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Abstract: We develop a model of the investment behavior of a firm that faces a stochastic, downward-sloping demand curve.

The firm’s challenge is to determine the optimal scale and time of an investment, so there is a potential for market power in

the sense of markup pricing along two dimensions: static market power along a quantity dimension, and dynamic market

power along a time dimension. Depending on the specific assumptions, either dimension will be more or less relevant. For

example, the option to wait may be useless if the uncertainty of demand is low and the demand curve is not very elastic. Then

the decision of the firm simplifies to that of a standard monopoly model. In other cases, the option to wait prevails. Typically,

the latter happens when there is much uncertainty and the demand curve is fairly elastic. The formal model is illustrated by

decisions in the real estate industry.
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1. Introduction
A monopolistic firm can be seen as the owner of one or more options that are exercised by

exploiting market power in the sense of pricing above marginal costs. Two such options are of

special interest. The standard monopoly model − known from any introductory course in

microeconomics − is based on the option to reduce production to increase the price above the

marginal production cost. The standard real options model of irreversible investment under

price uncertainty − see Dixit and Pindyck (1994) − focuses on the option to postpone an

investment until the revenue that is obtained exceeds the investment cost. In both models, the

optimal decision consists of maximizing the difference between revenue and cost.

Since the scale of production often results from an irreversible investment, these two options

ought to be discussed in relation. We should aim at a description of monopoly where the firm

is allowed to delay as well as to scale production, subject to demand conditions that may

change over time.
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For example, consider a firm in the real estate industry that has acquired a certain piece of

land. The firm is to find the optimal time and the optimal number of homes to build. For

technological, economic or political reasons, a unique lot size is needed, and all homes must

be built in one batch. Most likely, the price that can be achieved will be an increasing function

of the lot size. This leads to a downward-sloping demand curve. By choosing a small lot size,

many homes can be sold, but the price will be low; by choosing a larger lot size, fewer homes

can be sold, but the price will be higher. In addition, the location of the demand curve could

be uncertain, as aggregate demand for such homes typically fluctuates over time. Therefore

the firm must also consider postponing the investment to obtain higher prices. Hence, the

optimal decision consists of two elements: when and how much to invest.

The objective of this paper is to discuss a formal model based on these ideas. The model is

general, but it is convenient to illustrate with the real estate industry when explaining its

various assumptions. Below we describe the two standard models upon which the model is

built.

First, suppose a monopolist with a simple cost function − a fixed cost and a constant marginal

cost − is facing a downward-sloping demand curve. The profit function to be maximized is

(1) acppqw −−= ))(( ,

where p is the price, q(p) is the demand function, a is the fixed cost, and c is the marginal cost.

Under certain well-known conditions, the optimal price is given by the markup

(2)
ep

cp 1=− ,

where e=−(dq/dp)/(q/p) is the magnitude of the price elasticity of demand, and e>1 is

assumed.

Next, consider the standard investment model by McDonald and Siegel (1986), answering the

following question: When is it optimal to invest C to obtain Pt, where C is fixed, while Pt

fluctuates according to a general Ito process

(3) tttt dzPgdtPfdP )()( += ,
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assuming a constant discount rate ρ? Here dzt is the Wiener process, and f(Pt) and g(Pt) are

continuous functions. For comparison and reference, let us assume that the stochastic process

takes off right after a fixed acquirement cost A has been paid. The initial value of the process,

P0, is low in a sense to be explained later.

The solution to this dynamic problem can also be described in terms of a markup, as the

optimal decision is to invest as soon as Pt reaches a fixed value higher than C. Following Dixit

et al. (1999), the expected net present value of investing at an arbitrary P≥P0, evaluated at time

zero, can be written as

(4) ACPPQW −−= ))(( .

Here Q(P)≡E[e−ρT] is an alternative expression for the expected discount factor when the

process is to move from P0 to P for the first time, so T is the first hitting time. Eq. (4) can be

explained as follows: The acquirement cost A applies at time zero, and is subtracted. The next

investment brings the revenue P and the cost C. Since this occurs in the future, the net benefit,

(P−C), must be discounted. The expected discount factor, Q(P), which depends on the process

(3), is strictly decreasing in P because it takes longer time to reach P the farther it is from P0.

Hence Q(P) is analogous to a demand function, P is analogous to a price, and A and C are

analogous to a fixed cost and a constant marginal cost, respectively. The optimal markup

therefore becomes

(5)
ε
1=−

P
CP ,

where ε=−(∂Q/∂P)/(Q/P) is the magnitude of the elasticity of the discount factor.

