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1 Introduction

The benchmark model is a classic real option problem: an investor owns a right
to invest in a project, and his optimization problem is to find the optimal time
to invest, given uncertainty about project cash flows1. The purpose of this pa-
per is to analyze what happens if some agents have private information about
the project’s investment. Thus, an incentive problem is introduced by assuming
arises because some agents have private information about the (constant) invest-
ment cost, and the project owner needs an expert to manage the investment.
The project owner organizes an auction, where the privately informed agents
participate. The project owner’s problem is to find a contract which optimizes
his value of the investment project, given the agents’ private information.

In this paper the model in Mæland (2002) is extended. In Mæland (2002) a simi-
lar investment problem is studied, but where only one agent has private informa-
tion. Hence, the problem is analyzed within a principal-agent framework. In this
case an optimal contract is found, where the investment decision is delegated to
the privately informed agent. Furthermore, a result is that private information
may lead to under-investment, compared to the situation of full information.

The problem applies to all types of real options where there is private information.
Thus, applications can be found both within corporate valuation and government
regulation.

In most cases it is more reasonable to assume that there are more than one agent
having private information, than the problem of only one agent with private
information discussed in Mæland (2002). One application is a situation where
a company owns some oil resources, and needs to rely on a privately informed
supplier of technical solutions, in order to exploit the resources. Typically there
exists more than one supplier having private information about technical solu-
tions for producing the resources.

In the auction model below we assume that n agents competing about the man-
agement of the investment project. The investment cost of each agent may be
different, reflecting that the agents’ qualifications may not be identical.

The incorporation of competition follows an approach similar to Laffont and Ti-
role (1987). Laffont and Tirole (1987) assume that the respective agents’ private

1Such a model is analyzed in Dixit and Pindyck (1994), Bjerksund and Ekern (1990), Pad-
dock, Siegel, and Smith (1988), among others.
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information is constant and formulate their model as a second-price sealed-bid
private-values auction, also called a Vickrey auction. In such an auction, each
bidder simultaneously submits a bid, without seeing others’ bids, and the contract
is given to the bidder who makes the best bid. However, the contract is priced
according to the second-best bidder. Although we apply a Vickrey auction in
the presentation below, it can be shown by the revenue equivalence theorem that
under the assumptions we use the results does not depend on the organization
of the auction2.

2 Model assumptions

We assume that n agents compete about a contract that gives the winner the
right to manage the investment strategy (or more specifically, gives the winner the
right to decide on an optimal stopping strategy), and to receive a pre-determined
compensation.

Each agent i has private information about his own cost of the investment, Ki,
but has no private information about the competitors’ costs. We define the com-
petitors’ costs by the vector K−i = (K1, ...,Ki−1,Ki+1, ...,Kn). The investor is
now called the auctioneer (and he is identical to the principal in the principal-
agent models). The auctioneer does not observe any of the n agents’ investment
cost parameter values, but it is common knowledge that the values are drawn
independently from the same distribution, having a cumulative distribution func-
tion F (·) on the interval [K,K].3 We assume that F (·) is absolutely continuous.

2The revenue equivalence theorem says that by any auction mechanism in which (i) the
contract always goes to the buyer with the best bid, and (ii) any bidder with the worst bid
expects zero surplus, yields the same expected revenue, and results in the same compensation
as a function of his report. Thus, when the revenue equivalence compensation is satisfied, the
expected outcome from the auction is the same no matter how the auction is organized. See
Klemperer (1999), Myerson (1981), Riley and Samuelson (1981) and Vickrey (1961).

3The assumptions that the cost parameters are different for the agents, and that the param-
eter values are independently drawn from the same distribution, are important for the results.
An alternative assumption we could make about the agents’ information, is that the true value
is the same for everyone, but that the agents’ have different information about the true value.
In this case one agent learns about the true value if he observes another agent’s signal. If
these assumptions are made, the game is analyzed in a pure common-value model, whereas our
assumptions about the agents’ information above yield a private-value model, see an overview
of auction theory by Klemperer (1999). We can also assume models where both kinds of in-
formation is present, i.e., where the value of an object differs from agent to agent (for example
because of subjective valuation), and where at the same time each agent learns more about the
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As F (·) is common knowledge, agent i’s knowledge about the competitors’ true
investment cost is identical to the auctioneer’s knowledge. We assume that the
fraction F (·)/f(·) is non-decreasing.

The option to invest in the project is perpetual. The output value (the value of
the ”asset in place”) from the investment project is denoted St, and is known by
all the participants in the auction, including the auctioneer. The output value
St is a stochastic process, defined by a complete probability space (Ω,F , P ) and
state space (0,∞). Under the equivalent martingale measure Q the stochastic
process is given by

dSt = (rSt − δ(St))dt + σ(St)dBS
t , s ≡ S0. (1)

The parameter r denotes the risk free rate, δ(·) denotes the convenience yield
function, σ(·) is the volatility function, and BS

t is a standard Brownian motion
with respect to the equivalent martingale measure. The functions δ(·) > 0 and
σ(·) > 0 are Lipschitz continuous. Moreover, the stochastic process in (1) is a
linear diffusion.

