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Optimal Investment Management of Harbour

Infrastructures. A Real Options Viewpoint

Abstract

Most real problems need to be modelized using multiple state variables,

combine multiple Real Options (very often american-style ones) and have

complex cash flow functions. In this paper we present a new Scenarios-

Monte Carlo method to approach this kind of high-dimensional Real Op-

tions problems. The method is based on scenarios spaces built at each

exercise date so that the payoff function can be modified at each scenario

depending on the optionallity. Then scenarios are related in order to cal-

culate the expected value of continuation. The main contribution of the

algorithm is that it allows us to price american-style real options while

solving decision problems of optimal investment policy.

Keywords: High-Dimensional Real Options, Monte Carlo Simulation, Harbour

Infraestructures.
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1 Introduction

Literature concerning valuation of projects involving real options mostly focuses

on problems where the cash flow function depends on few underlyings or can even

be directly modelized through a single stochastic process. Then the valuation

model is either a partial differential equation or a binomial or multinomial tree.

We could mention many references, from already classical Dixit and Pindyck’s

(1994) or Trigeorgis’ (1996) books, till papers as Hubalek, F., Schachermayer, W.

(1999) or Schwartz, E.S., Zozaya-Gorostiza, C. (2000), without pretending to be

comprehensive, but just to illustrate a variety of points of view inside Real Options

field.

However most real problems need to be modelized using multiple state vari-

ables, combine multiple Real Options (very often american-style ones) and have

complex cash flow functions. So we are dealing with what we have called High-

Dimensional Real Options. For them, the valuation models mentioned above

suffer the so called curse of dimensionality, and standard Monte Carlo methods

do not allow neither to calculate the expected value of continuation nor to modify

the payoff function.

In the field of financial derivatives, pricing high-dimensional american options

remains an opened problem deeply studied. Until recently the valuation of amer-

ican options was widely considered out of the scope of Monte Carlo method. But

these opinions soon vanished in front of evidence.
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Nowadays, Tilley’s (1993) bundling algorithm (which first show the potential

of simulation applied to american options on a single underlying asset), Bar-

raquand and Martineau’s (1995) payoff stratification algorithm and Brodie and

Glasserman’s (1997a) and (1997b) simulated tree or stochastic mesh algorithms

could be considered as classical works.

Recently, Fu, Laprise, Madan, Su, and Wu (2000) review, compare and gener-

alise these and other simulation approaches. Just for mentioning one of the latest

contributions, we quote Longstaff and Schwartz’s (2001) Least Square Monte

Carlo algorithm.

Following the main guidelines developed by these authors, but focusing on

high-dimensional real options, we develop a New Scenarios-Monte Carlo Al-

gorithm. It is based on scenarios spaces built at each exercise date so that the

payoff function can be modified at each scenario depending on the optionallity.

Then scenarios are related in order to calculate the expected value of continuation.

The main contribution of the algorithm is that it allows us to price american-

style real options while solving decision problems of optimal investment policy. As

we will see later on, this versatility adds practically no additional computational

cost due to the way intermediate information is stored.

The paper has been organised as follows: in section 2 we begin with a descrip-

tion of the scenarios-Monte Carlo algorithm, whose comprehensive mathematical

formulation is developed in Appendix A. The real investment valuation problem
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we have considered for applying the algorithm is described in section 3. Section 4

contains the application itself. First, in 4.1, we introduce the so called stochastic

Net Present Value, needed for solving the valuation problem in 4.2. We finish

the section with a subsection 4.3 devoted to software implentation and computa-

tional times. Finally, in section 5 we use the information stored when applying

the algorithm in 4.2, to solve the decision problem involved. After describing in

5.1 how to state the problem, we present the numerical results of the resolution

in 5.2. As usual, we include a last section 6 of conclusions.

