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Abstract

This paper analyzes the value of flexibility in quality choice using a

dynamic real-option framework. Firms decide about quality of their prod-

ucts when they enter the market upon incurring a sunk cost. Flexibility in

quality choice induces (ceteris paribus) earlier investment, and the value

of flexible quality increases with demand uncertainty. We find that a

possibility of competitive entry more than doubles the relative value of

flexibility. Moreover, we show that flexible quality serves as an entry de-

terrent control, while it can still be set at the optimal monopoly level.

Furthermore, we extend the theory of strategic real options from which

it is known that the follower’s investment timing is irrelevant for the de-

cision of the leader. The addition of a second control (quality) results

in the leader’s investment timing being influenced by the follower’s entry.

It also holds that introducing the second control variable in combination

with strategic interaction results in the option value of the leader decreas-

ing in uncertainty. Finally, we show that the follower can be driven out of

the market due to ”aggressive” quality choice of the leader in high states

of demand.
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1 Introduction

In a recent period of rapid technological change and high market uncer-

tainty the oligopolistic market structure appears to dominate many sectors of

the economy. This outcome is partially a consequence of the wave of mergers

and acquisitions having occurred in traditionally more competitive industries.

Moreover, the prevalence of oligopolistic markets is caused by the deregulation

in sectors as energy and telecommunications, where incumbents start facing

competition of new entrants. Finally, successful new business models in the

internet economy are often mimicked by imitators, which leads to a market

structure with a several firms competing in a particular product market.

An uncertain economic environment results in firms managing their in-

vestment opportunities not only by choosing the timing of market entry but

also by selecting the product characteristics, such as quality. Higher quality is

associated with higher costs but allows for capturing the benefits of good states

of demand. On the contrary, bad states of demand can lead to lower quality

since the cost of possible quality improvement outweighs benefits from a moder-

ate increase of the consumers’ interest in the product. For example, the options

available to the subscribers of a Japanese operator NTTDoCoMo via the i-mode

and related third generation (3G) services have been scaled down comparing to

the initial plans since the demand, in relation to the associated costs, turned

out to be lower than expected. Consequently, the subscribers do not have the

possibility of videoconferencing or receiving video clips, and what remains in

the package offered to them is accessing e-mail, downloading news and weather

reports, and calling up location-specific information. Should the demand rise,

adding new services would be considered.1 The case of the Japanese operator

illustrates that some firms face a trade-off between the costs of quality and fore-

gone revenues resulting from offering limited functionality of the product. In

this paper, we analyze the impact of demand uncertainty and competition on

the optimal choice of the firm’s strategic variables, such as investment timing

and the product quality, as well as on its valuation. Given the scale of new

technology projects, for example, 3G taken alone entails $100 billion in licences

and another $400 billion in developing infrastructure, providing the appropriate

valuation framework, at least for a particular class of the projects, appears to

be a well-motivated task.2

We apply the option approach, which allows to determine the value

of flexibility concerning the investment timing and the quality of the offered

product/service. The implementation of option-based techniques requires taking

into consideration the two major differences between financial and real options.

First, in most cases real options are not exclusive, i.e. exercising a given option

by one party results in the termination of corresponding options held by other

parties.3 For example, an option to lay down a fiber-optic cable between an

internet backbone and a residential area is alive only until a competitive firm

1See The Economist, October 13-19, 2001, The Mobile Internet: A Survey.
2 Ibid.
3Cf. Trigeorgis [28], p. 274, and Zingales [30].
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does so. Second, the firm can influence both the value of the underlying asset

as well as the exercise price of the corresponding option. In many situations

there exists a positive relationship between the amount of the sunk cost and the

profitability of the project (i.e. via the level of automatization of the production

process or via the product quality). Consequently, the firm is often faced with a

menu of mutually exclusive real options with different exercise prices and payoff

structures.

Both these aspects of real options have been incorporated into this pa-

per and are applied to investigate the investment decision in a market with

stochastic demand, positive network externalities and competitive entry threat.

We develop a strategic model in which a firm chooses the timing of irreversible

investment and the quality of the product. Competitive entry occurs endoge-

nously as a result of the optimal investment decision of a second firm. We com-

pare the cases of fixed and flexible quality in order to determine the additional

value of flexibility in quality choice. Flexible quality, which can be adjusted over

time, requires sufficient know-how within the firm, the use of a more advanced

technology or a contractual flexibility (e.g. via a flexible agreement with con-

tent providers in the case of a 3G mobile operator). Fixed and flexible quality

can also be interpreted as resulting from a licensed and internally developed

technology, respectively. In the fixed quality case, once chosen quality cannot

be changed. For instance, it may not be possible for an internet infrastructure

provider to save on quality reduction (equivalent to narrowing bandwidth ca-

pacity) since fiber-optic cable cannot be easily resold or hired to another party

during market downturn. Adding capacity when the demand is high can also be

prohibitively costly, especially if the demand is highly volatile. In case of flexible

quality, the firm is able to change it at a low cost in response to demand fluctu-

ations and/or competitive entry. In practice, flexible quality is often associated

with higher up-front costs. We show that these higher costs are especially justi-

fied in competitive environments with large demand uncertainty where the value

of flexible quality more than doubles comparing to monopoly. Furthermore, we

derive the optimal investment thresholds, optimal quality choices and projects’

valuations in terms of market parameters and firms’ costs characteristics.

Consequently, we aim at unifying two streams of literature: strategic

real options and industrial organization-based endogenous quality choice. As

far as the real option framework is concerned, our model builds up upon such

contributions as Smets [24], Grenadier [11], Lambrecht and Perraudin [14], Per-

otti and Rossetto [22], Mason and Weeds [17], Huisman [13], and Nielsen [21],

which all have in common that they analyze the effects of both competition and

uncertainty on investment timing. Reinganum [23], and Fudenberg and Tirole

[10] provide the game-theoretical foundations within a deterministic framework.

Introducing quality choice as a strategic variable results in the extension

of the existing strategic real options framework to a class of models in which

firms are equipped with two control variables. Besides choosing the timing of

investment, the firms now also have to decide about the optimal quality of the

product they are going to offer. The result of this is that some of the classic real

options results cease to hold. For example, in the fixed quality case, the optimal
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investment timing of the second firm is no longer irrelevant for the investment

decision of the leader (cf. Huisman [13]). This is due to the fact that the entry

decision of the follower interacts with the second control variable of the leader

(quality), which, in turn, influences the leader’s optimal investment timing.

With flexible quality the follower’s investment decision becomes again irrelevant

since the leader can change quality instantaneously. As a consequence, until the

follower’s entry it can act as a monopolist, thus without being influenced by the

entry threat.

In the paper we show that due to strategic interaction between the

leader and follower, the value of investment option of the former can decrease

in uncertainty if the fixed-quality technology is used. Moreover, the value of

the leader is lower than the one of the follower. This latter result is due to the

strategic disadvantage of the first mover in a Stackelberg game in which firms

compete in strategic complements. The situation reverses under the flexible-

quality technology of the leader. Now, the value of the follower can decrease

in uncertainty since its project’s value becomes concave in the realizations of

random demand.

Furthermore, we show that under the flexible-quality technology, the

leader can drive its competitor out of the market in high states of the demand.

This is caused by the fact that the leader can afford investing in high quality

when demand is high. This reduces the demand for the product offered by

the follower to zero for states of demand exceeding a certain trigger. Flexible

quality can thus serve as an entry deterrent control. A remarkable feature in

this respect is that quality level need not be set higher than monopoly level since

the leader’s ability to raise quality instantly after a potential entry is sufficient

to prevent such an entry from occurring.

We also discuss the impact of network externalities on the optimal in-

vestment timing, quality choice and firms’ valuations. Since, from the point of

view of a consumer, an increase of the degree of network externalities can com-

pensate the decrease in quality, the optimal quality choice of firms is inversely

related to network externalities. Moreover, firms invest sooner and their valua-

tions are higher when the product market exhibits strong network externalities.

As far as the literature on strategic quality choice is concerned, our

model is related to the contributions by Motta [18], Aoki and Prusa [1], Foros

and Hansen [9], Dubey and Wu [6], Hoppe and Lehmann-Grube [12] and Banker

et al. [2]. In general, it can be remarked that we generalize this stream of

research by analyzing a dynamic framework while taking into account economic

uncertainty.

Motta [18] considers a two-stage duopoly model with either fixed or

variable costs of quality (i.e. independent from or proportional to the scale of

improvement). Fixed costs can be associated with R&D or advertising activi-

ties. Variable costs, that correspond to our framework, reflect more skilled labor

and more expensive raw materials and inputs. The result of the paper is that

firms differentiate qualities, which is possible due to setting different prices. In

a similar framework Aoki and Prusa [1] analyze optimal sequential and simul-

taneous quality choice. Again, due to the fact that the authors assume only
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vertical product differentiation and price competition, there exists a first-mover

advantage in the quality choice game. In our case, products are differentiated

also horizontally, so the firms set different qualities even if the cost of the good

to consumer is equal and beyond their control. As a consequence, qualities be-

come strategic complements, reaction curves are continuous, and the profit of

the second mover is higher.