It is assumed that the investor’s information at time t is given by FS
t , generated

by {Sξ, ξ ≤ t}. Each agent i’s information at time t is given by FS,Ki

t generated
by {Sξ,K

i, ξ ≤ t}.

Define the vector of reports by K̂ = (K̂1, ..., K̂n). Each agent i’s expected com-
pensation Xi(St, K̂) is received at the time the investment is exercised. Observe
that the compensation function may be dependent on the vector of all reports
K̂ = (K̂1, ..., K̂n), in addition to all the observable quantities.

The investment strategy, if agent i wins the contract, is given by the optimal
stopping time τ i

K̂
, and based on the reports given by the agents, as well as the

value of St. Moreover, the investment strategy is time independent, as the option
to invest is perpetual and St is driven by a time-homogeneous stochastic process.
We denote the critical price by Si(K̂). When St > Si(K̂) the strategy prescribes
immediate investment, whereas the investment is postponed if St ≤ Si(K̂). Note
that as the investment strategy Si(K̂) may be dependent on all the cost reports,
the investment strategy is stochastic to each agent i.

value from others’ signals. Klemperer (1999) refers to any model in which the value depends on
some extent on others’ bids, as common-value models.

The revenue equivalence theorem applies only in the case of a private-value model, or if the
bidders’ signals are independent.
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The auction is organized such that the agents simultaneously report their invest-
ment cost K̂ ≡ (K̂1, ..., K̂n) to the auctioneer. The agents do not know the other
agents’ reports.

We introduce a control variable yi(·) that depends on the vector of the agents’
reports K̂. By yi(·) the auctioneer decides on the winner of the contract. Thus,
the variable can be interpreted as a probability, where yi(K̂) is the probability
that agent i wins the contract. We make the following restrictions:∑n

i=1 yi(K̂) ≤ 1 for any K̂, (2)

i.e., the sum of each agent’s probability of winning the contract cannot exceed
one. In addition, as probabilities are always negative, we assume that

yi(K̂) ≥ 0 for any K̂. (3)

Incentive mechanisms. We shall see that the results of the auction lead to the
same outcome whether it is the auctioneer or the winning agent who decides on
the investment strategy. However, in order to solve the problem, we now assume
that the auctioneer decides on the investment strategy (i.e., on the optimal stop-
ping time) based on the winning agent’s cost report. Thus, the incentive scheme
is given by (Xi(K̂), τ i

K̂
, yi(K̂)). As we look for truth telling equilibria, we ap-

proach the problem in the same way as for an analogous principal-agent problem.
More specifically, we look for mechanisms (Xi(K̂), τ i

K̂
, yi(K̂)) that induce truth

telling Bayesian Nash equilibria4.

For simplicity we assume that the investment cost is not correlated to capital
markets.

Agent i’s value function vi(·) is given by the value of the compensation function
reduced by the expected investment cost, where the expected investment cost is
adjusted for the probability of winning the contract, i.e.,

vi(s,Ki; K̂i) = E

[
e
−rτ i

K̂

(
Xi(Sτ i

K̂
, K̂)− yi(K̂)Ki

)+
∣∣∣∣∣FS,Ki

0

]
, (4)

4In a Bayesian Nash equilibrium each agent’s reporting strategy is a function of his own
information, and each agent maximizes his value function given the other agents’ strategies,
and given his beliefs about the other agents’ information. In our model the agents’ beliefs
about the others’ private information is given by the probability density f(·) together with the
limits θ and θ. A Bayesian Nash equilibrium is the appropriate equilibrium concept in auctions
because of the presence of asymmetric information.
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where τ i
K̂

is a stopping time for agent i. We may note that agent i’s value
function is identical to the no competition case in in Mæland (2002) when n = 1.
In the no competition case yi(K) equals 1. However, when n > 1 the investment
cost is corrected for the probability that the agent obtains the contract. This
implies that the expected cost is lower than under no competition. Furthermore,
when n > 1, equation (4) shows that the compensation Xi(·) and the investment
strategy τ i

K̂
may depend on the competitors’ reports as well as the report of

each agent i. Hence, when two or more agents compete about a contract the
investment strategy and the value of the compensation may be stochastic to the
winning agent.

The auctioneer’s value function is given by

vP (s; K̂) = E

[
n∑

i=1

e
−rτ i

K̂

(
yi(K̂)Sτ i

K̂
−Xi(Sτ i

K̂
; K̂)

)∣∣∣∣∣FS
0

]
. (5)

The auctioneer’s value of the investment depends on the net present value of
future cash flows, reduced by the sum of the transfer functions Xi(·). The term
y(K̂)Sτ i

K̂
is the output value the auctioneer obtains at the investment time, ad-

justed for the probability that agent i wins the contract. To find the auctioneer’s
expected value of the output from the project, we need to sum up over all the
agents participating in the contract, as done in (5). The compensation Xi is the
amount paid to each agent i.

