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Market Imperfections, Investment Optionality and

Default Spreads

Abstract

This paper develops a structural model that determines default spreads on risky

debt. In contrast to previous research, the value of the debt’s collateral is endoge-

nously determined by the borrower’s investment choice, as well as by a market

demand variable that has permanent as well as temporary components. The model

also considers market imperfections that limit the borrower’s ability to contract to

undertake the value-maximizing investment choice, and which may in addition limit

the borrower’s ability to raise external capital. The model is calibrated with data

on commercial mortgages, and based on our calibration, we present numerical sim-

ulations that quantify the extent to which investment flexibility, incentive problems

and credit constraints affect default spreads.
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Starting with the seminal work of Black and Scholes (1973) [4] and Merton (1974)

[33], researchers have developed contingent claims models to value risky debt. A subset of

these models, known as structural models,2 assume that markets are perfect and that the

value of the collateral of the debt can be viewed as exogenous. This approach to pricing

debt is in sharp contrast to the theoretical capital structure literature, which examine

settings with market imperfections where endogenous collateral values are influenced by

financing choices.

There is an emerging literature that addresses both pricing and capital structure issues

by introducing market imperfections into contingent claims models. The goals of these

models are to enrich the pricing models and to quantify some of the predictions that have

arisen from the theoretical capital structure literature.3 While progress has been made

on both fronts, the models are still highly stylized and have not been calibrated to actual

data.

This paper contributes to this literature in a number of ways. First, we extend the

pricing literature by developing a model that values debt as a contingent claim on an

asset whose value is endogenously determined by market conditions and an investment

choice, which is also endogenous. Second, within the context of this model we examine

how investment flexibility affects default spreads in settings both with and without perfect

contracting. Finally, by calibrating the model’s parameters to actual data, we are able to

quantify the magnitude of default spreads as well as the costs associated with imperfect

2 The literature on debt pricing has taken two very different paths. The models on the first path, based
on the work of Black and Scholes (1973) [4] and Merton (1974) [33], are generally referred to as structural
models since default probabilities and recovery rates are determined endogenously. Applications of this
framework include Titman and Torous (1989) [41], Kau et al (1990) [21] and Longstaff and Schwartz (1995)
[27], who solve a model where borrowers can optimally default anytime prior to or at the maturity date.
The second path consists of reduced form valuation models that include exogenous default probabilities
and recovery rates. Examples include Jarrow and Turnbull (1995) [19], and Duffie and Singleton (1995)
[9]. Structural models are used in industry to value debt instruments like corporate bonds and commercial
mortgages, while reduced form models, which are less numerically intensive since they do not solve for
the optimal default strategy, have been used to price more complicated instruments such as credit swaps
and credit derivatives.

3 Quantitative models that consider capital structure and debt valuation issues within settings with
market imperfections include Mello and Parsons (1992) [31], Leland (1994, 1998) [24, 25], Leland and
Toft (1996) [26], Mauer and Ott (1999) [28], Parrino and Weisbach (1999) [36], Mauer and Ott (1999)[28],
Moyen (2000)[34], and Goldstein et al. (2001) [17].
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contracting.

In theory, investment flexibility can have an important effect on default spreads even

without market imperfections. This is because the option to increase and decrease the

rate of investment induces skewness in the distribution of future cash flows which, in turn,

increases default probabilities for any given loan-to-value ratio. Intuitively, investment

flexibility adds value to a project by increasing cash flows in the more favorable future

states of the economy when the firm is unlikely to default. Hence, if loan-to-value ratios

are held constant, an increase in flexibility increases spreads since the debt holders do not

benefit from the higher cash flows in the favorable future states of the economy, and are

hurt by the fact that investment flexibility also tends to decrease collateral value in the

unfavorable states in which the firm defaults. Because of this “real options effect,” the

payout and volatility — which are the only characteristics considered in previous models

— of a loan’s collateral fluctuate stochastically, and hence initial or expected values of

these parameters are not sufficient to determine the loan’s default risk.

The endogeneity of the investment choice has additional effects on credit spreads

that can arise because of market imperfections that were previously discussed in the

corporate finance literature. The market imperfections we consider include both the

underinvestment problem, first described by Myers (1977) [35], and the credit-rationing

problem described by Stiglitz and Weiss (1981) [40]. Specifically, borrowers may, at

times, choose to pass up positive NPV investments that benefit lenders at the expense of

borrowers and, at other times, may be unable to obtain external capital because of adverse

selection and agency reasons. As we show, because of these market imperfections, credit

spreads are determined by characteristics of the borrower and the contracting environment

as well as by characteristics of the collateral.

To quantify the effect of these market imperfections we calculate credit spreads for

three types of borrowers. The first type, which we call a restricted borrower, is contractu-

ally obligated to follow the investment strategy that would be followed by an unlevered

owner of the project. The second type, which we call an unrestricted borrower with deep

pockets, is assumed to maximize the value of its equity, and thus underinvests relative to
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the restricted borrower. The final borrower, which we call an unrestricted borrower with

empty pockets, may underinvest and default too soon because of its inability to obtain

external capital.

Because of underinvestment, the credit spread for the unrestricted borrower with deep

pockets must be greater than the credit spread for the restricted borrower. However,

since there are a number of competing effects that influence the difference in borrowing

rates between the unrestricted borrower with deep pockets and the unrestricted borrower

with empty pockets, one cannot predict, á priori, which will be able to borrow at more

attractive rates. On the one hand, the fact that the borrower with empty pockets de-

faults suboptimally tends to allow it to borrow at more attractive terms, since the lender

benefits from the borrower’s suboptimal choices. On the other hand, because of its credit

constraints, the empty pockets borrower may be less able to invest when its cash flows

are low, which could increase the spread.

To illustrate the applicability of our model and to quantify the various determinants

of default spreads and agency costs we present comparative statics that are calculated

numerically. Our numerical simulations use parameters that are consistent with data

on commercial office buildings and their mortgages.4 Specifically, we select parameters

that allow us to roughly match the volatitility of property returns, the term structure

of interest rates, the average investment to net operating income ratio and the average

payout rates of the properties. As we show, with these parameters the model generates

default spreads, default rates, and recovery rates that are consistent with the observed

values.

Using parameters from this calibration as our base case, we present comparative statics

that allow us to quantify the effect of market imperfections and investment flexibility

on default spreads and agency costs. Our comparative statics indicate that investment

flexibility has a very important effect on default spreads even with perfect contracting.

4 Our model can be directly applied to the valuation of debt obligations that are collateralized by a
variety of assets. Examples might include oil rigs, power plants, ships or any other asset that is typically
financed with non-recourse debt, i.e., when the lender has no recourse on the borrower’s other assets.
Our analysis of commercial mortgages is motivated by data availability.
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The incentive problems that arise because of imperfect contracting add significantly to

default spreads, but it turns out that the associated agency costs are not particularly

large given the parameters from our calibration.

The paper is organized as follows: Section 1 presents the model and discusses the

formulation for the case of borrowing with perfect contracting. Section 2 describes the

calibration of the model parameters to the case of office buildings. Section 3 presents

numerical simulations and comparative statics for credit spreads for the case of borrowing

with perfect contracting, as well as for the case of the deep pocket borrower and the

empty pocket borrower. Section 4 compares spreads, default probabilities, and recovery

rates computed from our model to ones observed from data, and compares the model of

this paper to the one described in Titman and Torous (1989)[41]. Section 5 summarizes

and concludes the paper.

1 Description of the Model

The borrower in our model initially borrows an exogenous amount to finance its business,

which we will refer to as the “project”.5 The debt is assumed to be a coupon bond or

mortgage that has a required payment each period as well as a final balloon payment on

the maturity date. The project generates cash each period, which is used to meet the

periodic debt obligation and can be invested to maintain the project’s quality. If there is

excess cash flow, it is paid out to the borrower. If there is insufficient cash flow to meet

debt payments and to fund investment needs, the borrower can raise additional equity

capital if it is not credit constrained.

Our model can be described by the following timeline:

— At time 0

5 The exogenous debt structure is chosen to match the actual debt contracts that are the basis of our
calibration exercise. We do not solve for the optimal debt contract or the optimal debt level. However,
the assumed debt structure is consistent with the contract one might observe in a setting where a risk
neutral and effort-averse entrepreneur requires external capital. See for example, Gale and Hellwig (1985)
[14].
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• the borrower takes out a loan, which it uses to finance the project.

— Each subsequent period

• the quality of the project depreciates,

• the project generates a random cash flow,

• after the cash flow is realized, the borrower decides whether to default on the

loan and relinquish control of the project to the lender, or make the coupon

payment,

• once the coupon payment is made, the borrower decides on the amount to

be invested in the maintenance/upgrade of the quality of the project. Both

the coupon payment and investment are financed either with the cash flow

generated by the project or by issuing equity,6

• any remaining cash flow is paid out to the borrower.

— At the maturity of the loan

• the borrower decides whether to make the balloon payment on the loan, or

default and relinquish control of the project to the lender.

The borrower is assumed to default on the loan optimally, i.e. when the market

value of the firm’s equity becomes zero.7 For borrowers that are not restricted to follow

a predetermined investment strategy, the investment choice maximizes the value of the

firm’s equity and, as in Myers (1977) [35], the levered firm will underinvest relative to an

all equity firm. Lenders account for the borrowers’ incentive to underinvest and default

when they price the debt. In the event of default the lender is assumed to take over the

project and make optimal investment decisions as an all-equity owner.8

6 Equity can only be raised to cover coupon payments or investment needs.
7 In reality, if default and agency costs are sufficiently large, the lender and borrower may attempt to

renegotiate the loan prior to the default date. Depending on the costs of renegotiation and bankruptcy,
the ability to renegotiate can potentially either increase or decrease spreads. This is an interesting issue,
but is beyond the scope of our analysis. See Anderson and Sundaresan (1996) [1], Fan and Sundaresan
(1997) [11], and Mella-Barral and Perraudin (1997) [30], for models that consider strategic debt service
and renegotiation.