Foros and Hansen [9] apply a two-stage model extended to allow for

horizontal differentiation and network externalities to the market of Internet

Service Providers. They find that the optimal choice of quality is positively

related to network externalities. Their result differs from ours due to the fact

that in Foros and Hansen [9] the substitution effect between quality and network

externalities is dominated by the impact of lower competitive pressure resulting

from higher network externalities.

Dubey and Wu [6] investigate firms’ incentives to invest in product

innovation, which ultimately leads to a quality increase. They show that the

relationship between the number of firms and the propensity to innovate is bell-

shaped. In other words, if the number of firms is ”too large” or ”too small”

the innovation process does not occur. The results of Dubey and Wu [6] are

consistent with our model that predicts that the possibility of entry increases the

quality provided by the otherwise monopolistic firm. Using a different analytical

framework Banker et al. [2] conclude that in the absence of synergies among

the firms in the quality cost, an increasing number of firms leads to decreasing

quality. This finding coincides with the argument of Dubey and Wu [6] for a

”too large” number of firms and is caused by the fact that improving quality is

assumed to be sufficiently costly.

An alternative dynamic model of strategic quality choice is developed

by Hoppe and Lehmann-Grube [12]. In their framework, the firms chose the op-

timal timing of entry, given that the available quality is a deterministic function

of time. Prior to the investment, firms are assumed to pay R&D costs which are

proportional to time until investing. The authors show that, depending on the

cost of R&D, there can be either rent equalization (cf. Fudenberg and Tirole

[10]) or a second-mover advantage in the quality choice game. The assumption

made by Hoppe and Lehmann-Grube [12] that the costs of higher quality are

incurred prior to investment differs from ours in which the costs of quality occur

after the investment is made (similar to the notion of variable quality costs in

Motta [18]). As a consequence, contrary to Hoppe and Lehmann-Grube [12], we

do not observe the first-mover advantage (corresponding to payoff equalization

without exogenous firms’ roles) in the fixed-quality case in our model.

The paper is organized as follows. In Section 2 we present the model

of a monopolistic firm with a fixed-quality technology. Section 3 extends the

model to a duopolistic environment. The discussion of the monopolistic model

with a flexible quality choice is presented in Section 4 and the analysis of its

duopolistic extension is included in Section 5. In Section 6 we compare the

impact of flexible quality on the value of the firm. Section 7 concludes.
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2 Non-Strategic Model with Fixed Quality

Consider a situation in which a firm has an investment opportunity to

launch a product/service in an uncertain market. It chooses the optimal in-

vestment timing and quality of the product. In this section we assume that

once chosen quality cannot be changed. The idea of the fixed quality choice

is therefore similar to Ueng [29], who considers an infinitely repeated oligopoly

game in which the qualities are chosen before the first period. It is realistic to

assume that the revenue per customer is not constant but evolves stochastically

over time.4 The instantaneous revenue per customer at time t is equal to xt,

where xt follows the geometric Brownian motion

dxt = αxtdt+ σxtdwt. (1)

Here α denotes the deterministic drift rate and σ is the instantaneous volatility

of the process. In the analysis we assume that the initial realization of (1),

x0, is sufficiently low, so that in all possible cases the market is too small for

immediate investment to be optimal.

There is a continuum of heterogenous consumers with valuations ωi

distributed uniformly over the interval [0, 1]. A consumer derives utility not

only from the stand alone good but also from the number of other consumers

using it. A utility function satisfying these characteristics is5

Ui = ωiq + an− k, (2)

where q ∈ R+ is the quality of the good, k ∈ R+ is the cost the consumer

has to bear to acquire the good, and a ∈ R+ is a parameter that measures the

intensity of the network externalities. Consequently, ωi can be interpreted as

the marginal rate of substitution between income and quality, so that a higher

ωi reflects a lower marginal utility of income and, as a consequence, a higher

income (see also Tirole [27], p. 98). Large a implies that the consumer’s utility

grows fast with the number of other users. In the opposite case, when a tends

to zero, the number of users of the same good does not affect the utility of the

consumer.6 The size of the network, n ∈ [0, 1], is interpreted as the fraction of

the total market for which a given product is offered. Without loss of generality,

we normalize the absolute size of the total market to 1.

Network externalities are thus present if the number of other consumers

using the same product influences the utility of a given consumer. Positive

4For instance, the revenue per customer of a mobile telephone network depends on the

intensity of voice traffic, competitive pressure, and arrival of new services that can be offered

to the customer against an additional fee. It is natural to assume that the evolution of these

economic variables over time contains an unpredictable component.
5Heterogeneity of consumers with respect to the value attached to the quality of the stand-

alone good and their homogeneity with respect to the degree of network externalities is a

common assumption in the economics of network literature (cf. Mason [16] and references

therein).
6Of course, there are examples of negative a as well. For instance, the utility from having

a Rolls-Royce is decreasing in the number of other owners of this brand in the neighborhood.
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(negative) network externalities imply that the utility of the consumer increases

(decreases) with the number of other users. An example of such a good is an

access to the web via a given Internet Service Provider, a computer operating

system, an audio recorder using a particular standard (DCC, MD, CD-R), or

a mobile phone (GSM, CDMA). We analyze a good for which the consumer’s

utility depends on the network size and the quality (MacOS vs. Windows). The

purchase decision is determined mainly by these two parameters, so that we do

not incorporate a pricing strategy.

Such a choice of modeling approach follows recent empirical evidence.

In the analysis of the on-line book retail market Latcovich and Smith [15] claim

that ”consumers do not respond much to significant price differences between

sellers [...]. But they [...] care about vertical characteristics such as reliability,

security, and ease of use”. This supports the idea of the quality-oriented market

analyzed in our paper. Also Varian and Shapiro [26] point out that the price

is an insignificant determinant of the purchase decision for many information

goods, such as software. Referring to the market for spreadsheets they claim

that ”the purchase price of the software is minor in comparison with the cost of

deployment, training and support. Corporate purchasers, and even individual

customers, were much more worried about picking the winner of the spreadsheet

wars than they were about whether their spreadsheet costs $49.95 or $99.95”.

On the basis of the consumers’ utility function, we can determine the

size of the network as a function of the quality chosen by the firm. Define

the consumer of type ω to be indifferent between acquiring the good or not.

Consequently, it holds that

ωq + an− k = 0. (3)

By setting a < k < q, which is to ensure an interior solution for the size of the

network (we waive these restrictions later), and observing that the size of the

network, n, equals 1− ω, we obtain

n (q) =
q − k

q − a
. (4)

Now, we are ready to provide a valuation framework for the project of

a single firm. In solving the valuation problem we do not apply the contingent

claim approach since it is, in general, not possible to replicate the underlying

asset, i.e. the stochastic factor in the firms’ profits. Therefore we use the

dynamic programming methodology. For simplicity we assume risk neutrality

of the firm.7 As a consequence, the assets are priced such that the expected

rate of return equals the risk-free rate.8

We further assume a constant value per customer, constant economies

of scale on the supply side, and that the marginal cost of operation, c (q), sat-

isfies c′ (q) > 0 and c′′ (q) ≥ 0. The firm chooses quality q so as to maximize

7As known from, e.g., Dixit and Pindyck [5], dynamic programming under risk neutrality

yields the same results as contingent claims analysis in the complete markets framework.
8The assumption of risk-neutrality may be waived by adjusting the underlying assets’ drift

rate to as proposed by Cox and Ross [3] in order to account for the risk premium.

7



the value of the investment opportunity. In order to determine the value of

the investment opportunity, we begin with calculating the value of the project

after the investment decision is made. The value of the project is found by

integrating over time the discounted difference between the instantaneous value

of the installed base of consumers, xn (q), and the operating costs c (q)n (q).9

Therefore, if we denote the project value at time t by V , it holds that

V = E

[∫
∞

t

(xs − c (q))n (q) e
−r(s−t)

ds

]
(5)

=
n (q)xt

r − α
−

c (q)n (q)

r

≡ R (q)xt − C (q) (6)

where r is the risk-free rate.

The firm has to incur a sunk investment cost, I ∈ R++. Although I

does not depend on the choice of quality, the cost associated with pursuing the

project increases with quality due to a higher present value of operating costs.10

The decision of the firm is to choose the optimal quality, q, and timing of entry,

x∗, in order to maximize the expected value of the investment opportunity.

To find the optimal investment threshold and product quality we pro-

ceed in two steps. First, we solve the optimal stopping problem using the

methodology of McDonald and Siegel [19] for an arbitrary level of q. As an

intermediate result we obtain the optimal investment threshold and the value of

the investment opportunity as a function of q. Second, we maximize the value

of the investment opportunity with respect to q.

The threshold x∗ (q), being the lowest value of xt at which the firm

enters the market, is

x
∗
(q) =

β2

β2 − 1

I + C (q)

R (q)
, (7)

where

β2 = −
α

σ2
+

1

2
+

√(
α

σ2
−

1

2

)2

+
2r

σ2
> 1. (8)

By differentiating (7) we immediately obtain that ∂x∗ (q) /∂q > 0. Conse-

quently, the level of demand sufficient for triggering optimal investment increases

with the quality of the product.

