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An Extension of Least Squares Monte Carlo
Simulation for Multi-options Problems

Abstract

This paper provides a valuation algorithm based on Monte Carlo simulation
for valuing a wide set of capital budgeting problems with many embedded
real options dependent on many state variables.
Along the lines of Gamba and Trigeorgis (2002b), we decompose a complex
real option problem with many options into a set of simple options, properly
taking into account deviations from value additivity due to interaction and
strategical interdependence of the embedded real options, as noted by Trige-
orgis (1993). The valuation approach presented in this paper is alternative
to the general switching approach for valuing complex option problems (see
Kulatilaka and Trigeorgis (1994) and Kulatilaka (1995)).
The numerical algorithm presented in this paper is based on simulation, and
extends the LSM approach presented in Longstaff and Schwartz (2001) to a
multi-options setting in order to implement the modular valuation approach
introduced in Gamba and Trigeorgis (2002).
We provide also an array of numerical results to show the convergence of
the algorithm and a few real life capital budgeting problems, including the
extension of Schwartz and Moon (2000,2001) for valuing growth companies,
to see how they can be tackled using our approach.

JEL Classification: C15, C63, G13, G31.
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1 Introduction

Traditional Monte Carlo simulation has been considered a powerful and
flexible tool for capital budgeting for a very long time. It is a recommended
methodology for capital budgeting decisions in many Corporate Finance
textbooks. Actually, it permits to include a wide set of value drivers, it
is flexible enough to cope with many real life situations and it does not
suffer the “curse of dimensionality” affecting other numerical methods. Yet,
as pointed out by many authors,1 it seems not so suited to tackle capital
budgeting problems with (potentially) many real options.

Mason and Merton [36] first described a capital budgeting problem as a
collection of real options, i.e. a set of opportunities that managers (usually)
have to deviate from a previously decided course of actions. Real options
are capital budgeting decisions contingent on some relevant and well spec-
ified state variables affecting the value of an investment project. Projects
involving individual options have been studied since the early stage of de-
velopment of the real options theory (see e.g. Majd and Myers [37] and
McDonald and Siegel [40, 41]).2 Generally speaking, the numerical tech-
niques for financial options can be successfully employed to evaluate single
real options: as far as the mathematics of real option valuation is concerned,
there would be no need of a theory specifically devoted to individual real
options. An exception is represented by Brennan and Schwartz [11] who
evaluate the investment in a mine considering the compound effect of the
flexibility to temporarily shut down and restart operations and to abandon
the project.3 A widely accepted classification of simple real options is the
one presented in Mason and Merton [36] (see also Amram and Kulatilaka [1]
and Trigeorgis [51] for more details and references therein) and includes: the

1See for instance Trigeorgis [51, pp. 54-57].
2For a comprehensive bibliography on the subject, see Dixit and Pindyck [20] and

Trigeorgis [51].
3This line of research, involving the option to switch from one operating mode to

the others and with the possibility to reverse the action at some cost, has been followed
up by other authors. Dixit [19] studied an investment problem with the flexibility to
start and close operations over time. Hodder and Triantis [25] present a general impulse
control framework for optimal switching problems. Kulatilaka [27, 28] introduced a model
to evaluate an investment project in a industrial plant firing two different types of fuel,
endowed with the flexibility to switch from one fuel to the other according to the relative
movements of their market prices. Kulatilaka and Trigeorgis [31] and Kulatilaka [29] (see
also Trigeorgis [51, Ch. 5, pp. 171-201]) proposed a general model of managerial flexibility
based on the option to switch among properly defined operating modes. In this work we
propose a different alternative approach to model the general flexibility embedded in a
capital budgeting problem.
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option to defer an investment decision, the option to partially or completely
abandon operations, the option to alter the scale of current operations, the
options to switch the existing assets to an alternative use and many others.
The valuation of these options can be easily done by employing the same
techniques used for financial option pricing.4

Unfortunately, real life investment decisions usually present many op-
tions at once or, following Trigeorgis [49], an investment decision can be
seen as a portfolio of interacting opportunities. The interactions among the
contingent decisions make valuation harder. As a rule, the value of a port-
folio of interacting options deviates from additivity and in some cases the
difference with respect to the sum of the values of the individual real op-
tions (i.e., considered in isolation) can be significant. Hence, the problem of
decomposing a complex investment project into a set of individual options
quite often does not have a straightforward solution. This fact prevents the
use of valuation techniques devoted to individual options, well known in fi-
nancial option theory and calls for a valuation approach specific for problems
involving many real options.5

Kulatilaka and Trigeorgis [31] and Kulatilaka [29] (see also Trigeorgis [51,
Ch. 5, pp. 171-201]) proposed a valuation approach for complex problems
based on the general idea of switching among different “operating modes”.
In their approach, given an investment with many embedded options, at any
time a decision can be made, there is an option to switch from the current
“mode” to a different one. The switching cost of the decision is the “strike
price” of the option. This valuation method is based on the analogy be-
tween machines with many operating modes (and related switching costs)
and a capital budgeting problem: the operating modes are decision that
the management can make in a dynamic fashion. For instance, the usual
wait-to-invest option (a call option on the present value of the cash flows
from operations of a given investment project) can be described as an (irre-
versible) option to switch from the mode “wait to invest” to the mode “in-
vest.” According to this approach, a flexible capital budgeting problem can
be seen as a complex compound switch option among several and properly
defined “modes.” The technique based on the general switching flexibility,
joint with some discrete-time approximation of the continuous-time dynam-
ics of the state variable (either binomial lattices or Markov chains), is widely
applied to capital budgeting problems (examples are in [30, 31, 49, 51]). Be-
sides other problems, mainly related to the computational efficiency of a

4A good and comprehensive reference on this is Trigeorgis [51].
5A notable exception is Geske [24].
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numerical valuation procedure based on this approach and which we will
discuss later, the general option to switch has the following main drawback.
As discussed in Brekke and Øksendal [7], an optimal switching problem is
a special type of impulse control problem (see Bensoussan and Lions [4] for
a reference). If we are to model the problem in a continuous-time setting,
and we use some discrete-time numerical valuation approach to obtain a
solution, first one has to prove the existence of a finite solution and next the
convergence of the discrete-time (numerical) solution to the continuous-time
one. (Of course, for a switching problem with a finite number of decision
dates the solution always exists.) In Brekke and Øksendal [7] the proof of
the existence of an optimal solution in a continuous-time setting is offered
for a class of switching problems.6 The same cannot be said for a general
optimal switching problem. This means that, although the approach based
on the general option to switch is flexible, one has to be very careful to apply
this approach in a continuous-time setting, since a solution might not exist.