2 Scenarios-Monte Carlo Algorithm

The algorithm has two main stages, each one included in one subsection. Subsec-

tion 2.1 consists of the generation of the scenarios spaces. Such spaces describe

quantitatively situations the project manager would face, each one with its corre-

sponding probability. Each scenario plays a similar role as a node of a valuation

tree does. For a comprehensive mathematical formulation see A.1 and A.2. Sub-

section 2.2 gives us the relation between consecutive scenarios spaces, which will

allow us to calculate expected continuation values. Again, for a comprehensive

mathematical formulation see A.3. Finally, subsection 2.3 summarises the steps

of the scenarios-Monte Carlo algorithm.
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2.1 Generation of the Scenarios Spaces

For generating the scenarios spaces, let us consider m state variables denoted by

Ni, i = 1 . . .m. Each variable has its own dynamic modelized through a stochastic

process (the processes can be either independent or correlated). The parameters

used in these processes have been adjusted to accomplish risk-neutral valuation.

At a given date τ , we get M samples of each state variable Ni, using Monte

Carlo simulation. We build the histogram associated to these M samples, which

gives us a probability distribution of the state variable Ni at date τ . So we are

considering m different histograms, one for each variable.

From them, we build m-dimensional arrays by making the Cartesian product

of the m sets of representative values of the classes of each histogram. The

probability of each array is the product of the probabilities of its components. So

we get a m-dimensional scenarios space at date τ , which we will denote ετ , as well

as a complete probability distribution on it, denoted by Qτ .

2.2 Relation between Consecutive Scenarios Spaces. Ex-

pected Continuation Value

In order to be able to calculate expected continuation values, we need to relate

consecutive scenarios spaces. Let us consider at date τ a scenario eτ belonging

to the scenarios space ετ . Taking this scenario as initial value, we get M samples

Si at τ + 1 of m-dimensional arrays associated to eτ . For each Si, we find the
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scenario eτ+1(i) belonging to ετ+1 which is closest to Si using the Euclidean norm.

We consider then that eτ+1(i) is related to eτ . Figure 1 illustrates this procedure.

So eτ is related M times with scenarios at τ + 1. The transition probability

from eτ to one of these τ +1-scenarios is given by the frequency the τ +1-scenario

appears. Figure 2 outlines this procedure.

The expected continuation value CV at eτ is then calculated as usual, using

the values of the payoff function (denoted by Pf) at each related scenario at τ +1,

and the corresponding risk-neutral transition probabilities pi, i = 1, . . . , l:

CV (eτ ) = (p1 × Pf(e1
τ+1) + ... + pl × Pf(elτ+1))× (1 + r)−1 (1)

where r denotes the riskless discount rate.

2.3 Valuation Algorithm Steps

Let us consider a valuation problem involving m state variables and n possible

exercise dates denoted by τ , τ = 0, . . . , n (τ = 0 represents the actual date). We

will denote by Ef the function which gives as the value of the investment if we

decide to invest. Depending on the optionallity of the problem at each date τ and

at each scenario eτ belonging to the scenarios space ετ , Ef can be as simple as in

the case of an american put option on a single non-dividend stock, or much more

complex as in the problem modelized in 4.2.

On the other hand, we denote by Pf , as in 2.2, the payoff function of the

valuation problem. When defining Pf , the function Ef will be involved, building
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complicated payoff functions, as will also see later on. As usual in valuation trees,

the algorithm works backwards. The steps are the following:

• We generate the scenarios space at maturity τ = n as described in 2.1.

– At each scenario en, we calculate Ef considering the opcionality in-

volved.

– At each scenario en, we calculate Pf(en) (when solving the real prob-

lem in section 4, Pf will be the maximum between Ef and 0).

• We generate the scenarios space at date τ , 0 ≤ τ < n, as described in 2.1.

– At each scenario eτ , we calculate Ef considering the opcionality in-

volved, and the expected continuation value CV (eτ ) as described in

2.2.

– At each scenario eτ , we calculate Pf(eτ ) (when solving the real problem

in section 4, Pf will be the maximum between Ef and CV (eτ )).