8 We make the assumption that the project can be sold at the maturity date to all-equity buyers who
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1.1 The Interest Rate Process

The short-term interest rate used to discount the project’s cash flows follows a mean-

reverting square root stochastic diffusion process, described by the one factor Cox, Inger-

soll and Ross (1985)[7] model:

(1) drt = κr(r
∗ − rt)dt + σr

√
rtdWr

where

κr ≡ mean-reversion rate

r∗ ≡ long-term level to which the short-term rate reverts to

σr ≡ instantaneous volatility for the short-term rate

Wr ≡ a standard Wiener process under the risk-neutral measure.

1.2 The Project’s Cash Flow and Value

Because we will later be using information pertaining to commercial real estate and com-

mercial mortgages, we will describe the exogenous state variable corresponding to the net

income after non-discretionary expenses, as a market lease rate for a hypothetical project

in perfect condition. We want the lease rate process to be homogeneous, allow for a non-

flat term structure of lease rates, and have decreasing, but non-vanishing volatility for

longer term lease contracts. We can satisfy these requirements with a two factor model

where the market lease rate, lt, is described by a mean-reverting stochastic process

(2) dlt = κl(Lt − lt)dt + σlltdWl

will not be subject to the agency problems and credit constraints for reasons of computational tractability.
Our numerical simulations, which we present in Section 3, suggest that agency and credit constraint costs
are relatively small, indicating that this assumption has only a marginal effect on our results.
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with the long-term lease level to which the short-term lease rate reverts to, Lt,
9 described

by geometric Brownian motion

(3) dLt = LtµLdt + σLLtdWL

The parameters of the process are

κl ≡ mean-reversion rate for the lease rate

σl, σL ≡ instantaneous volatilities of the lease rate and the long-term lease level

µL ≡ growth rate of the long-term lease level

Wl, WL ≡ standard Wiener processes under the risk-neutral measure

The Wiener processes Wr, Wl, WL are correlated, with correlation coefficients equal to

ρr,l, ρl,L, ρL,r.

In addition to the market lease rate, the cash flow for a specific project is determined

by the quality of the project q. The quality is normalized between 0% and 100%, and we

assume that the lease rate for a project with quality q is given by the product q× l, where

l is the lease rate for a project in perfect condition.10

We assume that the quality of a project is a strictly concave and increasing function

of the stock of maintenance, M :

(4) q(M) = 1− e−αM

where α is the rate of incremental improvement per unit of investment in the quality of a

project with zero initial quality level. The functional form of the quality function implies

9 The long-term lease level is not the same as the level of lease rates for long term contracts, but
rather the level towards which the short term lease rate level reverts.

10 Quality in our model can be understood to mean more than just the state of the physical asset.
For example, firms can invest in training to improve the quality of their employees’ human capital, or
advertise to increase their future market share. Basically, anything that costs something today and
increases revenues in the future is applicable. In our discussions of this model with individuals in the
real estate business we have heard anecdotes that suggest that managers of distressed properties often
rent to less reliable tenants, who are more likely to damage the property or default on their rent. This
example of underinvestment in tenant quality is very much consistent with the spirit of our model.
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that a project in perfect condition, with a stock of maintenance M that tends to infinity,

has quality equal to 100%, whereas a project with a stock of maintenance that equals zero

has quality equal to 0%.

We assume that the stock of maintenance M depreciates at a constant rate γ, so that

the change of M is given by

(5) dMt = −γMtdt + mtdt

where mt is a choice variable that corresponds to the rate of investment in maintenance

at time t. The rate of investment, mt, is assumed to be non-negative. To account for

situations where large instantaneous improvements in quality are optimal we allow mt to

be unbounded.

From the point of view of an all-equity owner, the value of a project equals the expected

present value, under the risk-neutral measure, of the discounted future cash flows net of

investment expenditures. Specifically, the project’s value is given by the solution to the

stochastic control problem

(6)

E(u)(r, l, L, M) = max
m≥0

{
EQ

[∫ ∞

0

(ltq(Mt)−mt) e−
∫ t
0 rsdsdt : r0 = r, l0 = l, L0 = L, M0 = M

]}
where EQ is the expectation under the risk-neutral measure Q.

In Appendix A.1 we present the Hamilton-Jacobi-Bellman equation that corresponds

to problem 6 and in Appendix B we discuss how it can be solved numerically.

1.3 Investment Flexibility and Credit Spreads: The Case with

Perfect Contracting

To value the equity and debt claims on the project we will initially assume that the

borrower is restricted to follow the investment strategy of the all-equity owner, described

in the previous subsection. While the borrower is limited with respect to its investment

strategy, it is free to default optimally.
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The value of the equity, in this case, is the greater of zero and the expected discounted

cash flows from the project, net of investment and interest costs. Since the borrower may

default, the value of the equity E(r) depends on the default strategy and is given by

E(r)(r, l, L, M, t) = max
τ

(
0, EQ

( ∫ τ

t

(lsq(Ms)−m∗
s − c)e−

∫ s
t rydyds

+ δ(T − τ)e−
∫ T

t rsds max(0, E(u)(rT , lT , LT , MT )− F ) : ICt

))
(7)

where the stopping time τ either corresponds to the time of default, if τ < T , or is equal

to τ = T . The function δ is given by δ(x) = 0, if x 6= 0 and δ(0) = 1. The optimal

investment strategy of the all-equity owner, m∗, is given by the solution to the stochastic

control problem (6). The initial conditions, ICt at time t are

ICt ≡ {rt = r, lt = l, Lt = L, Mt = M}

The remaining parameters in (7) are:

T : the maturity of the loan,

c: the coupon rate of the loan, and

F : the balloon payment, due at time T .

Given the optimal default strategy of the borrower, the value of the debt, D, for a

given coupon and maturity, can be determined numerically using dynamic programming.

The value of the debt at maturity is equal to its face value, if no default occurs. If

default occurs, the value of the debt, at the time of default, is equal to the value of the

collateral. At maturity we price the debt for each possible state variable value and each

level of quality and then move backward one instant and again price the debt for each

state variable. To obtain the value of the debt, we repeat this procedure until we reach

the starting date. In Appendix A.2.1 we describe the Hamilton-Jacobi-Bellman equation

corresponding to the stochastic control problem (7). To determine the credit spread, we

iterate over different coupon rates until the debt is priced at par, i.e. the value of the

debt is equal to the debt principal.
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In the absence of bankrupcy costs, the value of the unlevered collateral, E(u), the

equity value of the borrower restricted to follow the investment strategy of the all-equity

owner, E(r), and the value of the debt, D, satisfy

E(u) = E(r) + D

We have also considered the case with default, or bankruptcy costs, where a percentage of

the project value is lost at default. These costs are incurred by the lender upon recovery

of the project, and, therefore, given the terms of the loan, do not influence the investment

and default decisions of the borrower.

2 Model Parameters for the Case of Commercial Mort-

gages

To evaluate the model described in the previous section, we numerically solve the model

using parameter values that roughly match cashflow characteristics of commercial proper-

ties, in particular office buildings, in the interest rate environment of January 1998. Given

the information available for commercial properties, it is possible to estimate approximate

values for model parameters. By focusing on a particular type of property we are able

to determine whether quantitative measures calculated from our model can be matched

against observed property characteristics. In this section we present and motivate our

parameter choices. In Section 3 we present results from a comparative static analysis of

credit spreads to changes in parameter values.

We estimate the model parameters using information from three sources: the Treasury

yield curve; time series of cash flows and investment rates provided by the National

Council of Real Estate Investment Fiduciaries (NCREIF); and a dataset on individual

commercial mortgages. Certain parameters are chosen to match observed values, while

others are chosen indirectly, by determining their effect on other, observed quantities,

such as financial ratios and the volatility of property values for office buildings. The

parameters that are chosen to match observed values include the parameters for the
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interest rate process, the volatility of the lease rate and the correlations between the

different stochastic factors. The depreciation rate, mean reversion rate for the lease rate

process, volatility of the long term lease rate level and the term structure of lease rates

are chosen indirectly.

2.1 Parameters Chosen Based on Direct Evidence

The interest rate parameters are chosen to match the term structure of interest rates

as of January 1998. To choose the parameter values, we minimize the sum of absolute

deviations between the bond prices implied by the Cox-Ingersoll-Ross model and the

observable prices of zero coupon bonds with maturities ranging from 3 months to 30

years. The value for the mean-reversion rate is set at κr = 0.17 per year, the value of

the instantaneous volatility at σr = 4.8% annualized, and the long-term interest rate level

at r∗ = 6% per year. The initial short-term rate was 5.31%. By examining the sign

and magnitude of the pricing errors we verified that there is no systematic relationship

between the pricing errors and the maturity of the bonds.

Other model parameters are chosen to roughly match observations from various NCREIF

indices, which are widely used, appraisal-based indices for property values and returns of

real estate. These indices measure the performance of real estate in the United States and

provide information on capital returns, income and capital investments across different

regions and commercial property types. NCREIF indices typically include hundreds of

properties and provide quarterly observations between January 1978 and January 2000.

There are certain drawbacks in trying to estimate parameters for individual properties

using an appraisal-based index that have been extensively discussed in the literature.

Geltner and Goetzmann (1988)[16] and Clayton, Geltner and Hamilton (2001)[6] point

out that using appraised, rather than sales based, property values leads to artificially

smoothing the index and consequently to lower volatility of property values. Additional

smoothing results from the diversification implicit in the construction of the index. For

example, while the volatility of property values for the NCREIF index for all commercial
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properties across the United States is less than 6%, the volatility of property values for

the NCREIF subindex of office buildings located in Phoenix, Arizona, is 11.3%.11 We

will rely on the index for all office buildings in the United States for providing estimates

of the correlations between income, property value and interest rates, where the effect of

diversification should be minor. For the estimation of volatilities, on the other hand, we

will use information from the subindex of office buildings in Phoenix, since it includes a

relatively small number of properties (less than 20) whose values are likely to be highly

correlated.

Our estimate of the model volatility of lease rates relies on estimates of the volatility

of net operating income (NOI)12 for office buildings. This volatility corresponds to the

volatility of short term lease rates, σl, in our model. We choose 16%, which matches the

volatility of income for office buildings in Phoenix.