Gamba and Trigeorgis [22] propose an alternative approach to map a
complex real options problem into a set of simple options and way to com-
ply with the hierarchical structure of the options. This approach always
provides well defined problems with a finite solution also in a continuous-
time setting, provided that each individual embedded option (or building
block) has a finite solution. Lastly, even if the approach based on the gen-
eral option to switch proves to be fruitful in a low-dimensional setting, it
becomes computationally intractable if there are many (i.e., more than two)
state variables. Since simulation methods requires a computational effort
which is linear with respect to the dimension of the state space, in this pa-
per we propose an alternative approach for valuing multi-options and multi-
assets problems based on the simulation approach developed by Longstaff
and Schwartz [34] and extendid this methodology to the class of problems
described in Gamba and Trigeorgis [22].

Usually, real options embedded in a capital budgeting problem are American-
type claims. This means that closed-form solutions are rarely available and
some numerical methods must be employed. Many methods have been pro-
posed for real option pricing purposes. Most of them are plain extensions
of well known algorithms used to price financial options. Roughly, they
can be divided into three main classes: finite difference methods and other
approaches dealing directly with PDE’s (first introduced by Brennan and
Schwartz [10]), Monte Carlo simulation methods (introduced by Boyle [6])

6Basically, these are the same kind of problems described in Brennan and Schwartz
[11].
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and lattice methods first proposed by Cox, Ross and Rubinstein [18]. All
these approaches have some flaws when applied to real options valuation.
Finite difference are quite hard to implement if the project has many inter-
acting options, because it may be difficult even to obtain the relevant PDE.
Bi- or trinomial lattices,7 although very flexible for valuing projects with
many embedded options (see Trigeorgis [50] and [51, Ch. 10]), suffers the
“curse of dimensionality.” Yet, real life capital budgeting problems usually
involve multiple state variables. This feature, assuming that the stochastic
model of these variables are known,8 makes real options even more difficult
to evaluate. Multi-factor real options problems have been studied for in-
stance by Triantis and Hodder [48], Cortazar and Schwartz [15], Geltner,
Riddiuogh and Stojanovic [23], Cortazar, Schwartz and Salinas [16], Mart-
zoukos and Trigeorgis [38], Brekke and Schieldrop [8] and many others.

For all the above mentioned reasons, simulation seems to be the most
suited numerical technique for real options. Unfortunately traditional Monte
Carlo simulation (as introduced by Boyle [6] for plain vanilla options) is
a forward-looking technique, whereas dynamic programming (to evaluate
American options) implies backward recursion. Many approaches have been
proposed to match simulation and dynamic programming: Bossaerts [5] pro-
poses two moment estimators of optimal stopping time; Tilley [47] provides
an algorithm in which simulated paths are bundled to estimate probability
weights of the state space; Barraquand and Martineau [2] give a stratification
method for pricing high-dimensional options, in the same spirit of Tilley’s
approach; Broadie and Glasserman [12] proposed an algorithm based on sim-
ulated trees with a small number of dates where early exercise is allowed.

A very promising approach has been presented by Longstaff and Schwartz
[34]. This numerical method is based on Monte Carlo simulation and uses
least squares linear regression to determine the optimal stopping time of the
problem. This method, called Least Squares Monte Carlo (LSM) approach,
has the additional feature of being a very intuitive, pedagogically clear and
flexible tool. We will provide an extension of this algorithm to evaluate

7In this class of algorithms we include also discrete-time and discrete state Markov
chains. See for instance, Kulatilaka [29] for an application of Markov chains to real options
valuation.

8One of the major problems in real options applications is the specification of the
stochastic model. Traditionally, some simple models are used (e.g. geometric Brownian
motion or mean-reverting processes) which can be suited to describe the price of traded
assets. We will rely upon the usual assumptions, leaving the issue of the underlying process
specification as a subject for future research. We just want to stress, at this point, that
even in this respect simulation is likely to be suiter than the other numerical methods,
since it can be employed with a larger family of stochastic processes.
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complex investment projects with many interacting options and many state
variables, along the lines of the decomposition approach proposed in Gamba
and Trigeorgis [22].

The paper is organized as follows. Section 2 introduces the suited en-
vironment for capital budgeting purposes. Instead of the usual CAPM
economy, we develop our model in the equilibrium multi-factor economy
proposed by Cox, Ingersoll and Ross [17]. This permits to point out the
risk factors and the related premia, if the project depends on many (not
necessary traded) factors, instead of a unique market factor as in CAPM.
Section 3 shortly illustrates, as per Gamba and Trigeorgis [22], the way to
describe a wide class of capital budgeting problems using a small set of well
defined building blocks, which are specifically designed both to comprise the
largest possible number of actual options problems and to be easily solved by
the related simulation algorithm. These small problems will be the building
blocks of our valuation algorithm. This valuation approach permits to de-
compose a complex real options problems into a sequence of simple options
taking into account their interdependencies. Section 4 presents the proposed
extension of the LSM algorithm to numerically evaluate the building blocks
of our algorithm and hence extends Longstaff and Schwartz [34] approach to
multi-options problems. Section 5 provides a set of numerical examples to
see how to apply our approach to real life capital budgeting problems and
to show the efficiency of the numerical algorithm based on simulation.