• The final value is given by Pf(e0) (let us note that the scenarios space at

date τ = 0 has a unique scenario e0).

This algorithm has been tested for an american put option on a single non-

dividend stock with the following characteristics: one month to expiry, stock

price S = 40, strike price K = 45, riskless discount rate 5%, volatility 30%

and exercise dates τ , τ = 0, . . . , 20. The algorithm uses then the well known
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functions Ef(eτ ) = K − Seτ and Pf(eτ ) = max(Ef(eτ ), 0) at maturity or

Pf(eτ ) = max(Ef(eτ ), CV (eτ )) at an intermediate date. The results show that

the price given by the algorithm differs from a binomial tree in 0.01 units, and

from the Barone-Adesi and Whaley Approximation in 0.02 units.

3 Real Problem Description

In this section we describe the investment project whose valuation illustrates the

use of the scenarios-Monte Carlo algorithm proposed. First we introduce the

state variables involved in the statement of the valuation problem by studying

the goods flow. Next we develop the real options that must be taken into account

in order to properly valuate the whole investment project.

3.1 Goods Flow: State Variables

We consider a harbour that already operates and has an approximate traffic vol-

ume of four million tons of about thirty different goods, mainly from iron and

steel industry. The three operative docks that support this traffic will be called

North dock, Central dock and South dock. It also operates a jetty, specialised in

unloading mineral.

Due to the continuous increase in services demand during the last years, har-

bour agents have developed an extension project that involves an estimate invest-

ment of 102 million euros. It consists of three stages. Each one means construct-
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ing and bringing into operation a new dock. We will refer to these three new

infrastructures as New North dock, West dock and New South dock. New North

dock is already being constructed, so the scope of our valuation problem are West

and New South docks.

As the arrows show in Figure 3, traffic of goods is distributed among the

already operative structures and the new ones. When old Central dock saturates,

the extra goods flow over its capacity is sent to West dock. In such redistribution,

ten state variables are involved (whether the jetty remains operative or not, is a

decision strictly political, so we will not consider its traffic in our model).

New South dock would be specialised in containers. If operative, it will manage

the extra containers from Central dock, otherwise they will be sent to West dock.

New South dock will also manage the extra containers traffic from neighbour

harbour of Valencia. This surplus will never be sent to West dock. For modelling

these traffics we need three state variables.

So the cash flow function of the valuation model involves 13 state variables

and, of course, cannot be described by a single standard stochastic process. Each

of these variables will be modelized through their own stochastic process, whose

parameters have been adjusted using data time series and managers’ prospects.
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3.2 Real Options: Control Variables

As usually happens with huge investment projects that are developed during a

quite long period of time, the extension project described before involves certain

optionality. That means that the project manager has the possibility of deciding

how to achieve his goals choosing among different ways. Such ways often concern

investment dates but are not the unique ones as we will see later on. It is very

important to properly modelize such optionality as, the more flexible the project

is, the more valuable it becomes.

On the other hand, once the project is valuated, it remains opened the question

of which is the best sequence of decisions to be taken. We will see how the

information provided by the scenarios Monte Carlo method when solving the

valuation, can be used to answer such project manager’s question.

We will modelize the optionality through the so-called control variables. Each

one of the different values these variables take, represents each one of the possible

decisions. Let us consider what the options included in the project are, as well as

their corresponding control variables:

• West dock has six possible investment dates (measured in years). Its control

variable will be denoted by τWj , j = 0, . . . , 5, where j = 0 represents the

actual time. On the other hand, West dock could also not be built. This

fact will be denoted by τW−1.

• New South dock has also six possible investment dates (measured in years).
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Its control variable will be denoted by τNSj , j = 0, . . . , 5, where j = 0

represents the actual time. On the other hand, New South dock could also

not be built. This fact will be denoted by τNS−1 .

