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A Stochastic Model of Asset Life 

 

 

 

Abstract 

 

In this paper we propose a stochastic model of asset life under uncertainty when there 

is a resale option.  We consider asset activity life, asset economic life and asset 

physical life as separate concepts and model asset activity life as the expectation of 

the first passage time for geometric Brownian motion to a certain resale boundary.  

We also establish asset economic life as the sum of some first passage time 

distributions and certain Poisson waiting time distributions.  Three convergence 

results to normal distribution are established.   These results throw new lights on the 

market for used assets. 
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A Stochastic Model of Asset Life 

 

1. INTRODUCTION 

 

In a seminal model of vintage capital,  Malcomson [1975] proposed studied asset life 

and proves the existence of an upper bound and a lower bound for capital asset.  

Subsequently, Hilton [1991] proves that the upper and lower bounds in Malcomson 

converge to a limit.  Thus a unique asset life is established under the assumptions of 

certainty and no resale opportunity.   

 

These are strong assumptions and clearly contradict the existence of markets for 

considerable number of durable assets, markets that facilitate asset exchanges among 

interested parties.  Quite often, the exchange of used asset is more extensive then the 

exchange of new assets.  In the United States, 88,000 used machine tools were sold 

while only 40,000 new machine ones were sold in 1960.1  The ratio of used truck 

purchases to new truck purchases was 1.2 for panel trucks, 1.3 for multi-top and walk-

in trucks, and 1.01 for truck tractors in US in 1977.2   In a comprehensive paper on 

asset sale in US, Maskovic and Philips [2001] reveal that over 3 percent of plants and 

equipment in the US change ownership annually through mergers and acquisitions.  

No doubt similar data may be found for other assets in other countries.  Maskovic and 

Philips [2001] show that these transactions in used corporate assets have benefited 

both sellers and buyers and significantly improved resource allocation.  This finding is 

consistent with an early observation of Sen [1962] in the context of international trade 

in used machines.  Sen [1962] shows that exchange in used durable assets may be 

                                                           
1 Waterson (1964).  
2 Bond (1983).  
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welfare-improving.   Trade in used durable assets has attracted some attention in 

economics and finance literature.  The most celebrated paper of all is perhaps the one 

on used car market by Akerlof [1970] who was awarded Nobel Price in Economics 

for his work on such a market.   Also in this tradition include the paper by Bond 

[1983].  The models of Rust [1985a, 1985b] focus on equilibrium characterisation of 

used asset market.   

 

In this paper we relax both assumptions in Malcomson and Hilton by introducing 

resale opportunity and uncertainty.  Specifically, we allow returns from the 

employment of a durable asset to fluctuate according to some stochastic processes 

while allowing an outside resale opportunity.  Thus, if the return from using the asset 

proves disappointing, the asset owner could sell it to another owner who might 

profitably employ the asset for another use.  We demonstrate that once the resale 

option is allowed, the problem of asset life changes rather drastically.  Instead of a 

unique life, as in Malcomson [1975] and Hilton [1991], a durable asset now acquires a 

series of lives which we call activity life, each of which pertains to one particular 

economic activity.  The sum of its activity lives makes up the economic life of the 

asset.   As a result, the economic life of a durable asset is a random variable which is 

in turn a series of random variables.    

 

We are not the first to consider real asset markets from option pricing perspective.  

Grenadier [1996] and Williams [1995, 1998] have applied the option pricing approach 

to study real asset market equilibrium and real estate development.  They also 

incorporate informational and agency-theoretical factors.  Unlike these authors, we 

“track down” the change of ownership for individual asset and model its economic 
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life and its components: activity lives.   The different perspectives adopted in this 

paper and that of others all throw lights on different aspects of the market for durable 

assets.     We extend the insights from Brennan and Schwartz (1985), McDonald and 

Siegel [1986] and Myers and Majd [1990] in that we explicitly model resale 

opportunity, or abandonment option.   In addition, we employ the insights from 

stochastic processes, as applied to option pricing problems by Black and Cox [1976], 

