  

D. Conclusions 

Our results are important for the interpretation of models which attempt to analyze the impact 

of real options on competitive markets under aggregate uncertainty. Such models seem to be 

more appropriate for applications than models which postulate the exclusiveness of real op-

tions or reduce uncertainty to firm specific shocks. However, our analysis reveals that most of 

the empirical results of real options models might be wrong even assuming that prices follow 

a regulated GBM (competitive environment). To be specific, empirical applications tend to 

overestimate the reluctance to invest if standard GBM-estimators are used to determine the 

parameters of the price process, although they are inconsistent with the underlying data 

stemming from a regulated process.  

To our knowledge, this bias has been widely ignored so far. The effect we pinpoint here might 

be interpreted as a bias “by construction”. It is, by its nature, quite different from most model-

ing errors that have been highlighted by other authors7. It occurs under rather general condi-

tions and is difficult to avoid. In other words: Having to rely on real world data, it is very dif-

ficult or even impossible to specify an investment problem of the myopic planner which is 

exactly equivalent to the small investor’s decision problem.  

The relative bias of the trigger price induced by a standard GBM-estimation of parameters 

may seem to be negligible for drift rates beneath or close to 0 %, since it amounts to approxi-

mate 5 % only. Such drift rates, however, are not often realistic. Many markets are character-

ized by an inelastic demand and depreciation rates of 5 % and more. The joint effect of elas-

ticity and depreciation results in drift levels well above 5 % which, in turn, cause a consider-

able bias of the deduced trigger prices.  
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According to our findings, this bias “by construction” can be reduced in two ways: 

(1) conforming the underlying price data, which indeed originate from a regulated process, to 

the standard GBM-estimators by excluding a small percentage of upper prices; (2) using al-

ternative estimators according to statistical tests. In terms of a cautious conclusion one might 

say that a small percentage of upper prices of approx. 2 percent to 3 percent## should be ex-

cluded in cases where it is realistic to assume that prices follow a regulated GBM with a posi-

tive drift rate µ̂ . Using unprejudiced statistical tests in order to determine appropriate estima-

tors, in contrast, is preferential in all cases where there is no theoretically assured prior knowl-

edge concerning the type of process in question. However, it needs further investigation to 

determine the practical consequences of such a conclusion for applications, since, in reality, 

one is in possession of one price path (i.e. one random realization) only. 

In addition to this bias “by construction”, we face the obstacle that we cannot avoid the effect 

of random errors which biases the resulting trigger price even if we can rely on a very long 

and well frequented price series. According to circumstances, both problems should be at least 

taken into account, when interpreting the results derived from empirical applications.   

E. Notes

 
1 There are other models coping with risk, irreversibility, and flexibility in the context of 

investments (e.g. adjustment-cost-models or the q-theory). Caballero (1997) and Abel et al. 

(1996) describe these models and their relation to real options models. 

2  In addition to aggregate uncertainty producers may also face idiosyncratic shocks. How-

ever, the problems discussed below arise from aggregate uncertainty which we focus on. 

3 Dixit and Pindyck (1994, ch. 8 and 9) and Trigeorgis (1996, ch. 9) provide an overview of 

procedures to incorporate different types of competition into real options models. 

4 A generalization of the myopic principle can be found in Baldursson und Karatzas (1997). 

5  Balmann and Mußhoff (2002) show that alternatively, the same trigger price and the iden-

tical price dynamics can be identified by an agent-based approach in which a number of 

competing agents invest and produce by using Genetic Algorithms to identify equilibrium 

investment strategies. 

6  Balmann and Mußhoff (2002) show that alternatively, the same trigger price and the iden-

tical price dynamics can be identified by an agent-based approach in which a number of 
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competing agents invest and produce by using Genetic Algorithms to identify equilibrium 

investment strategies. 