• New South dock could have a mixed financing public-private, i. e. the

project manager can decide the percentage of public (and so of private)

financing. Its control variable will be denoted by F , where F represents the

four possible percentages considered of public financing. Then we have that

F ∈ {100%, 75%, 50%, 25%}.

Each combination of values of these control variables means, on one hand, a

certain possible decision to be taken by the project manager. On the other hand,

determines the structure of the Ef function that will be used in section 4. We

will get all combinations of control variables which must be considered, using two

different methods depending on whether we are solving de valuation model, or

the decision model. Both methods generate exactly the same combinations, but

in a different order as we will see in section 5. This fact will be essential to solve

the decision problem using the information stored during the valuation process.

For the valuation model, at each exercise date τ we have to introduce a set Cτ

of combinations of control variables that are admissible at the date considered. For

example, the optionallity does not include the possibility of selling an investment

that already has been done before date τ . Such combinations will not be taken

into account as we will see in 4.2. For the decision model, we make the standard
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Cartesian product of the set control variables values and get the grid of 174 points

used in 5. In both cases we exclude the possibility of no investment at all, i. e.

τW−1 and τNS−1 simultaneously.

To denote any of these combinations we will use what we call a control array.

The standard control array is then:

(τWj , τNSk , F ) j, k = 0, . . . , 5; F ∈ {100%, 75%, 50%, 25%}. (2)

Let us note that if τNS−1 is a component of the control array then F will not appear

as the percentages modelized by F are referred only to New South dock.

4 Valuation of the Investment Project as an Amer-

ican Style Real Option

In this section we apply the scenarios-Monte Carlo method to the real valuation

problem described. We will follow the steps summarised in 2.3. In order to do

so, first we have to build in subsection 4.1 the function Ef included in the payoff

function. We will see in 4.2 how the number of control variables combinations in-

troduced in 3.2 increases only the complexity of the evaluation of the Ef function,

while the structure of the valuation algorithm itself remains the same.
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4.1 Stochastic Net Present Value

Let us consider an investment project with a generic number m of state variables,

a date τ , a scenario eτ belonging to the scenarios space built at τ and the set

of admissible combinations of the control variables Cτ introduced in 3.2. For a

given scenario eτ , which determine the initial conditions for the m state variables

involved, and for each control array (τWj , τNSk , F ) ∈ Cτ we can calculate a Net

Present Value (NPV) associated.

Let us note that, as the state variables are stochastic processes, there is not

a single value for each one of these NPV but a wide enough samples of them,

obtained using Monte Carlo simulation. As usual, we are able to build from each

of these samples, its corresponding discrete probability distributions and then get

its associated expected value. Each one of these expected values will be denoted

by:

E
[
NPV

(
eτ , τ

W
j , τNSk , F

)]
(3)

We define the function Ef introduced en 2.3 as follows:

Ef(eτ ) = max
(τWj ,τNS

k
,F )∈Cτ

{
E

[
NPV

(
eτ , τ

W
j , τNSk , F

)]}
(4)

Once we have defined the Ef function, the payoff function Pf is then evaluated

following the steps in 2.3.
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4.2 Real Problem Valuation

Let us considered the whole real investment problem described in section 3.1 in-

cluding all the real options modelized in section 3.2. We will follow the steps of the

scenarios-Monte Carlo algorithm of section 2.3 and use the notation introduced

in all previous sections to approach the valuation.

Let us remembered that we are working with a total of 13 state variables and

178 arrays of combinations of control variables. For calculating the expected NPV

as explained in 4.1 we will consider that the life of the project is T = 25 years (see

A.1). The valuation will be made as an american style option with six possible

exercise dates denoted by τ , τ = 0, 1, . . . , 5 (where τ = 0 denotes the actual date).

Next we describe the steps of the valuation.