Ingersoll [1977], McDonald and Siegel [1986], Dixit [1993], Yaksick [1996] and 

Grenadier [1996], Bunch and Johnson [2000],  Shackleton and Wojakowski [2001], 

Zhou [2001) and Song [2001].3   This literature emphasizes certain specific option 

exercise boundaries and attempt to answer the question of if/when an option is 

expected to be exercised.  By making certain specific assumptions, we obtain the 

following results.  First, we show that asset activity life is the expectation of the first 

passage time to its resale boundary.  Second, we show that an asset’s economic life is 

the sum of first passage time distributions, which, under certain technical conditions, 

converge to the normal distribution.  Thus, instead of a unique deterministic life, an 

asset’s economic life become stochastic when there is a resale option.  Our approach 

has the advantage of enabling us to “track down” the movement of a particular asset.  

The framework is flexible enough to incorporate realistic features of exchanges in 

used assets.   

 

Our plan is as follows.  In section two, we introduce a stochastic model of asset 

activity life.  We show that an asset’s activity life is characterised by the expectation 

of certain first passage time to a resale boundary.  In section three, we demonstrate 

that the economic life is a random variable which in turn is the sum of the first 

                                                           
3 Song (2002) contains extensive review of this literature. 
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passage time distributions.  In particular we show that under certain conditions, the 

economic life distribution converges to a normal distribution whose expectation is the 

economic life of the asset.  In section four we extend the analysis to account for 

market frictions by introducing Poisson waiting times for transits between different 

asset activity lives.  We show that economic life is now the sum of alternate inverse 

lognormal and Poisson distributions.  Necessary sufficient conditions for finite 

economic life are provided.  In section five, more realism is built into the model by 

considering interdependence between asset activity lives.  Potential applications and 

extensions of our model are discussed in section six. 

 

2. ASSET ACTIVITY LIFE 

 

Following Myers and Majd [1990], we differentiate three lives for a durable asset: 

project life, economic life and physical life.  Project life corresponds to activity life 

used in this paper and denotes the period in which the asset is employed for one 

particular economic activity.  Economic life is the time span in which the asset is used 

for all economic activities.   Physical life is a measure denoting the asset in its 

physical form.  Some assets have infinite physical life such as land in that they do not 

change from one physical form to another.  In set theory, we say that project life is a 

subset of economic life, which in turn is a subset of physical life.  More importantly, 

all three lives are random variables because economic and technical conditions change 

and new opportunities may arise.  An asset may not profitably be used for one activity 

but it may be employed profitably for another activity.  It may not be profitable for 

one owner but maybe so for another owner.  But this requires the change of ownership 

through the market for used assets.  In fact the market for used assets account for a 
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substantial portion of the total market transactions.  Sen [1962] and Bond [1983] 

argue that international exchange of used capital goods account for a substantial 

volume of international trade.  In our model, the market serves to facilitate the transfer 

of assets from one use to another so that once one activity life terminates another 

begins and the economic life consists of a series of activity lives.   

 

These exchange opportunities have been studied extensively in the finance literature.  

Under uncertainty these will exist optimal timing for exercising these options.  In this 

paper we focus on one particular option, the option to sell.  Song and Gao [2000] 

employ the analogy between the decisions to sell and exercising an American put 

option.  It turns out that during an asset’s economic life there may be many times that 

the resale option is exercised by different owners.   