2 The economy

2.1 State variables

Let there be given a Cox-Ingersoll-Ross economy with financial market and
a representative agent (see [17]).

There are n state variables X1, X2, . . . , Xn, for short denoted X ′ =
(X1, X2, . . . , Xn).9 The values of these variables is the only relevant infor-
mation to make the capital budgeting decisions. These variables can be
either prices of traded securities or observable values of non-traded assets
(factors). In particular, these variables can be thought of as the outputs of
production processes. The dynamics of the state variables, with respect to
the objective probability measure follow the Markov processes

dXi(t) = ai(t, X(t))dt + bi(t, X(t))dB(t) with Xi(0) = xi, i = 1, . . . , n

9A prime denotes transposition.
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where ai : Rn 7→ R and bi : Rn 7→ Rn are such that the solution of the
stochastic differential equations above exists and dB(t) is the increment of a
standard n-dimensional Brownian motion, with E[dBi(t)dBj(t)] = 0. With
matrix notation, the process is

dX(t) = a(t, X)dt + b(t, X)dB(t) with X(0) = x

where a′ = (a1, . . . , an) and

b(t, x) =

b1(t, x)
...

bn(t, x)


is a positive definite n× n matrix with full rank for all t.

2.2 Financial market

There is a financial market where n non-redundant financial assets10 are
traded, i.e the financial market is complete. The prices of these assets, given
by the processes {P j(t, Xt)}, j = 1, .., n, . . ., are contingent on the n state
variables (if they are not the state variables themselves). With no loss of
generality, we can think of the j-th contingent claim as the security issued
by the firm whose production depends on Xj . Since there is no confusion,
in the rest of the paper the dependence of the financial asset prices on the
state variables will be often dropped. The dynamics of the asset prices are

dP j(t)
P j(t)

= (µj(t)− δj(t)) dt + σj(t)dB(t)

where δj is the payout rate,11 µj is the total expected instantaneous rate of
return and σj is a n-dimensional vector valued function.

An instantaneously riskless asset is available with instantaneous rate of
return r contingent on the state variables. We assume that the dimension
of set of financial investments opportunities remains unchanged within the
relevant time horizon.

The market is assumed to be in equilibrium and the related asset pricing
relation is

µj(t) = r(t) +
n∑

i=1

Ψi(t, X)
P j

Xi
(t)

P j(t)
j = 1, . . . , n (2.1)

10We will use the definition “financial asset” in a broad meaning. Actually, also traded
commodities are included in this set.

11If the j-th financial asset is a traded commodity, δj is the related convenience yield
(see Brennan [9]).
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where Ψ′ = (Ψ1, . . . ,Ψn) are the (factor) risk premia, P j
Xi

is the derivative
of asset j with respect to state variable Xi, and r(t) is the equilibrium
instantaneous riskless rate.

Accordingly, since the financial market is complete, there is a unique
(equilibrium) risk-neutral probability measure. With respect to this proba-
bility measure, the dynamic of the state variables is

dX(t) = â(t, X)dt + b(t, X)dB∗(t) with X(0) = x (2.2)

where â = (a − Ψ) is the risk-adjusted drift and {B∗(t)} is the Brownian
motion under the equilibrium martingale measure.

To simplify our arguments, we will assume from now on that the riskless
rate is non-stochastic and constant. The analysis would be the same, at the
cost of more cumbersome formulas, if we assumed a stochastic riskless rate.

2.3 Contingent claim valuation

If a (necessarily) redundant contingent claim, for instance an option on a
traded asset (or on a factor), is given, with maturity T and payoff Π(T,XT ),
where Π is a known function, we can evaluate the contingent claim with
respect to the prices in the financial market. We assume that Π has finite
expectation and variance with respect to the relevant probability measure
can be properly defined.12

Let F (t, Xt) be the value of the claim at t ≤ T , with F (T,XT ) =
Π(T,XT ). If the claim is European, i.e. it can be exercised only at T ,
the price at any time t < T is

F (t, Xt) = e−r(T−t)E∗
t [Π(T,XT )], (2.3)

and if the claim is American, i.e. it can be exercised at any time before T ,
and is still available at t,

F (t, Xt) = max
τ∈T (t,T )

{
e−r(τ−t)E∗

t [Π(τ,Xτ )]
}

, (2.4)

where T (t, T ) is the set of stopping times in [t, T ] with respect to the infor-
mation generated by the state variables X and E∗

t [·] is the expectation with
12Formally, Π ∈ L2(Ω,F , Q), the space of square-integrable functions with respect to

Q, where Ω denotes the space of all possible states of the economy, F is the filtration
generated by the state variables and Q is the equilibrium risk-neutral probability measure
on F .
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respect to the unique risk neutral probability, conditional on the information
available at t.13 See Bensoussan [3] and Karatzas [26].

Interesting enough, equations (2.3) and (2.4) are simply net present val-
ues, with respect to the riskless rate, of certainty equivalent payoffs. This
valuation paradigm will be used also for valuing capital budgeting projects
(and the related real options).

3 A general valuation approach for capital bud-
geting

In this section we shortly recollect from Gamba and Trigeorgis [22] the
main points of the valuation approach based on decomposition of a complex
project with many real options into a set of simple problems.

Real options are contingent claims on real investment projects. They
are contingent on the state variables X of the reference economy. Since the
financial market is complete, Fisher separation theorem holds and the valu-
ation principle based on discounting certainty equivalent cash flows applies.

