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Real Option Games with Incomplete Information and Spillovers 

 

 

Abstract 

 

 

We model in a game theoretic context managerial intervention directed towards value 

enhancement in the presence of uncertainty and spillover effects.  Two firms face real 

investment opportunities, and before making the irreversible investment decisions, they have 

options to enhance value by doing more R&D and/or acquiring more information.  Due to 

spillovers, firms act strategically by optimizing their behavior, conditional on the actions of 

their counterpart.  They face two decisions that are solved for interdependently in a two-stage 

game.  The first-stage decision is: what is the optimal level of coordination between them?  

The second-stage decision is: what is the optimal effort for a given level of the spillover 

effects and the cost of information acquisition?  For the solution we adopt an option pricing 

framework that allows analytic tractability.   

 

 

 

JEL classification: G13, G31; C72; L00 

 
Keywords: Real Options, Incomplete Information and Learning, R&D Coordination, 2-Stage 
Games  
 

 2



Introduction 

 

We discuss in a game theoretic context managerial intervention directed towards 

value enhancement in the presence of uncertainty and spillover effects.  Two firms face real 

investment options.  Embedded in these are (optional) actions that allow firms to enhance 

value of their prospects directly (through R&D that improves product attributes or reduces 

costs, advertisement, etc.) or indirectly through information acquisition (exploratory drilling, 

marketing research, etc.)  Due to spillovers, each firm´s action affects the other firm.  In this 

framework both firms can act strategically and take advantage of the positive spillovers (or 

take pre-emptive action against the negative spillovers).  In equilibrium, the degree of 

coordination can be higher or lower.  The implementation of strategy by each firm can either 

be implicit, or explicit, i.e., by forming a research joint venture.  Each firm must thus decide: 

(a) How much from this effort to share with its counterpart if this level can vary (the first-

stage decision) and (b) How much to spend for such (R&D, etc.) actions, given the spillover 

effects (the second-stage decision).  For the optimal effort (a tactical) decision we allow for a 

continuous set of alternatives, whereas for the optimal coordination (a strategic) one, we only 

allow a discrete set of choices.  Let for example a pharmaceutical and a chemical firm trying 

to enhance the value of their investment prospect, by taking R&D actions to develop new 

technologies.  Each one can learn at least part of the results of the effort of the other for free 

even if both act on their own.  However the two firms will optimize the value of their 

investment options if they strategically determine the amount of R&D they share (in forming 

for example a research joint venture and deciding the degree of coordination that will take 

place and the type of research they will engage in).  Another example would be two oil firms 

that own rights in adjacent oil fields.  Knowledge resulting from exploratory drilling could be 

shared benefiting both.   

In the paper we adopt the real options framework from the financial economics 

literature and connect it with the research joint ventures literature of industrial organization.  

The literature on real options or otherwise irreversible investments under uncertainty (see 

 3



Dixit and Pindyck, 1994, and Trigeorgis, 1996) examines the value of flexibility in 

investment and operating decisions under uncertainty where the traditional net present value 

(NPV) approach fails.  Although the importance of learning actions like exploration, 

experimentation, and R&D was recognized early on (e.g., Roberts and Weitzman, 1981), the 

real options literature has paid little attention to management´s ability to intervene in order to 

acquire more information and/or enhance value.  Majd and Pindyck (1989), and Pennings and 

Lint (1997) examine real options with passive learning, while Childs, et al. (1999), and 

Epstein, et al. (1999) use a filtering approach towards learning.  Recently, Sundaresan (2000) 

emphasizes the need for adding an incomplete information framework to real options 

valuation problems.  Although many state-variables are usually treated as observable, it is 

often more realistic to assume that they are only estimates of quantities that will be actually 

observed or realized later.  Martzoukos (2000) considers true value as a random variable with 

a known probability distribution.  He examines real options with controlled jumps of random 

size (random controls) to model intervention of management as intentional actions with 

uncertain outcome (learning).  He assumes that sequential actions are independent of each 

other.  Martzoukos and Trigeorgis (2000) extend this framework to one with path-dependent 

actions in order to explain the learning behavior of the (single) firm.  They demonstrate that 

activating learning actions before an investment decision is made, is the solution to an 

optimization problem that actually captures the trade-off between learning early and paying a 

cost for it, or leaving information to reveal itself ex-post at a potential cost (of exercising 

seemingly profitable investment options that actually have a negative NPV, or leaving 

seemingly unprofitable investment options to expire unexercised when they actually have a 

positive NPV).  We adopt this random controls methodology to examine in a game theoretic 

framework the behavior of two firms in the existence of spillovers. 

Real options papers in a game-theoretic context include Grenadier (1996) with 

strategic option exercise in real asset markets, where development might be sequential; 

Williams (1993) with symmetric and simultaneous exercise strategies for real estate 

developers; Smit and Ankum (1993) with an exogenously determined set of alternative 
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corporate strategies; and Smit and Trigeorgis (2001) that include uncertainty under various 

types of competition in the product markets.  In this paper the interaction that results in a 

game theoretic framework comes from the existence of spillovers that affect the decision of 

the other player.  The importance of intra-industry spillovers has been documented in the 

literature.  Foster and Rosenzweig (1995) for example emphasize the importance of learning 

spillovers in agriculture, and Carey and Bolton (1996) argue that collusion in advertisement 

can be successful due to significant spillovers from generic advertising.  Spillover effects are 

significant even among different sectors, as discussed in Bernstein and Nadiri (1988) and 

Jaffe and Trajtenberg (1998), and among different countries, as postulated in Thompson 

(2000).  Branstetter (1996) investigates the US and Japan to see whether technological 

externalities are more international or intranational in scope and finds more support for the 

latter, while Johnson and Evenson (1999) investigating 14 less developed or developing 

countries find empirical evidence that both international and interindustrial R&D spillovers 

can be significant.   

Firms may coordinate their R&D efforts without necessarily colluding in the product 

markets (in a case like that we have a semi-collusion to use the term in Fershtman and 

Gandal, 1994, Brod and Shivakumar, 1999, etc.)  Coordination can take also either the form 

of research joint ventures (RJV) or non-equity co-development (COD) according to the access 

the firms have to the innovation (see for example Tao and Wu, 1997).  The seminal theoretic 

model of R&D choice in the presence of spillovers under various structures in the product 

market is d´Aspremont and Jacquemin (1988), where the degree of spillover is the same.  In 

Kamien et.al. (1992) the degree of spillovers varies.  Poyago-Theotoky (1999) recommends 

that firms endogenously determine the optimal degree of spillovers.  In all papers firms 

operate in the same product market, and authors search for symmetric equilibria.   