The value of the investment opportunity, F (q, xt), equals

F (q, xt) =
(β2 − 1)

β
2
−1

β
β
2

2

R (q)
β
2 x

β
2

t

(I + C (q))
β
2
−1

. (9)

9The instantaneous value of the installed base of consumers can be obtained integrating

the utilities of participating consumers over their types,
∫
1

ω
(ωq + an− k)dω. This equals

0.5n2 + 0.5 (q − k)n which is convex in n. However, here we assume that the firm does not

price discriminate so that it does not extract the whole consumer surplus. Instead, we impose

linearity in n of the firm’s profit.
10An alternative interpretation of the cost structure is that the initial investment outlay

equals I + c (q)n (q) /r, and the marginal production cost is zero for all levels of q.
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The proofs of (7), (8) and (9) follow directly from Dixit and Pindyck ([5], p.

142). Subsequently, we maximize the value of the investment opportunity with

respect to q, given the optimal investment rule, x∗ (q). In order to ensure that

our solution is a maximum, we introduce the following assumption.

Assumption 1 Let q∗ be the solution to ∂F (q, x∗)/∂q = 0. Then it holds that

(β
2
(C + I)Rqq + CqRq − (β

2
− 1)CqqR)|q=q∗ < 0. (10)

The solution to the problem of quality choice is given in the following propo-

sition.

Proposition 1 Under Assumption 1 the optimal quality of the product, q∗, is

implicitly given by the following equation

Cq = x∗Rq. (11)

Proof. See Appendix.

From Proposition 1 it is obtained that the value of the investment oppor-

tunity is maximized if at the optimal investment threshold the marginal cost

of increasing the quality is equal to the marginal benefit. (11) implies that in

the optimum the ratio of elasticities of functions C (q) + I and R (q) equals the
wedge occurring in the threshold value x∗ (q) (cf. (7)), i.e.

εC+I,q

εR,q

∣
∣
∣
∣
q=q∗

=
β
2

β
2
− 1

, (12)

where εf,x ≡
xfx
f
.

In order to provide more insight into the obtained result, we analyze the

relationship between market uncertainty, intensity of the network externalities,

size of the network and the optimal quality. Proposition 2 provides part of the

results.

Proposition 2 The quality of the product increases with revenue uncertainty

and its growth rate, i.e.

dq∗

dσ
> 0, and (13)

dq∗

dα
> 0. (14)

Proof. See the Appendix.

The fact that higher uncertainty concerning the demand side of the mar-

ket influences the quality choice of the firm positively results from the option-like
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structure of the project value and upside potential from higher quality invest-

ment. Furthermore, a higher growth rate of the market also implies a higher

quality choice since the firm prefers to incur additional cost to increase quality

when revenue is expected to grow faster.11

Furthermore, numerical simulations indicate that the impact of network

externalities on the optimal quality choice is negative. The latter relationship

results from the fact that the level of quality and the degree of network exter-

nalities act as substitutes in the marginal consumer’s utility function. Since a

higher quality is equivalent to a larger consumer base (cf. (4)), the size of the

network in optimum, n∗, also rises with σ and α.

Market uncertainty and intensity of network externalities also have an

impact on the optimal investment threshold. Since both factors affect the opti-

mal investment threshold directly and indirectly (via the change of the optimal

quality), the total impact is determined by calculating the following total deriv-

ative:
dx∗ (q)

dθ
=

∂x∗ (q)

∂θ
+

∂x∗ (q)

∂q

dq

dθ
, θ ∈ {a, σ}. (15)

In the Appendix we prove the following proposition:

Proposition 3 It holds that

dx∗ (q)

dσ
> 0. (16)

Hence, the relationship between uncertainty and the optimal investment

threshold is positive. Therefore we conclude that the flexibility in the quality

choice does not change the classical result of real option theory (cf. Dixit and

Pindyck [5]).

Extensive numerical simulations show that the optimal investment thresh-

old decreases in the degree of network externalities. This is associated with the

fact that a higher degree of network externalities makes the product market

more valuable for the firm. This results in a higher value of the investment

project (other things equal) and, thus, a lower value of x suffices to achieve the

required profitability ratio, β
2
/ (β

2
− 1), of the project at the time of investing.

3 Strategic Model with Fixed Quality

Here we introduce the possibility of competitive entry by a second firm

(Firm 2). After entering the market, Firm 2 starts offering the good having a

quality q2. In general, q2 will differ from q1, i.e. from the quality choice made

by Firm 1. The fact that the firms do not compete in prices implies that for

the consumers the cost of accessing each network is equal across the networks.

Consequently, if the products were perfect substitutes, consumers would always

choose the product with a higher quality and the resulting market outcome

11The positive sign of the derivative with respect to α is equivalent to the negative derivative

with respect to the cost-of-carry, defined as δ ≡ r − α.
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would always be a monopoly.12 In case of imperfect substitution this does not

hold any longer. Denote the degree of substitution by ρ ∈ (0, 1). For ρ close to

unity, the goods are close substitutes, whereas a very small ρ implies that the

firms operate in virtually separated markets.

In order to analyze the impact of entry on the valuation of the first firm

in the market (Firm 1), we adopt a simple structure for the market with differ-

entiated goods (as, e.g., in Spence [25]) and allow for the presence of network

externalities as in Section 2. The system of inverse demand functions is given

by

{
k = (1− n1) q1 − ρn2q2 + a (n1 + ρn2) for Firm 1’s network, while

k = (1− n2) q2 − ρn1q1 + a (n2 + ρn1) for Firm 2’s network,
(17)

and ni, n ∈ {1, 2}, is the size of Firm i’s network. Each of the inverse demand

functions can be interpreted as follows. The LHS represents the instantaneous

cost (utility loss) of accessing the network. The RHS corresponds to the linear

demand schedule that decreases in the offered quantities, ni and nj , while its

negative slope is reduced by the presence of a component a (n1 + ρn2) which

reflects network externalities. The impact of the quantity offered by Firm j on

Firm i’s demand, and the network externalities among its consumers is scaled

down by factor ρ reflecting imperfect substitution among the goods. It can be

easily noticed that for nj equal to zero, (17) reduces to the monopolistic demand

function of Section 2.

The size of the network of Firm i obtained by solving (17), subject to

ni ∈ [0, 1], equals

ni (qi) =




0 qi < q
i
,

1

1−ρ2

qi−q
i

qi−a
qi ∈

[
q
i
, qi

]
,

qi−k
qi−a

qi > qi,

(18)

where

q
i

= k (1− ρ) + ρmax [k, qj ] , (19)

qi =
max [k, qj ]− k (1− ρ)

ρ
, (20)

and i, j ∈ {1, 2}, i �= j. Depending on the quality offered, Firm i competes
with Firm j for moderate values of qi, it is a monopolist for high qi, or has
no customer base if qi is low. Both qualities q

i
and qi depend positively on

quality qj offered by the competitor. Moreover, higher substitutability of the
goods, captured by ρ, results in shrinking the range of qualities in which firms
compete. This is intuitive since the closer substitutes the goods are, the less
they can differ in qualities for both firms to be present in the product market.
Since the once chosen qualities remain fixed and neither q

i
nor qi depends on x,

12Provided that the trivial case of equal qualities is excluded.
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both firms being active implies that qi ∈
[
q
i
, qi

]
for i ∈ {1, 2}. Otherwise, one

of the firms would be better off by not entering.
For analytical convenience, we impose the following linear specification

of the cost function:

c (qi) = c0 (qi − a) , c0 ∈ R++, qi ∈ [a,∞), (21)

where c0 can be interpreted as an efficiency parameter. Consequently, higher
values of c0 correspond to industries that are less efficient in R&D. Setting
a quality equal to a (< k) is equivalent to the firm producing no output and
incurring no cost (since ni (a) = c (a) = 0 in this case). The instantaneous
profit function corresponding to (21) is

πi = (x− c0 (qi − a))ni. (22)

We solve the problem backwards in time. First, the optimal investment
threshold and quality choice of Firm 2 is determined. The value of Firm 2’s
investment opportunity at t ≤ T2 equals

F ∗2 = E

[∫
∞

T2

(xs − c (q∗2))n2(q
∗

2)e
−r(s−t)ds− Ie−r(T2−t)

]
, (23)

where T2 denotes the random stopping time associated with xt reaching Firm 2’s
optimal investment threshold. A well-known procedure (cf. Dixit and Pindyck
[4], p. 145) allows for deriving Firm 2’s optimal threshold, x∗2, and the value of
its investment opportunity:

x∗2 =
β2

β2 − 1

(
I
(
1− ρ2

)
q2 − q

2

+
c0

r

)
(q2 − a) (r − α) , (24)

F ∗2 = max
q2

(
q2 − q

2

)
x∗2

β2 (1− ρ2) (r − α) (q2 − a)

(
x

x∗2

)β
2

. (25)

From (25) it follows that the quality maximizing the value of Firm 2’s investment
opportunity, q∗2 , is

q∗2 =
1

2 (β2 − 1)
× (26)

[
(2β2 − 1) q

2
− a+

√
q
2
− a

√
q
2
− a+ 4β2Ir (β − 1) (1− ρ2) c−10

]
.