Assuming that simple (individual) options are well defined, we intro-
duce a set of possible ways of interaction (or stylized problems) to properly
capture the interdependencies among individual options. This methodology
can be successfully applied to a large family of capital budgeting problems:
basically it can be used for all projects which do not give the management
the opportunity to reverse a previously made decision.14

The idea underlying the approach proposed in Gamba and Trigeorgis
[22] is very simple: a capital budgeting problem can be decomposed into a
hierarchical set of simple options. Hierarchy among individual (real) options
coply with option interaction and interdependency. Some interdependencies
are as simple as compoundedness.

Besides the compound option case, described above, we will present the
following two additional possible way to interact: sum of independent op-
tions and mutually exclusive options. In Gamba and Trigeorgis [22] other
ways of inteaction are presented.

The first case is the one with many independent options: the value of
the portfolio of options is the sum of the values of the simple options. This
is the case, described in corporate finance textbooks, of value additivity
of investment projects. We stress that “independent” in this case means

13We will denote conditional expectation also with E∗
t [·] = E∗[· | Ft].

14The extension of the simulation technique to these problems is the subject of future
research.
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“strategically independent” and not “stochastically independent:” actually,
the assets underlying the independent options may not be (and usually are
not) stochastically independent.

Let there be given H options, with maturities Th, payoffs Πh(t, Xt) and
values Fh(t, Xt), h = 1, . . . ,H. In what follows, since our approach is (back-
ward) recursive, we will phrase the argument by choosing a generic step in
the valuation procedure and assuming that the results of the previous steps
are known. Hence, Fh(t, Xt), h = 1, . . . ,H have been already determined
(together with the related optimal stopping times) in the dates following t.

The possibility to exercise all the H options independently is itself an
option. Since the H subsequent options are independent of each others, the
value of the option to exercise them, denoted G(t, Xt), is the sum of their
values:

G(t, Xt) =
H∑

h=1

Fh(t, Xt). (3.1)

This approach can encompass also the presence of technical uncertainty
affecting the future decisions on such project. More specifically, the avail-
ability of the H options above may depend on some event with H possible
outcomes. We consider the technical uncertainty to be stochastically inde-
pendent of X. Usually, the probability of the technical event affecting the
project is (assumed to be) known. If the event has H possible outcomes,
ph > 0 is the probability of the h-th one,

∑
h ph = 1, and assuming that the

technical uncertainty dissipates at T ′ < Th, h = 1, . . . ,H, the option value
is

G(t, Xt) = e−r(T ′−t)
H∑

h=1

phE∗
t

[
Fh(T ′, XT ′)

]
, (3.2)

where the h-th subsequent option can be exercised, if American, in the
interval [T ′, Th] and, if European, at Th. This model can be easily generalized
to many sources of technical uncertainty and to the case the event can
happen in a given time interval according to a continuous-time distribution
(eg. a Poisson process) (see Gamba and Trigeorgis [22]).

The second stylized problem is the one involving compound options: a
real option can offer, when exercised, more opportunities. This happens
in many staged investments in which each installment is an option on the
subsequent stages. If this is the case, then the value of the previous claim
depends also on the value of the subsequent one.

Let there be given H compounded real options, that is, the h-th option,
besides its own payoff, gives the “right” to exercise the (h+1)-th option, h =
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1, . . . ,H − 1. The payoffs of option h is denoted Πh(t, Xt). For definiteness,
let the maturities be T1 ≤ T2 ≤ . . . ≤ TH . We will denote Fh the value of
the h-th option and, given the (backward) recursive nature of the algorithm,
we assume that its value is already known. In what follows, if t is greater
than Th, then the value of the h-th option is zero, because that option is not
available any longer: Fh(t, Xt) ≡ 0 if t > Th. The value Fh depends also on
Fh+1. If the h-th option is American, then its value at t ≤ Th is

Fh(t, Xt) = max
τ∈T (t,Th)

{
e−r(τ−t)E∗

t [Πh(τ,Xτ ) + Fh+1(τ,Xτ )]
}

. (3.3)

If the h-th option is European,

Fh(t, Xt) = e−r(Th−t)E∗
t [Πh(Th, XTh

) + Fh+1(Th, XTh
)], (3.4)

The above is true for h = 1, . . . ,H − 1.15

The third stylized problem is the one involving the choice of many alter-
native opportunities. Let there be given H mutually exclusive real options.
For the sake of definiteness, we may think of two opposite decisions regarding
the same real asset (abandon/expansion, lease/sell, . . . ): once the decision
is made, the other (alternative) competing options expire. These options
have payoffs Πh, h = 1, 2, . . . ,H, and maturities Th, h = 1, 2, . . . ,H. With
no loss of generality, we assume T1 ≤ T2 ≤ . . . ≤ TH . As usual, let Fh(t, Xt)
be the value of the h-th real option. The management is asked to decide,
within the time horizon TH , for the best alternative. We assume that the
decision, once taken, is irreversible. In this sense, there is a timing option
also in the opportunity to choose the best (out of H) option. Actually, since
the decision is irreversible, the management may be interested in delaying
the choice of the option to be exercised (and keeping the options open); i.e.,
there is a timing option also in the choice of the best opportunity.

15The above expressions encompasses well know cases. If, H = 2, Π1 ≡ −K1, and Π2

is either max {Pt −K2, 0} or max {K2 − P, 0}, i.e. the subsequent option is an European
call or put on a non-dividend paying asset whose price, Pt = P (t, Xt), evolves according
to a geometric Brownian motion, and strike K2, and the previous option is a call on the
second option, then closed form solutions are available from Geske [24]. Again, if H = 2,
the first option is an European call or put and the second is an option to exchange one
asset for another (i.e., Π2 = max

{
P 1 − P 2, 0

}
), the assets pay no dividend and their

prices are geometric Brownian motions, then closed form formulas are available in Carr
[13] (extending the results in Margrabe [35]). If the assets pay a continuous dividend,
Martzoukos e Trigeorgis [38] provide extensions of the closed-form formulae in Geske [24]
and Carr [13]. In all the other cases, closed-form formulas are not available. We will use
close form solutions as a benchmark for our numerical evaluation approach (see Table 6).
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Let G(t, Xt) be the value of the opportunity to choose the best one out
of H available options. To avoid trivial situations, we assume that at least
one of the H options is an American-style claim. We define the control as
a couple (τ, ζ), where τ is a stopping time in T (t, TH) and ζ takes value in
the set {1, 2, . . . ,H}. The value of the opportunity to select the best option
is16