In our paper, both the optimal effort to exert and the choice of the level of spillovers 

are endogenously determined.  Since we adopt an option pricing framework, we could easily 

allow at the maturity of this investment option interactions in the product market (joint 

determination of equilibrium quantity and price).  For purposes though of analytic tractability, 
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we focus on the case where the firms can not affect each other in the product market (i.e., they 

either have monopoly power over their investment option, or prices are exogenously 

determined).  This assumption will allow us the use of models isomorphic to the familiar 

Black and Scholes (1973).  Since firms can operate in different product markets, we allow for 

asymmetric equilibria in the degree of spillovers between them.  We first demonstrate the 

general model for costly controls at a pre-investment stage that allows for different types of 

actions for each agent, and we introduce the framework for the two-stage game.  We then 

present in detail the real option game with pure learning controls (where value enhancing 

comes through information acquisition, i.e., exploration, pharmaceutical experimentation, but 

also marketing research, etc.), and the game with impact controls (that allow each player 

direct value enhancing outcomes, i.e., R&D for attribute improvements or cost reduction, but 

also advertisement, etc.).  We show that unlike in the impact control case where in 

equilibrium both players exert a positive effort, in the pure learning case there exist equilibria 

where one player delegates all effort to the other (free lunch).  In both cases we give 

applications with numerical results and discussion.  The final section concludes.  The second 

order and stability conditions for the equilibria are provided in the Appendix.   

 

 

The real option game with incomplete information, multiplicative controls, and 

spillovers. 

 

We consider costly R&D (control) actions that managers use to affect the value of an 

investment opportunity at the pre-investment stage.  The outcome of these actions will be 

observed instantaneously.  Information is incomplete in the sense that the controls´ outcome 

is random.  We classify them into two types: pure learning control actions with the sole 

purpose of information acquisition that reduce uncertainty about the estimated investment 

value; and impact control actions with a direct value enhancement (or similarly a cost 

reduction) purpose.  Ex ante we simply know the probability distribution of the outcome, thus 
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we call them random controls.  The impact control is the most obvious one, since it is an 

impulse type with random outcome.  Advertisement, process improvement, product attribute 

enhancement, etc., are actions that result directly in adding value, increasing sales volume 

and/or price per item, enhancing market share, or reduce production costs.  In contrast, pure 

learning actions are intended to improve the information about (but not to directly affect) a 

quantity, potential sales price, etc.  Exploratory drilling for example will improve information 

about the value of an oil field, and marketing research will help to better assess market share, 

etc.  Learning actions are thus activated when a parameter significant for the decision making 

process is estimated with error.  Management intends to eliminate or at least reduce this error 

in order to make optimal investment decisions.  If uncertainty is fully resolved, exercise of an 

investment option on stochastic asset S* with exercise cost X yields S* – X.  Has a learning 

action not been taken before the investment decision is made, resolution of uncertainty 

(learning) would occur ex post.  Ex ante, the investment decision must be made based solely 

on expected (instead of actual) outcomes.  In this case exercise of the real option is expected 

to provide E[S*] – X.  The real investment prospect is a claim contingent on S = E[S*], and 

we assume that E[S*] follows a geometric Brownian motion, just like S*.  Thus, S will follow 

the same process before and after learning.  Consider for example the case where the 

underlying asset is a product of two variables, a stochastic but observable one, and a constant 

but unobservable one.  We seek to learn about the unobservable entity, and in doing so we 

will not affect the stochastic process of the product of the two.  At learning, we will simply 

revise our estimate of the product (which will occur as a jump).  Fully revealing learning 

actions are designed to resolve uncertainty completely (assuming this is economically or 

technically feasible), but in the most general case partly revealing actions will be employed 

either because complete resolution of uncertainty is infeasible, or it is too costly.  Each firm 

faces an investment decision, and either S = E[S*] is common for both (or simply differs by a 

constant), or each firm´s claim is contingent on a different asset, simply necessitating separate 

notation for S1 and S2 which again follow geometric Brownian motions.  In both types of 
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action (pure learning or impact), the control is modeled as an impulse (jump) with random 

outcome, activated at a cost. 

Formally, we assume that each underlying asset (project) value, S, subject to i 

optional (and often costly) controls, follows a stochastic process of the form: 

 

1

N
R

i i
i

dS dt dZ k dq
S

µ σ
=

= + +∑ ,        (1) 

 

where µ is the instantaneous expected return (drift) and σ the instantaneous standard 

deviation, dZR is an increment of a standard Wiener process in the real probability measure, 

and dqi is a jump counter for managerial activation of action i -- a control (not a random) 

variable.  Under risk-neutral valuation, the asset value S follows the process 

 

( )
1

N

i
i

dS r dt dZ k d
S

δ σ
=

= − + +∑ iq      (1a) 

 

where r is the riskless rate of interest, while the parameter δ represents any form of a 

“dividend yield” (e.g., in McDonald and Siegel, 1984, δ is a deviation from the equilibrium 

required rate of return, while in Brennan, 1991, δ is a convenience yield).  As in 

Constantinides (1978) we need to assume that an intertemporal capital asset pricing model as 

in Merton (1973) holds.  As in Merton (1976), we assume the jump (control) risk to be 

diversifiable (and hence not priced).   

For each control i, we assume that the distribution of its size, 1 + ki, is log-normal, 

i.e., ln(1 + ki) ~ N(γi – .5 2
iCσ , 2

iCσ ), with N(.,.) denoting the normal density function with 

mean γi – .5 2
iCσ and variance 2

iCσ , and E[ki] ≡ ik  = exp(γi) – 1.  The control outcome is 

assumed independent of the Brownian motion -- although in a more general setting it can be 

dependent on time and/or the value of S.  In general we can assume any plausible form, but 
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the log-normality assumption will allow analytic tractability.  Stochastic differential equation 

(1a) can alternatively be expressed in integral form as: 

 

( ) ( ) ( ) ( ) ( )2

10 0

ln ln 0 0.5 ln 1
T T N

i i
i

S T S r dt dZ t dq kδ σ σ
=

   − = − − + +    ∑∫ ∫ + .  (2) 

 

Conditional on control activation  

 

E[S* | activation of control i] = E[S*](1 + ik ) = S(1 + ik ) 

 

and if the control is a pure learning (information acquisition) action ( ik  = 0 = γi)  

 

E[S* | activation of control i] = S . 

 

Each firm’s management seeks to optimally activate controls that belong to an admissible set 

C, so that each firm´s claim F on the underlying asset must satisfy (subject to the actions of 

the other firm) the following optimization problem: 

 

( ), ,Maximize F t S C         (3) 

subject to: 

 

( )
1

N

i i
i

dS r dt dZ k d
S

δ σ
=

= − + +∑ q  

and 

ln(1 + ki) is normally distributed with mean: γi – 0.5 2
iCσ , and variance: 2

iCσ . 