Upon analyzing (26) it can be concluded that the qualities chosen by the firms
are strategic complements. Since q

2
is an increasing function of q1 (see (19))

and q∗2 rises with q
2
, the quality chosen by Firm 2 is positively related to the

quality choice made by Firm 1.
This relationship, in combination with a closer inspection of (24), leads

to the following proposition.

12



Proposition 4 Firm 2 responds optimally to an increased quality of Firm 1

not only by rising its own quality but also by delaying its timing of entry, i.e.

the following inequalities hold

dq
∗

2

dq1
> 0, and

dx
∗

2

dq1
> 0.

Proof. See the Appendix.

Consequently, it can be concluded from Proposition 4 that the choice

of higher q1 is equivalent to entry-deterrent behavior of Firm 1.

Having calculated the optimal investment threshold of Firm 2, we are

in position to analyze the investment decision of Firm 1. First, we note that

the value of Firm 1’s investment project at the time of investing, t, is given by

V1 = E

[∫
T2

t

(xs − c0 (q
∗

1 − a))n(q
∗

1)e
−r(s−t)

ds− I

]

+E

[∫
∞

T2

(xs − c0 (q
∗

1 − a))n1(q
∗

1 , q
∗

2)e
−r(s−t)

ds

]
. (27)

Working out the expectations yields

V1 =
q
∗

1 − k

q∗
1
− a

(
x

r − α
−

c0 (q
∗

1 − a)

r

)
− I︸ ︷︷ ︸

Monopolistic value

+ (28)

(
1

1− ρ2

q
∗

1 − q
1

q∗
1
− a

−

q
∗

1 − k

q∗
1
− a

)(
x
∗

2

r − α
−

c0 (q
∗

1 − a)

r

)(
x

x∗
2

)β
2

︸ ︷︷ ︸
Value lost due to the competitive entry

.

Again, an application of the well-known procedure yields the optimal threshold,

x
∗

1, and the value of investment opportunity, F ∗1 , of Firm 1

x
∗

1 =
β2

β2 − 1

I + C (q1)

R (q1)
, (29)

F
∗

1 = (30)

max
q1

(q1 − k)
x
∗

1

r−α
+ β2

(
q1−q

1

1−ρ2
− q1 + k

)(
x
∗

2

r−α
−

c0(q1−a)

r

)(
x
∗

1

x∗
2

)β
2

β2 (q1 − a)

(
x

x∗
1

)β
2

.

It is worthwhile noticing that the optimal investment timing of Firm 1 does

not explicitly depend on the action taken by Firm 2. This outcome results

from the fact that the roles of the firms (leader vs. follower) are exogenously

determined. However, this result still differs from the classical result from the

13



real options theory (see, e.g., Huisman [13], p. 170) concerning the irrelevance

of the follower’s investment timing for the decision of the leader. The reason

is that Firm 1’s timing decision is affected by the choice of quality, q1, and,

according to (30), q1 depends on Firm 2’s threshold x
∗

2 and on the threshold

quality q
1
, which is a function of q2 (cf. (19)).

The dependence of Firm 1’s investment threshold results from the fact

that in our model firms have two control variables (timing and quality) as oppo-

site to one variable in classic real option models. It still holds that introducing

the competitor does not change the optimal ceteris paribus choice of the timing

variable. However, competitive entry changes the optimal choice of quality (the

second control variable). This makes the monopolistic choice of timing no longer

optimal and, as a consequence, it holds that x∗1 �= x
∗.

As far as the value of the investment opportunity is concerned, it can be

determined by maximizing the argument of the RHS of (30). The derivative of

F
∗

1 with respect to q1 can be computed since x∗1, x
∗

2 and q2 are known functions

of q1. The unique (in the relevant interval) root of the derivative can be easily

found numerically.

3.1 Comparative Statics: Valuation of Firms

We are interested in the sensitivity of the value of the firms with respect to

changes of market parameters. Figure 3.1 depicts the relationship between the

market volatility (left window) and network externalities (right window), and

the value of investment opportunities of both firms.
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Figure 3.1

Figure 3.1. The value of the investment opportunity of Firm 1 (solid line) and

Firm 2 (dashed line) for the parameter values ρ = 0.5, k = 5, a = 2 (left window),

σ = 0.2 (right window), c0 = 1, r = 0.05, α = 0.015, x0 = 4, and I = 10.

On the basis of Figure 3.1 two interesting observations can be made.

First, the value of Firm 1’s investment opportunity is lower than the one of

Firm 2. Second, the value of Firm 1’s project is non-monotonic in uncertainty.

The first phenomenon results from the strategic disadvantage of the first mover

in a game in which the firms compete in strategic complements. As it can be

shown in a simple Stackelberg setting, the follower’s payoff is higher than the

14



payoff of the leader if the control variables are strategic complements (cf. Tirole

[27], p. 331, footnote 53). Despite the fact that Firm 1 enjoys profit from

investment for a longer period (it invests as first), its value is still lower than of

Firm 2.

Non-monotonicity of Firm 1’s value with respect to uncertainty results

from the more ”aggressive” choice of quality of Firm 2 in a more uncertain

market (cf. (13)). Consequently, despite the fact that the option value increases

in market volatility in a non-strategic setting, the interaction among firms drive

down the value of Firm 1 when uncertainty is high.

Moreover, it can be seen that the presence of the network externalities

significantly enhances the value of the investment opportunities of both firms.

The rate of increase is most dramatic when the degree of network externalities

approaches the cost of joining the network (i.e. when the marginal consumer’s

valuation of the stand alone-good is equal to zero).

3.2 Comparative Statics: Firm 1’s Strategic Choice of

Variables

Finally, we compare the non-strategic and strategic case with respect to

Firm 1’s optimal investment threshold and its optimal quality choice (see Figures

3.2 and 3.3)
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Figure 3.2. The optimal investment threshold of Firm 1 in the non-strategic (solid

line) and strategic (dashed line) case for the parameter values ρ = 0.5, k = 5, a = 2

(right window), σ = 0.2 (left window), c0 = 1, r = 0.05, α = 0.015, and I = 10.

From Figure 3.2 it can be concluded that the optimal investment thresh-

old is higher if a subsequent competitive entry threat exists. This contradicts

the result known from the strategic real option literature that the optimal in-

vestment threshold of the market leader is not influenced by the entry threat if

the roles of the firms are exogenous. As we already concluded from (29), Firm

1’s investment threshold depends on the investment timing and quality decision

of its competitor.
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Figure 3.3. The optimal quality choice of Firm 1 in the non-strategic (solid line)

and strategic (dashed line) case for the parameter values ρ = 0.5, k = 5, a = 2 (right

window), σ = 0.2 (left window), c0 = 1, r = 0.05, α = 0.015, and I = 10.

On the basis of Figure 3.3 we conclude that the presence of a (potential)

competitor increases the quality chosen optimally by Firm 1. Higher quality (as

shown in Section 2), as well as the fact that, from the timing of the second

firm onwards, the market must be shared with the competitor, results in the

optimality of a higher - than in the non-strategic case - investment threshold

which, in turn, leads to the outcome depicted in Figure 3.2.

This result and the one concerning the project’s value contradict the

findings of Foros and Hansen [9], who analyze a duopoly model of Internet Ser-

vice Providers. In a modified Hotelling framework they show that the profits

decrease and the offered quality increases with the degree of network external-

ities. The reason why this differs from our results is the following . Here, in a

non-strategic framework, network externalities can act a substitute of quality

in a consumer’s utility function. Consequently, a firm can have less incentive

to invest in (costly) quality when network externalities are present. This effect

also takes place in a strategic framework if the increase of quality occurs for a

single product. In case of Foros and Hansen [9], the increase of interconnection

quality affects both products so that the substitution effect is dominated by

lower competitive pressure resulting from higher network externalities.

4 Non-strategic Model with Flexible Quality

Here, it is assumed that within the firm sufficient know-how is present for

adjusting quality, which can be valuable in case of changing demand character-

istics. The fact that the firm can change quality could be caused for instance

by the fact that its technology is the result of its own R&D process. Such an

interpretation implies that in the previous section quality was fixed because the

production technology was provided by an external vendor.

Once the entry threshold, x∗∗, is reached, production commences. The

marginal cost, c (q (x)), is a function of the instantaneously chosen product/service

quality. This quality is chosen in such a way that the value of the firm is maxi-

mized. In this section we assume that no competitive entry threat exists.
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Consequently, at each point in time the firm chooses quality qt such

that13

q∗∗ (x) = argmax

q

[(x− c (q))n(q)] . (31)

From this the present value of the firm’s expected cash flow at time t can be

determined

V = E

[∫
∞

t

(x− c (q∗∗ (x)))n(qs)e
−r(s−t)ds

]
. (32)

Since we in general allow for q < k, let us redefine n (q) (cf. (4)) as

n (q) = max

[
0,

q − k

q − a

]
. (33)

Maximizing (31) with cost specification (21) leads to the optimal quality choice

q∗∗ (x) = a+

√
(k − a)x

c0
1{x>η}, (34)

where

η = c0 (k − a)

and 1B is an indicator function.14 (34) implies that for low states of demand

(i.e. for x < η) the optimal choice of quality is a (< k), which corresponds to

the situation in which the market is not served and the firm incurs no cost (see

(21)). As soon as x hits η from below, quality jumps to k and, subsequently,

adjusts continuously to changes in x. When x hits η from above, the quality

drops to a and the firm again becomes idle without incurring variable costs.