 

Following Song and Gao [2000], let an asset generates a random stream of net present 

value in accordance with geometric Brownian motion process:  

 

dzdt
S

dS σµ +=     (1)  

 

S denotes net present value from using the asset, µ is the expected growth rate of the 

return, σ is its standard deviation and dz is a standard Wiener process.  Second, a 

complete market for the second hand asset exists and the asset can be sold at a 

constant price denoted as R.  This assumption is made for clarity of exposition and 

may be easily relaxed as in Song and Gao [2001].  Third, let the asset have infinite 

durability so that wear and tear does not complicate the analysis.    Under these and 

other assumptions, it is possible to obtain an optimal rule for asset sale using option 
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pricing methodology.  This optimal exercise rule, first appeared in Samuelson [1965], 

McKean [1965] and Merton [1973] and applied to asset sale and scrapping by Song 

and Gao [2000], is of a simple expression: 

 

R
r

rS 2
*

2
2

σ+
=      (2)  

 

This resale rule states that there exists a critical level of S below which the asset 

should be sold in the second hand market.  It is clear that this critical level depends 

only on three parameters of the model: resale price, riskless rate of interest and the 

variance rate of the returns from using the asset.  Thus this is a constant boundary for 

the geometric Brownian motion process specified in (1).  One insight of this paper is 

that asset activity life may be approximated by the expectation of the first passage 

time to this endogenous boundary (2).  Specifically, given the evolution of the state 

variable in (1) and the critical boundary in (2), the problem of determining when S 

will reach the level derived in (2) boils down to the first passage time for geometric 

Brownian motion to a fixed level.   

 

Song [2001], Rhys and Song [2001], Shackleton and Wojachowski [2001] shown that 

the first passage time distribution for geometric Brownian motion to a horizontal 

boundary is inverse lognormal distribution.  This is in contrast to the well known 

inverse Gaussian distribution for absolute Brownian motion with positive drift first 

studied by Erwin Schrodinger and Smoluchowski in 1918, Wald and Tweedie in the 

1940s, apparently all independent of each other.  Johnson and Kotz [1977], Chhikara 

and Folks [1989] and Seshadri [1998] contain comprehensive treatments of the 



 9

inverse Gaussian distribution.4  One cannot apply the inverse Gaussian distribution to 

most problems of interest in economics and finance.  To use these results, care must 

be taken to avoid confusions.  Following Shackleton and Wojachowski [2001], Rhys 

and Song [2001] and Song (2001), it is straightforward to establish the following 

theorem. 

 

Theorem 1 

If Under uncertainty with resale option, asset activity life is the first passage time 

distribution for geometric Brownian motion to the optimal resale boundary with the 

following expectation and variance rate. 

 

2

0

*

2
1

)(
σµ

τ
−

=
S
SLn

E      (3) 

σσµ
τ 3

2

0

*

2
1
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�
�

�
�
�

� −
=

S
SLn

Var      (4) 

 

It is useful to note that the expectation is well defined if certain conditions are met.  

Specifically, the expectation has positive value if the nominator and the denominator 

have the same sign.  The expectation approaches infinity when the drift equals one 

half of the variance rate for the original process.  Indeed, nothing prevents the 

denominator from being either sign although we may be certain about the sign for the 

                                                           
4 It is worth pointing out that Bachelier (1990) derived the first passage time distribution for absolute 
Brownian motion with zero drift with the celebrated known result of an infinite expectation. 
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numerator.   Note also that if we were to work with absolute Brownian motion, we 

would have the expected value of first passage time to a fixed level as follows5: 

 

µ
τ 0

*

)(
SSE −

=      (5) 

      

(5) is very intuitive and expresses the fact that if we know the distance a particle has 

to travel with certain speed, we obtain the time needed by dividing distance by its 

speed.  For geometric Brownian motion, the correct result is (3) this is because we 

have transform (1) into log normal form by Ito’s lemma as follows: 

 

dzdt
S
Sd σσµ +−= )

2
1(

log
][log 2    (6) 

  

Some comparative static results on both moments of the first passage time are 

collected as follows.  They show the effects of various factors on expected activity life 

and the variability of activity life. 
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5 This result was also obtained by Yaksick (1996) using martingale method. 
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These results may be used to test the model predictions.  In particular, although a 

higher variance rate of the driving process will lower the resale boundary, through 

Ito’s lemma, it may increase or decrease the drift rate for the lognormal process.  Thus 

the net effects of variance rate on expected activity life are ambiguous.  However, if 

specific assumption is made on the sign and magnitude of the drift rate for (1), then 

we may make precise prediction on the sign of uncertainty on activity life. 