• We generate the scenarios space at maturity τ = 5

– At each scenario e5, we calculate the following expected values con-

sidering all the admissible opcionality at τ = 5 (i.e. the elements of

C5):

1. West dock will never be built and New South dock will be build

at τ = 5 with four different percentages of investment:

{
E

[
NPV

(
e5, τ

W
−1, τ

NS
5 , F

)]
;F ∈ A

}
(5)

2. West dock will be built at date τ = 5 and New South dock will

15



never be built:

E
[
NPV

(
e5, τ

W
5 , τNS−1

)]
(6)

3. West and New South dock are both built at date τ = 5, the latter

with four possible percentages of investment:

{
E

[
NPV

(
e5, τ

W
5 , τNS5 , F

)]
;F ∈ A

}
(7)

– Following equation 4, the Ef(e5) is the maximum of these expected

values.

– The payoff function at each e5 is then Pf(e5) = max(Ef(e5), 0)

• We generate the scenarios space at time τ = t, 0 ≤ t < 5

– At each scenario et, we calculate the following expected values con-

sidering all the admissible opcionality at τ = t (i.e. the elements of

Ct):

1. West dock will never be built and New South dock will be build

at τ = t with four different percentages of investment:

{
E

[
NPV

(
et, τ

W
−1, τ

NS
t , F

)]
;F ∈ A

}
(8)

2. West dock will be built at date τ = t and New South dock will

never be built:

E
[
NPV

(
et, τ

W
t , τNS−1

)]
(9)
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3. West dock is built at date τ = t and New South dock will be built

afterwards, at any of the possible dates between τ = t and τ = 5

and with any of its possible percentages of investment:

{
E

[
NPV

(
et, τ

W
t , τNSk , F

)]
, t ≤ k;F ∈ A

}
(10)

4. New South dock is built at date τ = t with any of its possible

percentages of investment and West dock will be built afterwards,

at any of the possible dates between τ = t and τ = 5:

{
E

[
NPV

(
et, τ

W
j , τNSt , F

)]
, t ≤ j;F ∈ A

}
(11)

– Following equation 4, the Ef(et) is the maximum of these expected

values.

– We calculate the expected continuation value CV (et)

– The payoff function at each et is then Pf(et) = max(Ef(et), CV (et)).

• The value of the investment project is the value of the payoff function at

e0, the unique scenario belonging to the scenarios space at date τ = 0 :

Value of the Project = Pf(e0)

4.3 Software Designed for the Real Problem Valuation

From the point of view of software design, the main advantage of the algorithm is

that is especially adequate for parallel processing. As the number of variables and
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the complexity of the payoff functions is so high, this feature becomes essential.

The program designed has been divided into two parts: the fist one concerning sce-

narios spaces and probability distributions (implementing the process described

in 2.1), and the second one approaching the valuation itself, which include, on

one hand the calculation of the transition probabilities (implementing 2.2), and

on the other hand evaluating the payoff function (involving equations from 5 to

11).

This software has been designed to be run in a Gray-Silicon Graphics Origin

2000 computer with 64 processors (MIPS R1200 at 300 MHz), 16 GBytes cen-

tral memory and 390 GBytes on disk. The operative system used is IRIX 6.5.5.

This computer belongs to the University of Valencia and is available for mem-

bers of research programs developed by the departments and institutes inside the

University.

Let us describe in detail the software structure of the two parts as well as

the computational cost involved. For generating the scenarios spaces we use 5

processors, one for each exercise date. The estimate computing time is 4
′
. For

each scenarios space we consider a number of scenarios that conform at least 95%

of the probability distribution. The files containing the scenarios as well as its

corresponding probabilities are stored in order to be used in the second part of

the program.

The second part of the program is design to make the valuation itself, so it
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will work backwards and need sequential processing. However, at each exercise

date we can make use of parallel processing to reduce computational times. We

will use one processor for each type of expected value and the extra processors

for the expected continuation values.

At maturity, we need 9 processors to calculate equations from 5 to 7. The

computing time is around 5
′
. At any of the intermediate dates 0 < τ = t < 5,

we need to calculate 5 + 2× (4× (6− t)) expected values. That means a number

of processors between 21 (t = 4) and 45 (t = 1). So we will use between 43 and

19 processors to reduce with parallel processing the computational cost of the

expected continuation values.