The estimation of the correlation coefficients between the changes in the lease rate,

the long term lease level and the interest rate is based on historical information from

a time-series of NCREIF indices. Specifically, we estimate three correlations: 1) the

correlation between the growth rate of NOI and the changes in the risk free rate, 2) the

correlation between property capital returns and the changes in the risk free rate and 3)

the correlation between capital returns and the growth rate of NOI.

The correlation between changes in NOI and changes in the risk free rate roughly

corresponds to the correlation between the lease rate and the interest rate, ρr,l, in our

model. From our observations, this correlation for the case of office buildings is equal to

29.6%. The correlation between changes in the long term lease rate level and changes

in the interest rate, ρL,r is matched to the observed correlation between capital returns

and changes in interest rates, since changes in capital returns are largely determined by

the long term lease level. From the data this correlation is equal to 4.0%. Similarly,

the correlation between capital returns and NOI roughly corresponds to the correlation

11 Assuming that quarterly returns are well approximated by a normal distribution, a rough estimate
of instantaneous volatility, annualized, can be obtained as the largest change in property value over one
quarter, over a five year period.

12 The NOI is defined as the gross annual revenues less maintenance and other operational expenses
but before taxes, depreciation and capital investments.
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between unexpected changes of permanent and temporary components in the lease rates,

ρl,L. From the data, this correlation is equal to 6.2%.

For our computations we select correlation values that roughly match the observations

for the case of office buildings: ρr,l = 30%, ρl,L = 6%, ρL,r = 4%.

2.2 Parameters Chosen Based on Indirect Evidence

Some of the parameters of our model are difficult to estimate directly from the data.

These parameters include the volatility of the long term lease level, the mean reversion

rate of the lease rate process, the depreciation rate, and the slope of the term structure

of lease rates. The values for these parameters are chosen so that model generated cash

flow ratios match observed values.

The volatility of the long term lease level and the mean reversion rate of lease rates

are chosen so that the model generated volatility of property values matches the ob-

served volatility of property values. Using the subindex of office buildings in Phoenix, the

volatility of property values is 11.3%. We can match this volatility of property values by

choosing the volatility of long term lease rates to be 9%, and the mean reversion rate to

be 0.20 per year.13

The values of the depreciation rate γ, and the slope of the term structure of lease

rates, while difficult to measure directly, have an important effect on observed financial

ratios. In particular, the depreciation rate largely determines the percentage of NOI spent

on investment, and, indirectly, the payout rate of the property. On the other hand, the

ratio of the long term lease level to current lease rates, L/l, directly impacts the NOI to

Property Value ratio. For our base case we chose the depreciation rate γ to equal 10%

per year, and the term structure of lease rates to be initially flat. For these values, the

above financial ratios, numerically generated by our model, are in line with average ratios

observed for office buildings. The model-generated payout rate is 5.4%, the investment

13 We note that this choice is not unique. To uniquely determine both the volatility of the long term
lease level and the mean reversion rate of lease rates, we would need additional information, for example
the volatility of the lease rate of long term lease contracts.
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over NOI ratio is 37.3%, the NOI over Property Value ratio is 8.6%. These values are

quite close to the observed payout rate which is 5.06%, the investment over NOI ratio

which is 34.1% and the NOI over Property Value ratio which is 7.61%.

2.3 Remaining Pararameters and Mortgage Structure

The remaining model parameters include the risk neutral drift of the long-term lease

level µL, and the quality function parameter α. While it is difficult to estimate the risk

neutral value of the drift its effect is similar to choosing a larger or smaller slope for the

term structure of lease rates. For our numerical experiments we set µL to zero, which

corresponds to a situation with zero inflation.14

The choice of the quality function parameter α is arbitrary, as it only serves to define

the units in which money is measured. Assuming that properties are maintained at an

“efficient” quality level, i.e. a quality level that makes an all-equity owner indifferent about

marginally increasing quality, the quality level q, and the level of stock of maintenance M

are endogenously determined. Given the values of all the parameters the efficient initial

quality level q is 76%. The efficient quality level depends on the initial value of all the

parameters; for example, it is higher for higher lease rates. After the issuance of the

mortgage, the quality level is endogenously determined.

For the structure of the commercial mortgage, we use information from a dataset of

mortgages on commercial properties.15 Most of the mortgages in the dataset are fixed

rate, non-amortizing, with a ten year maturity, that were locked out from prepayment for

some initial period. Most of the mortgages that originated in the 1990’s have loan-to-value

ratios between 72% and 82%. Based on this information, for our numerical simulations,

we chose a mortgage structure that is non-amortizing, priced at par, and has a balloon

payment that is due at the end of 10 years. The loan-to-value ratio was set at 80%.

14 We also note that choosing a positive value for the drift of the long term lease rate level would be
inappropriate under our assumptions, since it would progressively make investment costs cheaper relative
to income, since the cost of investment in our model is time independent. An extension of our model would
be to allow for investment costs that increase with time, as well as for a quality function that incorporates
project obsolescence, by decreasing the maximum quality level achievable through investment.

15 The data was provided to us by Charter Research.
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All the parameter values for the base case are listed in Table 1.

3 Numerical Results and Comparative Statics

In this section we present numerical results that allow us to quantify the effects of in-

vestment flexibility and market imperfections on default spreads. Our numerical results

use the parameters discussed in Section 2 as a base case, and discuss the investment and

default strategies of three different borrower types. We first consider the default spreads

for the borrower we call restricted, who commits to choose the investment strategy of the

all equity owner and who defaults only when the value of its equity is zero.

3.1 The Case with Perfect Contracting

3.1.1 Optimal Investment Choices

To understand why and how credit spreads vary, it is important to first characterize the

investment choice and quantify the changes in the efficient quality level. The intuition is

that an owner of a project with an initial quality level above the efficient level allows the

project to depreciate for a while, until it reaches the efficient level. In this situation, the

initial payout rate of the project is higher, leading to higher spreads.16 On the other hand,

an owner of a project with an initial quality level below the efficient level immediately

invests an amount that brings the project to the efficient quality level, thereby increasing

collateral value and decreasing the loan-to-value ratio, and decreasing credit spreads.

In Table 2 we report the efficient quality level for different values of the parameters.

The table reveals that there are two major determinants of efficient quality levels: the

depreciation rate of the project, and the term structure of lease rates. Efficient quality

levels decrease with higher depreciation rates since, ceteris paribus, higher depreciation

rates make it more expensive to maintain a given quality level. Higher current lease rates,

16 This discussion assumes that the loan-to-value ratio for the project is kept constant. We choose to
keep the loan-to-value ratio fixed was to directly compare model generated credit spreads to observed
credit spreads, which are reported for fixed loan-to-value ratios.
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or the expectation of higher lease rates in the future, lead to an increase in the efficient

quality level, as higher quality levels allow the borrower to capture a larger percentage of

the higher lease rates.17

It is worth noting that the volatility of lease rates has only a marginal effect on the

efficient quality level. Intuitively, since investment is not completely reversible, one would

expect that with higher uncertainty the owner prefers to wait longer before determining

the quality level.18 However, for the parameter values of our base case, it turns out that

depreciation is fast enough that investment is largely reversible. In situations with either

smaller values of the depreciation rate or larger values of volatility we found that the

effect of increases in volatility on the efficient quality level is much greater.

In our simulations we examine comparative statics for credit spreads by varying pa-

rameters from their base case values. Because we do not want our results to be dominated

by the payout rates from an initially inefficient quality level, our comparative statics com-

pare projects with quality levels which are initially efficient for the unlevered owner.19

For example, when we compare spreads for projects with high and low depreciation rates

we set the initial quality of a project with a high depreciation rate lower than the initial

quality of a project with a low depreciation rate. Similarly, each time we vary the param-

eters, we adjust the initial leverage by setting the size of the loan at 80% of the value of

the unlevered project.

3.1.2 Real Options and Credit Spreads

The owner’s flexibility to alter the quality level has a major effect on credit spreads. By

cutting back on investment and reducing quality when the market lease rate is low and

by increasing investment and increasing quality when the market lease rate is high, the

17 Factors other than the level of lease rates and the depreciation rate have only a minor effect on the
efficient quality levels. For example, increasing either the level of short-term or long-term interest rates
leads to lower efficient quality levels, since higher current or future interest rates effectively increase the
cost of investment.

18 This is consistent with the intuition described in Dixit and Pindyck [8].
19 This choice implies that the initial quality level may not be efficient for the borrowers with deep and

empty pockets. We chose to start with the efficient quality level for the unlevered owner in order to be
able to compare the impact of the contracting environment on the same project.

16



owner induces skewness in the future cash flows and value of the project. Due to this real

options effect, borrowing rates are substantially higher for projects that depreciate and

that can be improved by investment.

To quantify this effect we first consider a case where the quality of the project does

not depreciate and the owner cannot enhance project value through investment. We find

that for the base case set of parameters described in Section 2, with the depreciation

rate and the investment rate set to zero, the borrowing rate is 30 basis points above

the Cox, Ingersoll and Ross risk-free rate for a coupon bond traded at par of the same

maturity. Increasing the depreciation rate to 10% per year increases the borrowing rate

to 109 basis points over the Treasury rate. In other words, investment flexibility more

than triples the spread. As we show in Table 3, if we look across efficiently maintained

projects with different depreciation rates, borrowing rates are higher for projects with

higher depreciation rates.

3.1.3 Comparative Statics for the Restricted Borrower

We conducted numerical experiments on the effect of different model parameters on the

credit spread charged to the restricted borrower, reported in Table 3. Based on the

information in the table, we were able to determine that, in addition to the depreciation

rate of the project, the slope of the term structure of lease rates, and the slope of the

term structure of interest rates also affect credit spreads. For instance, in situations with

an upward sloping term structure, future lease rates are expected to rise, making it easier

for the borrower to cover interest payments, leading to lower credit spreads. An upward

sloping interest rate term structure suggests that in the future financing costs are expected

to be higher, implying higher hurdle rates, and hence less investment and higher payouts,

leading to higher credit spreads.