 

We should also point out that the drift rate, unlike in option pricing, plays a crucial 

rule in first passage time problems because it is the drift rate that determine the time it 

takes a random variable to travel certain distance.  One will by now also note the 

different measures adopted in this paper and that of Sarkar [2000] who considers the 

probability of reaching an investment boundary within a given time period.  Through 

analytical and numerical simulations, Sarkar [2000] concludes that although 

uncertainty raises optimal investment threshold, there is no clear relation between 

uncertainty and the probability to invest within a given period.  For further 

clarifications of these important issues, we refer the readers to Rhys and Song [2001].    

 

3. ECONOMIC LIFE AS SUM OF FIRST PASSAGE TIME DISTRIBUTIONS 

 

That economic life of a durable asset is not unique, rather, consists of a series of 

activity lives is implicit in Myers and Majd [1990] who recognise that although an 

asset’s activity life may be terminated for one activity, the economic life of the asset 

may continue in another activity.  As we have argued in section one, the existence of 

the second hand market in consumable goods such as cars is to facilitate the 
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continuation of an asset’s economic life.  What we shall demonstrate is that the sum 

of these random activity lives constitutes an asset’s economic life.   

 

An example from particle radiation may be useful here.  Suppose a certain counter is 

used to register emitting particles.  Assume that the incoming particles constitute a 

Poisson process.  A particle reaching the counter when it is free is registered but locks 

the counter for a fixed duration.  Particles reaching the counter during a locked period 

have no effect whatsoever.  If we start the process at an instant when a new particle 

reaches a free, counter, we have then two renewal processes.  The primary process-the 

incoming traffic-is a Poisson process, its inter-arrival times have an exponential 

distribution, and the successive registrations form a secondary renewal process in 

which the inter-arrival times represent the sum of the primary process and an 

exponential random variable.  Thus the number of registrations within a fixed time 

interval is approximately normal.6 

 

In the remainder of this section, we establish a convergence result for the sum of 

independently distributed random variables.  We defer the treatment of variable 

distributions in section four in which waiting times are introduced.  Denote the series 

of activity lives as ( )∞= ,...,1iiτ  and the economic life of the asset as T.  Then T may 

be expressed as the sum of activity lives: 

 

�
=

=
n

i
iT

1
τ   (7) 

 

                                                           
6 Feller (1966). 
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In this section we assume that once an activity life is terminated, another immediately 

starts.  Asset transfer is instantaneous without any frictions.  Incorporating 

transactions costs is straightforward, however if we restrict to the case of fixed or 

proportional transactions costs.  The problem is now reduced to an evaluation of the 

sum of random variables all following inverse lognormal distributions.  This result has 

been summarised in section two and is contained in Ryhs and Song [2001].  Using 

this result, it is easy to establish the following. 

 

Theorem 2 

The economic life of capital asset T is sum of independent but not necessarily 

identical Inverse Lognormal Distributions. 

 

To prove this theorem, we require the following assumptions to hold.  First, asset 

activity lives are independent but not necessarily identically distributed.  Second, they 

have individual means and variances.   And the following additional notations are 

used.  Let  activity lives ),...,1( nii −τ have means ),...,1( nimi = and variances 

),...,1( nii =ν so that the mean and variance of the sum �=
n

iT
1

τ   are given by 

 

22
1

2

1
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nmmm
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Now the Central Limit Theorem asserts, that, under very general conditions with 

respect to the distributions of the activity lives, the density function of the 

standardised sum 

 

σ
mT −  
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will for large n be approximately equal to normal distribution.  This may be expressed 

as follows: 

)(xxmTPLim
n

φ
σ

=�
�

�
�
�

� ≤−
∞→

   (8) 

  

Note that a sufficient condition for the validity of the Theorem is that all activity lives 

have the same distribution, as we have assumed.  This common distribution may be 

chosen quite arbitrarily, provided only that their first and second moments exist.  In 

particular, if these activity lives have identical distribution with common mean and 

variance, then their sum will have mean onm  and variance rate noσ .  Furthermore, 

the distribution of the economic life of the asset will be asymptotically normal and the 

arithmetic mean of its economic life  

 

n
T nττ ++

=
− ...,1  

 

is asymptotically normal 
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In general, asset activity lives will not be identical and independent due to the shocks 

to different owners and their initial conditions.  Then the condition required 

establishing the theorem is that each activity life makes an insignificant contribution 

to the asset’s economic life.   