G(t, Xt) = max
(τ,ζ)

{
e−r(τ−t)E∗

t [Fζ(τ,Xτ )]
}

. (3.5)

Since the decision about the option is irreversible, although the opportunity
to select the best option seems to depend on the values of the subsequent
options, Fh, h = 1, . . . ,H, the choice is not made until the time to exercise
the most favorable option has come.17

At any steps of the above described procedure, Fh+1 can be interpreted
either as the value of an option, but also as the value of many independent
options available at the same time (G in Equation (3.1)), or the expected
value of the options that will be available as soon as some technical un-
certainty resolves, (G in Equation (3.2)), or the best out of a given set of
options (G in (3.5)).

4 A generalization of the Least Square Monte-
Carlo approach

Longstaff and Schwartz [34] provide a valuation algorithm, called Least
Squares Monte Carlo (LSM) based on simulation that implement backward
dynamic programming. Their algorithm provides a way to determine the
optimal stopping time of an American-like claim and then, by applying
Equation (2.4), to find the estimate of the claim. In what remains of this
section, we first describe shortly the LSM and next we extend it in order

16If the options are all European-style claims, that is, the maturity Th is the only date
when the h-th option can be exercised, for all h, then the problem is still (3.5), but the
stopping time is restricted to the set {T1, . . . , TH}.

17This framework encompasses some known results. If we restrict the maturities of
the options, so that T1 = T2 = . . . = TH , assume that these options are European, and
put Πh(t, Xt) = max{P h(Xt) − K, 0}, where P h follows a geometric Brownian motion
for all h, then the problem in (3.5) reduces to the well known option on the maximum
on H assets with prices Ph(Xt) dependent on the state variables Xt and strike K (see
Stulz [46], Johnson [32], and Martzoukos e Trigeorgis [38] if the underlying assets pay a
continuous dividend yield). As above, in all the other cases we have to resort to numerical
evaluation. To carry out numerical experiments, we will benchmark numerical results
against closed-form solutions, if these are available (see Table 6).
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to solve the basic (building block) option problems needed to apply the
decomposition approach presented in Gamba and Trigeorgis [22].

4.1 Longstaff-Schwartz approach for simple options

Given the valuation problem in (2.4) for an American claim contingent on
X and expiring at T , an approximation of the value is obtained by choosing
an integer N so that the time span [0, T ] is divided into N intervals whose
lenght is ∆t = T/N . Next, the dynamics of the state variables is simulated
by generating K paths of the stochastic process {Xt}. We will denote Xt(ω)
the value of the process at time t along the ω-th simulated path and τ(ω) the
path-wise stopping time with respect to the information generated by {Xt}
in the discrete set of dates where the state variables dynamics are generated.

The goal of the algorithm is to find the optimal exercise time restricted
to the set of dates

{t0 = 0, t1 = ∆t, . . . , tN = N∆t}.

As usual, the optimal policy is obtained by backward dynamic program-
ming: if at time tn, along the path ω, the claim has not been exercised
yet (i.e., the stopping time along the ω-th path, as determined in previous
time steps of the algorithm, is greater that tn), the optimal decision is made
by comparing the payoff Π(tn, Xt(ω)) with F (t, Xt(ω)), the (optimal) value
function of problem (2.4). If F (t, Xt(ω)) = Π(tn, Xt(ω)) then τ(ω) = tn (the
optimal stopping time along the ω-th path is updated). The intuition be-
hind this recursive procedure is that the stopping time satisfies the following
condition:

τ = inf{t | F (t, Xt) = Π(t, Xt)} :

it is the first time (in a path-wise sense) the value of the option is equal to
the payoff from exercise.

Unfortunately, F (t, Xt) is not available at this step of the procedure. A
way around this difficulty is offered by the Bellman equation of the optimal
stopping problem in discrete time:

F (tn, Xtn) = max
{

Π(tn, Xtn), e−r(tn+1−tn)E∗
tn

[
F (tn+1, Xtn+1)

]}
.

By this equation, we can determine the path-wise optimal policy, restricted
to the given dates, by comparing the continuation value,

Φ(tn, Xtn) = e−r(tn+1−tn)E∗ [
F (tn+1, Xtn+1) | Ftn

]
(4.1)
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with the payoff, Π(tn, Xtn). So, the decision rule at time step tn along the
ω-th path is:

if Φ(tn, Xtn(ω)) ≤ Π(tn, Xtn(ω)) then τ(ω) = tn. (4.2)

At tn = T , since the claim is expiring, Φ(tn, Xtn) = 0, and the rule is to
exercise the claim if the payoff is positive. At any tn, the optimal stopping
time is found by recursively applying the decision rule in (4.2), from tn = T
back to tn. If we have determined, at some previous step of this procedure,
τ(ω) > tn, and condition (4.2) holds at the current step, then the stopping
time along path ω is updated: τ(ω) = tn. At tn = 0, when the optimal
stopping times along all paths are determined, the value of the American
contingent claim is estimated by averaging the path-wise values:

F (0, x) =
1
K

K∑
ω=1

e−rτ(ω)Π(τ(ω), Xτ(ω)(ω)).