 

The next follows directly from the log-normality assumption of the multiplicative controls. 
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Lemma 1: Assuming independence between the controls´ outcome and the increment dZ 

of the standard Wiener process, the conditional solution to the European call option 

(excluding the controls´ cost) is given by: 

 

        F(S, X, T, σ, δ, r; γi, 2
iCσ ) = e – r T E[(S*T  – X)+ | activation of N controls].    (4) 

 

The present value of the risk-neutral expectation E[.] conditional on activation of the controls 

at t = 0, is isomorphic to the Black-Scholes (1973) model: 

 

E[(S*T  – X)+ | activation of N controls] = 

             (5) 
( )

( ) ( )1
1 2

N

i i i
i

rT T g f

S e N d X N d
δ γ

=

 
 − + 
 

∑
−

where 

( ) ( ) ( ) ( )

( )

2 2

1 1
1 1/ 2

2 2

1

ln / .5 .5
i

i

N N

i i i i i C
i i

N

i i C
i

S X r T g f T g f
d

T g f

δ γ σ

σ σ

= =

=

+ − + + +
≡

 
+ 

 

∑ ∑

∑

σ
 

and 

( )
1/ 2

2 2
2 1

1
i

N

i i C
i

d d T g fσ σ
=

 ≡ − + 
 

∑ . 

 

The N(d) denotes the cumulative standard normal density evaluated at d.  The degree of 

spillovers (parameter) f may differ between firms.  Τhe functions g(.) with arguments 

parameters of the controls´ distribution and the degree of spillovers will be shown more 

clearly in the next sections.  The exact form depends on the type of control that is activated 

(impact or pure learning control).  Controls´ outcome can be generated intentionally due to a 

firm´s own action, or unintentionally due to a spillover effect from the actions of the other 
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firm.  Finally the controls´ cost β = θg(.) where θ is a cost parameter, must be subtracted from 

the firm´s conditional real option value.  Given activation of learning controls, the (risk-

neutral) probability P(ST > X) that the call option will be exercised at maturity T equals N(d2).  

At the moment of activation of the controls and due to the controls only, the probability that 

the new value of S will exceed some value X equals N(d2) with T → 0, since the outcome of 

the controls is observed instantaneously (impulse type control).  In pure learning actions 

intended just to resolve uncertainty about the true value of the unobservable variable S* the 

impact parameters γi = 0.  In the most general R&D case the impact parameters would differ 

from zero, and they can be positive if they affect revenues or negative if they affect fixed or 

variable costs.  The spillover impact from the other firm can have either sign. 

 

The Tactical Resource Allocation Decision. 

 

The two firms must solve their optimization problem simultaneously, seeking thus an 

equilibrium in this (tactical) decision (see Figure 1).  Let us denote with β1 and β2 the cost 

(effort) of the first and the second firm´s actions.  The impact on option value is a function of 

that cost.  Given the actions β2 of the second firm, the impact on the net option value of firm 

one equals F1(β1 | β2) – β1, and given β2 the first firm must maximize F1 – β1 through the first 

order condition  

 

( )( )1 1 2 1

1

|
0

F β β β
β

∂ −
=

∂
.       (6) 

 

Similarly, firm two conditional on the first firm´s action β1 must maximize F2(β2 | β1) – β2  

through the first order condition  
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( )( )2 2 1 2

2

|
0

F β β β
β

∂ −
=

∂
.     (6a) 

 

The first order conditions are necessary for the existence of a maximum.  Furthermore, if the 

second order conditions (that the second derivative is negative) are satisfied everywhere (or at 

least in some admissible range), this maximum, is unique (in the admissible range). 

As shown in Figures 1(b) and 1(a), the optimal cost effort functions β1
*(β2) and 

β2
*(β1) for each firm are depended on the other firm’s actual effort.  In this duopolistic game, 

both firms optimize their actions simultaneously and the equilibrium solution pair β1
** and 

β2
** is shown in Figure 1(c) at the intersection of β1

*(β2) and β2
*(β1).  Since the cost efforts β1 

and β2 affect F1 and F2 through the impact (γi) and learning (
iCσ ) parameters and some cost 

parameter θ, we must define the mappings β1(θ1, γ1, 1

2
Cσ ) and β2(θ2, γ2, 2

2
Cσ ).  As will be 

seen in the examples presented later, it is more intuitive to optimize directly with respect to 

the learning (or the impact) parameter.  In order to solve numerically these two equations in 

the most general case, the 2x2 Jacobian matrix of the 2nd order analytic derivatives is needed 

and an iterative two-dimensional Newton-Raphson scheme is implemented.  The following 

proposition holds for cost functions that are homothetic of degree one to the cost parameter θ. 

 

Proposition 1: The equilibrium efforts of the tactical decision are invariant to identically 

proportional changes in the price of the underlying asset S, the exercise price X, and the cost 

β (or equivalently a cost parameter θ) of the control. The constant of proportionality may 

differ between the two firms. 

 

Proof:  We can verify through equations (6) – (6a) that the property of option prices to be 

homogenous of degree one in the underlying asset and the exercise price, can also be 

preserved in this game theoretic context, due to the multiplicative nature of the random 

control.  With the proper choice of the cost function, the conditional option prices (for each 
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firm) can be homogeneous of degree one in the underlying asset, the exercise price, and the 

control’s cost θ, as clearly seen in equations (10a, b) and (12a, b).   

 

The Strategic Coordination Decision. 

 

We now must consider the strategic coordination choice.  Firms must decide on the 

optimal degree of coordination of their R&D efforts.  For example, in a 2x2 game, each firm 

can decide to exert high (H) or low (L) coordination effort (see Figure 2).  The degree of 

coordination determines the extent of spillover effects (through the parameter f), and 

potentially the cost of R&D (through the cost parameter θ).  We assume for ease of exposition 

two strategies available for each firm, but more than two (or even a continuous set of 

alternatives) could exist.  The choice sets (H, H), (H, L), etc. uniquely determine the degree of 

spillover effects.  The optimal choice for the two firms is provided by the pure Nash 

equilibrium(a), or alternatively the mixed strategies equilibrium.  Equilibria off the diagonal 

can occur because of the asymmetry in the direct spillover effects and the cost reduction 

results of coordination.  This is justifiable when the two firms operate in different product 

markets, and can be for example technology dependent.  The solution to the tactical decision 

in Figure 1 is nested to the solution of the strategic one in Figure 2.  The next follows directly 

from Proposition 1. 

 

Corollary 1: If the constant of proportionality (as discussed in proposition 1) is the same 

for both firms, then the Nash equilibrium strategy is invariant to the choice of this constant. 

 

 

The real options game with costly information acquisition. 
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Let us consider the case of pure learning actions.  Two companies face an investment 

opportunity each.  Before they decide to invest they also have the option to invest in order to 

acquire information about the true value or at least a better estimate of the investment.  Thus, 

both impact parameters equal zero since they do not pursue to directly enhance value but they 

do so indirectly by reducing uncertainty.  We consider i (= 1, 2) pure learning actions (γi = 0), 

one from each firm j (= 1, 2), with i = j implying the firm’s own action.  To find equilibrium, 

given the action of the other firm, each one must maximize the conditional option value given 

below as an application of Lemma 1: 

 

( ) ( )1 2
jT rT

j j j jF S e N d X e N dδ
jβ β− −− = − −        (7) 

 

where 

( ) ( )
2

2 2

1
1 1/ 22

2 2

1

ln / 0.5 0.5
i

i

j j j j i j C
i

j i j C
i

S X r T T f
d

T f

δ σ σ

σ σ

→
=

→
=

+ − + +
≡

 
+ 

 

∑

∑
 

and 

1/ 22
2 2

2 1
1

ij i j C
i

d d T fσ σ→
=

 ≡ − + 
 

∑ . 