7  For example Laughton and Jacoby (1995) show that a wrong choice of the functional form 

of the stochastic process (2) may also lead to an overestimation of the irreversibility effect. 
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Figure 1: Price dynamics with and without competition 
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Figure 2: Investment triggers depending on drift and volatility based on estimates of selected percentiles 
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Table 1: The effect of a standard GBM-estimation of process parameters from price data stemming from 
a regulated GBM 

a) Variation of drift and volatility a 

µ (%) -2.5 0 2.5 -2.5 0 2.5 parameters of stochas-
tic demand σ (%) 10 20 

µ̂  (%) -2.5 0 2.5 -2.5 0 2.5 correct parameters of 
stochastic price process σ̂  (%) 10 20 
correct trigger price p  1.5767 1.3054 1.1456 1.9700 1.6961 1.4812 

µ
~
ˆ  (%) -2.6464 -0.5920 0.3077 -2.9667 -0.8090 0.6895 biased estimates of 

stochastic price process  σ
~
ˆ  (%) 10.0219 10.0921 10.3874 20.0721 20.1308 20.3208

biased trigger price p~  1.5959 1.3637 1.2927 2.0298 1.7847 1.6444 

absolute bias pp −
~  0.0192 0.0583 0.1470 0.0599 0.0885 0.1632 

relative bias ( ) ppp /~
−  0.0122 0.0447 0.1283 0.0304 0.0522 0.1102 

a ∆t = 0.1, η = -1, γ = 0 %, r = 7 % 

b) Variation of elasticity a 

elasticity of demand η -0.5 -2 
µ (%) -2.5 0 2.5 -2.5 0 2.5 parameters of stochastic 

demand σ (%) 10 
µ̂  (%) -4 1 6 -1.375 -0.125 1.125 correct parameters of 

stochastic price process σ̂  (%) 20 5 
correct trigger price p  2.1570 1.6026 1.2811 1.2874 1.1534 1.0740 

µ
~
ˆ  (%) -4.2245 -0.0757 1.7004 -1.3787 -0.3986 0.0199 biased estimates of 

stochastic price process  σ
~
ˆ  (%) 20.0384 20.2194 20.7875 4.9986 5.0493 5.1941 

biased trigger price p~  2.1880 1.7133 1.5758 1.2878 1.1800 1.1472 

absolute bias pp −
~  0.0309 0.1107 0.2947 0.0004 0.0266 0.0732 

relative bias ( ) ppp /~
−  0.0143 0.0691 0.2301 0.0003 0.0231 0.0681 

a ∆t = 0.1, γ = 0 %, r = 7 % 

c) Variation of depreciation a 

µ (%) 0 parameters of stochastic 
demand σ (%) 10 

depreciation γ (%) 0 2.5 3.5 5 
µ̂  (%) 0 2.5 3.5 5 correct parameters of 

stochastic price process σ̂  (%) 10 

correct trigger price p  1.3054 1.1355 1.1049 1.0784 

µ
~
ˆ  (%) -0.5920 0.4907 0.5536 0.6538 biased estimates of 

stochastic price process  σ
~
ˆ  (%) 10.0921 10.7982 11.0502 12.0388 

biased trigger price p~  1.3637 1.2504 1.2419 1.2473 

absolute bias pp −
~  0.0583 0.1149 0.1370 0.1689 

relative bias ( ) ppp /~
−  0.0447 0.1012 0.1240 0.1566 

a ∆t = 0.1, η = -1, r = 7 % 
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Table 2: The effect of a standard GBM-estimation of process parameters from price data omitting upper 
percentiles a 

a) … for drift µ̂  = 2.5 % 

correct values µ̂  = 2.5 %, σ̂  = 20 %, p  = 1.4812 

omitted upper 
percentile  (%) 0 1 3 5 7.5 10 15 20 

truncation level  ∞  1.5492 1.4523 1.3894 1.3256 1.2708 1.1751 1.0920 

µ
~
ˆ  (%) 0.6895 1.9638 2.5275 2.5677 2.6248 2.6748 2.8030 2.9639 biased estimates 