Eq. (2) and Eq. (5) show that the two models coincide in a technical sense even if the

assumptions are very different: The option to wait is ignored in the static model, while the

option to scale production is ignored in the dynamic model. The general model that follows

relaxes both constraints and reveals some economic implications of the analogy. Note that the

net profit margin must be high enough to cover the fixed cost in both models above, as well as

in our more general model; i.e., W≥0 is required. The dynamic setting also requires Q≤1.

Combined with Eq. (4) and Eq. (5), this implies A(ε−1)≤C.
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2. The model
Suppose a firm has acquired the right to produce a specific good. Referring to the real estate

industry, we may imagine that the firm owns a piece of land. Demand at time t is given by

(6)  ),( ttt pxqq = ,

where q(xt,pt) is increasing in xt and decreasing in pt. The variable xt determines the stochastic

development of demand, and is given by a general Ito process similar to Eq. (3):

(7) tttt dzxgdtxfdx )()( += .

Referring to the example again, qt may represent the number of homes. Uncertain market

conditions imposed by the stochastic process xt cause the relation between price and quantity

to change over time. For now, we assume that the initial value x0 is so low that immediate

production − i.e., building homes on the land − is not optimal.

The investment cost C(q) applies to production, where dC/dq>0. There is no disinvestment

opportunity, so even if C might be a net present value, we do not consider how this cost is

distributed over time. We also exclude possible new investments to expand capacity. (This is

a reasonable assumption in the real estate industry, as it is generally not allowed to split up

lots in an existing residential area.)

The decision problem above boils down to the question of when to make a single investment,

and what scale to choose. Thus, the firm is not a durable monopoly competing with itself as in

Coase (1972). More generally, output will not necessarily be socially optimal as in rational

expectations models without market distortions; see Lucas and Prescott (1971).

The revenue by investing at scale q and time t equals pt(xt,q)q, where pt(xt,q) is the inverse

demand function implied by Eq. (6). For any fixed q, it follows from McDonald and Siegel

(1986) that the optimal time to invest will be as soon as the stochastic variable xt reaches a

certain value higher than x0. Since this holds for any scale of production, it also holds for the

optimal scale. By similar arguments as in the introduction, it follows that the expected net

present value of investing at an arbitrary x≥x0, choosing scale q, can be written as follows:

(8)  ( ) AqCqxRxQqxW −−= )(),()(),( .
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Here R(x,q)≡p(x,q)q is the revenue from sale, while Q(x)≡E[e−ρT] is the expected discount

factor as already described. The profit function of Eq. (8) generalizes Eq. (4) and can be

explained in similar ways. This is the core of the model, since the optimal policy is found

simply by maximizing W with respect to x and q. Assuming that the function is smooth, the

two first-order conditions for a maximum can be expressed by a set of elasticities:

(9a)
Qx

Rx

R
CR

ε
ε=− (9b)

Rq

Cq

C
R

ε
ε

= .

The elasticities are defined by εRx=(∂R/∂x)/(R/x), εQx=−(∂Q/∂x)/(Q/x), εRq=(∂R/∂q)/(R/q), and

εCq=(∂C/∂q)/(C/q). Eq. (9a) shows the optimal revenue as a markup over the investment cost.

The markup is high if εQx is small − i.e., if the discount factor function is not very elastic.

Typically, this is the case if the process is highly stochastic or the discount rate is low. The

elasticity εRx may pull in the other direction, since the revenue may increase less than

proportionally in x.

Eq. (9b) reflects the influence of marginal costs. Since R>C is required for positive profit,

εRq<εCq must hold. In practice, this implies restrictions with respect to economies of scale.

The acquirement cost A is irreversible, so it does not affect the decision on when to undertake

the next investment. The marginal valuation of Eq. (8) is to maximize Q(x)(R(x,q)−C(q))

regardless of the exact initial value x0. At the optimal time, we have x0=x, where x is fixed,

and the expression to be maximized simplifies to R(x,q)−C(q). Hence, the decision reduces to

that of static monopoly as soon as the value of waiting has been fully exploited.

In a free market, one can expect that the price of land is bid up until W=0. This implies

A=Q(R−C), where Q is the optimal discount factor evaluated at time zero, and R and C also

carry optimal values.

The next section exemplifies this model using two common stochastic processes: geometric

and arithmetic Brownian motions. Both processes are combined with isoelastic demand

functions and simple cost functions.