   

The information revelation potential is bounded from above (as well as positive) 

 

2
2 2

1
i ji j C Cmax

i
f σ σ→

=

≤∑ , 

and 

2
2 2

1
j iCmax i j C

i
fσ σ→

=

−∑  
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defines exactly the unresolved uncertainty (implying that the experiment produces only 

information and no noise).  The parameters fi→j define the degree of spillovers.  For the 

influence of own actions, most often f1→1 = f2→2 = 1.  Uncertainty is resolved at a cost, and the 

cost function is defined for simplicity quadratic in the learning effort  

 

2
jj j j jf Cβ θ σ→= .      (8) 

 

Note that the cost parameter θ and the spillover parameters f are conditional on the strategic 

decision.  In this application we assume that the optimal learning efforts are below the upper 

bound for the maximum feasible learning (non-binding constraint) without loss of generality.  

It is natural to assume that complete elimination of uncertainty would almost be infeasible, 

or, after some point, exceedingly costly.  Else, if the constraint were binding, we would 

simply incorporate it explicitly in the numerical solution.   

 

The two first order conditions  

 

         
( )1

1

2
1 1 1 1 0C

C

F fθ σ

σ
→∂ −

=
∂

,    (9a) 

and 

        
( )2

2

2
2 2 2 2 0C

C

F fθ σ

σ
→∂ −

=
∂

               (9b) 

 

are conditional on the other firm’s move, and must be solved simultaneously.  Specifically we 

get, 
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( )

( )

1

2
2

1

1

2 1

2
1 1 1 1

/ 2
1 1

1 10.52 2 2
1 2 1 1 1

2 0
2

jC

C

d
CrT

C

C C

F f

feX e f
T f f

θ σ

σ

σ
θ σ

π σ σ σ

→

−
→−

→

→ →

∂ −
=

∂

1 1− =
+ +

              (10a) 

and 

             

( )

( )

2

2

2
2

2

2

2 1

2
2 2 2 2

/ 2
2 2

2 20.52 2 2
2 2 2 1 2

2 0
2

C

C

d
CrT

C

C C

F f

feX e f
T f f

θ σ

σ

σ
θ σ

π σ σ σ

→

−
→−

→

→ →

∂ −
=

∂

2 2− =
+ +

          (10b) 

 

After solving for the optimal learning efforts , we find the optimal cost efforts 

.  The second order conditions so that the solution is a maximum are  

**2**2
21

and CC σσ

**
2

**
1 and ββ

 

( )
( )

2 2

2 0j

j

j j j j C

C

F fθ σ

σ

→∂ −
<

∂
 

 

and are given in the Appendix.  The general form of the response functions is as in Figure 3a 

with the unique solution at E.  Figure 3b presents the case with the unique equilibrium E on 

the horizontal axis when firm 2 gets a free lunch by exerting zero effort and benefiting from 

the spillovers from the actions of firm 1 (symmetrically when firm 1 gets the free lunch).   We 

observe that the first order conditions are always satisfied at 2 0
jCσ = , so if also the second 

order conditions are satisfied, this is a solution.  Notice that by the model construction this 

actually is an interior and not a corner solution. 

 

These figures indicate the existence of a solution.  The uniqueness of this solution depends on 

the slope and the curvature of the response functions.  Figure 3c for example, presents a case 
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with three equilibria (E1, E2 and E3), in which case equilibrium E2 is not a stable one (in the 

numerical examples presented in this paper, such a case has not been observed).  Still, we 

cannot exclude the possibility of the existence of an infinite number of equilibria when the 

response functions coincide (such cases are observed and identified with asterisk in Tables 2 

and 3).  In the stable equilibrium point E in Figure 3a the slope of the second player´s 

response function is smaller than that of the first player, unlike E2 in Figure 3c where the 

opposite holds.  We have the following stability condition for each equilibrium point 

 

2

1 1

2

*

*

1C

C C

C

σ
σ σ

σ

∂
<

∂ ∂
∂

 

  

which is given in the Appendix.  In the discussion that follows, all solutions satisfy the SOC 

and the stability conditions. 

 

In the numerical example we assume that the spillovers are 50% (for 1 → 2) and 25% 

(for 2 → 1).  Tables 1A and 1B show the learning effort and the cost involved for each firm.  

As we see in Figure 3 equilibrium is when the first firm spends 1.2047 and the second spends 

3.0802.  Their spending, results in information acquisition equivalent to 
1Cσ  = 0.10976 and 

2Cσ  = 0.20266, providing (through the use of equation 4) a net investment option value equal 

to 5.2756 and 5.5246 to firm 1 and 2 respectively. 

 

  [Enter Tables 1A and 1B, and Figures 3, 3a, 3b, 3c about here] 

 

In Table 2 we see the optimal decisions for a wide variety of asymmetric spillover 

effects and asymmetric costs.  The degree of influence of these parameters on optimal effort is 

profound.  When the underlying investment options and the R&D expenses are symmetric but 
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the spillover effects are not, the firm that receives less spillover benefits must spend more on 

R&D.  When the spillover effects are symmetric but the R&D costs are not, the firm that 

faces a steeper cost curve would rather reduce R&D spending, and oftentimes, we encounter 

free-lunch (zero effort, delegation to the other player), as the preferred choice.   

 

 [Enter Tables 2, 3, and 4 about here] 

 

While Table 2 investigates the case where the two firms face symmetric investment decisions, 

Table 3 investigates the case where the investment alternative of the first one is expected to be 

of larger scale than that of the second one, and Table 4 investigates the opposite case.  As a 

result of Proposition 1, in the example discussed we can multiply the price of the underlying 

asset S1, the exercise price X1, and the cost θ1 with a positive constant, then multiply S2, X2, 

and θ2 with another positive constant, and the results regarding the equilibrium effort will not 

change (compare for example the lower third of Table 2 with the middle third of Table 3).  

Optimal option values will of course change by the relevant constant.   

Figure 4 presents the results for the strategic decision where the two had to choose the 

optimal degree of R&D coordination.  We see that both decide on the maximum degree of 

coordination.  The first one however, decides not to spend on learning at all (see the results in 

parenthesis), whereas the second exhibits a very high effort.  Figure 5 presents a case where 

the second one concedes to a high degree and the first to a low degree of coordination.  

Finally, figure 6 shows a case where the Nash equilibrium is a Low/Low strategy and figure 7 

shows a case where the Nash equilibrium is a High/High strategy.  Under no Nash 

equilibrium, mixed strategies could be considered as an alternative approach, providing the 

probabilities that each firm would play a High or a Low strategy.  