 

4. THE CASE OF POISSON WAIITNG TIMES 

 

In section three, we have considered asset economic life with instantaneous exchange 

so that once one activity life is terminated, another one commences immediately.  
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Although this is a neat and plausible result, it abstracts from reality.  Many asset sales 

take time: buyers need to be found, price need to be negotiated so that the asset may 

stay in transit for sometime before another activity life could start.  In this section, 

introduce some realism and consider time spent between activity lives.  We then 

establish another convergence result.  

 

For simplicity, suppose transit times follow Poisson process.  We do this for two 

reasons.  First, Poisson distribution has been found useful for modelling waiting time 

in stochastic processes.  Without empirical evidence suggesting otherwise, it may be a 

first approximation.  Second, the tractability of Poisson distribution simplifies 

presentation without loss of generality.   All transit times between successive activity 

lives follow independent Poisson distributions: 

 

!k
ep

ik
i

i

λλ
=      (10) 

 

with expectations iλ .    

 

It is obvious that the economic life of the asset is simply the sum of these alternate 

inverse lognormal distributions and Poisson distributions.  Write T as the asset’s 

economic life.  Clearly T is the sum of the first passage time distributions and Poisson 

distributions.  Suppose the means and variances of asset economic lives exist such 

that  
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Following Feller [ Vol.1: 253-256), it is straightforward to establish the following 

theorem. 

 

Theorem 3 

A sufficient and necessary condition of the Central Limit Theorem for variable 

distributions is the Lindeberg Condition which states that The Central Limit Theorem 

holds whenever for every ε > 0 the truncated variables kU  defined by 

 

nkkk

nkkkkk

sXU

sXXU

εµ

εµµ
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satisfy conditions ∞→ns and � →
n

k
n

UE
s 1

2
2 1)(1 .  This theorem implies that every 

uniformly bound sequence of mutually independent random variables obeys the 

Central Limit Theorem.7   
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5. THE CASE OF DEPENDENT ACTIVITY LIVES 

 

Thus far we have assumed that asset activity lives are independently distributed.  This 

may be a reasonable assumption for many durable assets.  However, it may not 

correspond to all durable assets.  There are in reality many intertemporal externalities 

associated with asset use.  Land is probably a good example.  It is well known that 

different uses of a piece of land may affect its fertility and other attributes differently 

and sometime irreversibly.  Growing one crop may exhaust its fertility while another 

enhances its fertility.  Thus one use lengthens and another shortens activity life.  The 

exact patterns of these correlations vary according to specific circumstances.  To 

handle the complex correlations among activity lives requires further refinement of 

the model, demanding a version of the central limit theorem for dependent random 

variables.   The result is stated in the following theorem. 

 

Theorem 4 

A finite economic life exists and is the sum of series of dependent random variables 

which converge to a normal distribution. 

 

The proof of this theorem follows that of Hoeffding and Robbins [1948], George 

Marsalia [1954], Billingsley [1961], Loeve (1969: 377) and Hansen [1982], Hansen 

and Singleton [1983], Hansen and Scheinkman [1996]. 

 

 

 

                                                                                                                                                                      
7 Feller (1966). 
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6. DISCUSSIONS 

 

In this paper we introduce the distinctions of physical life, economic life and activity 

life for durable asset and model asset activity lives and economic life as random 

variables when there is a resale opportunity.  We show that activity lives are the 

expectations of series of first passage times for geometric Brownian motion to certain 

horizontal boundaries.  We also demonstrate asset economic life as sum of first 

passage time distributions.  The basic model has been extended to incorporate market 

frictions in terms of transit times.  We also incorporate dependency of activity lives.   