The optimization problem. We are now ready to state the auctioneer’s optimiza-
tion problem:

V P (s; K̂) = sup
Xi(·),τ i,yi(·)

vP (s; K̂), (6)

subject to each agent i’s optimization problem

V i(s,Ki; K̂i) = sup
K̂i

vi(s,Ki; K̂i). (7)

Our aim is to find an optimal contract where the winner’s investment strategy
is delegated to the contract winner, whereas in the above formulation of the
optimization problem, each agent only optimizes his value function with respect
to the report K̂i. However, this is just a device in order to solve the problem. In
section 5 we find an implementable, optimal compensation where the investment
decision is delegated to the privately informed winner. In addition to the stopping
problems τ i, the auctioneer optimizes his value function with respect to the
compensations Xi(·) and each agent i’s probability of winning the auction, yi(·).
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Valuation of the expected, future cash flows. Define FS,K
t as the information set

at time t under full information, generated by {Sξ,K, ξ ≤ t}. By a result from
the theory of linear diffusions5, the value of the ”discounting factor” of agent i is
expressed as6

E
[
e
−rτ i

K̂ |FS,K
0

]
=


φ(s)

φ(Si(K̂))
if s ≤ Si(K̂)

1 if s > Si(K̂)
(8)

where φ(·) is a strictly positive and increasing function. Defining u(s) = E
[
e
−rτ i

K̂ |FS,K
0

]
,

the value of the discounting factor satisfies the ordinary differential equation

1
2
(σ(s))2

∂2u

∂s2
+ (rs− δ(s))

∂u

∂s
− ru(s) = 0,

with boundaries lims↓Si(K̂) u(s) = 0 and lims↑Si(K̂) u(s) = 1. We interpret equa-
tion (8) as the value of the discounting factor given that the vector of investment
cost reports is known.

Using the result in equation (8), agent i’s value function may be formulated as
(computed in appendix A.1),

vi(s,Ki; K̂i) = E

[
φ(s)

φ(Si(K̂))

(
Xi(Si(K̂), K̂)− yi(K̂)Ki

)
I{s≤Si(K̂)}

+
(
Xi(s, K̂)− yi(K̂)Ki

)
I{s>Si(K̂)}

∣∣∣∣FS,Ki

0

]
.

(9)

As long as n > 1, i.e., when we have competition, the direct mechanism now may
be stochastic as agent i only observes his own report, and not the others. This
means that agent i’s value function in the auction model does not consist only
of ”deterministic” functions, as is the case if n = 1.

If the auctioneer does not observe the agents’ cost parameter, his value function
is given by,

vP (s; K̂) = E

[∑n
i=1

{
φ(s)

φ(Si(K̂))

(
yi(K̂)Si(K̂)−Xi(Si(K̂), K̂)

)
I{s≤Si(K̂)}

+
(
yi(K̂)s−Xi(s, K̂)

)
I{s>Si(K̂)}

}∣∣∣∣FS
0

]
,

(10)
5A linear diffusion is a one-dimensional, strong Markov process with continuous value paths

taking values on an interval, see Borodin and Salminen (1996), ch. II.
6Confer Itô and McKean (1965), section 4.6 and Borodin and Salminen (1996), section II.10.
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derived in appendix A.2.

The reformulations of the auctioneer’s and the agents’ respective value functions
simplify the optimization problem given by (6) to (7), as the value functions no
longer are stochastic with respect to the value of the variable St. However, the
value functions are still uncertain with respect to the auctioneer’s and the agents’
respective vectors of unobservable investment cost parameters.

3 The agents’ reporting behavior

Similarly to the approach in the principal-agent models we find a truth telling
equilibrium, implying that the first-order condition for the report K̂ must be
satisfied for each agent i at the point where K̂i = Ki, i.e.,

∂vi(s,Ki; K̂i)
∂K̂i

∣∣∣∣∣
K̂i=Ki

= 0. (11)

Hence, for the truth telling condition to hold, reporting the true cost is optimal
for each agent i when the condition in (11) is satisfied.

Let now vi(s,Ki) be each agent i’s value function given truth telling. The value
function of agent i under truth telling is written as

vi(s,Ki) = E
[

φ(s)
φ(Si(K))

(
Xi(Si(K),K)− yi(K)Ki

)
I{s≤Si(K)}

+
(
Xi(s,K)− yi(K)Ki

)
I{s>Si(K)}

∣∣∣FS,Ki

0

]
,

(12)

which is equal to equation (9) with the exception that the vector K̂ is replaced
by the vector K.

By the envelope theorem, the first-order condition in (11) is found as

dvi(s,Ki)
dKi

= E

[
− φ(s)

φ(Si(K))
yi(K)I{s≤Si(K)} − yi(K)I{s>Si(K)}

∣∣∣∣FS,Ki

0

]
. (13)

The second-order condition mimics to the second-order condition for truth telling
in Mæland (2002).