Define the instantaneous profit function, π, to be equal to the expression

under the argmax operator in (31). Substituting q∗∗ into the instantaneous

profit function yields

π =

(√
x−

√
η
)2
1{x>η}. (35)

Solving the Bellman equation15

0.5σ2x2
t
V ′′

+ αxV ′
+ π = rV (36)

for appropriate value matching and smooth pasting conditions yields:

V =

{
BM2x

β
2 for x < η,

BM1x
β
1 + C0 + C1x

0.5
+ C2x for x > η,

(37)

13Our formulation differs from the optimal control models of quality as, e.g., presented

by El Ouardighi and Tapiero [8] (cf. also references therein) since these authors consider a

deterministic setting in which they include elements absent here such as pricing strategy and

learning effects.

14
1B denotes an indicator function of B such that 1B (x) =

{
1 x ∈ B

0 x /∈ B
.

15The value of the firm, V , (cf. (32)) still satisfies the differential equation (36) since q is

an F-previsible process. Consequently,

dV = Vxdx+ 0.5Vxx (dx)
2 + Vqdq = Vxdx+ 0.5Vxx (dx)

2
,

which after substituting (1) yields the LHS of (36).
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where

BM1 ≡ C0

η
−β

1β
2

β
1
− β

2

+ C1

η
0.5−β

1 (β
2
− 0.5)

β
1
− β

2

+ C2

η
1−β

1 (β
2
− 1)

β
1
− β

2

, (38)

BM2 ≡ C0

η
−β

2β
1

β
1
− β

2

+ C1

η
0.5−β

2 (β
1
− 0.5)

β
1
− β

2

+ C2

η
1−β

2 (β
1
− 1)

β
1
− β

2

, (39)

C0 ≡

η

r
, (40)

C1 ≡

−2
√

η

r − 0.5α+ 0.125σ2
, (41)

C2 ≡

1

r − α
, (42)

β
1

= −

α

σ2
+

1

2
−

√(
α

σ2
−

1

2

)2

+
2r

σ2
< 0. (43)

and β
2
is given by (8). The value functions in the two regimes of the stopping

region are the solutions of the standard ODE (36) with the non-homogeneity

term defined by (35). Under the regime x < η demand is too low and no ser-

vice/product is offered. Consequently, the value of the firm consists entirely of

the option value to relaunch the activities should the market turn out to be

favorable. For x > η the firm offers the service and makes positive profit. Now,

the value of the firm consists of two parts: the perpetuity value of the current

instantaneous profit and the option-like component reflecting the possibility of

ceasing the operations if x falls below η. The perpetuity value of the instan-

taneous profit has the structure of a portfolio of continuously paid dividends

proportional to various powers of the GBM (1). By either solving the Bellman

equation of type (36) with a non-homogeneity term being proportional to the

n-th power of x, or by calculating the drift coefficient in the GBM for y ≡ xn

using Itô’s lemma, it can easily be shown that the effective discount rate corre-

sponding to the n-th power has a form r − nα− 0.5n (n− 1)σ2 (cf. Dixit [4],

p. 13).

The optimal investment threshold and the value of the investment op-

portunity are found by applying the standard procedure for the optimal exercise

of an American option when the value of the investment project in the stopping

region is described by (37). It should just be noticed that it is never optimal

to exercise the investment option for x < η since by waiting an increment dt

the present value of investment cost diminishes by Irdt, whereas the expected

present value of the cash flow remains unchanged. The value-matching and

smooth-pasting conditions regarding the expression for V when x > η in (37)

are

AMxβ2 = BM1x
β
1 + C0 + C1x

0.5
+ C2x− I, (44)

β2AMxβ2−1 = β1BM1x
β
1
−1

+ 0.5C1x
−0.5

+ C2. (45)

From (44) and (45) the following implicit equation for the optimal investment
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threshold, x∗∗, can be obtained

(β2 − β1)BM1 (x
∗∗

)
β
1 + β2 (C0 − I) + (β2 − 0.5)C1 (x

∗∗

)
0.5

+(β2 − 1)C2x
∗∗

= 0. (46)

The value of the investment opportunity equals

F = (V (x∗∗)− I)
( x

x∗∗

)β
2

≡ AMxβ2 . (47)

Here, we would like to make an additional remark concerning the im-

plications of the flexible quality choice on the cost structure. Compared with

the fixed-quality case, the effective sunk cost in the current case equals I, as

opposed to I +C in the former. Consequently, the choice of flexible quality not

only allows for optimizing the product parameter when demand changes but

also for avoiding commitment to fixed production costs in the future.

5 Strategic Model with Flexible Quality

In this section we introduce the possibility of entry of a second firm (Firm

2). As in the fixed quality case, such an entry threat is going to influence both

the optimal investment timing and the value of the investment opportunity of

Firm 1. We proceed as follows. First, we discuss possible market outcomes

dependent on the realization of the stochastic variable, x. Subsequently, we

determine the value of Firm 1 in the situation where both firms have already

invested. Then, we move backwards and calculate the value of Firm 1 after it

entered the market but before Firm 2 invested. Finally, we determine the value

of Firm 1’s investment opportunity and its optimal investment threshold, and

provide some comparative statics.

As in Section 3, Firm 2 is assumed to have the fixed-quality technology.

Profit maximization of Firm 1 yields the following optimal quality schedule

q∗∗1 =




a, when Firm 1 is idle,

a+

√
(q

1
−a)x

c0
, when Firm 1 is a duopolist,

a+

√
(k−a)x

c0
, when Firm 1 is a monopolist.

(48)

The first (idle) and the third (monopoly) case have already been derived in

Section 4. The result for the duopoly case can be obtained by maximizing the

profit function (22) with respect to qi, i = 1, and using the observation that n1

is in this case defined by the second equation in (18). Before we derive Firm 1’s

profit as a function of x, we formulate the following lemma.

Lemma 5 There are three regimes of the product market structure when Firm

1 has the flexible quality. For low realizations of x, market is served only by

the entrant (Firm 1 stays idle), intermediate realizations of x correspond to the
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duopoly outcome, whereas high realizations of x are associated with Firm 1’s

monopoly. The three regimes correspond to the following intervals

x ∈ (0, ϕ) ,

x ∈ (ϕ,κ) , and

x ∈ (κ,∞) ,

where

ϕ ≡ c0

(
q
1
− a
)
, (49)

κ ≡

c20ψ
2

ρ2ϕ
, (50)

where ψ ≡ ρ (q1 − a) , and q
1
and q1 are given by (19) and (20).

Proof. See the Appendix.

The existence of three regimes of quality choice result from the fact that

now Firm 1 is able to adjust its quality, q1, as x evolves. Since from (19) and

(20) we learn that q
2
and q2 explicitly depend on q1, it follows that q

2
and q2

become functions of x. Consequently, for low realizations of x (lower than ϕ)

Firm 1 remains idle (in order to avoid operating loss), whereas for intermediate

values of x it competes against Firm 2. If x becomes large (larger than κ), Firm

1 can afford to choose quality that is high enough to prevent Firm 2 (with a

fixed quality q2) from serving the market. Consequently, the quality choice (48)

reflects the optimal response in the state of inaction, duopoly and monopoly,

respectively. This relationship is illustrated in Figure 5.1.

ϕ χ

xt

q2q¯ 2
,
q ¯2
,
q 2

q̄
2

q¯2

Firm 2 Firm 1 + Firm 2 Firm 1

Figure 5.1

Figure 5.1. Trigger qualities q
2

(short-dotted line), q2 (long-dotted line) as a

function of x, for the parameter values ρ = 0.5, k = 5, a = 2, c0 = 1, and q2 = 7.5

(solid line). For low realizations of x (below ϕ) only Firm 2 is active in the market
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whereas for high realizations (above κ) Firm 1 becomes a monopolist - the quality of

Firm 2 is too low. For intermediate values of x both firms serve the market since q2
remains within the bounds determined by q

2
and q

2
.

Denote the value of the Firm 1, provided that Firm 2 has already entered

the market, by V d
1
. V d

1
satisfies the following Bellman equation

0.5σ2x2t
∂2V d

1

∂x2
+ αx

∂V d
1

∂x
+ π1 = rV d

1 , (51)

where

π1 =






0 for x < ϕ,
1

1−ρ2

(√
x−√ϕ)2 for ϕ < x < κ,

(√
x−√η)2 for x > κ.