The effect of other variables on the magnitude of the credit spreads is comparatively

small. For example, higher volatility of lease rates increases the value of the borrower’s

default option, leading to higher spreads.
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3.2 Agency Conflicts and Credit Spreads

The previous section considered the case where the borrower is assumed to follow the in-

vestment strategy of an all-equity owner. However, in the absence of enforceable covenants

we need to consider the effect of the borrower’s flexibility to select investment levels that

maximize the levered equity value. We now consider a borrower who chooses its invest-

ment to maximize its equity value, rather than the value of the unlevered project, and

is able to raise equity to cover coupon payments and investment costs without incurring

additional costs. We will call such a borrower an unrestricted borrower with deep pockets.

The value of the equity E(dp) owned by this type of borrower is given by the solution

to the stochastic control problem

E(dp)(r, l, L, M, t) = max
τ,m≥0

(
0, EQ

( ∫ τ

t

(lsq(Ms)−ms − c)e−
∫ s

t rydyds

+ δ(T − τ)e−
∫ T

t rsds max(0, E(u)(rT , lT , LT , MT )− F ) : ICt

))
(8)

where the borrower is free to choose both the time of default, τ , and the rate of investment

at any time t,mt. Since the borrower relinquishes all cash flows generated by the project

to the lender upon default, the borrower will tend to underinvest relative to the all-equity

owner.

3.2.1 Comparative Statics for the Deep Pockets Borrower

We quantify the importance of underinvestment in two separate ways. First, we calculate

the difference between the borrowing rate for an unrestricted, deep pockets borrower and

the borrowing rate of a borrower who commits to the investment strategy of an all-equity

owner. This difference is a premium charged by the lender to compensate for potential

underinvestment and higher probability of default, and will be called the agency spread.

Second, we calculate the percentage difference between the value of the unlevered project

and the sum of the values of the debt and equity for the levered project. We will call this

difference the agency cost, since it reflects the loss in value due to the borrower’s inability

to commit to the strategy of the unlevered owner.
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We find that for our base case the agency spread is 37 basis points, which represents

25% of the total spread for the deep pockets borrower. In contrast to the agency spread,

which is economically significant, the agency cost is only 0.64%. The significance of the

agency spread and the insignificance of the agency costs suggests that even when the

deadweight costs associated with underinvestment are small, the wealth transfer between

debtholders and equity holders is potentially large.

The comparative statics, shown in Table 4, indicate that both agency spreads and

agency costs are affected by variables related to investment flexibility. Overall, higher in-

vestment flexibility leads to higher agency spreads and agency costs. The most significant

variables are the depreciation rate of the project and the level of short-term volatility.

Intuitively, higher depreciation rates allow the borrower more opportunities to reduce the

project’s quality, and are associated with higher agency spreads and costs.

The effect of volatility on agency spreads and agency costs is more complicated. While,

as one would expect, increases in the volatility of the permanent component of cash flows

leads to increases in both agency spreads and costs, our numerical results indicate that an

increase in the volatility of the temporary component of the cash flows leads to a decrease

in the agency spread and the agency cost for the range of parameters we report. Intuitively,

a volatility increase should decrease recovery rates, since higher volatility increases the

option value of equity holders, inducing them to meet their interest payments (but not to

maintain their project) even when collateral value falls significantly below the face value

of their loan. On the other hand, both levered and unlevered owners wait longer before

investing when the volatility is higher, leading to a possible decrease of the agency spread.

Overall it is not intuitively clear, ex ante, which effect should dominate.

The introduction of default costs, which are borne by the lender upon default of the

borrower, has a larger effect on the deep pockets borrower than on the restricted borrower,

since the deep pockets borrower defaults more often. This additional probability of default

leads to larger expected losses and higher agency spreads and costs. 20

20 It should also be noted that realistic changes in the initial short-term interest rate do not seem to
have a significant effect on the agency spread. However, long-term interest rate increases lead to increases
in the agency spreads.
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3.3 Credit Constraints and Credit Spreads

Up to this point we have assumed that the borrower has deep pockets and can access

capital to meet its debt payments when the payments exceed the lease revenues. In

reality, borrowers are often credit constrained and are forced to default because of cash

shortfalls in situations where an unconstrained borrower would choose to not default.

To understand the effect of credit constraints on credit spreads we consider a borrower

that is limited in its capacity to issue additional equity. We consider the extreme case

where he is never able to issue equity to finance investments, and can only invest when

the income from the project is higher than the coupon payment. Additionally, when the

income is less than the coupon payment, the borrower is forced to default and surrender

the project to the lender if the value of the unlevered project is below the face value of the

debt. Only when the value of the unlevered project is more than the face value of the debt,

and the income from the project is below the coupon payment, is the borrower allowed

to raise enough funds from issuing equity to cover the coupon payment. We will call such

a borrower a borrower with empty pockets. Even though the borrower is restricted with

respect to equity issuance, it retains some flexibility regarding default and investment.

The value of the equity E(ep) of the empty pockets borrower is given by

E(ep)(r, l, L, M, t) = max
τ,0≤m≤max(0,q(M)l−c)

(
0, EQ

( ∫ τ

t

(lsq(Ms)−ms − c)e−
∫ s

t rydyds

+ δ(T − τ)e−
∫ T

t rsds max(0, E(u)(rT , lT , LT , MT )− F ) : ICt

))(9)

where the time of default τ can be chosen by the borrower as long as

τ ≤ min{t : q(Mt)lt − c < 0 and E(u)(rt, lt, Lt, Mt)− F < 0}

3.3.1 Comparative Statics for the Empty Pockets Borrower

We quantify the effect of credit constraints in two ways. First, we compare the borrow-

ing rates of the unrestricted, deep pockets borrower to those of the unrestricted, empty

pockets borrower. We will call the difference the credit constraint spread. Second, we cal-

culate credit constraint costs, defined similar to agency costs, as the percentage difference
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between the value of the unlevered project and the value of the debt plus equity for the

levered project managed by a credit constrained borrower.21

Our simulations show that for the cases considered in Table 5 the credit constraint

spreads are positive, or, equivalently, that the borrowing rates for the empty pockets

borrower are lower than the borrowing rates for the deep pockets borrower, unless default

costs are high. From the results in Table 5 we note that, qualitatively, credit constraint

costs move in the same way as agency costs for most cases. In our examples credit

constraint costs are lower than agency costs except for those cases when an additional

cost is incurred by the lender in the event of default.

The sign and magnitude of credit constraint spreads, presented in Table 5, can be in-

tuitively understood by comparing the investment strategy of the empty pockets borrower

with the investment strategy of the deep pockets borrower. A priori, it is unclear whether

the borrowing rates for the empty pockets, credit constrained borrower would be higher

or lower than the borrowing rates for the deep pockets borrower. On the one hand, since

the empty pockets borrower defaults suboptimally it would enjoy lower spreads, since the

lender would recover a larger percentage of the face value of the loan upon default. On the

other hand, since the empty pockets borrower anticipates its suboptimal default, it may

invest less than the deep pockets borrower, which would lead to increased spreads. Our

simulations show that in most of the cases we consider, the first effect is stonger than the

second, and that the empty pockets borrower enjoys lower spreads than the deep pockets

borrower.22

In situations where the empty pockets borrower is likely to generate plenty of cash

from the project it is likely to follow an investment strategy similar to that of a deep

21 The definition of the credit constraint spread allows us to isolate the effect of the credit constraint
on the borrowing rate. The definition of the credit constraint cost, on the other hand, corresponds to
the deadweight loss in the economic value of the project for the credit constrained borrower, due to both
agency problems and credit constraints.

22 A weakness of the model is that we do not allow the empty pockets borrower to build up a cash reserve
with the excess cash flows from the project. The existence of a cash account would mitigate suboptimal
default in many situations, leading to spreads similar to those of the deep pockets borrower. Adding
a cash account to the model, however, would substantially increase the complexity of the numerical
solution.
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pockets borrower, leading to small credit constraint spreads. Such a situation arises when

depreciation rates, and thus investment needs, are low.

4 Empirical Observations and Comparisons

In Section 2 we calibrated our model to be roughly consistent with observed financial

ratios of office buildings. In this section we provide support for our model by comparing

model generated spreads, default probabilities, and recovery rates to those either observed

in our data or in other research. In addition, we compare spreads generated by our model

to spreads generated by the Titman and Torous (1989) [41] model when both models are

calibrated to the same financial ratios. Based on our analysis we argue that in contrast

to the Titman and Torous model, which significantly underestimates credit spreads, our

calibrated model generates credit spreads that approximate those observed in the data.

4.1 Model Generated vs. Empirical Spreads, Default Probabil-

ities and Recovery Rates

4.1.1 Credit Spreads

As we report in Table 7, the average spread in January 1998 for non-prepayable office

building mortgages, with 80% loan-to-value ratio was 166 basis points. In comparison,

for our base case, our model generates a spread of 109 basis points for the restricted

borrower, 146 basis points for the deep pocket borrower, and 131 basis points for the

empty pockets borrower. While these spreads are somewhat lower than the observed

spread of 166 basis points, it should be noted that we priced the mortgages relative to

Treasury bonds, which have much lower yields than AAA non-government debt, which

has negligible default rates but is less liquid and may be more highly taxed than Treasury

bonds (see Huang and Huang (2000)[18], and Elton et al. (2001) [10]). When we add

the 40 to 50 basis point difference between the Treasury rates and the AAA rates to our

model-generated rates we get spreads that are comparable to the ones observed.
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4.1.2 Default Probabilities

Another way to evaluate our model is to compare default probabilities and recovery rates

generated by the model, with those observed. Note that default probabilities generated

directly from our model are calculated under the risk neutral measure, which makes them

difficult to interpret.23

To calculate the default probabilities under the real measure we choose the drift of the

long-term lease level to match the observed capital returns for office buildings. From the

NCREIF subindex for office buildings, the average capital return is 4% per year, which

can be roughly matched in our model by choosing a real drift for the long term lease

level of 3%.24 Under this drift, the model-generated cumulative default probability for

the restricted borrower is 13%, for the deep pockets borrower 24%, and for the empty

pockets borrower 34%. Actual cumulative default probabilities for commercial mortgages

are reported in a number of research papers. Snyderman (1991, 1994) [38, 39] tracked

more than 10 thousand mortgages originated from 1972 and 1986, through 1991, and

found a cumulative default rate of 13.8% (through 1991) and projected a lifetime default

rate of 18.3%. Based on the observation of almost 10 thousand mortgages on multifamily

properties, Archer et al (1999) [2] report that the overall default rate during the period

between 1991 and 1996 was 17.5%. In another study, the rating agency Fitch (1996) [12]

tracked almost two thousand mortgages originated between 1984 and 1987 through the

end of 1991 and estimated that the cumulative default rate over this period was 14%.