 

   [Enter Figures 4, 5, 6 and 7 about here] 
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As a result of Corollary 1, if for the two firms the constants of multiplication are the same, 

then the equilibrium strategy for the games in figures 5-7 will be unaffected, since all payoffs 

will be multiplied by the same positive constant. 

 

 

The real options game with costly impact controls. 

 

In the previous section we focused on the pure learning (information acquisition) 

case.  If the impact parameters are not zero (a direct effort to enhance value), this case of 

random control would be similarly solved through the use of the first order conditions (6) and 

(6a).  Again we define the conditional option value by applying Lemma 1 
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and a cost function quadratic in the impact effort ( )2

j j j j jfβ θ γ→= . 

 

For the tactical decision we consider the two first order conditions  
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where the constants si→j simply guarantee the positivity of the variance components.  

Subsequently and similarly with the pure learning case we solve the two equations 

simultaneously and we get the optimal impact efforts γ1
** and γ2

** and through them the 

optimal cost efforts β1
** and β2

**.  Since each player´s intension is to enhance value, the 

admissible impact effort is non-negative (for a put option it would be non-positive).  It is also 

bounded from above by the minimum of 
jmaxγ  (which defines an economically or technically 

feasible range) and the point where the second derivative becomes positive (which guarantees 

uniqueness).   

 

Proposition 2:  Let  and the cost function 0j jf → > ( )2

j j j j jfβ θ γ→= .  Then in any 

equilibrium in the impact control case, both players exert a positive effort (thus excluding 

delegation or free lunch). 

 

Proof:  Notice that equations 12a and 12b get positive values at 0jγ =  given that .  

Therefore, conditional solutions (

0j jf → >

γ1
*| γ2) and (γ2

*| γ1) are positive, and (unlike the case of pure 

learning) in any equilibrium, both players must exert a positive effort. 
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Using the cost function , the second order conditions are 2)( jjjjj f γθβ →=

 

( )( )
( )
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and the stability condition is 

*
2

*
1 1

2

1γ
γ γ

γ

∂
<

∂ ∂
∂

. 

 

In the Appendix again we provide the second order and the stability conditions in detail.  In 

the discussion that follows, all solutions again satisfy the SOC and the stability conditions. 

 

An example for the cost function , with the range of admissible impact 

parameters positive and bounded below 100% is given in Figure 8 and Tables 4A and 4B (for 

the solution to the tactical decision).  Figures 9 and 10 present two examples where the Nash 

equilibrium for the strategic decision is the highest (H/H) and the lowest (L/L) degree of 

coordination respectively. 

2)( jjjjj f γθβ →=

 

  [Enter figures 8, 9, 10 and Tables 4A and 4B about here] 

 

In Figure 9 the impact spillover is positive (like generic advertisement) whereas in Figure 10 

the impact spillover can be negative when advertisement is more competitive and less costly. 

 

 

Conclusions 
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This paper presents and solves a real options game that jointly addresses at the pre-

investment stage the strategic decision about the extent of coordination between two firms, 

and the decision about the optimal effort invested in R&D in the presence of uncertainty and 

spillover effects.  We assume that the two firms can influence each other´s decision at the pre-

investment stage, whereas at the investment decision each firm has monopoly power over its 

investment and there is no further interaction between the two. Firms want to enhance value 

and to resolve (or reduce) uncertainty of real (investment) opportunities, before they make a 

commitment.  Managerial actions are treated as controlled jumps of random size whose 

realization is a random variable with a known probability distribution.  We used a contingent 

claims framework with incomplete information and costly control actions, and without loss of 

generality or any sacrifice in insights gained we made the assumption that the two firms face 

investment opportunities of the European type, allowing thus the use of analytic models 

isomorphic to Black and Scholes (1973).  Alternatively, fully numerical methods like lattice 

or numerical solutions to partial differential equations could have been used, but the iterative 

solution to this continuous game would have been much more intensive computationally and 

less accurate.  Within such a numerical solution framework it would be easy to incorporate 

further firm interactions in the product markets.  Note that the model discussed above pertains 

to call options where players try to enhance the value of the underlying asset S.  

Symmetrically we could have worked for a put option where the players could pursue a cost-

reduction strategy. 

  

Finally, the solution to the firms’ optimal strategic and tactical R&D decision-making 

is found as the solution of a two-stage game.  This decision, as expected, is heavily dependent 

on the effectiveness of R&D investments, their cost, and the degree of coordination that is 

optimal for the two firms.  Some times high coordination and other times low coordination 

will be optimal.  The degree of coordination affects both the degree of spillovers, and the 

parameters of the cost function.  In the cases of pure learning actions, there are instances 

where a firm will delegate research by agreeing on a high degree of coordination (lowering 
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thus the R&D cost of the other firm and increasing the degree of spillovers) and reap 

afterwards the rewards.  In contrast, in the cases of impact control, players always exert a 

positive effort with the trivial exception when control is prohibitively expensive.  In general 

we have shown that optimal coordination and optimal R&D effort are essential for value 

enhancement and optimal investment decision-making. 
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Appendix: Second Order (SOC) and Stability Conditions. 

 

We demonstrate the general SOCs and the stability conditions for the continuous game of the 

tactical decision.  The conditions are shown for player one, and those for player two can be 

derived symmetrically.  In all we assume that the two players own investment options of the 

European call type, and the cases of put options can be analyzed similarly.  For the 

conditional optimization of player one, the second order condition for a maximum in the case 

of pure learning actions, is 
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Then we derive the SOC for the case of impact control for player one 
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( )0.52
12 1d d Tσ≡ −  

 

Next we provide the stability conditions for equilibrium.  Note that the stability conditions 

differ from the ones for the d´Aspremont and Jacquemin (1988) (conditions which were 

discussed in Henriques, 1990), due to the asymmetry and non-linearity of our case (see also 

Seade, 1980).  For the local stability of the equilibrium for the case of pure learning we 

require  
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To complete calculations we need the cross-partial derivative  
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Similarly we get the stability condition for the case of impact control 
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To complete, we provide the cross-partial derivative 
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        Table 1A 

    Pure learning response functions 
Firm 1 optimizing (given 2’s effort) 

 
   Total learning effort 
1’s effort    2’s effort 

Learning cost 
1’s cost       2’s cost 

Net call option value 
1’s option   2’s option 

0.14028 0.10266 1.9680 0.7904 4.5123 5.4933 
0.13506 0.12766 1.8240 1.2222 4.6563 5.5611 
0.12841 0.15266 1.6488 1.7478 4.8314 5.5974 
0.12010 0.17766 1.4424 2.3671 5.0379 5.5888 
0.10976 0.20266 1.2047 3.0802 5.2756 5.5246 
0.09673 0.22766 0.9357 3.8870 5.5445 5.3964 
0.07972 0.25266 0.6355 4.7876 5.8447 5.1979 
0.05515 0.27766 0.3041 5.7819 6.1762 4.9241 
0.00000 0.30266 0.0000 6.8700 6.5386 4.5876 
 