(52)

For x < ϕ Firm 1 is idle, for x > κ it earns monopoly profit, whereas for

x ∈ (ϕ,κ) it has a duopoly profit. The latter can be calculated by substituting

the intermediate cases of (18) and (48) into (22). Solving (51) with the value

matching and smooth pasting conditions satisfied for realizations ϕ and κ yields

V d

1
=






(D2 +D4)x
β
2 for x < ϕ,

D1x
β
1 +D2x

β
2 +E0 +E1x

0.5 +E2x for ϕ < x < κ,

(D1 +D3)x
β
1 + C0 + C1x

0.5 + C2x for x > κ,

(53)

where

D1 ≡ E2

ϕ1−β
1 (β2 − 1)

β1 − β2
+E1

ϕ0.5−β
1 (β2 − 0.5)

β1 − β2
+E0

ϕ−β1β2
β1 − β2

, (54)

D2 ≡ −E2

κ
1−β

2 (β1 − 1) ρ2

β
1
− β

2

−E1

κ
0.5−β

2 (β1 − 0.5)

β
1
− β

2

(
1− ρ2

)
ϕ− η

ϕ

−Ed

0

κ
−β

2β
1
ρ

β
1
− β

2

, (55)

D3 ≡ −E2

κ
1−β

1 (β2 − 1) ρ2

β1 − β2
−E1

κ
0.5−β

1 (β2 − 0.5)

β1 − β2

(
1− ρ2

)
ϕ− η

ϕ

−Ed

0

κ
−β

1β2ρ

β1 − β2
, (56)

D4 ≡ E2

ϕ1−β
2 (β1 − 1)

β1 − β2
+E1

ϕ0.5−β
2 (β1 − 0.5)

β1 − β2
+E0

ϕ−β2β1
β1 − β2

,

E0 ≡ 1

1− ρ2
ϕ

r
, (57)

E1 ≡ 1

1− ρ2
−2√ϕ

r − 0.5α+ 0.125σ2
, (58)

E2 ≡ 1

1− ρ2
1

r − α
, (59)
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and C0, C1, and C2 are defined by (40), (41) and (42). Again, it can be seen that

the value of Firm 1 consists of the present value of the expected cash flow and the

option-like components reflecting possible switches across regimes. Parameters

Ek and Ck, k ∈ {1, 2, 3}, correspond to the duopolistic and monopolistic profit

function, respectively. Components of the form Dlx
β
1 , l ∈ {1, 2, 3, 4}, reflect

the possibility of switching to the regime corresponding to lower than current

realizations of x, whereas the opposite is true for components Dlx
β
2.

Equipped with the valuation formula for Firm 1 when both firms are

already present in the market, we are ready to derive the value of Firm 1, V m
1
,

prior to Firm 2’s entry

V m

1
= V +

(
V d

1
(x∗∗

2
)− V (x∗∗

2
)
)
(

x

x∗∗
2

)β
2

, (60)

where x∗∗2 denotes Firm 2’s entry threshold (derived in the Appendix). V m
1

equals the monopolistic value of Firm 1 (as defined by (37)) adjusted for the

component reflecting competitive entry. The latter component equals the value

loss from switching from monopoly to duopoly multiplied by the probability-

weighted discount factor corresponding to the random time of Firm 2’s entry.

In the last step, we determine the value of Firm 1’s investment oppor-

tunity. We already know that the valuation formulae for V differ across the two

regimes (cf. (37)) and that it is never optimal for Firm 1 to invest in the first

regime. Consequently, when applying the value-matching and smooth-pasting

conditions, we have to use the expression corresponding to the second regime.

A simple algebraic manipulation yields the following implicit formula for the

optimal investment threshold of Firm 1, x∗∗
1

(β
2
− β

1
)BM1 (x

∗∗

1
)
β
1 + β

2
(C0 − I) + (β

2
− 0.5)C1 (x

∗∗

1
)
0.5

+(β2 − 1)C2x
∗∗

1 = 0. (61)

A comparison of (61) with (46) leads to the observation that x∗∗
1

= x∗∗. This

is in line with the classic strategic real option models in which the roles of the

firms (leader vs. follower) are determined exogenously and where the firms have

a single control variable (investment timing). This finding can be explained by

the fact that in our case the decision problem of the Firm 1 with one discrete

control variable (timing) and with one continuous control variable (quality)

can be transformed into the problem of a single discrete variable whereas the

relevant payoff functions are at each moment optimized with respect to the

continuous variable. Consequently, the value of Firm 1 is no longer a function

of quality since this is chosen optimally given the realization of xt and the choice

of exogenous parameters.

The value of the investment opportunity of Firm 1, F1, equals

F1 =

(

V (x∗∗1 ) +
(
V d

1 (x∗∗2 )− V (x∗∗2 )
)
(
x∗∗
1

x∗∗
2

)β
2

− I

)(
x

x∗∗
1

)β
2

≡ A1x
β
2 . (62)
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It can immediately be noticed that F1 < F (cf. (47)) because of the present

value of future revenues lost due to competitive entry, which is equal to

(
V d

1
(x∗∗

2
)− V (x∗∗

2
)
)
(
x∗∗
1

x∗∗
2

)β
2

.

As soon as competitive entry becomes very remote, i.e. when x∗∗
2
→∞, it holds

that the problem reduces to the valuation of a monopolistic firm and F1 = F .

5.1 Comparative Statics: Valuation of Firms

Analogous to Section 3, we are interested in the sensitivity of the firms’ value

with respect to changes of market parameters. Figure 5.2 depicts the relation-

ship between the market volatility (left window) and network externalities (right

window), and the value of the investment opportunities of both firms.
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Figure 5.2. The value of the investment opportunity of Firm 1 (solid line) and

Firm 2 (dashed line) for the parameter values ρ = 0.5, k = 5, a = 2 (left window),

σ = 0.2 (right window), c0 = 1, r = 0.05, α = 0.015, x0 = 4, and I = 10.

Inspection of Figure 5.2 leads to two main conclusions First, contrary

to the fixed quality case, the value of Firm 1’s investment opportunity is higher

than of Firm 2. Second, the value of Firm 2’s project is non-monotonic in

uncertainty (like the value of Firm 1 in the previous case). The first result is

implied by the fact that Firm 1 is a leader in the investment game but, thanks to

its flexibility with regard to quality choice, acts as a follower in the Stackelberg

quality game. Consequently, Firm 1 not only receives cash flow from the project

over a longer period but also is able to adjust its quality optimally given the

quality choice of Firm 2, q2, and the realization of the stochastic demand, xt.

The non-monotonicity of Firm 2’s value in uncertainty results from two

factors. First, Firm 1 can exploit (relatively) more the changes in stochastic

demand by changing its quality when uncertainty is high. Moreover, higher

uncertainty affects the effective discount rates of the components of Firm 2’s

value that are concave in xt. Consequently, the presence of such concavities leads

to a lower valuation in a more uncertain environment. A positive relationship
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between Firm 2’s value and uncertainty at the low levels of uncertainty can be

explained by the traditional option argument that, in this case, dominates the

strategic effects.

As far as the relationship between the degree of network externalities

and the value of the firms is concerned, it resembles the picture of the fixed

quality case. Again, the presence of the network externalities leads to an increase

in the value of the investment opportunities of both firms and the rate of this

increase is highest when the degree of network externalities approaches the cost

of joining the network, k.

5.2 Comparative Statics: Firm 1’s Strategic Choice of

Variables

In the case in which quality is flexible, the following observations can be

made. First, the optimal investment threshold in the presence of entry threat

is identical to the level of x triggering the investment of the monopolist. This is

due to the well-known fact that if the roles of the firms are predetermined and

the only choice variable of the leader is the investment timing, future entry of

the follower does not impact the investment timing of the leader (cf. Huisman

[13]). Second, upon examining (48), we can conclude that the quality chosen

by Firm 1 does not change in a continuous way. In the following subsection, we

present a short discussion of the properties of q∗∗
1

(xt).

5.2.1 Properties of q∗∗1 (xt)

The optimal quality choice, q∗∗
1
, piecewise (weakly) increases in the state

of the market, xt. At ϕ and κ the quality exhibits discontinuities. Calculating

the relevant limits yields (cf. (48))

lim
x↓ϕ

q∗∗1 (x)− lim
x↑ϕ

q∗∗1 (x) = ρq2 + (1− ρ)k − a > 0, (63)

lim
x↓κ

q∗∗
1

(x)− lim
x↑κ

q∗∗
1

(x) = (q
1
− a)

(√
k − a

q
1
− a

− 1

)
< 0. (64)

Realizations ϕ and κ are reversible switch points in which the functional form
of the optimal quality changes. As pointed out by Mella-Barral and Perraudin
[20], the function describing the optimal choice of a control variable is in general
discontinuous in the switch points (see also Dumas [5]). Continuity is implied if
the switch points are chosen optimally so as to maximize the value of the firm.
Here, the switch points are not chosen optimally by Firm 1 but, instead, they
result from the change of the product market structure. From (48) it can be
seen that for low x Firm 1 ceases operations as the revenues do not cover the
operating costs. When x reaches ϕ from below, Firm 1 resumes operations and
the resulting outcome is duopolistic. Finally, when x reaches κ Firm 1 covers
the entire market and the monopoly prevails. Consequently, the discontinuity
of q∗∗

1
(x) occurs at both ϕ and κ.
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The positive sign of (63) results from the fact that the quality of the idle
firm equals a (cf. (48)), whereas resuming the operations requires the quality
exceeding k (> a). The negative sign of (64) can be explained as follows. At the
moment x equals κ (cf. Figure 5.1), quality chosen by Firm 1 is that high that
Firm 1 captures all customers. Hence, Firm 2 leaves the market after which
Firm 1 reduces quality. It can do so since Firm 2 will not re-enter (unless x falls
below κ). Firm 2 knows that if it re-entered, Firm 1 would immediately raise
quality to the optimal duopoly level. We conclude that flexible quality serves as
an entry deterrent control here, while still it can be set at the optimal monopoly
level.