The valuation problem above boils down to one of finding the continu-
ation value at (t, Xt), in order to apply the decision rule in (4.2). This is
the point where LSM differs from all other approaches proposed to evaluate
American-type contingent claim with simulation. The intuition behind LSM
is the following: if at t the claim is still available, the continuation value is
the expectation, conditional on the information available at that date, of
future optimal payoffs from the contingent claim. To clarify the next steps,
we slightly modify the previously introduced notation: let Π(t, s, τ, ω) be
the (non-necessarily positive) cash flow from the contingent claim optimally
exercised at time s (with respect to the stopping time τ(ω)), conditional on
not being exercised at t < s, along the ω-th path. Hence,

Π(t, s, τ, ω) =

{
Π(s,Xs(ω)) if s = τ(ω)
0 if s 6= τ(ω).

The dependence of this cash flow on t is due to the fact that, when we apply
recursively the decision rule in (4.2), the stopping time along the ω-th path
can change step by step.

The continuation value at tn is the present value (with respect to the
equilibrium risk neutral probability) of all future expected cash flows from
the contingent claim

Φ(tn, Xtn) = E∗
tn

[
N∑

i=n+1

e−r(ti−tn)Π(tn, ti, τ, ·)

]
. (4.3)
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Since Φ is an element of a linear vector space,18 then we can represent the
continuation value as

Φ(t, Xt) =
∞∑

j=1

φj(t)Lj(t, Xt)

where Lj is the j-th element in the orthonormal basis. In Longstaff and
Schwartz [34] Lj(t, Xt) are either Hermite, or Laguerre polynomials or also
powers of Xt. If only J < ∞ elements in the basis are used to determine Φ,
we obtain an approximation of the continuation value. Following Longstaff
and Schwartz,

ΦJ(t, Xt) =
J∑

j=1

φj(t)Lj(t, Xt).

Now, φj(t) can be estimated by a linear least squares regression of ΦJ(t, Xt)
onto the basis {Lj(t, Xt)}:19

{
φ̂j(tn)

}J

j=1
=

= arg min
{φj}J

j=1

∥∥∥∥∥∥
J∑

j=1

φj(tn)Lj(tn, Xtn)−
N∑

i=n+1

e−r(ti−tn)Π(t, ti, τ, ·)

∥∥∥∥∥∥
2

.

The estimated continuation value,

Φ̂J(tn, Xtn) =
J∑

j=1

φ̂j(tn)Lj(t, Xtn)

is then used to apply recursively the decision rule in (4.2).
Accuracy of the estimates of the value of the American contingent claim

can be increased by increasing the number of time steps, N , the number of
simulated paths, K, and the number of basis function, J . Actually, given
N , the algorithm has been proved to converge to the actual value of the
(corresponding Bermudan with N dates) claim if J →∞ and if K →∞ and
the estimation errors are asymptotically normally distributed (see Clément,
Lamberton and Protter [14]).

18Φ belongs to the Hilbert space L2(Ω,F , Q) and any Hilbert space has a countable
orthonormal basis.

19We denote by ‖ · ‖ the norm in L2(Ω,F , Q).
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Moreno and Navas [43] have checked the robustness of LSM simulation
approach for different choices of the basis functions, and show that, as far
as the simple American option on one underlying assets is concerned, few
basis functions are enough for a fairly accurate estimate of the option price
and different alternative basis functions give the same results.

4.2 An extension to multi-option problems

Since we are interested in valuing capital budgeting projects with many em-
bedded (American) options, we have to extend the LSM algorithm presented
in Section 4.1 to the framework introduced in Gamba and Trigeorgis [22] (see
Section 3).

As far as the case with H independent options is concerned, the value of
the option to exercise them, according to Equation (3.1), is simply the sum
of their values obtained with the LSM algorithm. If there is a project-specific
source of uncertainty, which is stochastically independent on the state vari-
ables, and which resolves at T ′, 0 < T ′ < Th, for h = 1, . . . ,H, according
to our notation, the relevant equation is (3.2). In this case, the valuation
approach is slightly different from the one described above. At this step of
the algorithm we have already found the values (and the related stopping
times) of the subsequent options, Fh. Actually, since the subsequent options
cannot be exercised in the interval [0, T ′], their value is

Fh(0, x) = e−rT ′
E∗ [

Fh(T ′, XT ′)
]

= E∗
0

[
N∑

i=1

e−rtiΠh(0, ti, τ, ·)

]
where

Πh(t, s, τ, ω) =

{
Πh(s,Xs(ω)) if s = τh(ω)
0 if s 6= τh(ω),

where τh denotes the stopping time for option h, h = 1, . . . ,H. Note that
T ′ ≤ τh ≤ Th and that Πh(0, ti, τ, ω) has been already found applying the
LSM approach to the h-th option. To find G we just need Equation (3.2):

G(0, x) =
H∑

h=1

phFh(0, x).

For the compound option case, the algorithm is the following. According
to the recursive nature of the valuation problem, we assume that the path-
wise stopping time for the (subsequent) (h + 1)-th option (and the ones
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embedded in that options) has been already determined. We are to compute
the path-wise stopping time for the h-th option. The Bellman equation for
problem (3.3) is

Fh(tn, Xtn) =

max
{

Πh(tn, Xtn) + Fh+1(tn, Xtn), e−r(tn+1−tn)E∗
tn

[
Fh(tn+1, Xtn+1)

]}
.

Hence, to find out the stopping time for option h, denoted τh(ω), at tn on
the ω-th path, the decision rule is the following:

if Φh(tn, Xtn(ω)) ≤ Πh(tn, Xtn(ω)) + Fh+1(tn, Xtn(ω)) then τh(ω) = tn
(4.4)

where Φh is the continuation value from the Bellman equation (see Equation
(4.1)), Πh is the payoff of the h-th option, Fh+1 is the value of the (h+1)-th
option and τh is the stopping time for option h. This decision rule replaces
the one in (4.2), as long as compound options are considered.