Integration of both sides of the first-order condition in (13) leads to an expression
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of agent i’s value of private information,

vi(s,Ki)

= E
[∫ K

Ki
φ(s)

φ(Si(K−i,u))
yi(K−i, u)duI{s≤Si(K)} +

(∫ ϑ(s,K−i)
Ki yi(K−i, u)du

+
∫ K
ϑ(s,K−i)

φi(s)
φi(Si(K−i,u))

yi(K−i, u)du
)

I{s>Si(K)}

∣∣∣FS,Ki

0

]
.

(14)
In equation (14) we have formulated agent i’s value of private information with-
out including the unknown compensation function Xi(·). Agent i’s value of
private information differs from the agent’s value in the principal-agent model in
Mæland (2002) because the auction model adjusts each agent’s value of private
information for the probability of winning the contract. Also, the value of private
information is stochastic as each agent does not observe the other agents’ private
information.

4 The auctioneer’s optimization problem

In this section we solve the auctioneer’s optimization problem, i.e., we choose
the winner of the auction and find the optimal investment strategy. In order to
do so, we approach the problem in the same way as earlier: we substitute the
compensation function, Xi(·), by agent i’s value function in equation (12). Then
the auctioneer’s optimization problem in (10) is reformulated as

V P (s,K)

= supSi(·),yi(·) E
[∑n

i=1

{
φ(s)

φ(Si(K))
yi(K)

(
Si(K)−Ki

)
I{s≤Si(K)}

+yi(K)
(
s−Ki

)
I{s>Si(K)} − vi(s,Ki)

}∣∣∣FS
0

]
,

(15)

where vi(s,Ki) is given by (14).

Observe that the optimization problem could be simplified if the trigger price Si

were dependent only on agent i’s cost level Ki, instead the vector of all costs, K.
The reason is that if Si(Ki) equals Si(K) we can optimize the auctioneer’s value
with respect to each agent i separately. In appendix A.3, it is shown that this
is the optimal solution indeed, i.e., Si∗(Ki) = Si∗(K), where Si∗(·) is defined as
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the optimal entry threshold of agent i. The idea of this simplification is based
on Laffont and Tirole (1987), where a similar argument is used to show that a
random incentive scheme is not optimal in the solution of their problem.

The auctioneer’s value function is linearly dependent upon the probability that
agent i is the winner of the contract, yi(K). Thus, we can substitute yi(K) by
defining Y i(Ki) = E

[
yi(K)|FS,Ki

0

]
in the optimization problem (15), where the

function Y i(Ki) is interpreted as agent i’s probability of winning the contract.

Define V̂ P (s;Ki) = supSi(·),yi(·) v̂P (s;Ki) as the auctioneer’s optimization prob-
lem when Si(K) is replaced by Si(Ki). For given yi(·), and hence for given Y i(·),
the auctioneer’s optimization problem (derived in appendix A.4), is given by

V̂ P (s;Ki)

= supSi(·)
∑n

i=1

{∫ K
K

[
φ(s)

φ(Si(Ki))
Y i(Ki)

(
Si(Ki)−Ki − F (Ki)

f(Ki)

)
I{s≤Si(Ki)}

+
(
Y i(Ki)

(
s−Ki − F (Ki)

f(Ki)

))
I{s>Si(Ki)}

]
f(Ki)dKi

}
.

(16)

Observe that we now can separate the problem of finding the optimal critical price
Si∗(Ki), and the problem of choosing a winner of the contract. This means that
the optimal investment strategy is identical to the optimal investment strategy
in the principal-agent model in Mæland (2002), as will be seen by optimization of
the auctioneer’s simplified optimization problem in (16), with respect to Si(Ki),
i.e.,

Si∗(Ki)−Ki − F (Ki)
f(Ki)

=
φ(Si∗(Ki))
φ′(Si∗(Ki))

. (17)

The function φ′(Si∗(Ki)) denotes the derivative of φ(·) with respect to the opti-
mal investment strategy Si∗. The left-hand side of equality (17) represents the
net value of the auctioneer’s payoff at the time when the investment is exercised.
The right-hand side is interpreted as the opportunity cost of exercising the option
with payoff value equal to Si∗(Ki)−Ki − F (Ki)

f(Ki)
.

The control variable yi(K) is linear in the auctioneer’s problem of finding the
investment strategy of agent i. Therefore, we choose an optimal yi∗(K) such
that

yi∗(K) =


1 if Ki < minj 6=i K

j

0 if Ki > minj 6=i K
j .

(18)
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Thus, the agent with the lowest cost wins the contract, provided it is sufficiently
low. If Ki = minj 6=i K

j the auctioneer is indifferent between which agent to
choose as a winner of the contract.

As the optimal investment strategy given by (17) equals the optimal investment
strategy in the one-agent case, the efficiency is not improved when competition
is introduced. However, the winner of the contract in the competition proba-
bly has a lower investment cost than the agent in a principal-agent model, and
thereby the investment will probably take place at a lower cost. Moreover, if
the number of competing agents gets large, the winner’s cost level gets close to
the lowest possible cost, K. When the winner’s cost level converges to K, the
cumulative distribution F (·) converges to zero, which leads to no inefficiency in
the investment strategy.