 
           Table 1B 

    Pure learning response functions 
Firm 2 optimizing (given 1’s effort) 

 
   Total learning effort 
1’s effort    2’s effort 

Learning cost 
1’s cost       2’s cost 

Net call option value 
1’s option   2’s option 

0.00976 0.21690 0.0095 3.5284 5.3223 5.0764 
0.03476 0.21561 0.1208 3.4866 5.3283 5.1181 
0.05976 0.21285 0.3571 3.3980 5.3329 5.2067 
0.08476 0.20857 0.7184 3.2625 5.3212 5.3422 
0.10976 0.20266 1.2047 3.0802 5.2756 5.5246 
0.13476 0.19497 1.8160 2.8509 5.1785 5.7538 
0.15976 0.18529 2.5523 2.5748 5.0148 6.0299 
0.18476 0.17328 3.4136 2.2518 4.7720 6.3529 
0.20976 0.15841 4.3998 1.8820 4.4401 6.7228 
 
Notes (for 1A and 1B). Investment options’ parameters are: underlying 
assets S1 = S2 = 100.00, exercise prices X1 = X2 = 100.00, dividend yields 
δ1 = δ2 = 0.10, riskless rate r = 0.10, standard deviation of the continuous 
change of the underlying assets σ1 = σ2 = 0.10, time to maturity for both 
options T = 1.00, and costs of learning (per unit of variance) θ1 = 100.00 
and θ2 = 75.00 with spillover of learning 50% (for 1 → 2) and 25% (for 
2 → 1). 
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    Table 2 

   Optimal R&D learning effort (firm 1 / firm 2) 
 

Spillovers 1 → 2 Cost 
θ2 

Spillovers 
2 → 1 0.00 0.25 0.50 0.75 1.00 
0.00 0.14938 

0.34096 
0.14938 
0.33268 

0.14938 
0.32419 

0.14938 
0.31547 

0.14938 
0.30650 

0.25 0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.50 0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.75 0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

 
 
 
 

50.00 

1.00 0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00 0.14938 
0.21701 

0.14938 
0.20375 

0.14938 
0.18957 

0.14938 
0.17423 

0.14938 
0.15741 

0.25 0.10267 
0.21701 

0.10604 
0.21043 

0.10976 
0.20266 

0.11390 
0.19329 

0.11855 
0.18176 

0.50 0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.75 0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

 
 
 
 

75.00 

1.00 0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00 0.14938 
0.14938 

0.14938 
0.12937 

0.14938 
0.10563 

0.14938 
0.07469 

0.14938 
0.00000 

0.25 0.12937 
0.14938 

0.13361 
0.13361 

0.13830 
0.11292 

0.14352 
0.08286 

0.14938 
0.00000 

0.50 0.10563 
0.14938 

0.11292 
0.13830 

0.12197 
0.12197 

0.13361 
0.09448 

0.14938 
0.00000 

0.75 0.07469 
0.14938 

0.08286 
0.14352 

0.09448 
0.13361 

0.11292 
0.11292 

0.14938 
0.00000 

 
 
 
 

100.00 

1.00 0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

*0.10563 
0.10563 

 
Notes. First number for firm 1 and second for firm 2.  S1 = X1 = 100.00 and S2 = X2 = 100.00.  
Other real investment option parameters as in Tables 1A and 1B. 
*  Due to the symmetry of the assumptions, the response functions coincide to provide an 
infinite number of equilibria, and this point is approximated at the limit from f1→2 = f2→1 → 1– 
or f1→2 = f2→1 → 1+. 
 

 35



 
    Table 3 

   Optimal R&D learning effort (firm 1 / firm 2) 
 

Spillovers 1 → 2 Cost 
θ2 

Spillovers 
2 → 1 0.00 0.25 0.50 0.75 1.00 
0.00 0.14938 

0.24898 
0.14938 
0.23751 

0.14938 
0.22546 

0.14938 
0.21273 

0.14938 
0.19919 

0.25 0.08256 
0.24898 

0.08527 
0.24530 

0.08826 
0.24103 

0.09160 
0.23600 

0.09534 
0.23000 

0.50 0.00000 
0.24898 

0.00000 
0.24898 

0.00000 
0.24898 

0.00000 
0.24898 

0.00000 
0.24898 

0.75 0.00000 
0.24898 

0.00000 
0.24898 

0.00000 
0.24898 

0.00000 
0.24898 

0.00000 
0.24898 

 
 
 
 

50.00 

1.00 0.00000 
0.24898 

0.00000 
0.24898 

0.00000 
0.24898 

0.00000 
0.24898 

0.00000 
0.24898 

0.00 0.14938 
0.14938 

0.14938 
0.12937 

0.14938 
0.10563 

0.14938 
0.07469 

0.14938 
0.00000 

0.25 0.12937 
0.14938 

0.13361 
0.13361 

0.13830 
0.11292 

0.14352 
0.08286 

0.14938 
0.00000 

0.50 0.10563 
0.14938 

0.11292 
0.13830 

0.12197 
0.12197 

0.13361 
0.09448 

0.14938 
0.00000 

0.75 0.07469 
0.14938 

0.08286 
0.14352 

0.09448 
0.13361 

0.11292 
0.11292 

0.14938 
0.00000 

 
 
 
 

75.00 

1.00 0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

*0.10563 
0.10563 

0.00 0.14938 
0.09078 

0.14938 
0.05160 

0.14938 
0.00000 

0.14938 
0.00000 

0.14938 
0.00000 

0.25 0.14232 
0.09078 

0.14698 
0.05329 

0.14938 
0.00000 

0.14938 
0.00000 

0.14938 
0.00000 

0.50 0.13488 
0.09078 

0.14420 
0.05516 

0.14938 
0.00000 

0.14938 
0.00000 

0.14938 
0.00000 

0.75 0.12702 
0.09078 

0.14091 
0.05724 

0.14938 
0.00000 

0.14938 
0.00000 

0.14938 
0.00000 

 
 
 
 

100.00 

1.00 0.11863 
0.09078 

0.13698 
0.05958 

0.14938 
0.00000 

0.14938 
0.00000 

0.14938 
0.00000 

 
Notes. First number for firm 1 and second for firm 2.  S1 = X1 = 100.00 and S2 = X2 = 75.00.  
Other real investment option parameters as in Tables 1A and 1B. 
*  Due to the relative symmetry of the assumptions, the response functions coincide to 
provide an infinite number of equilibria, and this point is approximated at the limit from f1→2 
= f2→1 → 1– or f1→2 = f2→1 → 1+. 
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    Table 4 

   Optimal R&D learning effort (firm 1 / firm 2) 
 

Spillovers 1 → 2 Cost 
θ2 

Spillovers 
2 → 1 0.00 0.25 0.50 0.75 1.00 
0.00 0.09078 

0.34096 
0.09078 
0.33793 

0.09078 
0.33487 

0.09078 
0.33178 

0.09078 
0.32866 

0.25 0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.50 0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.75 0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