To apply this rule we have to estimate the continuation value Φh and
the value of the subsequent option, Fh+1. The former is found by extending
the Longstaff and Schwartz idea. Note that

Φh(tn, Xtn(ω)) = E∗
tn

[
N∑

i=n+1

e−r(ti−tn)
H∑

`=h

Π`(tn, ti, τ, ·)

]

On the other hand,

Fh+1(tn, Xtn(ω)) = E∗
tn

[
N∑

i=n

e−r(ti−tn)
H∑

`=h+1

Π`(tn, ti, τ, ·)

]
,

i.e., according to Equation (4.3), the value of the (h + 1)-th option is the
present value of expected cash flow obtained from optimally exercising that
option and all subsequent options, starting from the current date. It should
be noted that, at this step, Π`(tn, tn, τ, ω) is known, for ` = h + 1, . . . ,H.

In order to apply this rule, since the conditions in Longstaff and Schwartz
[34] still apply,20 Φh is approximated by ΦJ

h and this can be estimated by
least squares regression of the discounted conditional cash flows from option
h onto the basis {Lj , j = 1, . . . , L}.

It should be noted that the above procedure encompasses also the case
in which some of the real options are European. Actually, if option (h + 1)

20Because Φh is in L2(Ω,F , Q).
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is European with maturity Th+1, at tn < Th+1, Πh+1(tn, ti, τ, ·) ≡ 0 for all
ti 6= Th.

As far as the case with H mutually exclusively options is considered,
at any time step we have to find the optimal control (τ, ζ), according to
Equation (3.5). The Bellman equation at time tn is

G(tn, Xtn) =

max
{

F1(tn, Xtn), . . . , FH(tn, Xtn), e−r(tn+1−tn)E∗
tn

[
G(tn+1, Xtn+1)

]}
.

Hence, the decision rule, along the ω-th path is:

if Φ(tn, Xtn(ω)) ≤ max
h
{Fh(tn, Xtn(ω))} then (τ, ζ)(ω) = (tn, h̄) (4.5)

where Φ is the continuation value according to the Bellman equation,

h̄ = arg max
h
{Fh(tn, Xtn(ω))} ,

and (τ, ζ)(ω) = (τ(ω), ζ(ω)). In order to apply the decision rule in (4.5) we
have to estimate Φ(tn, Xtn) and Fh(tn, Xtn). To this aim, let

Π(t, s, τ, ζ, ω) =

{
Πh(t, s, τ, ω) if h = ζ(ω)
0 otherwise

Since the continuation value of the option to select the best option out of H
available options is the present value of the expected cash flows conditional
on following the optimal exercise strategy, then

Φ(tn, Xtn) = E∗
tn

[
N∑

i=n+1

e−r(ti−tn)Π(tn, ti, τ, ζ, ·)

]
.

This can be approximated by ΦJ according to Longstaff and Schwartz [34],
and ΦJ can be estimated by Least Squares regression of the discounted
cash flows Π(tn, ti, τ, ζ, ω) onto the basis {Lj , j = 1, . . . , J}. To apply the
decision rule in (4.5), also Fh need to be estimated. Yet, since at this step,
Πh(tn, tn, τ, ω) is known, h = 1, . . . ,H, and

Fh(tn, Xtn(ω)) = E∗
tn

[
N∑

i=n

e−r(ti−tn)Πh(tn, ti, τ, ·)

]
hence, we can apply (4.5) to find out the control (ω, ζ)(ω) at tn.

All the above cases are plain extensions of LSM. Hence, the convergence
results in Clément, Lamberton and Protter [14] still apply.
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5 Applications

In this section we provide several numerical experiments to show how the
approach presented in Section 4 can be used to model and evaluate complex
capital budgeting problems with many underlying assets and many interact-
ing real options. To illustrate the efficiency of the extended LSM approach,
assuming that the underlying factors are geometric Brownian motions, we
benchmark the estimates of the values against the results obtained by ap-
plying the extended Log-Transformed binomial lattice approach (see Gamba
and Trigeorgis [21]) and, if closed-form formula are available, against exact
solutions.

There are two families of examples. The first set of numerical experi-
ments are abstract situations whose main purpose is to illustrate the effi-
ciency of the valuation approach when applied to the building blocks of the
decomposition approach. We will present examples for the independent op-
tions case, the compound option case and the case with mutually exclusively
options. These examples permit to see the influence of various parameter
values on the accuracy of the numerical method proposed in this work. This
includes, as a numerical experiment, the valuation of a complex real op-
tion presented in Lint and Pennings [33] and Martzoukos and Trigeorgis [38]
involving four sources of uncertainty.

In the second set of numerical experiments, we apply the methodology
in Section 4 to Schwartz and Moon’s [44, 45] model for valuing growth com-
panies. In particular, starting from the analysis presented in those papers,
we introduce (and evaluate) a (contingent) expansion strategy of a growth
firm, always including the possibility to default.

We will see how different problems specifications can be easily modelled
in our approach.

5.1 Warm up applications

Example 1. Let there be given an investment project which, after a first
outlay, K0, (for instance, R&D expenditure, infrastructure outlay, etc.) can
have two possible outcomes at time T ′. Each outcome can give rise to a
potential business. These business can be obtained with some additional
capital expenditure.21 The values of these business are the present values

21For the sake of definiteness, one can think of an investment project in an undeveloped
land with potential oil or gas reserves. The first outlay is given by the exploration costs.
We assume that the geological tests can show, after a given time-period, that alternatively
either gas or oil can be extracted. The outcomes of exploration are uncertain. The
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of the respective cash flows from operations. We assume that the values of
the business are, under the risk neutral equilibrium probability, GBM’s with
dynamics

dVi(t)
Vi(t)

= αidt + σidB∗
i (t) Vi(0) = Vi

i = 1, 2, where αi = r − δi, δi is an equilibrium shortfall rate of return22 or
a convenience yield, r is the annualized continuously compounded risk-free
interest rate, αi and σi are given on an annual basis, and E[dB∗

1dB∗
2 ] = ρdt.