5 Implementation of the contract

Using (14), (17) and (18), agent i’s value of private information is found as

V i(s;Ki) =


∫ K
Ki

φ(s)
φ(Si∗(u))

Y i∗(u)du if s ≤ Si∗(Ki)

∫ ϑ∗(s)
Ki Y i∗(u)du +

∫ K
ϑ∗(s)

φ(s)
φ(Si∗(u))

Y i∗(u)du if s > Si∗(Ki)
(19)

Hence, we find that agent i’s optimal value of the compensation Xi∗(s,Ki) is
given by

Xi∗(s,Ki) = KiY i∗(Ki) +
∫ ϑi∗(s)

Ki
Y i∗(u)du +

∫ K

ϑi∗(s)

φ(s)
φ(Si∗(u))

Y i∗(u)du, (20)

when s > Si∗(Ki). Otherwise, Xi∗(s,Ki) = 0. Equation (20) represents the
expected compensation of each agent participating in the auction. The main
difference between each agent’s value of the compensation in the auction and the
agent’s compensation in the principal-agent model in Mæland (2002), is that the
compensation function in the auction model is adjusted for the probability of
winning the contract, Y i∗(Ki). As the probability is lower than one, each agent’s
expected compensation in the auction model is lower than in the principal-agent
model.
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In the above expression of the optimal compensation function, each agent’s
strategy is optimal based on ”average quantities”, i.e., the strategy depends on
Y i(Ki) = E

[
yi(K)|FS,Ki

0

]
and Si(Ki) = E

[
Si(K)I{yi(K)=1}|F

S,Ki

0

]
.

Now, construct a dominant strategy auction7 where each agent has a reporting
strategy that is optimal for any reports by the other agents. We formulate a
second-price sealed-bid private values auction (or a Vickrey auction) that im-
plements the optimal investment strategy, and selects the agent with the lowest
cost. We denote the compensation function X̃i, and its value is given by

X̃i(s,K) =


ϑi∗(s) +

∫ Kj

ϑi∗(s)
φ(s)

φ(Si∗(u))
du if Si∗(Ki) < s ≤ Si∗(Kj)

Kj if s > Si∗(Kj),
(21)

if Ki = minh Kh and Kj = minh 6=i K
h. If s ≤ Si∗(Ki), X̃i(s,K) = 0. Thus,

X̃i is the optimal and implementable compensation to agent i, given that agent
i is the winner of the contract. Note that X̃i is the optimal compensation to
the winner of the contract, whereas Xi∗ is each agent i’s expected compensation
of participating in the auction. In appendix A.5 it is shown that each agent’s
expected value of the compensation function in (21), E

[
X̃i(s,K)|FS,Ki

0

]
, equals

the value in (20), i.e., Xi∗(s,Ki) = E
[
X̃i(s,K)|FS,Ki

0

]
.

The implementable compensation X̃i ensures that the agent having the lowest
investment cost obtains the contract. When agent i wins the contract, the agent’s
compensation equals the value of his private information when the distribution is
truncated at Kj . Thus, competition for the best agent amounts to a truncation
of the interval (K,K) to (K,Kj), where Kj is the second-lowest report.

To sum up, we see that the optimal compensation in (21) is formally identical to
the optimal compensation when there is only one agent, given in Mæland (2002),
with the exception that the truncation is changed from K to the second-lowest
report Kj . Truth telling is an optimal strategy, whether there are competing
agents or not. The only difference between the principal-agent model and the
auction is that the upper level of possible reports is changed, leading to a lower
value of the agent’s private information.

7A dominant strategy auction is an auction in which each agent has a strategy that is optimal
for any strategies of its competitors.
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6 Numerical illustration of the effect of competition

Under the assumptions that the value of the asset in place is driven by a geometric
Brownian motion,

dSt = (r − δS)Stdt + σSStdWt,

and the unobservable investment cost parameters Ki are uniformly distributed,
with

f(Ki) =
1

K −K
,

we illustrate some effects of competition. The parameter values used are as
follows:

Base case: The investment cost: Ki = 100
The lower limit of the investment cost: K = 50
The upper limit of the investment cost: K = 200
The risk-free rate: r = 0.05
The proportional convenience yield: δS = 0.03
Volatility of asset in place: σS = 0.10

The parameter values lead to the following pre-computed constants in the base
case:

The probability density, K ≤ Ki ≤ K: f(Ki) = 1/150
The distribution: F (Ki) = 50/150
The inverse hazard rate: F (Ki)/f(Ki) = 50
The positive root satisfying the ODE: β = 2
The entry threshold, full information: S∗

sym(Ki) = 200
The entry threshold, asymmetric information: Si∗(Ki) = 300
The entry threshold, asymmetric info., Ki = K:Si∗(K) = 700