For each one of these intermediate dates we estimate a computing time of 3
′

at t = 4, 3
′

at t = 3, 5
′

at t = 2 and 10
′

at t = 1. At τ = 0, as there is only

one scenario, we can consider that the computational cost is due only to expected

continuation values and so we can make use of all processors available. We will

assign no computational cost.

Therefore, the whole valuation process involves 64 processors and has an es-

timate total computing time of 30
′
. At the same time, the files containing the

expected values at each scenario and for each control combination are stored in

order to be used for solving the decision problem. The computational cost of such

resolution will be of 1
′
, as we will see in 5.
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5 Optimal Investment Policy Decision Problem

Once we have finished the valuation of the project, in this section we will solve the

decision problem of optimal investment policy that the project manager would

face. As we described in 3.2, all possible combinations of the control variables

build a grid of 178 points. Each combination is given by a control array and

represents a decision that could be taken by the project manager. We have

divided this section into two subsections. First we will describe how to state

the decision problem so that we use the information already stored during the

valuation process. In the second subsection we present the numerical results

obtained.

5.1 Statement of the Decision Problem

As we have said before, we have built a grid containing all possible 178 decisions.

We will denote the set of elements of this grid by G. In order to be able to decide

which one is the best according to the project manager’s criteria concerning re-

turns and risk, we have to assign to each point a measure of these two parameters:

return and risk. The procedure we use is the following:

• Let us consider a given control array (τWj , τNSk , F ) which represents a generic

point of the grid. Then we find the date τ of the valuation process described

in 4.2 for which the control array considered belongs to the set of admissible

arrays, i. e. the date τ for which (τWj , τNSk , F ) ∈ Cτ Let us note that each
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control array belongs to a unique Cτ .

• Once we have found the suitable date τ , we identify the equation between

5 and 7 if τ is maturity, or between 8 and 11 otherwise, involving the

control array considered. So we have found an expected NPV which has

been calculated at each scenario eτ of the scenarios space built at date τ ,

considering that the given control array (τWj , τNSk , F ) has fixed values.

• Let us consider the set of all these expected NPVs when eτ varies along the

whole scenarios space ετ built at date τ :

{
E

[
NPV

(
eτ , τ

W
j , τNSt , F

)] }
eτ∈ετ

(12)

We will denote this set by G(τWj , τNSt , F ). This way we have assigned to

each point of the grid represented by a control array, a space G(τWj , τNSt , F )

of expected NPVs, parallel to that of scenarios at date τ . Let us note that

the same scenarios space ετ will be used to build such a parallel space for

all control arrays belonging to the same Cτ .

• As described in 2.1, the scenarios space ετ has a probability distribution

Qτ on it, so that each scenario eτ ∈ ετ occurs with a certain probability

peτ . We can consider then that the expected NPV belonging to the space

G(τWj , τNSt , F ) and associated to eτ also occurs with probability peτ . This

way Qτ becomes a probability distribution on the space G(τWj , τNSt , F ).

Figure 4 represents G(τW−1, τ
NS
1 , 100) versus Qτ=1.
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• As we explained in section 4, each element of G(τWj , τNSt , F ) gives a measure

of the returns of the project for a given scenario eτ and a given control

array. Then we use the probability distribution Qτ on G(τWj , τNSt , F ) to get

its corresponding expected value, and so get a return measure associated

only to the given control array (τWj , τNSt , F ). We will denote such return

measure by Rtn(τWj , τNSt , F )

• Using again Qτ , we can consider as a risk measure associated to the control

array (τWj , τNSt , F ), the standard deviation of Qτ on G(τWj , τNSt , F ). We will

denote such risk measure by Rsk(τWj , τNSt , F ).