Since uncertainty plays a prominent role in our model, we are able to show that 

observed asset lives are random variables.  Our results are in sharp contrast to the 

models of Malcomson [1976] and Hill [1991] in which only one deterministic asset 

life exists.    

 

Although motivated by asset sale and scrapping problem, we claim that the structure 

of our model is quite general and may have applications in economics and finance.  

Here we mention two applications.  First, the model may be a basis for testing the 

rationale of voluntary liquidations in corporate finance.  Preliminary results by 

Elisasson, Gao and Song [2001] show that some model predictions are supported by 

empirical evidence from voluntary liquidations.  In any case, our model provides an 

alternative framework for investigating asset sale and liquidations to that of Shleifer 

and Vishny [1992], Pulvino [1998], Mehran, et al [1998] and Maksimovic and Philips 

[2001].  One advantage of our model is to regard asset sale as rational and value 

maximising behaviour.  From this we derive the critical action boundary and we then 

calculate the first passage time.  The first moment gives average time to liquidation, 
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bankruptcy and investment and abandonment rules.  Furthermore, the comparative 

static results are readily testable.   Second, the first passage time approach used in this 

paper has applications in pricing financial options.  Bunch and Johnson [2000] has 

used it to price American put option.  It may also be used to study returns from 

holding Mertonian options as in Shackleton and Wojakowski [2001].  Thirdly, the 

first passage time approach advocated in this paper may also be used to characterise 

some portfolio rules, optimal trading rules when tax options are present.  For these 

applications, see Cox and Huang [1989] and Merton [1990], Constantinides and 

Ingersoll [1984].  Song [2002] contains other applications. 

 

Extending the basic model in this paper may be a worthwhile topic for future work.  

The asset in this paper has infinite durability.  Although there are some assets with 

this property such as land, gold and platinum, most assets have finite durability.  For 

finitely durable assets, the issue of depreciation and maintenance will undoubtedly 

complicate things.  However, Rhys [2000] shows that a similar approach may be used 

to tackle it.  Other options such as repair and replacement may be incorporated, an 

issue raised and unresolved in a classic paper of Miller and Modigliani.8  The 

replacement issue has been taken up by Mauer and Ott [1995].   

  

 

 

 

   

 

                                                           
8 Miller and Modigliani, 1963: 434, 442. 



 20

References 

G. Akerlof, “The market for ‘lemons’: quality uncertainty and the market 

mechanism”, Q. J. Econ. 84(1970), 488-500.   

L. Bachelier, Theory of Speculation (English translation), in Paul Cootner (editor), 

“The Random Character of Stock Market”, MIT Press, 1964. 

P. Billingsley, “The Lindeberg-Levy Theorem for Martingales”, Proceedings of the 

American Mathematical Society, 12(5) (1961), 788-792.   

F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. 

Econ. 27 (1976), 399-418.  

F. Black and John Cox, “Option pricing: some effects of bond covenant provisions”, 

J. Fin. Econ.    

Bond, Eric, “Trade in used equipment with heterogeneous firms”, J. Polit. Econ. 

91(1983), 688-705. 

M. Brennan and E. Schwartz, “Evaluating natural resource investments”, J. Bus. 58 

(April), 1985, 135-57.  

D. Bunch and H. Johnson, “American put option and its critical stock price”, J. Fin. 

LV (2000), 2333-2356.   

R. Chhikara and J. Leroy Folks, “The Inverse Gaussian Distribution”, Marcel Dekker, 

INC. New York and Basel, 1989.   

G. Constantinides and Jonathan Ingersoll, “Optimal bond trading with personal tax”, 

J. Fin. Eco. 13 (1984), 299-335.  

John, Cox and Huang Chifu, “Optimal consumption and portfolio policies when asset 

prices follow diffusion processes”, J. Eco. Theory, 49(1989), 33-83. 