In Figure 1 the winner’s compensation function X̃i is drawn for different levels
of the second-lowest cost report Kj . We assume that agent i is the winner, and
that agent j gives the second-lowest cost report. In the case where the cost of
the agent with the second-lowest report equals 200, i.e., Kj = 200, the winner’s
compensation is equal to the compensation when we have no competition, i.e.,
to the principal-agent model in Mæland (2002). The compensation functions
are equal in the two models in this case because agent j’s cost level coincide
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Figure 1: The compensation X̃i as a function of the asset value s for different
values of second-lowest cost report Kj .
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with the upper level cost K. As agent j’s cost level gets closer to the winner’s
investment cost Ki = 100, the value of the agent’s private information decreases.
Moreover, as agent j’s cost level decreases, the interval where the compensation
is independent of the asset value s gets larger. This is the effect from reducing
the possible cost reports from [K,K] to [K,Kj ]. In the limiting case, where
Kj = 100, the winner’s value of the contract is zero, as the winner only obtains
a compensation equal to his cost level for all asset values s. This situation is
illustrated in the lower curve in Figure 1. Observe that although the agent’s
value is zero, the situation does not necessarily coincide with the full information
case (except when Kj = K) as the optimal investment strategy is not the same
as under full information.
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Figure 2: The winner’s value V i as a function of the asset value s. The number
of competitors is denoted by n, Ki = 100.

n = 1
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n = 4
n = 6

Si∗
sym(K) Si∗(K) Si∗(K) s

Figure 2 illustrates the effect from competition on the agent’s value of private
information. In the figure we draw four curves representing the winner’s contract
value when there is no competition (n = 1), and when there are 2,4 and 6 competi-
tors, respectively. The value function represented by the upper curve, showing
the case of no competition, is identical to the agent’s value in the principal-agent
model. As the number of competitors increases, the winner’s value of the contract
falls rapidly. In our example, the winner’s value falls by about two thirds when
we go from no competition to two competitors. When there are six competitors
the value of each auction participant is close to zero.

Figure 3 illustrates the investor’s value of the contract under competition. The
upper curve is the full information case, whereas the lower curve is the value
when there is only one agent having private information. Thus, the lower curve

15
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Figure 3: The investor’s value Ṽ P as a function of the asset value s. The number
of participants in the auction is denoted by n. The upper curve: full information.
The lower curve: no competitors. The second-lower curve: n = 2. The second-
upper curve: n = 4. Base case, i.e., Ki = 100.
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is identical to the investor’s value under asymmetric information in the case of
no competition. The second-lower curve and the second-upper curve are the
investor’s values in the case of asymmetric information and when there are two
and four competitors, respectively. From Figure 3 we see that as the number
of competitors increases the agent’s value gets close to zero, implying that the
auctioneer’s value gets closer to the full information value. However, even when
the winner’s value is close to zero because of competition, the optimal investment
strategy is not efficient as long as the winner’s cost is above the lower limit K. The
effect is illustrated in Figure 3. When there are four competitors (corresponding
to the second-upper curve) the investor’s value almost coincides with the value
under full information in the interval where it is optimal to invest immediately,
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i.e., when s > Si∗(Ki) = 300. However, in the interval where s ≤ Si∗(Ki),
the difference between the full information case and the auctioneer’s value when
n = 4 is larger.

7 Concluding remarks

In this paper we have extended the principal-agent model in Mæland (2002) to
the case of n agents having private information. Similarly to the solutions of
the principal-agent models, we find optimal contracts via direct, truthful mecha-
nisms. We have found that the (second-best) optimal investment strategy is not
improved because of competition: it is identical whether we have competition
or not. The compensation, however, is lower in the case of competition, which
implies a higher value of the uninformed owner of the real option.
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A Appendix

A.1 Derivation of agent i’s value function in equation (9)

The value function in (9) is found as follows. Equation (4) equals

vi(s,Ki; K̂i) = E

[
e
−rτ i

K̂

(
Xi(Sτ i

K̂
, K̂)− yi(K̂)Ki

)+
∣∣∣∣∣FS,Ki

0

]
.

By conditional expectations, the value function is formulated as,

vi(s,Ki) = E

[
E

[
e
−rτ i

K̂

(
Xi(Sτ i

K̂
, K̂)− yi(K̂)Ki

)+
∣∣∣∣∣FS,K

0

]∣∣∣∣∣FS,Ki

0

]
.

Time-homogeneity implies that the value of the discounting factor can be written
independently of the value of the options’ payoff, i.e.,

vi(s,Ki) = E

[
E

[
e
−rτ i

K̂

∣∣∣FS,K
0

]
E

[(
Xi(Sτ i

K̂
, K̂)− yi(K̂)Ki

)+
∣∣∣∣∣FS,K

0

]∣∣∣∣∣FS,Ki

0

]
.
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From equation (8) we know that

E
[
e
−rτ i

K̂ |FS,K
0

]
=

φ(s)
φ(Si(K̂))

I{s≤Si(K̂)} + 1I{s>Si(K̂)}.