6

3. Examples

Geometric Brownian motion

Suppose demand at time t is given by the equation

(10)  s
ttt pxq )/(= ,

where pt is the price, s>1 is a constant price elasticity of demand, and xt is a geometric

Brownian motion with drift µ (<ρ) and volatility σ (≥0):

(11)  tttt dzxdtxdx σµ += .

As shown by Dixit et al. (1999), the discount factor associated with this process is

(12)  β)/(),( 00 xxxxQ = ,

where β (>1) is the positive solution to the following quadratic equation in m:

(13)  0)1(2
2
1 =−+− ρµσ mmm .

Eq. (12) implies that the discount factor of the geometric Brownian motion is analogous to a

demand function with a constant elasticity, β.

The production cost is assumed to be

(14)  




>∞
≤

=
1,
1,

)(
q
qcq

qC

where c>0 is constant. Referring to the real estate industry, the cost of each home is constant.

The capacity constraint, which for simplicity is scaled to unity, establishes sufficiently

decreasing returns to scale. For example, the constraint may follow from a minimum lot size

determined by law.

Eq. (10) implies that the revenue from investing at scale q as soon as an arbitrary x>x0 has

been reached, equals R(x,q)=xq(s−1)/s. Then the expected net present value of the firm (at time

zero) can be written as
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(15)  ( ) Acqxq
x
xqxW ss −−





= − /)1(0),(

β

,

where 0≤q≤1 is required. The elasticities of Eq. (9) are εRx=1, εQx=β, εCq=1, and εRq=(s−1)/s.

Eq. (9a) implies (R−C)/R=1/β, while Eq. (9b) can be shown to yield (R−C)/R=1/s. Both

equations cannot be correct unless s and β happen to coincide, so in this case we  end up in a

corner solution. It can be shown that W decreases (increases) strictly in x along the curve

∂W/∂q=0 when s is smaller (larger) than β. Likewise, W increases (decreases) strictly in q

along the curve ∂W/∂x=0 when β is smaller (larger) than s. Combining these results, it

follows that the exact corner solution depends on the sign of β−s.

The dynamic component of the model is too weak when s<β, in the sense that the gain from

waiting for higher demand never exceeds the cost. Firm value is maximized in such cases by

investing immediately (when x=x0). By Eq. (10), this yields W=(x0/p)s(p−c)−A, so the optimal

decision simplifies to that of a static monopoly model with constant price elasticity of

demand. As long as x0 is low enough, the optimal price-cost ratio becomes p/c=s/(s−1). The

capacity constraint determines the outcome in the opposite case. The solution is plotted in Fig.

1 for two levels of x0. The constraint binds when x0=x0
high as the marginal revenue (MRhigh)

curve intersects with the marginal cost (MC) curve at the vertical part of the latter curve. The

constraint does not bind when x0=x0
low.

The dynamic component of the model dominates when β<s. In such cases the maximum scale

of production (q=1) should be chosen, and Eq. (15) simplifies to Eq. (4) except for notation.

This implies that the exact price elasticity of demand, s, is irrelevant as long as it exceeds β.

Market power is exploited exclusively along the time dimension as in the standard investment

model. Eq. (5) determines the optimal price-cost ratio, p/c=β/(β−1). The solution is plotted in

Fig. 2. Note that the marginal revenue (MR) curve intersects with the marginal cost (MC)

curve at the vertical part of the latter curve because β<s.

It can be shown that ∂β/∂µ<0, ∂β/∂σ<0, and ∂β/∂ρ>0, so for a fixed price elasticity of demand, s,

the dynamic option prevails if the drift or uncertainty of demand is high enough or the

discount rate is low enough. Likewise, for fixed dynamics as reflected in a constant β, the

static option prevails if demand is not very elastic.
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These results can be explained by the specification of demand. It follows from Eq. (10) that

the price process for a fixed q is geometric Brownian with drift µ and volatility σ. As argued

by Dixit et al. (1999, p. 184), a geometric Brownian process implies an isoelastic discount

factor because the probability distribution for percentage changes in the stochastic variable is

independent of the current value. Just as the percentage change of demand following a

percentage price change is constant in a static monopoly model with isoelastic demand, the

change in the discount factor caused by a percentage price change in the dynamic model is

independent of the current price. Holding such a discount factor up against an isoelastic

demand function and a strict capacity constraint, while allowing for market power in both

dimension, one dimension must dominate. This will be the dimension with the better

opportunity to exploit market power − i.e., where the elasticity is lower.