H. Cramer, The Elements of Probability Theory, Robert E. Krieger Publishing 

Company, Huntington, New York, 1973.  



 21

Dixit, Avinash, “The Art of Smooth Pasting”, Harwood Academic Publishers, 1994, 

2nd printing.  

A. Eliasson, Gao Shumei and Song Jihe, “Exercising real options: the case of 

voluntary liquidations”, mimeo, University of Wales, Aberystwyth, January 2002. 

W. Feller, “An Introduction to Probability Theory and Its Applications”, Vol.1&2, 

John Wiley & Sons, Inc, 1968.  

S. Grenadier, “Cascades and over-building in the real estate market”, J. of Fin. 1996. 

S. Grenadier, “Information revelation through option exercises”, Rev. of Fin. Studies, 

1999.          

L. Hansen, “Large sample properties of generalised method of moments estimators”, 

Econometrica, 50(1982), 1029-84. 

L. Hansen and K. Singleton, J. Political Eco. 91(1983), 249-65. 

L. Hansen and Jose Scheninkman (1995), “Back to the future: generating moment 

implications for continuous time Markov processes”, Econometrica, 63(4), 767-804.  

W. Hoeffding and H. E. Robins (1948), The Central Limit Theorem for dependent 

random variables, Duke Math. J. (1948), 773-780.     

O. van Hilton, “The optimal lifetime of capital equipment”, J. Econ. Theory, 55 

(1991), 449-454.  

J. Ingersoll, “A contingent-claims valuation of convertible securities”, J. Fin. Econ. 4 

(May), 1977, 289-322.   

N. J. Johnson and S. Kotz, “Continuous Univariate Distributions 1”, John Wiley & 

Sons, 1970.  

Loeve, Michel, “Probability Theory”, 2nd edition, D. Van Nostrand, Princeton, N. J. 

1960. 



 22

V. Maksimovic and G. Phillips,  “Asset Efficiency and Reallocation decisions of 

bankrupt firms”, J. of Fin. Economics, 53(1998), 1495-1532. 

J. Malcomson, “Replacement and the rental value of capital equipment subject to 

obsolescence”, J. Econ. Theory, 10 (1975), 24-41.  

G. Marsalia, “Iterated limits and the Central Limit Theorem for dependent variables”, 

Proceedings of the American Mathematical Society, 5(6)(1954), 987-991.   

D. Mauer and  Steven Ott, “Investment under uncertainty: the case of replacement 

investment”, J. Fin. and Quant. Analysis,  30(1995), 581-605/  

R. McDonald and D. Siegel, “Waiting to invest”, Quar. J. Econ. 101 (1986), 707-27. 

J. Mehra and H. Rechenberg, “The Historical Development of Quantum Theory”, 

Volume 5, Erwin Schrodinger and the Rise of Wave Mechanics, Part 1, Schrodinger 

in Vienna and Zurich: 1887-1925, Springer-Verlag, 1987.   

H. Mehran, G. Nogler and K. B. Schwertz, CEO Incentive Plans and Corporate 

liquidation policy, J. Fin. Economics, 50 (1988), 319-49. 

R. Merton, “Theory of rational option pricing”, Bell Journal of Economics and 

Management, 4 (1973), 141-83.  Reprinted in R. Merton, “Continuous-time Finance”, 

Blackwell, 1990. 

R. Merton, “Further developments in the theory of optimal consumption and portfolio 

selection”, Chapter 6 in Merton (1990).  

R. Merton (1998), “Option pricing after twenty-five years”, Am. Eco. Rev.      

M. Miller and F. Modigliani, “Corporate income taxes and the cost of capital: a 

correction”, American Eco. Review, 53 (1963), 433-443.  

S. Myers and M. Majd, Abandonment value and project life, in “Advances in Futures 

and Options Research”, 4 (1990), 1-21. 