They argue that the actual cumulative default rate is even higher, perhaps up to 30%,

since some loans in the pool were not counted as in default because they were either sold

23 To compute the default probabilities under the real measure we first determine the default boundary,
as described in Appendix A.2. We then adjust the drift of the long-term lease rate level so that capital
returns generated by the model match observed ones, and compute the probability that the adjusted
stochastic process will reach the default boundary. The calculation of the default probability involves
solving a partial differential equation, similar to equation (19) in Appendix A.3 used for the valuation of
the debt, without the discounting term rD, and with the boundary condition that the probability is set
equal to 1 at the default boundary and to zero at the mortgage maturity. Kau et al. (1994) [20] follow a
similar procedure to compute real default probabilities in a two factor model.

24The expected capital return can be approximated by the sum of µL +σ2
P /2, where σP is the volatility

of property values. For the base case parameters in our model, the volatility of property values is equal
to 11.3%.
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or restructured prior to an actual default.25 These observations are summarized in Table

8.

4.1.3 Recovery rates

The recovery rates generated by our model can also be compared with observed recovery

rates. Our simulations indicate that the average recovery rate, defined as the ratio of the

collateral value at default over the discounted value of the remaining cash flows of the

debt, is not particularly sensitive to changes in the parameter values. Since the empty

pockets borrower is often forced to default, while the deep pockets borrower has the most

flexibility in the management of the project, the recovery rates are highest for the empty

pockets borrower and lowest for the deep pockets borrower. The restricted borrower

recovery rates are between the recovery rates for the other two borrower types. For the

base case studied in this paper, the average recovery rate for the restricted borrower is

79%, for the deep pocket borrower 77% and for the empty pockets borrower 84%. Actual

recovery rates for commercial mortgages, described in Gichon (1995)[15], range between

68% and 82%, depending on the property type that collaterizes the mortgage.

4.2 Comparison with the Titman-Torous (1989) Model

To determine whether including endogenous investment in our model leads to material

differences in the determination of credit spreads over existing models in the literature,

we compare our model to the one developed by Titman and Torous (1989) [41]. The

Titman and Torous model postulates a stochastic process for the collateral value BTT ,

instead of endogenously determining the value process from the more primitive cash flow

process. Specifically, Titman and Torous assume that the collateral value is generated by

the process:

(10) dBTT = (r − bTT )BTT dt + σBTT BTT dWBTT

25 Quigg (1998) [37] summarized some of these results.
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where bTT is the payout rate of the project, σBTT is the instantaneous volatility of the value

of the unlevered project, and WBTT is a standard Wiener process under the risk-neutral

measure.

The short-term interest rate in the Titman and Torous model follows the same mean-

reverting square root stochastic diffusion process as in the model described in this paper

(11) drt = κr(r
∗ − rt)dt + σr

√
rtdWr

where the correlation between the Wiener processes WBTT and Wr is assumed to be

constant, and equal to ρr,BTT . Thus, to completely specify the Titman and Torous model

one needs to determine the values of three parameters bTT , σBTT and ρr,BTT , as well as

the values of the parameters for the interest rate process.

To compare the implications of our model with those of the Titman and Torous model

we perform the following numerical experiment: starting with sets of parameter values for

the model described in this paper, we compute the stochastic process for the unlevered

collateral value. Given the collateral value we extract the initial volatility and payout

rate, as well as the correlation between the value process and the short-term interest rate

and use the values of these parameters as inputs for the Titman and Torous model. These
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parameters can be computed analytically using Itô’s formula:26
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where subscripts denote partial derivatives.

Using these parameter values for the value process and the base case parameters, given

in Table 1, for the interest rate process, we then calculate spreads under the Titman and

Torous model, for loans identical to the ones considered in our model. The results of

this experiment are given in Table 9. In addition to credit spreads, the table provides

comparative statics for the parameters of the Titman and Torous model in terms of the

parameters of the model described in this paper.

The comparative statics for the parameters of the Titman and Torous model are in

line with the intuition developed in this paper. In particular, the payout rate parameter

is high for downward sloping lease rate term structures. An increase in the depreciation

rate, on the other hand, leads to higher investment rates and lower payout rates, although

the effect is relatively smaller. The Titman and Torous volatility, σTT is also influenced

by the term structure of lease rates, the depreciation rate and the levels of short-term

and long-term volatility. It is interesting to point out that an increase in the depreciation

rate, with its associated expectation of bigger fluctuations in cash flows, leads to higher

volatility in the Titman and Torous collateral value.

26 The Titman and Torous model uses constant parameter values for the volatility and payout rate of
the collateral value, while our model allows for these parameters to fluctuate endogenously. To determine
credit spreads with the Titman and Torous model, we set the volatility and payout rate of the collateral
value, as well as the correlation between the collateral value and the short-term interest rates, to the
initial values used in our model. Other choices, such as setting the Titman and Torous parameters to the
one year averages of the parameters of the collateral value generated by our model, are possible.
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The credit spreads generated by the Titman and Torous model turn out to be ap-

proximately two thirds of the ones generated by our model of the restricted borrower.27

Titman and Torous were able to generate sizable spreads only by assuming a volatility of

asset value of 17% and a payout rate of 8.5%, values which are inconsistent with empirical

observations.

5 Conclusions

This paper develops a model that applies insights from the literature on real options and

optimal capital structure to price risky debt instruments. Previous work considered these

issues within stylized models that would be difficult to calibrate to actual data. Our

model allows us to develop intuition regarding the importance of investment flexibility

and incentives within a model that is roughly calibrated to observable data. In particular

we find that with realistic parameter values our model generates credit spreads that

are consistent with observed spreads on commercial mortgages. With these parameters,

which are consistent with the historical returns, payout, and default rates on commercial

property, we provide comparative statics that explore how investment flexibility affects

spreads. Our results indicate that investment flexibility, by altering the volatility as well as

the skewness of future collateral values, substantially increases credit spreads even in the

absence of incentive problems. Incentive problems that lead the borrower to underinvest

relative to an all-equity owner further increase these spreads.

In addition to pricing debt, our model is used to quantify issues that were previously

explored in the corporate finance literature. In particular, we confirm the Parrino and

Weisbach (1999) [36] result that indicates that in most cases, very little value is destroyed

by the Myers (1977)[35] underinvestment problem. Specifically, in most of the cases we

examine, the loss in the value of the project due to potential underinvestment is less than

1% of its value assuming optimal investment. This suggests that the underinvestment

27 The Titman and Torous model consistently underestimates the spreads, with the difference ranging
from 20 to 120 basis points. For the base case, the Titman and Torous spread is 59 basis points, while
the spread for the restricted borrower of our model is 109 basis points.
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problem should have only a minor effect on the capital structure choice, despite the fact

that it contributes significantly to credit spreads. This result is intuitive since credit

spreads reflect the entire expected wealth transfer from debtholders to shareholders due

to underinvestment, while agency costs measure the net efficiency loss or the difference

between the debtholder’s expected loss and the equityholder’s expected gain. Our results

indicate that the efficiency loss can be relatively small even when the magnitude of the

transfer can be large.

We believe that our model can be used to address a number of other issues. For exam-

ple, the model can be extended to consider various covenants that either place constraints

on the amount that the borrower must invest or, alternatively, on the amount of cash

from the investment that can be distributed. In addition, our model can be applied to

assess the gains associated with risk management, as well as the costs associated with risk

shifting. In particular, the model can be used to assess the interdependence between risk

choices and the underinvestment problem.

To apply our model more generally to the pricing of corporate debt we would need to

relax our assumption that the borrower can neither increase nor decrease the face amount

of its debt obligation over time. While this assumption is reasonable for a model of project

debt, the capital structures of most corporations evolve in ways that potentially affect the

value of their debt. Determining optimal dynamic capital structure policies and pricing

debt in such a setting is the subject of future work.
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A Valuation of Collateralized Debt

To value collateralized debt we need to determine the default boundary, the investment

strategy, and the value of the collateral at the default boundary. The procedure for

determining the value of the debt has three steps:

(i) we compute the optimal investment strategy and the collateral value without the

debt, i.e. for a 100% equity owner,

(ii) we use the values computed for the collateral without debt to deduce the bound-

ary conditions at the maturity of the debt. Given these boundary conditions, we

compute the investment strategy and the default boundary in the presence of the

debt,28

(iii) using the location of the default boundary and the value of the collateral without

debt we compute the value of the debt.

A.1 Valuation of the Unlevered Collateral

Given the value of the short-term interest rate r, the lease rate l, the long-term lease level

L and the level of the stock of maintenance M , the equity value of a project without debt

E(u)(r, l, L, M) is independent of time and can be uniquely determined by maximizing

the expected value of the equity E(u) under the risk neutral measure Q, for all possible

28 A complication that arises in determining the optimal investment strategy is that in order to decide
the amount to invest in maintenance, the owner must know the collateral, or project value after invest-
ment. However, the project value will depend on future investment choices, thus introducing feedback
in the valuation procedure. This complication can be avoided if we consider the level of the stock of
maintenance as an additional state variable, increasing the dimensionality of the problem by one. The
idea of adding a state variable also appears in other examples in option pricing such as the pricing of
arithmetic average options in the foreign exchange markets or swing options in the energy markets. To
illustrate how the extra state variable resolves the feedback problem, consider the 100% equity owner. It
has to make the decision for the amount to be invested in maintenance in a manner that maximizes its,
unlevered, equity value. If the project value is known at all future times for all possible quality levels,
then the choice is simple: it is the one that maximizes the project value when investment costs are taken
into account.
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investment choices

E(u)(r(t), l(t), L(t), M(t)) =

max
m ≥ 0

(
lq −m + e−r(t)dtEQ

(
E(u)(r(t + dt), l(t + dt), L(t + dt), M(t)(1− γdt) + mdt)

))
The value of the equity E(u) is given as the solution to the Hamilton-Jacobi-Bellman

equation
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M −m

)
= 0

(13)

where subscripts denote partial derivatives.