We exploit the relationship above, and replace Sτ i
K̂

by the critical price Si(K̂),
leading to

vi(s,Ki) = E

[
E

[
φ(s)

φ(Si(K̂))

(
Xi(Si(K̂), K̂)− yi(K̂)Ki

)
I{s≤Si(K̂)}

+
(
Xi(s, K̂)− yi(K̂)Ki

)
I{s>Si(K̂)}

∣∣∣∣FS,K
0

]∣∣∣∣FS,Ki

0

]
.

By conditional expectations we obtain,

vi(s,Ki) = E

[
φ(s)

φ(Si(K̂))

(
Xi(Si(K̂), K̂)− yi(K̂)Ki

)
I{s≤Si(K̂)}

+
(
Xi(s, K̂)− yi(K̂)Ki

)
I{s>Si(K̂)}

∣∣∣∣FS,Ki

0

]
,

identical to equation (9) in the text.

A.2 Deriving the auctioneer’s value function in equation (10)

The auctioneer’s value function is in (5) given by

vP (s; K̂) = E

[
n∑

i=1

e
−rτ i

K̂

(
yi(K̂)Sτ i

K̂
−Xi(Sτ i

K̂
, K̂)

)+
∣∣∣∣∣FS

0

]
.

Conditional expectations lead to

vP (s; K̂) = E

[
E

[
n∑

i=1

e
−rτ i

K̂

(
yi(K̂)S(τ i

K̂
)−Xi(S(τ i

K̂
), K̂)

)+
∣∣∣∣∣FS,K

0

]∣∣∣∣∣FS
0

]
.

Because of time-homogeneity we are allowed to separate the expression of the
discounting term from the option’s payoff as follows,

vP (s; K̂)

= E

[
E

[∑n
i=1 e

−rτ i
K̂

∣∣∣FS,K
0

]
E

[
yi(K̂)Sτ i

K̂
−Xi(Sτ i

K̂
, K̂)

∣∣∣∣FS,K
0

]∣∣∣∣FS
0

]
.
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Next, we insert the value of the discounting factor as expressed in equation (8),
given an (arbitrary) value of the investment trigger, Si(K̂),

vP (s; K̂) = E

[
E

[∑n
i=1

{
φ(s)

φ(Si(K̂))

(
yi(K̂)Si(K̂)−Xi(Si(K̂), K̂)

)
I{s≤Si(K̂)}

+
(
yi(K̂)s−Xi(s, K̂)

)
I{s>Si(K̂)}

}∣∣∣FS,K
0

]∣∣∣FS
0

]
.

This expression is equivalent to

vP (s; K̂) = E

[∑n
i=1

{
φ(s)

φ(Si(K̂))

(
yi(K̂)Si(K̂)−Xi(Si(K̂), K̂)

)
I{s≤Si(K̂)}

+
(
yi(K̂)s−Xi(s, K̂)

)
I{s>Si(K̂)}

}∣∣∣FS
0

]
,

which is identical to equation (10).

A.3 Properties of the optimal investment strategy

We now prove that in optimum we have Si∗(K) = Si∗(Ki).

Suppose that agent i is the winner of the contract, i.e., yi(K) = 1. Define agent
i’s expected critical price as Si(Ki) = E

[
Si(K)I{yi(K)=1}|F

S,Ki

0

]
. For s ≤ Si(K),

the principal’s value if agent i wins the contract can be written as (from (15))

E

[
φ(s)

φ(Si(K))

(
Si(K)−Ki

)
I{s≤Si(K)} + (s−Ki)I{s>Si(K)} − vi(s,Ki)|FS

0

]
.

Observe that, by Jensen’s inequality,

E
[
φ(Si(K))I{yi(K)=1}|FS

0

]
≥ φ(Si(Ki)),

under the assumption that φ(·) is a convex function and

φ(Si(Ki)) = φ(E[Si(K)I{yi(K)=1}|FS
0 ]).

This implies that

φ(s)
φ(Si(Ki))

(
Si(Ki)−Ki

)
− vi(s,Ki)

≥ E
[(

φ(s)
φ(Si(K))

(
Si(K)−Ki

)
− vi(s,Ki)

)
I{yi(K)=1}|FS

0

]
.

Thus, the auctioneer’s value function can be replaced by a larger quantity, sub-
stituting Si(K) by Si(Ki). From this result we see that a stochastic mechanism
as given by Si(K) is not optimal.
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A.4 The auctioneer’s simplified optimization problem

Define v̂P as the auctioneer’s arbitrary value function when Si(Ki) = Si(K).
Replace the investment triggers Si(K) by Si(Ki), in the principal’s value function
specified by equation (15), leading to

v̂P (s,K) = E
[∑n

i=1

{
φ(s)

φ(Si(Ki))
yi(K)

(
Si(Ki)−Ki

)
I{s≤Si(Ki)}

+yi(K)
(
s−Ki

)
I{s>Si(Ki)} − vi(s0,K

i)
}∣∣∣FS

0

]
.