 23

T. Pulvino, “Does Asset fire sales exist?  An Empirical Investigation of Commercial 

Aircraft Transactions”, J.  Fin.  53 (1998), 939-78. 

H. Rhys, “Depreciation: a stochastic model”, J. Bus. Fin. Acc. 27(2000), 777-84.   

H. Rhys and Song Jihe, The first passage time for Geometric Brownian motion to a 

linear boundary, mimeo, University of Wales at Aberystwyth, UK, 2001. 

Rust, John (1985a), “Stationery equilibrium in a market for durable assets”, 

Econometrica, 53(4), 783-805.   

Rust, John (1985b), “When is it optimal to kill off the market for used durable goods” 

Econometrica, 53(5),   

P. Samuelson, “Rational theory of warrant pricing”, Ind. Man. J. 6 (1965), 13-31. 

S. Sarkar, “On the investment-uncertainty relationship in a real options model”, J. 

Econ. Dyn. & Con. 24 (2000), 219-25. 

A. K. Sen, “On the usefulness of used machines”, Rev. Econ. Stat. 44 (1962): 346-

348. 

V. Seshadri, “The Inverse Gaussian Distribution”, Springer-Verlag, 1999.  

M. Shackleton and  R. Wojakowski, “The Expected return on Merton-style real 

options”, J. Bus. Fin. Acc. 2001 (to appear).  

A. Shleifer and R. Vishny, “Liquidation values and debt capacity: A market 

equilibrium approach”, J. Fin. 47 (1992), 1343-1365. 

Jihe Song, “Modelling real options: a new approach”, The 5th International 

Conference on Real Options, UCLA, 11-14 July 2001.  

Jihe Song and S. Gao, “Asset sale and scrapping: an option pricing approach”, Gr. 

Econ. Rev. 99(2000), 99-107. 

Jihe Song and Gao Shumei (2002), “Asset sale with stochastic resale price”, BAA 

Conference Paper, April 3-5, 2002.   



 24

Jihe Song (2002), “Option pricing and option exercise: the first passage time 

approach, manuscript”, School of Management and Business, The University of 

Wales, Aberystwyth, UK.  

Lenos, Trigeorgis, “Real Options”, MIT Press, 1996. 

T. Tweedie, “A mathematical investigation of some electrophoretic measurements on 

colloids”, MSc Thesis, University of Reading, UK, 1941.    

A. Wald, “Sequential Analysis”, John Wiley & Son, 1947. 

A. Waterson, “Good enough for developing countries”, Fin. and Dev. 1(1964), 89-96. 

J. Williams, “Pricing real assets with costly search”, Rev. of Fin. Stu. 8(1995), 55-90. 

J. Williams, “Agency and brokerage of real assets in competitive equilibrium”, Rev. of 

Fin. Stu. 11(1998), 239-280.  

R. Yaksick, “Expected optimal exercise time of a perpetual American option: a 

closed-form result”, J. Fin. Engin. 4(1996), 55-73.   

C. Zhou, “Default correlation and multiple defaults”, Rev. Fin. Stu. 14 (2001), 550-

576.  

 


	A Stochastic Model of Asset Life
	This version: 1st March 2002
	A Stochastic Model of Asset Life
	In this paper we propose a stochastic model of asset life under uncertainty when there is a resale option.  We consider asset activity life, asset economic life and asset physical life as separate concepts and model asset activity life as the expectation
	A Stochastic Model of Asset Life
	In this section we assume that once an activity life is terminated, another immediately starts.  Asset transfer is instantaneous without any frictions.  Incorporating transactions costs is straightforward, however if we restrict to the case of fixed or p
	Theorem 2
	The economic life of capital asset T is sum of independent but not necessarily identical Inverse Lognormal Distributions.
	To prove this theorem, we require the following assumptions to hold.  First, asset activity lives are independent but not necessarily identically distributed.  Second, they have individual means and variances.   And the following additional notations are
	will for large n be approximately equal to normal distribution.  This may be expressed as follows:
	(8)