of stochastic 
price process  σ

~
ˆ  (%) 20.3208 20.0462 20.0063 20.0045 20.0072 20.0093 20.0142 20.0199

biased trigger 
price p~  1.6444 1.5238 1.4794 1.4764 1.4724 1.4689 1.4600 1.4490 

absolute bias pp −
~  0.1632 0.0426 -0.0018 -0.0048 -0.0088 -0.0123 -0.0212 -0.0322

relative bias ( ) ppp /~
−  0.1102 0.0288 -0.0012 -0.0032 -0.0059 -0.0083 -0.0143 -0.0217

 

b) … for drift µ̂  = 5 % 

correct values µ̂  = 5 %, σ̂  = 20 %, p  = 1.3277 

omitted upper 
percentile  (%) 0 1 3 5 7.5 10 15 20 

truncation level  ∞  1.4384 1.3749 1.3380 1.3026 1.2724 1.2191 1.1703 

µ
~
ˆ  (%) 1.5206 2.7640 4.2511 4.9636 5.1076 5.1511 5.2333 5.3451 biased estimates 

of stochastic 
price process  σ

~
ˆ  (%) 20.6365 20.2782 20.0496 19.9986 19.9965 19.9956 19.9959 19.9940

biased trigger 
price p~  1.5845 1.4730 1.3695 1.3295 1.3222 1.3201 1.3160 1.3106 

absolute bias pp −
~  0.2568 0.1453 0.0418 0.0018 -0.0055 -0.0077 -0.0117 -0.0171

relative bias ( ) ppp /~
−  0.1934 0.1095 0.0315 0.0014 -0.0041 -0.0058 -0.0088 -0.0129

 

a ∆t = 0.1, η = -1, r = 7 %, γ = 0 % 
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Table 3: The effect of estimating a MRP from price data stemming from a regulated GBMa 

correct values µ̂  = 5 %, σ̂  = 20 %, p  = 1.3277 
estimates using MRP-estimators on …  estimates using standard 

GBM-estimators …all paths …stationary paths 

µ
~
ˆ  (%) 1.5206 – – estimates of the parame-

ters of the GBM  σ
~
ˆ  (%) 20.6365 – – 

p* – 0.8651 0.9309 
κ – 0.3195 0.3772 estimates of the parame-

ters of the MRP 
σMRP – 0.2021 0.2118 

biased trigger price p~  1.5845 1.6483 c 1.4679 c 

absolute bias pp −
~  0.2568 0.3206 0.1402 

relative bias ( ) ppp /~
−  0.1934 0.2415 0.1056 

a ∆t = 0.1, η = -1, r = 7 %, γ = 0 %. 
b 77.9 % of the paths are stationary with a probability of error of 5 %. 
c For lack of an analytical solution the results for the MRP are calculated by means of a numerical GA-based 
simulation model (cf. Balmann et al. 2001). 
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Table 4: The effect of random errors within a procedure based on a standard GBM-estimation of process 
parameters a 

estimated parameters  trigger price 
drift (%) volatility (%) 

true values ( p , µ̂ , σ̂ ) 1.4812 2.5000 20.0000 

biased values ( p~ , µ
~
ˆ , σ

~
ˆ ): expected value 1.6444 0.6895 20.3208 

                                             standard deviation  0.1032 1.0998 b 0.5138 b 
                                             maximum trigger price 2.4103 -5.9759 b 19.7030 b 
                                             minimum trigger price 1.4856 1.7860 b 18.7494 b 
                                             10% percentile 1.7877 0.3968 b 21.1560 b 
                                             25% percentile 1.6951 0.5402 b 21.1607 b 
                                             75% percentile 1.5669 1.8304 b 20.8294 b 
                                             90% percentile 1.5419 1.9710 b 20.5012 b 

a ∆t = 0.1, η = -1, r = 7 %, γ = 0 %.  b  b 
b values corresponding to the respective trigger price. 