 
 
 
 

50.00 

1.00 0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00000 
0.34096 

0.00 0.09078 
0.21701 

0.09078 
0.21221 

0.09078 
0.20730 

0.09078 
0.20227 

0.09078 
0.19711 

0.25 0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.50 0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.75 0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

 
 
 
 

75.00 

1.00 0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00000 
0.21701 

0.00 0.09078 
0.14938 

0.09078 
0.14232 

0.09078 
0.13488 

0.09078 
0.12702 

0.09078 
0.11863 

0.25 0.05160 
0.14938 

0.05329 
0.14698 

0.05516 
0.14420 

0.05724 
0.14091 

0.05958 
0.13698 

0.50 0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

0.75 0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

 
 
 
 

100.00 

1.00 0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

0.00000 
0.14938 

 
Notes. First number for firmr 1 and second for firm 2.  S1 = X1 = 75.00 and S2 = X2 = 100.00.  
Other real investment option parameters as in Tables 1A and 1B. 
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Figure 1 
       Game with Spillovers: Tactical Resource Allocation Decision 
 
Notes: β1, β2 are the learning costs incurred by the two firms, F1(β1 | β2), F2(β2 | β1) are the 
investment option values before learning costs are subtracted, and β1

*(β2), β2
*(β1) are the 

optimal cost efforts (of each firm conditional on the effort of the other).  The equilibrium 
solution pair (β1

**, β2
**) is given by the intersection of the two optimal conditional cost effort 

curves. 
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        FIRM 1  
    
    H   L 
 
 
 
 
 
                   H                   F1(H, H), F2(H, H)         F1(L, H), F2(L, H) 
 
 
 
FIRM 2 
 
 
 
 
                  L                    F1(H, L), F2(H, L)           F1(L, L), F2(L, L) 
 
 
 
 
 
 
 

Figure 2 
                           Game with Learning Spillovers: Strategic Coordination Decision 
 
Notes: Firms 1 and 2 exhibit a High (H) or Low (L) degree of R&D coordination.  F1 and F2 
are the investment option values (before the cost of investments in coordinated R&D are 
subtracted).  F1(H, L) = F1[β1

**( H, L), β2
**( H, L)], F2(H, L) = F2[β1

**( H, L), β2
**( H, L)]. 
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        Effort of 
         Firm 2 
         1´s response function 
 
 
 
          E 
 
 
 
       2´s response function 
 
 
 
 
 
 
 
 
 

     Effort of Firm 1 
 
Figure 3a 

Unique Optimal (Learning) R&D Solution – the general case 
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           Effort of Firm 1 
 
Figure 3b 

Unique Optimal (Learning) R&D Solution – free lunch for firm 2 
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Figure 3c 

Multiple Optimal (Learning) R&D Solutions 
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     FIRM 1  
    
    H   L 
 
 
 
                                        16.3155,    7.4114            5.7594,    3.7296 
                                         (0.0000,    0.5136)         (0.1702,    0.1228) 
                   H                      80.00,    25.00                80.00,    75.00 
                                              0.75,    0.75                    0.75,    0.25   
 
 
FIRM 2 
 
 
                                        9.9166,    7.4114              4.5915,    3.4628 
                                       (0.0000,    0.5136)           (0.1374,    0.1171) 
                  L                    100.00,    25.00               100.00,    80.00 
                                            0.25,    0.75                     0.25,    0.25 
 
 
 
 

Figure 4 
                           Game with Learning Spillovers: Strategic Coordination Decision 
 
Notes: Firms 1 and 2 exhibit a High (H) or Low (L) degree of R&D coordination.  The 
numerical results for the investment option values under optimal effort are presented first 
(with the Nash equilibrium in bold).  Numbers in parenthesis present the firms’ effort.  Below 
we provide the costs θ1 and θ2, and each firm’s degree of spillover from the other firm’s 
effort.  Option parameter values are: S1 = X1 = 100.00, S2 = X2 = 75.00, dividend yields δ1 = δ2 
= 0.10, riskless rate r = 0.10, standard deviation of the continuous change of the underlying 
assets σ1 = σ2 = 0.10, time to maturity for both options T = 1.00.   

 43



 
 
     FIRM 1  
    
    H   L 
 
 
 
                                         4.5076,    4.8640            5.1513,    3.4829 
                                        (0.1727,    0.0000)         (0.1506,    0.0977) 
                   H                     90.00,    75.00                90.00,    85.00 
                                             0.75,    0.75                    0.75,    0.25   
 
 
FIRM 2 
 
 
                                       4.4205,    4.3453              4.5055,    3.4209 
                                      (0.1435,    0.0829)           (0.1405,    0.1013) 
                  L                    100.00,    75.00               100.00,    85.00 
                                            0.25,    0.75                     0.25,    0.25 
 
 
 
 

Figure 5 
                           Game with Learning Spillovers: Strategic Coordination Decision 
 
Notes: Firms 1 and 2 exhibit a High (H) or Low (L) degree of R&D coordination.  The 
numerical results for the investment option values under optimal effort are presented first 
(with the Nash equilibrium in bold).  Numbers in parenthesis present the firms’ effort.  Below 
we provide the costs θ1 and θ2, and each firm’s degree of spillover from the other firm’s 
effort.  Option parameter values are: S1 = X1 = 100.00, S2 = X2 = 75.00, dividend yields δ1 = δ2 
= 0.10, riskless rate r = 0.10, standard deviation of the continuous change of the underlying 
assets σ1 = σ2 = 0.10, time to maturity for both options T = 1.00.   
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     FIRM 1  
    
    H   L 
 
 
 
                                          4.5186,   3.8350            4.7988,    3.3586 
                                         (0.1401,    0.0734)        (0.1297,    0.1049) 
                   H                   100.00,    85.00              100.00,    85.00 
                                             0.50,    0.50                    0.50,    0.25   
 
 
FIRM 2 
 
 
                                       4.3645,    3.9005              4.5055,    3.4209 
                                      (0.1455,    0.0680)           (0.1405,    0.1013) 
                  L                    100.00,    85.00               100.00,    85.00 
                                            0.25,    0.50                     0.25,    0.25 
 
 
 
 

Figure 6 
                           Game with Learning Spillovers: Strategic Coordination Decision 
 
Notes: Firms 1 and 2 exhibit a High (H) or Low (L) degree of R&D coordination.  The 
numerical results for the investment option values under optimal effort are presented first 
(with the Nash equilibrium in bold).  Numbers in parenthesis present the firms’ effort.  Below 
we provide the costs θ1 and θ2, and each firm’s degree of spillover from the other firm’s 
effort.  Option parameter values are: S1 = X1 = 100.00, S2 = X2 = 75.00, dividend yields δ1 = δ2 
= 0.10, riskless rate r = 0.10, standard deviation of the continuous change of the underlying 
assets σ1 = σ2 = 0.10, time to maturity for both options T = 1.00.   
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FIRM 1  