Furthermore, conditional expectations yield

v̂P (s,K) = E
[∑n

i=1 E
[{

φ(s)
φ(Si(Ki))

yi(K)
(
Si(Ki)−Ki

)
I{s≤Si(Ki)}

+yi(K)
(
s−Ki

)
I{s>Si(Ki)} − vi(s0,K

i)
}∣∣∣FS,Ki

0

]∣∣∣FS
0

]
,

which, by exploiting the definition Y i(Ki) = E
[
yi(K)|FS,Ki

0

]
, is written as

v̂P (s,K) = E
[∑n

i=1 E
[{

φ(s)
φ(Si(Ki))

Y i(Ki)
(
Si(Ki)−Ki

)
I{s≤Si(Ki)}

+Y i(Ki)
(
s−Ki

)
I{s>Si(Ki)} − vi(s0,K

i)
}∣∣∣FS,Ki

0

]∣∣∣FS
0

]
.

Each agent’s ”contribution” to the auctioneer’s value is an expression that de-
pends only on each agent’s report Ki (i.e., the direct mechanism is not stochastic),
which means that the outer expectation operator is superfluous, resulting in

v̂P (s,Ki) =
∑n

i=1 E
[

φ(s)
φ(Si(Ki))

Y i(Ki)
(
Si(Ki)−Ki

)
I{s≤Si(Ki)}

+Y i(Ki)
(
s−Ki

)
I{s>Si(Ki)} − vi(s,Ki)|FS,Ki

0

]
.

The above expression can equivalently be written

v̂P (s,Ki) =
∑n

i=1

{∫ K
K

[
φ(s)

φ(Si(Ki))
Y i(Ki)

(
Si(Ki)−Ki

)
I{s≤Si(Ki)}

+Y i(Ki)
(
s−Ki

)
I{s>Si(Ki)} − vi(s,Ki)

]
f(Ki)dKi

}
.
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Substituting the expression in (14) into the value above, and replacing Si(K) by
Si(Ki), leads to

v̂P (s,K)

=
∑n

i=1

{∫ K
K

[(
φ(s)

φ(Si(Ki))
Y i(Ki)

(
Si(Ki)−Ki

)
−

∫ K
Ki

φ(s)
φ(Si(u))

Y i(u)du
)

I{s≤Si(Ki)}

+
(
Y i(Ki)

(
s−Ki

)
−

∫ ϑi(s)
Ki Y i(u)du +

∫ K
ϑ(s)

φ(s)
φ(Si(u))

Y i(u)du
)

I{s>Si(Ki)}

]
f(Ki)dKi

}
=

∑n
i=1

{∫ K
K

[
φ(s)

φ(Si(Ki))
Y i(Ki)

(
Si(Ki)−Ki − F (Ki)

f(Ki)

)
I{s≤Si(Ki)}

+
(
Y i(Ki)

(
s−Ki − F (Ki)

f(Ki)

))
I{s>Si(Ki)}

]
f(Ki)dKi

}
,

where the last equality follows from partial integration of∫ K

K

∫ K

Ki

φ(s)
φ(Si(u))

Y i(u)I{s≤Si(Ki)}duf(Ki)dKi

and ∫ K

K

[∫ K

Ki
Y i(u) +

∫ K

ϑi(s)

φi(s)
φi(Si(u))

Y i(u)du

]
I{s>Si(Ki)}duf(Ki)dKi,

respectively.

A.5 Equality between the two approaches of finding the optimal
compensation function

The probability Y i∗(Ki) given the principal’s optimal choice of the winner of the
contract, equals

[
1− F (Ki)

]n−1, which is understood as the probability of having
the lowest cost in a sample of n. Substitution of Y i∗(Ki) =

[
1− F (Ki)

]n−1 in
(20), leads to

Xi∗(s,Ki)

= Ki
[
1− F (Ki)

]n−1 +
∫ ϑi∗(s)
Ki [1− F (u)]n−1 du +

∫ K
ϑi∗(s)

φi(s)
φi(Si∗(u))

[1− F (u)]n−1 du

(22)
if s > Si(Ki∗).
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We will now show that Xi∗(s,Ki) = E
[
X̃i(s,K)|FS,Ki

0

]
. We treat Kj as the

first-order statistic in a sample of size n − 1, which means that we assume that
Kj is the lowest cost parameter in a sample of n − 1 parameters. We find
E

[
X̃i(s,K)|FS,Ki

0

]
as follows

E
[
X̃i(s,K)|FS,Ki

0

]
=

∫ ϑi∗(s)
Ki Kjd

(
−[1− F (Kj)]n−1

)
+

∫ K
ϑi∗(s)

(
ϑi∗(s) +

∫ Kj

ϑ∗(s)
φ(s)

φ(Si∗(u))
du

)
d

(
−[1− F (Kj)]n−1

)
(23)

when s > Si∗(Ki). Partial integration of equation (23) leads to

E
[
X̃i(s,K)|FS,Ki

0

]
= Ki[1− F (Ki)]n−1 +

∫ ϑi∗(s)
Ki [1− F (u)]n−1du +

∫ K
ϑi∗(s)

φ(s)
φ(Si∗(u))

[1− F (u)]n−1du

(24)
if s > Si∗(Ki). We see that equation (24) equals equation (22), and thus equals
equation (20).
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