The optimal investment choice depends on the value of the derivative of the value of

the equity with respective to the level of the stock of maintenance, E
(u)
M . If the marginal

increase in the value of the equity, for a $1 investment, is greater than $1, then the optimal

investment choice is to invest until the marginal increase in the value of the equity is equal

to the amount of the investment. Conversely, if the marginal increase in the value of the

equity from a $1 investment is less than $1, then the optimal investment choice is to

not invest at all. Thus, equation (13) can be rewritten without the max term, with the

additional free boundary condition

(14) E
(u)
M ≤ 1

A.2 Valuation of the Borrower’s Equity

At the debt maturity date T , the value of the borrower’s equity, E, is the greater of zero

and the difference between the value of the unlevered project and the balloon payment

E(r, l, L, M, T ) = max(E(u)(r, l, L, M)− F, 0)

where F is the value of the balloon payment for the debt, and E(u) the project value that

solves the stochastic control problem (13).
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Since different borrower types, (i.e., restricted, unrestricted with deep pockets, or un-

restricted with empty pockets), face different constraints, their investment and default

choices as well as their equity values may differ prior to maturity. In the following sub-

sections we specify the optimization problems for each type.

A.2.1 Restricted Borrower

The restricted borrower has contracted to follow the investment strategy prescribed by

the solution to the optimal control problem in equation (13), but may still default. The

value of its equity E(r) is a function of r, l, L, M, t and, for 0 ≤ t ≤ T , satisfies the partial

differential equation
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(r)
M + lq(M)

−m∗(r, l, L, M)− c− rE(r) = 0

(15)

where m∗(r, l, L, M) is the investment strategy that maximizes the unlevered equity value

for lease rate l, long-term lease level L, stock of maintenance level M , and short-term

rate r. The parameter c is the continuous coupon rate. We also need to impose the free

boundary condition that the equity value is greater or equal to zero, since when the value

of the equity becomes zero, the borrower defaults

E(r) ≥ 0.

A.2.2 Unrestricted Borrower with Deep Pockets

At any time t prior to maturity, the unrestricted borrower with deep pockets chooses the

maintenance level m that maximizes the value of the immediate net operating income

after coupon payments (lq − c − m)dt plus the expected value of the equity, under the
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risk neutral measure Q, at time t + dt

E(dp)(r(t), l(t), L(t), M(t), t) = max
m ≥ 0

((
l(t)q(M(t))− c−m

)
dt

+ e−r(t)dtEQ[E(dp)(l(t + dt), L(t + dt), r(t + dt), M(t)(1− γdt) + mdt, t + dt)]
)(16)

If the value of the equity E(dp) becomes zero, the borrower defaults. The equity value

E(dp) satisfies the Hamilton-Jacobi-Bellman equation
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(17)

subject to the constraint

E(dp) ≥ 0.

A.2.3 Unrestricted Borrower with Empty Pockets

Compared to the unrestricted borrower with deep pockets, the unrestricted borrower with

empty pockets is constrained with respect to the amount of equity it can issue. Its equity

value satisfies equation (17), with the additional constraint that it must default if the cash

flow rate from the project is below the coupon payment and the value of the unlevered

project is below the balloon payment

E(ep)(r, l, L, M, t) = 0, if q(M)× l < c and E(u)(r, l, L, M) < F.

Moreover, investment can only be financed by the cash flow generated by the project,

after the coupon payment has been made, i.e.

0 ≤ m ≤ max(0, lq(M)− c)

A.3 Debt Valuation

To obtain the value of the debt D, we need to consider the default strategy of the borrower

and the value of the collateral at default. We assume that in the event of default the lender
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takes over the project and operates it optimally according to the investment strategy

followed by an unlevered owner. At maturity T the debt value is given by the minimum

of the balloon payment F and the value of the project without debt E(u)

(18) D(r, l, L, M, T ) = min(E(u)(r, l, L, M), F )

Prior to maturity, the debt value satisfies the partial differential equation
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+ µLLDL + Dt + (−γM + m†(r, l, L, M, t))DM + c− rD = 0

(19)

where m† is the corresponding borrower’s investment strategy. To calculate the value of

debt for the different types of borrowers we need to substitute the appropriate investment

strategy and solve equation (19).

There is an additional boundary condition for the value of the debt when the borrower

defaults, i.e. when the value of its equity is equal to zero:

(20) D(r, l, L, M, t) = E(u)(r, l, L, M), if E(r, l, L, M, t) = 0

where E may correspond to the equity value of the restricted, unrestricted with deep

pockets, and unrestricted with empty pockets borrowers.

We also consider the effect of additional costs, proportional to the unlevered collateral

value, imposed in the case of default. In that case, the borrowers’ investment behavior

would be unaltered, but the value of the debt would decrease. The value of the debt

satisfies the following boundary conditions

D(r, l, L, M, T ) =

F if E(u)(r, l, L, M) ≥ F ,

(1−Default Cost)E(u)(r, l, L, M) otherwise

D(r, l, L, M, t) = (1−Default Cost)E(u)(r, l, L, M), if E(r, l, L, M, t) = 0

(21)
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B Numerical Algorithm

Below we describe the numerical algorithm used to solve the stochastic control problems

for the case of the all-equity owner formulated in (13). The algorithm is similar for the

other cases.

The algorithm is based on the finite-difference method augmented by a “policy iter-

ation”.29 The calculation of the project value E(u) is complicated by the fact that the

formulation of the problem is time independent. We reformulate the problem with a finite

horizon approximation.30 This reformulation introduces a time derivative E
(u)
t to the left

hand side in equation (13). We start the procedure with initial values for all the necessary

functions in each node at a terminal time. The errors that result from the approximation

of functions at the terminal time can be reduced by increasing the length of the horizon

of the problem and iterating until the derivative E
(u)
t is indistinguishable from zero, at a

certain level of accuracy, for each node on the grid.

For each problem we use a discrete grid for the state space and a discrete time step ∆t.

The state space (r, l, L, M) is discretized using a four-dimensional grid Nr×Nl×NL×NM

with corresponding spacing ∆r, ∆l, ∆L, and ∆M .31 In each node on the grid (r, l, L, M)

the partial derivatives are approximated using first differences.32

The values of the all-equity project at each node of the terminal approximation time

are set to the values of the expected cash flows assuming that the quality level is kept

29 See, for example, Kushner and Dupuis (1992) [22], Barraquand and Martineau (1995) [3] and
Langetieg (1986) [23] for the theory of numerical methods for stochastic control problems.

30 Flam and Wets (1987) [13] and Mercenier and Michel (1994) [32] also discuss the approximation of
infinite horizon problems in deterministic dynamic programming models.

31 The grid step in each state variable is chosen so that the numerical algorithm is stable.
32 For example, the first, second and cross derivatives of the equity value with respect to l and L are

El(r, l, L,M) =
E(r, l + ∆l, L,M)− E(r, l −∆l, L,M)

2∆l
,

Ell(r, l, L,M) =
E(r, l + ∆l, L,M)− 2E(r, l, L,M) + E(r, l −∆l, L,M)

∆l∆l
,

ElL(r, l, L,M) =
E(r, l + ∆l, L + ∆L,M)− E(r, l −∆l, L + ∆L,M)− E(r, l + ∆l, L−∆L,M) + E(r, l −∆l, L−∆L, M)

4∆l∆L

with appropriate modifications at the grid boundaries, so that we only use points within the domain of
integration.
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constant and does not depreciate, i.e. E(u)(r, l, L, M) = EQ

∫∞
0

ltq(M)e−
∫∞

t rsdsdt, where

EQ is the expectation under the risk neutral measure Q. This approximation tends to

overvalue projects with high initial quality and to undervalue projects with low initial

quality. However, any initial errors in the approximation are “smoothed” away after a

few iterations due to discounting. Iterating backward in time for each node on the grid

according to the explicit finite-difference scheme and taking into account the optimal

investment decision, the value of the all-equity firm E
(u)
(t−∆t) at each node (r, l, L, M) at

the next iteration, corresponding to time t−∆t is determined as follows:

(B1) E
(u)
(t−∆t)(r, l, L, M) = max

m≥0
[[lq(M)−m]∆t + e−r∆tEQ[E

(u)
(t) ]]

= max
m≥0

[[lq(M)−m]∆t + E
(u)
(t) (r, l, L, M) + ∆tL[E

(u)
(t) (r, l, L, M − γM∆t + m∆t)]]

where L[E
(u)
(t) (r, l, L, M − γM∆t + m∆t)] is the difference operator applied to E

(u)
(t) for

the node (r, l, L, M − γM∆t + m∆t)
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+κl(L− l)Zl + µLZ + κr(r − r)Zr + (−γM + m)ZM + rZ

where all the derivatives are calculated using first differences.

The maximization over all possible investment choices m ≥ 0 determines the optimal

investment strategy m.33 At the boundaries where l, L, r are equal to zero, no modification

of the algorithm is necessary, since all second order derivatives are multiplied by zero and

the calculation may proceed using only points within the domain of integration. On the

other hand, at the boundaries where l = Nl ×∆l, L = NL ×∆L, r = Nr ×∆r, we have

modified the discretization of the second derivative so that we only use points within the

domain of integration.

33 If the maintenance level does not fall on a grid point for the stock of maintenance grid, we perform
an additional, linear, interpolation.
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At the boundary M = NM∆M, (q(M) ≈ 1) the owner does not invest i.e., m = 0 and

the value of the unlevered project satisfies the following partial differential equation:
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(22)

We iterate until the changes in function values for each node on the grid is small

enough, i.e., until max
(l,L,M,r)

|E(u)
(t) (r, l, L, M) −E

(u)
(t−∆t)(r, l, L, M)| < ε, where ε is the prede-

termined accuracy level.34 We have found this procedure to be robust to the choice of

the values at the terminal time.35 We have also checked that the solution is accurate

for the grids chosen by performing the calculation in grids with twice as many points in

each state variable and obtaining credit spreads that do not differ by more than 5 basis

points.36

The computation of the equity values of the restricted, unrestricted and credit con-

strained borrowers, as well as for the value of the debt, are performed in a similar manner.