    
    H   L 
 
 
 
                                         6.2356,   4.3422            5.5622,    3.7309 
                                       (0.1417,    0.1886)        (0.1552,    0.1450) 
                   H                     82.00,    57.00                85.00,    70.00 
                                             0.50,    0.50                    0.50,    0.25   
 
 
FIRM 2 
 
 
                                       5.1596,    4.3185              4.9779,    3.7400 
                                      (0.1502,    0.1702)           (0.1568,    0.1446) 
                  L                      90.00,    60.00                 90.00,    70.00 
                                            0.25,    0.50                     0.25,    0.25 
 
 
 
 

Figure 7 
                           Game with Learning Spillovers: Strategic Coordination Decision 
 
Notes: Firms 1 and 2 exhibit a High (H) or Low (L) degree of R&D coordination.  The 
numerical results for the investment option values under optimal effort are presented first 
(with the Nash equilibrium in bold).  Numbers in parenthesis present the firms’ effort.  Below 
we provide the costs θ1 and θ2, and each firm’s degree of spillover from the other firm’s 
effort.  Option parameter values are: S1 = X1 = 100.00, S2 = X2 = 75.00, dividend yields δ1 = δ2 
= 0.10, riskless rate r = 0.10, standard deviation of the continuous change of the underlying 
assets σ1 = σ2 = 0.10, time to maturity for both options T = 1.00.   
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Table 4A 

Impact response functions 
   Firm 1 optimizing conditional on 2’s effort 

 
   Total impact effort 
1’s effort    2’s effort 

Impact cost 
1’s cost       2’s cost 

Net call option value 
1’s option   2’s option 

0.08266 0.01785 3.4168 0.1594 6.2138 6.9726 
0.08719 0.03785 3.8013 0.7165 7.0636 8.0927 
0.09119 0.05785 4.1579 1.6736 7.9559 8.9596 
0.09472 0.07785 4.4863 3.0307 8.8858 9.5515 
0.09785 0.09785 4.7878 4.7878 9.8490 9.8491 
0.10065 0.11785 5.0649 6.9449 10.8418 9.8354 
0.10315 0.13785 5.3204 9.5020 11.8610 9.4971 
0.10543 0.15785 5.5573 12.4591 12.9041 8.8243 
0.10750 0.17785 5.7787 15.8162 13.9689 7.8101 

 
 
    Table 4B 

Impact response functions 
   Firm 2 optimizing conditional on 1’s effort 

 
   Total impact effort 
1’s effort    2’s effort 

Impact cost 
1’s cost       2’s cost 

Net call option value 
1’s option   2’s option 

0.017855 0.082665 0.1594 3.4168 6.9726 6.2138 
0.037855 0.087192 0.7165 3.8013 8.0927 7.0636 
0.057855 0.091191 1.6736 4.1579 8.9596 7.9559 
0.077855 0.094724 3.0307 4.4863 9.5515 8.8858 
0.097855 0.097855 4.7878 4.7878 9.8491 9.8490 
0.117855 0.100647 6.9449 5.0649 9.8354 10.8418 
0.137855 0.103154 9.5020 5.3204 9.4971 11.8610 
0.157855 0.105426 12.4591 5.5573 8.8243 12.9041 
0.177855 0.107505 15.8162 5.7787 7.8101 13.9689 
 
Notes (for 4A and 4B). Investment options’ parameters are: underlying 
assets S1 = S2 = 100.00, exercise prices X1 = X2 = 100.00, dividend yields 
δ1 = δ2 = 0.10, riskless rate r = 0.10, standard deviation of the continuous 
change of the underlying assets σ1 = σ2 = 0.10, time to maturity for both 
options T = 1.00.   

Impact cost parameters θ1 = 500.00 and θ2 = 500.00 with 
spillover of impact 50% (for 1 → 2) and 50% (for 2 → 1).  Impact 

induced volatility equals  for both 

firms.  Admissible impact range is bounded below 100%. 
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FIRM 1  
    
    H   L 
 
 
 
                                      21.3807,    16.4136         14.2699,    7.2619 
                                       (0.2566,    0.1856)          (0.2366,    0.0702) 
                   H                   250.00,    250.00            250.00,    500.00 
                                             0.50,    0.50                    0.50,    0.25   
 
 
FIRM 2 
 
 
                                        9.1118,    9.3363             6.7082,    4.8011 
                                       (0.0955,    0.1652)          (0.0854,    0.0592) 
                  L                    500.00,    250.00             500.00,    500.00 
                                            0.25,    0.50                     0.25,    0.25 
 
 
 
 

Figure 9 
                           Game with Impact Spillovers: Strategic Coordination Decision 
 

Notes: Firms 1 and 2 exhibit a High (H) or Low (L) degree of R&D coordination.  
The numerical results for the investment option values under optimal effort are presented first 
(with the Nash equilibrium in bold).  Numbers in parenthesis present the firms’ effort.  Below 
we provide the costs θ1 and θ2, and each firm’s degree of spillover from the other firm’s 
effort.  Option parameter values are: S1 = X1 = 100.00, S2 = X2 = 75.00, dividend yields δ1 = δ2 
= 0.10, riskless rate r = 0.10, standard deviation of the continuous change of the underlying 
assets σ1 = σ2 = 0.10, time to maturity for both options T = 1.00.  The impact induced 

volatility for both firms equals ∑ ∑ act 

range is bounded below 100%. 
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FIRM 1  
    
    H   L 
 
 
 
                                         7.1494,   4.5636           10.6827,    1.4637 
                                       (0.1153,    0.0578)          (0.2251,    0.0271) 
                   H                   400.00,   500.00             250.00,    500.00 
                                             0.15,   0.15                     0.15,   -0.25   
 
 
FIRM 2 
 
 
                                       3.0131,    6.1968              9.1651,     1.6091 
                                      (0.0542,    0.1508)            (0.2192,    0.0384) 
                  L                   500.00,    250.00               250.00,    400.00 
                                          -0.25,    0.15                     -0.25,    -0.25 
 
 
 
 

Figure 10 
                           Game with Impact Spillovers: Strategic Coordination Decision 
 

Notes: Firms 1 and 2 exhibit a High (H) or Low (L) degree of R&D coordination.  
The numerical results for the investment option values under optimal effort are presented first 
(with the Nash equilibrium in bold).  Numbers in parenthesis present the firms’ effort.  Below 
we provide the costs θ1 and θ2, and each firm’s degree of spillover from the other firm’s 
effort.  Option parameter values are: S1 = X1 = 100.00, S2 = X2 = 75.00, dividend yields δ1 = δ2 
= 0.10, riskless rate r = 0.10, standard deviation of the continuous change of the underlying 
assets σ1 = σ2 = 0.10, time to maturity for both options T = 1.00.  The impact induced 

volatility for both firms equals ∑ ∑ act 

range is bounded below 100%. 
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