6 Valuation Effects of Flexible vs. Fixed Quality

In this section we analyze the effects on the valuation of the flexible vs.
fixed technology choice made by Firm 1. We address the following two related
questions: i) what is the relationship between the loss in value due to the
expected competitive entry (in comparison with monopoly) and the fixed or
flexible quality choice, and ii) what is the impact of flexibility on the valuation
with and without competitive entry threat. Figure 6.1 contains a comparison
of the ratio of Firm 1’s value in the monopoly vs. duopoly case for flexible and
fixed quality choice.
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Figure 6.1. The relationship between the ratio of Firm 1’s duopolistic to monopo-

listic value under fixed (solid line), Rv, and flexible (dashed line), Rfl, quality choice

and market uncertainty (left window) and network externalities (right window) for

the parameter values ρ = 0.5, k = 5, a = 2 (left window), σ = 0.2 (right window),

c0 = 1, r = 0.05, α = 0.015, and I = 10.

On the basis of Figure 6.1 it can be concluded that the value lost due to
competitive entry is much lower when quality is flexible (as opposed to fixed
quality). This results from the fact that the flexible quality choice is associated
with Firm 1’s follower’s role in the quality game played by the firms at each
instant. The follower’s advantage is stronger when the demand uncertainty is
higher (see left window). Finally, we can observe that the degree of network
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externalities have little effect on the firms’ relative valuation until they become
very high in the fixed quality case. Then the fraction of Firm 1’s value lost
due to the competitive entry as compared to monopoly is even higher (cf. right
window).

Now, let us analyze the impact of flexible quality choice on the firms’
valuation from a slightly different angle. Instead of looking at the value lost
due to competitive entry, we investigate the value impact of a switch from the
fixed- to flexible-quality technology. Figure 6.2 depicts this effect as a function
of demand uncertainty and network externalities.
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Figure 6.2. The relationship between the ratio of Firm 1’s flexible to fixed tech-

nology value without (solid line), Rm, and with (dashed line), Rd, competitive entry

threat and market uncertainty (left window) and network externalities (right window)

for the parameter values ρ = 0.5, k = 5, a = 2 (left window), σ = 0.2 (right window),

c0 = 1, r = 0.05, α = 0.015, and I = 10.

From Figure 6.2 we draw the following conclusions. First, the excess value of
the flexible technology is higher in a strategic than in a monopolistic framework.
Moreover, the strategic impact of flexibility is increasing in demand uncertainty
(cf. left window). Whereas in the monopolistic framework the value gain oc-
curring due to the flexible technology is moderate and does not increase sharply
in σ, both the value gain and its sensitivity towards growing uncertainty are
much more dramatic. Like previously, the value impact of network externalities
is relatively small and affects the advantage of the flexible technology adversely.

7 Conclusions

In the paper we determine advantages of flexibility in quality choice of a firm
considering an uncertain product market sector exhibiting network externalities.
The firm is able to adjust quality over time when it, for instance, possesses
sufficient know-how, invented the technology itself, or adopted a more advanced
technology. In general, this requires larger sunk costs and the aim of this paper
is to determine in which cases it is particularly justified to incur these larger
costs.
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First, we derive the optimal investment threshold and the quality choice
of the firm using the fixed-quality technology in both the monopolistic and
duopolistic framework. Second, we repeat the analysis for the flexible technology
choice. Finally, we perform a comparison of outcomes resulting from applying
the two alternative technologies.

We show that the qualities chosen by the firms in the fixed-quality
framework are strategic complements. This implies that a higher quality chosen
by the market leader is associated with a higher quality provided by the second
firm to enter. Moreover, the market leader uses the quality as a means to deter
entry since its level of quality chosen under competitive entry threat is higher
than in an isolated monopolistic market. Finally, since the firms play a version
of a Stackelberg game in strategic complements, the value of the second firm to
enter exceeds the one of the leader.

We also extend general results of strategic real options theory. From this
theory it is known that if roles of the firms are exogenous or they sufficiently
differ in characteristics, the follower’s investment timing is irrelevant for the
decision of the leader. However, due to the addition of a second control in the
form of quality choice, the investment timing of the first investor is influenced
by the decision of the other firm.

If the market leader is able to adjust quality over time, its optimal in-
vestment strategy is identical to the monopolistic case. This observation results
from the fact that the loss due to the competitive entry equally affects the value
of its investment opportunity before investing and the value of the project once
the sunk cost is incurred. Moreover, the flexible quality choice of the leader im-
plies three different market structures as functions of the underlying demand.
When demand is low, only the second firm is active, moderate demand is asso-
ciated with both firms serving the market, whereas high demand implies that
the entire market is served by the leader.

A comparison of firms’ values under two alternative technologies leads to
further conclusions. It appears that the strategic value of the flexible (as opposed
to fixed) technology is much higher than its value in an isolated monopoly.
A related observation is that value loss from the competitive entry is much
lower when the quality is flexible. Second, the value of flexible quality choice
increases with uncertainty since an immediate quality adjustment to the changes
in stochastic demand is possible. Moreover, the case of flexibility also allows
for achieving the second-mover advantage in the Stackelberg game after the
competitive entry. The latter result is amplified if the market uncertainty is
high.

8 Appendix

Proof of Proposition 1. The optimal quality level is calculated by maximiz-
ing (9) with respect to q. The corresponding first-order condition is (dependence
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on q is dropped for the sake of transparency)

0 =
(β

2
− 1)β2−1

β
β
2

2

xβ2

(C + I)
2β

2
−2
× (65)

(
β
2
Rβ

2
−1 (C + I)

β
2
−1

Rq − (β
2
− 1)Rβ

2 (C + I)
β
2
−2

Cq

)
,

for which it follows that

β
2
(C + I)Rq − (β

2
− 1)RCq = 0. (66)

Dividing by (β
2
− 1)x∗R and observing that

β
2

β
2
−1

C+I

x∗R
= 1 yields the desired

result. The corresponding second-order condition is

(β2 (C + I)Rqq + CqRq − (β2 − 1)CqqR)|q=q∗ < 0. (67)

This is a necessary and sufficient condition for the relevant functions which en-

sures that q∗ corresponds to a local maximum and is formulated as Assumption

1. If (66) has multiple solutions satisfying (67), then the one corresponding to

the highest value of (9) is chosen.

Proof of Proposition 2. We begin by defining (cf. (66))

H (q) = β2 (C (q) + I)Rq (q)− (β2 − 1)Cq (q)R (q) . (68)

For q∗ it holds thatH (q∗; ·) = 0. Therefore, the impact of a change in θ ∈ {a, σ}
can be determined by applying the envelope theorem:

dq∗

dθ
= −Hθ

Hq

. (69)

By Assumption 1 we know that

∂H (q)

∂q

∣
∣
∣
∣
q=q∗

< 0. (70)

Consequently, from (69) and (70) it follows that (we drop the dependence of

variables on q)

sgn
∂H

∂θ

∣
∣
∣
∣
q=q∗

= sgn
dq

dθ

∣
∣
∣
∣
q=q∗

for θ ∈ {a, σ}. (71)

We have

∂H

∂σ

∣
∣
∣
∣
q=q∗

=
∂β2
∂σ

((C + I)Rq − CqR) > 0, (72)

∂H

∂α

∣
∣
∣
∣
q=q∗

=
∂β2
∂α

((C + I)Rq − CqR)

+β2 (C + I)Rqα − (β2 − 1)CqRα (73)

=
∂β2
∂α

((C + I)Rq − CqR) > 0.
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Proof of Proposition 3. Result (16) follows immediately from (15).

Repeating (15), we have

dx∗ (q)

dθ
=

∂x∗ (q)

∂θ
+

∂x∗ (q)

∂q

dq

dθ
, θ ∈ {a, σ}, (74)

and we are interested in the signs of the components of (15). We know that

∂x∗ (q)

∂q
=

β2
β2 − 1

CqR− (C + I)Rq

R2
. (75)

Consequently, in the optimum

∂x∗ (q)

∂q

∣
∣
∣
∣
q=q∗

=
β2

β2 − 1

CqR− (C + I)Rq

R2

>
β2

(β2 − 1)
2

(β2 − 1)CqR− β2 (C + I)Rq

R2

= 0. (76)

The last equality directly results from (66). Moreover, by differentiating (7), we

immediately obtain that
∂x∗ (q)

∂σ
> 0. (77)

What we still have to establish is the sign of dq

dσ
. Using the results of Proposition

2 we obtain
dq∗

dσ
> 0. (78)

This completes the proof.