34 Given initial guesses for the values on the “terminal grid”, the procedure for the valuation of the
unlevered firm converges in about 2000 time steps where each time step dt = 0.1 year.

35 As a test, we checked that for different “reasonable” guesses of the values at the terminal time this
procedure converges to the same values, although the number of iterations may be different.

36The grid we used for the calculation of the spreads reported in the tables of this paper had Nl =
20, NL = 20, NM = 20, Nr = 10. The time required to price the debt for a single set of parameter values
on a 300 MHz Pentium II was approximately 20 minutes. Between 8 and 10 iterations were necessary to
compute the coupon rate for which the debt was priced at par.
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Table 1: Parameter Values for the base case.

Slope of lease term structure L/l 100%
Quality q 76%
Short rate r 5.31% annualized
Long Term Interest Rate Level r∗ 6% annualized
Loan-to-Value Ratio 80%
Mortgage Maturity T 10 years
Default Costs 0%
Depreciation Rate γ 10% annualized
Drift Rate for Long Term Leasing Rate Level µL 0%
Leasing Rate Mean Reversion Rate κl 20% annualized
Volatility of Lease Rate σl 16% annualized
Volatility of Long Term Lease Level σL 9% annualized
Volatility of Short Rate σr 4.8% annualized
Interest Rate Mean Reversion Rate κr 17% annualized
Correlation between Lease Rate and Interest Rate ρl,r 4%
Correlation between Lease Rate and Long Term Lease Rate Level ρL,l 6%
Correlation between Long Term Lease Rate and Interest Rate ρL,r 30%
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Table 2: Comparative statics for efficient quality levels for an all equity owner. The efficient
quality level is the quality level for which the all-equity owner is indifferent between investing
and not investing. Initial values of lease rates l and long term lease rate levels L are expressed
as a percentage of their base case values. All other rates are annualized. γ is the depreciation
rate, l the lease rate, L the long term lease level, r the short rate, r∗ the long term level of
interest rates, σl the instantaneous volatility of the lease rate, σL the instantaneous volatility of
the long term lease level, ρl,L the correlation between the lease rate and the long term level of
lease rates, κl the mean reversion rate for lease rates.

γ 4 % 6 % 8 % 10 % 12 % 14 % 16 %
Efficient quality level 84 % 82 % 78 % 76 % 72 % 69 % 65 %

l 40 % 60 % 80 % 100 % 120 % 140 % 160 %
Efficient quality level 51 % 64 % 71 % 76 % 79 % 82 % 83 %

L 40 % 60 % 80 % 100 % 120 % 140 % 160 %
Efficient quality level 66 % 70 % 73 % 76 % 77 % 78 % 79 %

r 0.00 % 1.77 % 3.54 % 5.31 % 7.08 % 8.85 % 10.62 %
Efficient quality level 83 % 81 % 78 % 76 % 73 % 70 % 68 %

r∗ 3 % 4 % 5 % 6 % 7 % 8 % 9 %
Efficient quality level 77 % 77 % 76 % 76 % 75 % 75 % 74 %

σl 7 % 10 % 13 % 16 % 19 % 22 % 25 %
Efficient quality level 76 % 76 % 76 % 76 % 75 % 75 % 75 %

σL 3 % 5 % 7 % 9 % 11 % 13 % 15 %
Efficient quality level 76 % 76 % 76 % 76 % 75 % 75 % 75 %

ρl,L -9 % -4 % 1 % 6 % 11 % 16 % 21 %
Efficient quality level 76 % 76 % 76 % 76 % 76 % 76 % 76 %

κl 5 % 10 % 15 % 20 % 25 % 30 % 35 %
Efficient quality level 75 % 75 % 76 % 76 % 76 % 76 % 76 %
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Table 3: Comparative statics for credit spreads for a borrower that is restricted to follow the
investment strategy of an all equity owner. Parameter values are the same as in Table 1. Initial
values of lease rates l and long term lease rate levels L are expressed as a percentage of their
base case values. All other rates are annualized. γ is the depreciation rate, l the lease rate,
L the long term lease level, r the short rate, r∗ the long term level of interest rates, σl the
instantaneous volatility of the lease rate, σL the instantaneous volatility of the long term lease
level, ρl,L the correlation between the lease rate and the long term level of lease rates, κl the
mean reversion rate for lease rates. Default costs are the costs, expressed as a percentage of
value, incurred by the lender upon default of the borrower. Initial quality for all projects is set
at the efficient level for the all equity owner, and loans are adjusted so that the loan-to-value
ratio stays at 80%, while priced at par. Credit spreads are expressed in basis points.

γ 4 % 6 % 8 % 10 % 12 % 14 % 16 %
Credit Spread 62 78 93 109 128 145 162

l 40 % 60 % 80 % 100 % 120 % 140 % 160 %
Credit Spread 58 72 87 109 133 155 180

L 40 % 60 % 80 % 100 % 120 % 140 % 160 %
Credit Spread 531 279 165 109 81 63 53

r 0.00 % 1.77 % 3.54 % 5.31 % 7.08 % 8.85 % 10.62 %
Credit Spread 183 156 130 109 94 82 73

r∗ 3 % 4 % 5 % 6 % 7 % 8 % 9 %
Credit Spread 71 83 96 109 124 137 153

σl 7 % 10 % 13 % 16 % 19 % 22 % 25 %
Credit Spread 97 102 105 109 115 121 127

σL 3 % 5 % 7 % 9 % 11 % 13 % 15 %
Credit Spread 37 55 83 109 139 167 198

ρl,L -9 % -4 % 1 % 6 % 11 % 16 % 21 %
Credit Spread 102 106 108 109 112 115 116

κl 5 % 10 % 15 % 20 % 25 % 30 % 35 %
Credit Spread 105 107 109 109 112 115 118

Default Costs 0 % 5 % 7.5 % 10 % 12.5 % 15 % 20 %
Credit Spread 109 134 147 161 172 190 223
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Table 4: Comparative statics for agency spreads and agency costs. Parameter values are the
same as in Table 1. The agency spread is the difference between the borrowing rate for an
unrestricted, deep pockets borrower and the borrowing rate for a borrower who commits to
the maintenance strategy of an all equity owner. Agency costs are the percentage difference
between the value of the unlevered project and the sum of the values of the debt and equity for
the levered project. Initial values of lease rates l and long term lease rate levels L are expressed
as a percentage of their base case values. All other rates are annualized. γ is the depreciation
rate, l the lease rate, L the long term lease level, r the short rate, r∗ the long term level of
interest rates, σl the instantaneous volatility of the lease rate, σL the instantaneous volatility of
the long term lease level, ρl,L the correlation between the lease rate and the long term level of
lease rates, κl the mean reversion rate for lease rates. Default costs are the costs, expressed as
a percentage of value, incurred by the lender upon default of the borrower. Initial quality for
all projects is set at the efficient level for the all equity owner, and loans are adjusted so that
the loan-to-value ratio stays at 80%. Mortgages are priced at par. Agency spreads and costs
are expressed in basis points.

γ 4 % 6 % 8 % 10 % 12 % 14 % 16 %
Agency Spread 13 21 29 37 44 53 63
Agency Cost 25 40 54 64 74 83 90
l 40 % 60 % 80 % 100 % 120 % 140 % 160 %
Agency Spread 22 28 35 37 40 43 44
Agency Cost 52 55 61 64 66 66 67
L 40 % 60 % 80 % 100 % 120 % 140 % 160 %
Agency Spread 100 80 55 37 28 22 18
Agency Cost 71 70 69 64 51 41 35
r 0.00 % 1.77 % 3.54 % 5.31 % 7.08 % 8.85 % 10.62 %
Agency Spread 49 44 41 37 32 30 28
Agency Cost 77 73 70 64 59 58 57
r∗ 3 % 4 % 5 % 6 % 7 % 8 % 9 %
Agency Spread 15 22 28 37 45 51 55
Agency Cost 38 41 54 64 70 72 73
σl 7 % 10 % 13 % 16 % 19 % 22 % 25 %
Agency Spread 44 41 40 37 34 31 29
Agency Cost 76 69 65 64 62 59 59
σL 3 % 5 % 7 % 9 % 11 % 13 % 15 %
Agency Spread 32 37 35 37 35 37 37
Agency Cost 63 63 64 64 64 65 65
ρl,L -9 % -4 % 1 % 6 % 11 % 16 % 21 %
Agency Spread 38 37 37 37 35 35 35
Agency Cost 65 65 64 64 63 62 62
κl 5 % 10 % 15 % 20 % 25 % 30 % 35 %
Agency Spread 40 38 37 37 35 34 34
Agency Cost 54 59 61 64 65 66 69
Default Costs 0 % 5 % 8 % 10 % 13 % 15 % 20 %
Agency Spread 37 38 39 40 42 46 58
Agency Cost 64 104 119 123 129 145 153
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Table 5: Comparative statics for credit constraint spreads and credit constraint costs. The
credit constraint spread is the difference between the borrowing rates of the unrestricted, deep
pockets borrower and the unrestricted, empty pockets borrower. Credit constraint costs are the
percentage difference between the value of the unlevered project and the value of the debt plus
equity for the levered project managed by a credit constrained borrower. Initial values of lease
rates l and long term lease rate levels L are expressed as a percentage of their base case values.
All other rates are annualized. γ is the depreciation rate, l the lease rate, L the long term lease
level, r the short rate, r∗ the long term level of interest rates, σl the instantaneous volatility of
the lease rate, σL the instantaneous volatility of the long term lease level, ρl,L the correlation
between the lease rate and the long term level of lease rates, κl the mean reversion rate for lease
rates. Default costs are the costs, expressed as a percentage of value, incurred by the lender
upon default of the borrower. Initial quality for all projects is set at the efficient level for the
all equity owner, and loans are adjusted so that the loan-to-value ratio stays at 80%. Mortgages
are priced at par. Credit constraint spreads and credit constraint costs are expressed in basis
points.