The decision problem can then be stated as follows:

max(τWj ,τNS
k

,F )∈G Rtn(τWj , τNSk , F )

subject to

Rsk(τWj , τNSk , F ) ≤ risk∗

(13)

where risk∗ denotes the admissible risk level considered by the project man-

ager.

5.2 Numerical Resolution of the Decision Problem

As we have described in 5.1, the numerical resolution of the decision problem

stated, consist of calculating expected values and standard deviations of proba-

bility distributions already stored from the valuation process. For each point of

the grid of control variables combinations, we get a measure of return and risk.
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The whole process of assigning values to points of the grid will need just one

processor and an estimate computing time of 1 minute.

The following Figure 5 shows the surface which contains the optimal solution

given by Rtn(τWj , τNSk , F = 25), with j = −1, 0, 1, . . . , 5 and k = −1, 0, 1, . . . , 5.

The control variables combination that gives the maximum expected return is

(τW5 , τNS1 , F = 25). The associated risk is 41.63%.

6 Conclusions

The main contribution of this work is a new algorithm which allows us to price

high dimensional american style real options, solving at the same time the decision

problem involved. The latter with no additional computational cost due to the

way information is stored during the valuation process.

Using this new algorithm, we have been able to approach an investment on har-

bour infrastructures capturing all the complexity intrinsic to this type of projects,

with multiple state and control variables, complex cash flow functions and multi-

ple exercise dates.

This work was supported in part by the Autoridad Portuaria of Valencia and

the Instituto de Economia Internacional. We would like to specially thank the

Instituto de Economia Internacional and its director Leandro Garcia for his help

and useful comments.
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A Theoretical Description of the Scenarios-Monte

Carlo Algorithm

In this appendix we develop a comprehensive mathematical description of the

scenarios Monte Carlo algorithm. First we approach the process of generation

of scenarios spaces in A.1. Next we complement it with the numerical algorithm

suggested for implementing such generation in A.2. Such numerical algorithm

is summarised in 2.1 and applied in 4.2. Finally, A.3 contains the theoretical

development of how consecutive scenarios spaces are related in order to calculate

expected continuation values, also summarised in 2.2 and applied 4.2.

A.1 Generation of the Scenarios Spaces

Let us consider a theoretical investment project whose life is denoted by T . The

following set

{τ0, ..., τn}, 0 ≤ τ0, τi < τi+1, i = 1, . . . , n

contains its possible investment dates. Then, for each τj, our work time interval

will be

Iτj = [τj, τj + T ]

Let Ni(t), i = 1, . . . ,m be the state variables of the problem, each one evolving

according to a stochastic process

dNi(t) = µi(Ni, t)dt + σi(Ni, t)dWi (14)

24



where E[dWidWj] = ρij, i, j = 1, . . . ,m denote their correlations.

For a given τj, let us consider the following elements:

• Let Lτj be the space of possible outcomes at time τj of the m state variables,

and Qcτj a continuous probability distribution on it induced by the dynamics

given in (14)

• Let {V k
τj
}sjk=1 be a finite and disjoint partition of Lτj in m-dimensional cubes.

• Let (Nk
1 (τj), . . . , N

k
m(τj)), k = 1, . . . , sj, be the representative arrays of the

cubes {V k
τj
}sjk=1 (for example, the geometric centre in the case of a finite

cube). We denote by ετj the set of these representative arrays.

Then we will say that ετj is a scenarios space at date τj, and that each of its

elements (Nk
1 (τj), . . . , N

k
m(τj)) is a scenario at time τj. Abbreviatedly, we will

denote these scenarios by ekτj , k = 1, . . . , sj.