Note also the potential differences with respect to deadweight loss. There is a deadweight loss

as in a static monopoly model with constant marginal costs when s<β and initial demand is

sufficiently low (Fig. 1). When s>β there is no deadweight loss (Fig. 2).

Arithmetic Brownian motion

Suppose demand is still given by Eq. (10) except that xt is arithmetic Brownian:

(16)  tt dzdtdx σµ += .

As shown by Dixit et al. (1999), the discount factor associated with this process is

(17)  )(
0

0),( xxexxQ −−= α ,

where α is the positive solution to the quadratic equation

(18)  022
2
1 =−+ ρµσ mm .

Eq. (17) shows that the discount factor of the arithmetic Brownian motion is analogous to an

exponential demand function.

The capacity constraint of the previous example is no longer needed, so now we simply define

the production cost by C(q)=cq, where c>0 is a constant. The expected net present value of

investing at scale q when an arbitrary x>x0 has been reached, becomes:



9

(19) ( ) AcqxqexqW ssxx −−= −−− /)1()( 0),( α .

The elasticities of Eq. (9ab) are εQx=αx, εRx=1, εCq=1, and εrq=(s−1)/s, implying the following

optimal policy:

(20a)   
α
sx = (20b)

s

c
sq 





 −=

α
1

This solution is well defined as long as x0<s/α. In the opposite case, production should take

place immediately, and the scale of production should be chosen as in static monopoly.

For fixed dynamics as reflected in a constant α, Eq. (20a) implies that more waiting will take

place by increasing s. In other words, the option to wait becomes more important when the

demand function gets more elastic. The variable α mimics β in underlying parameters, so we

have ∂α/∂µ<0, ∂α/∂σ<0, and ∂α/∂ρ>0. Thus, higher drift and uncertainty of demand also lead

to more waiting, while a higher discount rate leads to less waiting.

Eq. (20b) shows that the optimal scale of production decreases along with s. Referring to the

real estate industry again: lot sizes larger than minimum becomes more likely by making

demand less elastic. The lot size also increases (q decreases) by increasing c or decreasing α.

These results look reasonable in a broader context. For example, we usually see expensive

homes placed on large lots. Moreover, the typical lot size may decrease due to scarcity of land

when demand is expected to increase (reflected in a higher µ). In such times the equilibrium

price of land increases − i.e., the fixed cost A corresponding to W=0.

By inserting Eq. (20a,b) into Eq. (10), the optimal price-cost ratio becomes p/c=s/(s−1), so the

price coincides with that of static monopoly under constant marginal costs. This confirms that

the model simplifies to static monopoly when the value of waiting has been fully exploited.

4. Concluding remarks
The model of this paper derives the optimal investment policy for a monopolistic firm that is

to find the time and scale of an investment subject to a stochastic, downward-sloping demand

curve. The solution depends on what market power dimension is more important. Static

market power along the quantity dimension tends to dominate when the price elasticity of
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demand is low. Dynamic market power along the time dimension tends to dominate when the

uncertainty or drift of demand is high or the discount rate is low.

In case of isoelastic demand and a geometric Brownian demand process as in our first

example, the two options are summed up by two constant elasticities (s and β), but one option

prevails. The exact value of the higher elasticity is irrelevant as long as the marginal cost is

constant up to a fixed capacity. In other cases of interest − here exemplified by a constant-

elasticity demand curve and an arithmetic Brownian process − typical results are not as

extreme. Then both options may be valuable, but the general characteristics remain. High

uncertainty or drift of demand, and low discount rates, tend to increase the value of options to

wait, while less elastic demand tends to increase the value of options to scale production.

As far as economic modeling is concerned, it follows from the first example, in particular, that

it can make sense to ignore the time dimension as in the standard monopoly model when the

market is fairly stable, and demand is not very price elastic. When demand is relatively elastic

while the market is volatile, one may rather fix the scale of production, and focus on value

from waiting as in the standard investment model. Even if this means that both standard

models may be reasonable simplifications under many circumstances, the empirical evidence

indicates that combined use of the two options to exploit market power also can be useful.

According to Dixit and Pindyck (1994, p. 136), dynamic markups exceeding 100 percent may

well occur. This implies elasticities of the discount factor somewhere between 1 and 2.

Typical price elasticities of demand are in the same range in many monopolized markets.
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qhigh=(x0
high/p)s

qlow=(x0
low/p)s
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c
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Fig. 1. Optimal investment without value of waiting (s<β).
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q=(x0/p)s

MR

c

cβ/(β–1)
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Fig. 2. Optimal investment with value of waiting (s>β).