γ 4 % 6 % 8 % 10 % 12 % 14 % 16 %
Credit Constraint Spread 4 8 10 15 19 22 28
Credit Constraint Cost 20 29 41 50 60 72 78
l 40 % 60 % 80 % 100 % 120 % 140 % 160 %
Credit Constraint Spread 10 10 12 15 18 18 20
Credit Constraint Cost 36 42 47 50 53 54 57
L 40 % 60 % 80 % 100 % 120 % 140 % 160 %
Credit Constraint Spread 4 14 15 15 15 16 18
Credit Constraint Cost 59 56 55 50 34 18 15
r 0.00 % 1.77 % 3.54 % 5.31 % 7.08 % 8.85 % 10.62 %
Credit Constraint Spread 18 17 16 15 14 10 9
Credit Constraint Cost 57 52 51 50 45 45 43
r∗ 3 % 4 % 5 % 6 % 7 % 8 % 9 %
Credit Constraint Spread 4 8 12 15 15 15 15
Credit Constraint Cost 24 26 33 50 56 57 61
σl 7 % 10 % 13 % 16 % 19 % 22 % 25 %
Credit Constraint Spread 11 12 13 15 18 19 23
Credit Constraint Cost 61 54 52 50 45 41 30
σL 3 % 5 % 7 % 9 % 11 % 13 % 15 %
Credit Constraint Spread 10 9 10 15 19 19 24
Credit Constraint Cost 44 47 49 50 51 52 52
ρl,L -9 % -4 % 1 % 6 % 11 % 16 % 21 %
Credit Constraint Spread 13 14 15 15 15 16 16
Credit Constraint Cost 52 52 51 50 49 48 47
κl 5 % 10 % 15 % 20 % 25 % 30 % 35 %
Credit Constraint Spread 20 18 17 15 15 14 14
Credit Constraint Cost 23 40 47 50 51 53 57
Default Costs 0 % 5 % 8 % 10 % 13 % 15 % 20 %
Credit Constraint Spread 15 6 1 -4 -7 -11 -13
Credit Constraint Cost 50 152 186 186 200 241 271
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Table 6: Qualitative comparative statics for efficient quality level, spread over treasury rates
for the owner that is restricted to follow the investment strategy of an all equity owner, agency
spread, agency cost, credit constraint spread and credit constraint cost. The efficient quality
level is the level that makes the all equity owner indifferent between marginally increasing
quality and not investing. The agency spread is the difference between the borrowing rate for
an unrestricted, deep pockets borrower and the borrowing rate for a borrower who commits to
the maintenance strategy of an all equity owner. Agency costs are the percentage difference
between the value of the unlevered project and the sum of the values of the debt and equity for
the levered project. The credit constraint spread (C.C. spread) is the difference between the
borrowing rates of the unrestricted, deep pockets borrower and the unrestricted, empty pockets
borrower. The credit constraint cost (C.C. cost) is the percentage difference between the value
of the unlevered project and the value of the debt plus equity for the levered project managed by
a credit constrained borrower. γ is the depreciation rate, l the lease rate, L the long term lease
level, r the short rate, r∗ the long term level of interest rates, σl the instantaneous volatility of
the lease rate, σL the instantaneous volatility of the long term lease level, ρl,L the correlation
between the lease rate and the long term level of lease rates, κl the mean reversion rate for lease
rates. Default costs are the costs, expressed as a percentage of value, incurred by the lender
upon default of the borrower. For the columns reporting spread, agency spread, agency cost,
credit constraint spread and credit constraint cost, the initial quality is set at the efficient level
for the all equity owner, and loans are adjusted so that the loan-to-value ratio stays at 80% and
mortgages are priced at par.

↑ Efficient quality level Spread Agency spread Agency cost C.C. spread C.C. cost
γ ↓ ↑ ↑ ↑ ↑ ↑
l ↑ ↑ ↑ ↑ ↑ ↑
L ↑ ↓ ↓ ↓ ↑ ↓
r ↓ ↓ ↓ ↓ ↓ ↓
r∗ ↓ ↑ ↑ ↑ ↑ ↑
σl ↓ ↑ ↓ ↓ ↑ ↓
σL ↓ ↑ ↔ ↔ ↑ ↑
ρl,L ↔ ↑ ↔ ↔ ↔ ↔
κl ↔ ↑ ↓ ↑ ↓ ↑
Default cost ↔ ↑ ↑ ↑ ↓ ↑
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Table 7: Average spread for commercial mortgages on office buildings. All mortgages are
balloon, non-amortizing, locked out from prepayment, with loan-to-value ratio equal to
80%, maturity equal to 10 years, originated in January 1998. The spreads are measured in
basis points (b.p.) and are calculated as the difference between the mortgage rate and the
10 year Treasury yield. The numerically calculated spreads are for the different borrower
types for the base case set of parameters.

Property Type Average Spread

Office 166 b.p.

Borrower Type Spread

Restricted 109 b.p.
Deep Pocket 146 b.p.

Empty Pocket 131 b.p.

Table 8: This table summarizes results in the literature of cumulative default probabilities
of commercial mortgages. The last two columns indicate the origination dates and the
number of mortgages considered in each study.

Property Type
Cumulative Default

Probabilities
Source

Origination
Dates

# of Mortgages

All Types 13.8%-18.3% Snyderman (1994) 1972 - 1986 10,955
All Types 14%-30% Fitch (1996) 1984 - 1987 1,524

Multifamily 17.5% Archer et al (1999) 1971 - 1986 9,637
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Table 9: Credit spreads for the Titman-Torous (1989) model. Parameters of the Titman-Torous
(TT) model are calculated from the model presented in this paper. The volatility, correlation
and payout rate in the Titman-Torous model refer to the value process of the project, and not
to the cashflow process. Parameter values for the model presented in this paper (called TTT in
the Table), other than the ones reported in the table, are the same as in Table 1. Initial values
of lease rates l and long term lease rate levels L are expressed as a percentage of their base case
values. All other rates are annualized. γ is the depreciation rate, l the lease rate, L the long
term lease level, r the short rate, r∗ the long term level of interest rates, σl the instantaneous
volatility of the lease rate, σL the instantaneous volatility of the long term lease level. Initial
quality for all projects is set at the efficient level. Unless otherwise noted, loans are adjusted
so that the loan-to-value ratio remains at 80% and mortgages are priced at par. Spreads are
expressed in basis points.

γ 4 % 6 % 8 % 10 % 12 % 14 % 16 %
TT volatility 9.6 % 10.1 % 10.7 % 11.3 % 11.9 % 12.6 % 13.2 %
TT correlation -32.5 % -29.4 % -26.6 % -24.1 % -21.7 % -19.6 % -17.8 %
Payout rate 5.6 % 5.6 % 5.5 % 5.4 % 5.3 % 5.2 % 5.1 %
TT Credit Spread 37 44 52 59 68 78 88
TTT Credit Spread 62 78 93 109 128 145 162
l 40 % 60 % 80 % 100 % 120 % 140 % 160 %
TT volatility 14.3 % 12.8 % 11.9 % 11.3 % 10.9 % 10.7 % 10.6 %
TT correlation -29.7 % -28.2 % -26.3 % -24.1 % -21.8 % -19.5 % -17.3 %
Payout rate 1.0 % 2.6 % 4.1 % 5.4 % 6.6 % 7.7 % 8.7 %
TT Credit Spread 19 25 38 59 86 118 153
TTT Credit Spread 58 72 87 109 133 155 180
L 40 % 60 % 80 % 100 % 120 % 140 % 160 %
TT volatility 11.1 % 11.2 % 11.2 % 11.3 % 11.3 % 11.4 % 11.5 %
TT correlation -1.8 % -12.1 % -19.2 % -24.1 % -27.4 % -29.8 % -31.5 %
Payout rate 12.8 % 9.2 % 6.9 % 5.4 % 4.4 % 3.7 % 3.1 %
TT Credit Spread 417 201 105 59 37 25 18
TTT Credit Spread 531 279 165 109 81 63 53
r∗ 3 % 4 % 5 % 6 % 7 % 8 % 9 %
TT volatility 12.5 % 11.9 % 11.5 % 11.3 % 11.0 % 10.8 % 10.7 %
TT correlation -31.0 % -29.0 % -26.5 % -24.1 % -21.9 % -19.9 % -17.9 %
Payout rate 3.3 % 3.9 % 4.7 % 5.4 % 6.1 % 6.7 % 7.2 %
TT Credit Spread 49 51 54 59 64 67 70
TTT Credit Spread 71 83 96 109 124 137 153
σl 7 % 10 % 13 % 16 % 19 % 22 % 25 %
TT volatility 10.5 % 10.7 % 10.9 % 11.3 % 11.7 % 12.1 % 12.6 %
TT correlation -33.7 % -30.6 % -27.3 % -24.1 % -20.9 % -17.9 % -15.0 %
Payout rate 5.4 % 5.4 % 5.4 % 5.4 % 5.4 % 5.4 % 5.4 %
TT Credit Spread 47 50 55 59 65 71 80
TTT Credit Spread 97 102 105 109 115 121 127
σL 3 % 5 % 7 % 9 % 11 % 13 % 15 %
TT volatility 6.7 % 8.0 % 9.5 % 11.3 % 13.1 % 14.9 % 17.2 %
TT correlation -43.0 % -35.3 % -28.9 % -24.1 % -20.5 % -17.7 % -15.4 %
Payout rate 5.5 % 5.5 % 5.5 % 5.4 % 5.4 % 5.3 % 5.1 %
TT Credit Spread 12 22 38 59 83 111 147
TTT Credit Spread 37 55 83 109 139 167 198
Loan to Value 65 % 70 % 75 % 80 % 85 % 90 % 95 %
TT volatility 11.3 % 11.3 % 11.3 % 11.3 % 11.3 % 11.3 % 11.3 %
TT correlation -24.1 % -24.1 % -24.1 % -24.1 % -24.1 % -24.1 % -24.1 %
Payout rate 5.4 % 5.4 % 5.4 % 5.4 % 5.4 % 5.4 % 5.4 %
TT Credit Spread 21 34 46 59 94 142 212
TTT Credit Spread 52 68 87 109 139 186 257
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