Proof of Proposition 4. The sign of derivative dq∗2/dq
∗

1 immediately

follows from (26) and the argument thereafter. In order to determine the sign

of dx∗2/dq
∗

1 , we first express x
∗

2 as

x∗2 =
β2

β2 − 1

I
(
1− ρ2

)
r + c0

(

q2 − q
2

)

r (r − α)
−1

q2 − a

q2 − q
2

. (79)

Subsequently, we show that two last factors of (79) increase with q
2
. We already

know that q
2
is an increasing function of q1. Consequently, we derive expressions

for q2 − q
2
and q2 − a on the basis of (26):

q2 − q
2
=

1

2 (β2 − 1)
× (80)

[

q
2
− a+

√

q
2
− a

√

q
2
− a+ 4β2Ir (β − 1) (1− ρ2) c−1

0

]

,

q2 − a =
1

2 (β2 − 1)
× (81)

[

(2β − 1)

(

q
2
− a

)

+

√

q
2
− a

√

q
2
− a+ 4β2Ir (β − 1) (1− ρ2) c−1

0

]

.
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By inspecting (80) we immediately conclude that the second factor of (79) is

increasing in q
2
. Now, we concentrate on the derivative of the ratio q2−a

q2−q
2

. It

can be written (using (80) and (81)) as

d

dq
2

(

q2 − a

q2 − q
2

)

=
d

dq
2




(2β2 − 1)

(

q
2
− a

)

+ f
(

q
2

)

q
2
− a+ f

(

q
2

)



 , (82)

where

f
(

q
2

)

=

√

q
2
− a

√

q
2
− a+K.

and K = 4β2Ir (β2 − 1)

(
1− ρ2

)
c−1
0

> 0. Now, (82) can be expressed as

d

dq
2

(

q2 − a

q2 − q
2

)

=

2 (β2 − 1)

(

f
(

q
2

)

− f ′
(

q
2

)(

q
2
− a

))

(

q
2
− a+ f

(

q
2

))2
.

In the final step, we determine the sign of the second factor in the numerator

f
(

q
2

)

− f ′
(

q
2

)(

q
2
− a

)

=

=

√

q
2
− a

√

q
2
− a+K −

(

2q
2
− 2a+K

)
√
q
2
− a

2

√

q
2
− a+K

=

=

(

2q
2
− 2a+ 2K

)
√
q
2
− a

2

√

q
2
− a+K

−
(

2q
2
− 2a+K

)
√
q
2
− a

2

√

q
2
− a+K

> 0.

This completes the proof.

Proof of Lemma 5. The lemma can be proven by analyzing the profit

functions of the firms in a duopoly and two cases of a monopoly. Profit maxi-

mization based on the system of demands (17) with the optimal quality schedule

of Firm 1 (48) yields the following Stackelberg profits of Firm 1 and Firm 2,

denoted by π1 and π2, respectively:

π1 =
1

1− ρ2

(√
x−√

ϕ
)2

, (83)

π2 =
1

1− ρ2

(−ρ√ϕ

κ
x1.5 +

c0ψ

κ
x+ ρ

√
ϕx0.5 − c0ψ

)

, (84)

and

κ = c0 (q2 − a) . (85)

Here, ϕ,ψ and κ are functions of q2, which is chosen at the beginning of the

game (the quality chosen by Firm 2 is fixed at the moment of undertaking

investment). Since π2 is concave and decreasing for sufficiently large x, it can
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be shown that for x > κ it holds that π2 = n2 = 0. In the same fashion in can

be shown that π1 = 0 for x < ϕ. What remains to be proven is that ϕ < κ. It

can be seen upon manipulating (49) and (50) that

κ − ϕ = c0

(q1 − a)
2 −

(

q
1
− a

)2

(

q
1
− a

) > 0⇔ q1 − q
1
> 0.

The latter inequality is proven directly by observing that

qi − q
i
= 0 for ρ = 1, and

∂
(

qi − q
i

)

∂ρ
< 0.

This completes the proof.

Derivation of Firm 2’s optimal investment threshold. First, we

derive the value of the Firm 2. Denote the value of the Firm 2 after entering

the market, by V2. V2 satisfies the following Bellman equation

0.5σ2x2tV
′′

2 + αxV ′

2 + π2 = rV2, (86)

where

π2 =







c0ψ−ρϕ

(1−ρ2)κ
(x− κ) for x < ϕ,

1

1−ρ2

(
−ρ

√
ϕ

κ
x1.5 + c0ψ

κ
x+ ρ

√
ϕx0.5 − c0ψ

)

for ϕ < x < κ,

0 for x > κ.

(87)

The value of (87) for x > κ is zero since for high demand, Firm 1 captures the

entire market share (cf. Lemma 5). For the result corresponds to (84), whereas

for x < ϕ Firm 2 achieves monopoly profit (cf. (22)) since Firm 1 remains idle.

Solving (86) with the value matching and smooth pasting conditions satisfied

for realizations ϕ and κ yields

V2 =







(B2 +B4)x
β
2 + CM

0 + CM
2 x for x < ϕ,

B1x
β
1 +B2x

β
2 + CD

0 + CD
1 x0.5 + CD

2 x+ CD
3 x1.5 for ϕ < x < κ,

(B1 +B3)x
β
1 for x > κ,
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where

B1 ≡ CD

3

ϕ1.5−β
1 (β2 − 1.5)

β1 − β2
+ CD

2

ϕ1−β
1 (β2 − 1)

β1 − β2

ρϕ

c0ψ

+CD

1

ϕ0.5−β
1 (β2 − 0.5)

β1 − β2
+ CD

0

ϕ−β1β2
β1 − β2

ρϕ

c0ψ

B2 ≡ −CD

3

κ
1.5−β

2 (β1 − 1.5)

β1 − β2
− CD

2

κ
1−β

2 (β1 − 1)

β1 − β2

−CD

1

κ
0.5−β

2 (β1 − 0.5)

β1 − β2
− CD

0

ϕ−β2β1
β1 − β2

B3 ≡ −CD

3

κ
1.5−β

1 (β2 − 1.5)

β1 − β2
− CD

2

κ
1−β

1 (β2 − 1)

β1 − β2

−CD

1

κ
0.5−β

1 (β2 − 0.5)

β1 − β2
− CD

0

κ
−β

1β2
β1 − β2

B4 ≡ CD

3

ϕ1.5−β
2 (β1 − 1.5)

β1 − β2
+ CD

2

ϕ1−β
2 (β1 − 1)

β1 − β2

ρϕ

c0ψ

+CD

1

ϕ0.5−β
2 (β1 − 0.5)

β1 − β2
+ CD

0

ϕ−β2β1
β1 − β2

ρϕ

c0ψ

CM

0 ≡ − (c0ψ − ρϕ) c0a

r

CM

2 ≡ c0ψ − ρϕ

r − α

CD

0 ≡ −1
1− ρ2

c0ψ

r

CD

1 ≡ 1

1− ρ2
α
√
ϕ

r − 0.5α+ 0.125σ2

CD

2 ≡ 1

κ (1− ρ2)

c0ψ

r − α

CD

3 ≡ −1
κ (1− ρ2)

α
√
ϕ

r − 1.5α− 0.375σ2

Despite the fact that the expressions for the value of Firm 2 differ across the

regimes, calculating the option value of the investment opportunity of Firm

2 represents no additional difficulty comparing to the traditional analysis. It

can be shown that the value is negative under the first regime, reaches the

peak under the second regime and tends asymptotically to zero under the third

regime. Therefore, it cannot be optimal for Firm 2 to invest under regimes one

and three. Here, I is assumed to be not excessively high so that such xt exists

for which the net present value of Firm 2’s investment is positive. Consequently,

the value of Firm’s 2 option to invest can be calculated on the basis of the value-
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matching and smooth-pasting conditions corresponding to the second regime

A2x
β
2 = B1x

β
1 +B2x

β
2 + C0 + C1x

0.5
+ C2x+ C3x

1.5 − I

β2A2x
β
2
−1

= β1B1x
β
1
−1

+ β2B2x
β
2
−1

+ 0.5C1x
−0.5

+ C2 + 1.5C3x
0.5.

The optimal investment threshold of Firm 2, x∗∗2 , is implicitly defined by

(β2 − β1)B1 (x
∗∗

2 )
β
1
+ β2 (C0 − I) + (β2 − 0.5)C1 (x

∗∗

2 )
0.5

+(β2 − 0.5)C2x
∗∗

2 x+ (β2 − 0.5)C3 (x
∗∗

2 )
1.5

= 0

Moreover, the value of the investment opportunity of Firm 2 is

F2 = A2x
β
2,

where

A2 ≡ max
q2

B1 (x
∗∗

2 )
β
1
+B2 (x

∗∗

2 )
β
2
+ C0 + C1 (x

∗∗

2 )
0.5

+ C2x
∗∗

2 + C3 (x
∗∗

2 )
1.5 − I

(x∗∗
2
)
β
2

.
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