Next we build a complete discrete probability distribution on the scenarios

space ετj . For each scenario ekτj belonging to ετj , its probability qkτj will be given

by

qkτj =
∫
V kτj

dQcτj . (15)

We will denote by Qτj the discrete probability distribution on ετj obtained

this way.
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A.2 Numerical Algorithm for Scenarios Space Generation

To construct the discrete space of scenarios ετj and the discrete probability dis-

tribution Qτj , we will proceed as follows:

• At a given τj, we get M samples of each state variable Ni, using Monte

Carlo simulation of the discretized dynamics equations

Ni(tj+1) = Ni(tj) + µi(Ni(tj), tj) ∆t + σi(Ni(tj), tj) αi
√

∆t (16)

with i = 1, . . . ,m, ∆t = tj+1 − tj, and αi a random variable following the

normal distribution N(0, 1) and verifying E[αiαj] = ρij, i, j = 1, . . . ,m.

• For each Ni, we build the histogram associated to this M samples, which

give us a probability distribution of the state variable Ni at time τj.

• We build a space of m-dimensional arrays (Nk
1 (τj), . . . , N

k
m(τj)) (scenario at

time τj) by making the Cartesian product of the representative values of

the classes of the m histograms. This space is the scenarios space ετj at

time τj.

• The probability of each array is the product of the probabilities of its com-

ponents. Then, we get a complete probability distribution Qτj on ετj .
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A.3 Relation between Consecutive Scenarios Spaces. Ex-

pected Continuation Value

Let edτj be a given scenario belonging to the scenarios space ετj . Let us consider

the stochastic processes of each one of its components given by equations 14. In

order to get the scenarios belonging to ετj+1
which are related with edτj , as well as

its corresponding transition probabilities, we proceed as follows:

• Let us consider the discretized dynamics equations given by 16.

• Using Monte Carlo simulation and edτj as initial condition, we get M samples

of m-dimensional arrays at date τj+1. We will denote the set of these samples

by:

Sτj+1
=

{(
N1

1 (τj+1), . . . , N
1
m(τj+1)

)
. . .

(
NM

1 (τj+1), . . . , N
M
m (τj+1)

)}
(17)

Let us note that Sτj+1
is a subset of the space Lτj+1

. Abbreviatedly we will

denote it as Sτj+1
=

{
S1
τj+1

, . . . , SMτj+1

}
.

• Let {V k
τj+1
}sj+1

k=1 be the finite and disjoint partition of Lτj+1
in m-dimensional

cubes introduced in A.1. For each Suτj+1
, u = 1, . . . ,M , we can find a cube

V ku
τj+1

such that Suτj+1
∈ V ku

τj+1
, using the Euclidean norm.

• As we said in A.1, the representative arrays of those cubes are the scenarios

ekuτj+1
, u = 1, . . . ,M . Then we will say that Suτj+1

is related with ekuτj+1
,
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u = 1, . . . ,M . This way we have built an application Ψ : Sτj+1
→ ετj+1

between the set Sτj+1
and the scenarios space ετj+1.

• As more than one array Suτj+1
could be related with the same scenario in

ετj+1, the cardinal of the set Rτj+1
= Ψ(Sτj+1

) gives us the number of differ-

ent scenarios belonging to ετj+1
that are related with samples in Sτj+1

. Let us

denote with l this cardinal. Then, for each evτj+1
∈ Rτj+1

with v = 1, . . . , l,

the set
{
Ψ−1(evτj+1

)
}

contains the samples in Sτj+1
that are related with

evτj+1
, v = 1, . . . , l.

• We define the application Λ : Rτj+1
→ [0, 1] given by:

Λ(evτj+1
) =

cardinal(Ψ−1(evτj+1
))

cardinal(Sτj+1
)

(18)

with v = 1, . . . , l. Let us note that Λ is a probability distribution on Rτj+1
.

• Finally, as all samples in Sτj+1
come from the same initial condition edτj , we

consider that edτj is related with the l scenarios belonging to Rτj+1
, and that

the transition probability from edτj to evτj+1
∈ Rτj+1

, v = 1, . . . , l, is given by:

π(elτj → evτj+1
) = Λ(evτj+1

) (19)
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Figure 4: Expected Net Present Values versus probabilities
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Figure 5: Exercise dates combinations versus returns
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