The decision on the business to be developed can be deferred until the
technical uncertainty and the market uncertainty are dissipated. Hence, the
following real options are embedded in the case at hand:

option to develop business V1: by paying K1 within T1 = 5 years. The
payoff of this option is Π1(t, V1) = max{V1−K1, 0} and the value will
be denoted F1;

option to develop business V2: the additional costs is K2 and maturity
is T2 = T1 = 5 years. The related payoff is Π2(t, V2) = max{V2−K2, 0}
and the value is F2.

For simplicity, we assume that the decision to spend the capital outlays
K0 = 1 is committed (i.e., not an option). We can see K0 as the cost needed
to obtain information about the feasibility of the project. The probabilities
of the possible outcomes are pi. The options to develop the business can be
exercised in the interval [T ′, Ti].

The base case parameters are

i 1 2
δi δ 0.05
σi σ 0.15
Vi S 80
Ki 100 80
Ti T
ρ 0

K0 8
T ′ 1

p1 = p2 0.5
r 0.05

additional capital outlays are needed to build the facilities for extraction.
22For more details on the equilibrium shortfall rate of return for non traded real assets,

see McDonald and Siegel [39].
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The values of the investment project for several choices of the parameters
of the stochastic process of the first business (S, σ and δ) and for different
maturities are presented in Table 2.23 By inspection, we can see that the
overall accuracy (as measured by Root Mean Square Error of the numerical
estimate24) is fair. Keeping the parameters of one of the two businesses
constant, we can see that the value of the project is increasing in the current
value of one of the two underlyings, increasing with respect to volatility and
to maturity, whereas it is decreasing in the convenience yield.

The second and the third examples can be considered two strategic al-
ternatives of the same capital budgeting problem.

Example 2. Let there be given a real asset (a business) whose value Vt follows
a GBM

dV (t)
V (t)

= αdt + σdB(t), V (0) = V

under the equilibrium risk-neutral probability, where α = r − δ, δ is an
equilibrium shortfall rate of return and r is the (continuously compounded)
annual riskless rate. The following options are available:

option to defer the investment: the payoff as if the option was in iso-
lation is Π1(t, V ) = max {e1V − I1, 0}, that is, with a cost outlay I1

we can get a percentage e1, 0 < e1 < 1, of the whole business. The
maturity of the option is T1 (years). As usual F1 will denote the option
value;

option to expand: the payoff is Π2(t, V ) = max {e2V − I2, 0} with e2 =
1− e1; i.e., with a capital expenditure I2 we can complete the invest-
ment in the business. The maturity is T2 years, the value F2.

The payoffs above are not the true ones for the problem at hand. Ac-
tually, since the expansion option is available only after the investment
option has been exercised, then the payoffs of the investment option is

23We point out that, since the options to develop the two business are strategically
independent, then the value of the project is not dependent on the correlation ρ between
the two business.

24Root Mean Square Error (RMSE) is defined as

RMSE =

√√√√ 1

m

m∑
i=1

(
Fi − F̂i

Fi

)2

, (5.1)

where Fi is the (accurate) value of the i-th project value, F̂i is the related estimate obtained
by simulation and m is the number of cases (in the table).
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max {e1V − I1 + F2(t, V ), 0}. We stress that, although the second option
can be exercised in the interval [0, T2], the actual time interval for the sec-
ond option is from the (stopping) time the first option is exercised to T2.
The base case parameters are

I1 = I2 80
e1 = e2 0.5

k 0.5
X 80
V0 S
T2 T
T1 T − 2
r 0.05

The numerical results for a set of value of the parameters of the project are
in Table 3. As far as accuracy and the dependence of the project value on
parameters is concerned, what we said for Table 2 still holds.

Example 3. Given the same real asset in Example 2, we are going to evaluate
a different strategic alternative

option to defer the investment: by paying the outlay I = I1 + I2 we
can get the whole business whose value is V and the opportunity is
available until T1 (years). Hence, the payoff of this option is Π1(t, V ) =
max {V − I, 0} and its value is F1;

option to contract the scale of the project: we can save part of the
initial outlay, X = I2, by reducing the scale of the business by k
percent. This option is available, after the option to invest has been
exercised, until T2. Hence, the payoff is Π2(t, V ) = max {X − kV, 0}
and the value is F2.

As in Example 2, since the option to defer gives rise, when exercised, to
the option to reduce the scale of the project, then the actual payoff of the
first option is max{V − I + F2(t, V ), 0}.

From a strategic viewpoint, this example offers an alternative approach
to the same investment opportunity showed in Example 2. Actually, in that
case the approach was more conservative, because the second stage takes
place only if the first step is successful. In this example, on the other hand,
we can obtain the same real asset, but we can recover part of the sunk cost
if the business turn to be less favorable than expected. Although at a first
sight the two alternatives might seem basically the same, Example 3 has a
larger “operating leverage” given the higher level of fixed costs.
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The values of the project, for a set of parameter, are in Table 4. The
usual comments on accuracy we did for the previous table still apply.

Example 4. On the same asset as is Example 2, let there be given the
following opportunities:

option to defer the investment: by paying I1 we can acquire e1 percent
of the asset. This option can be exercised within T1 (years). The
payoff is Π1(t, V ) = max{e1V − I1 + G, 0}, where G is the value of
the option to choose the best of two subsequent opportunities, and its
value is F1.

The exercise of this option give the opportunity to choose the best of two
alternatives. Either

option to expand: we can get the remaining part (e2 = 1 − e1) of the
business with an additional capital expenditure I2 by time T2. The
related payoff is Π2(t, V ) = max{e2V − I2, 0} and the value is F2. Or

option to abandon: by year T3, as an alternative to the option to expand,
we can abandon the business (k = e1), after the first investment, saving
X < I1. The payoff of this option is Π3(t, V ) = max{X − kV, 0} and
the value is F3.

Since the option to expand and the option to abandon are mutually
exclusive, only one of them can be exercised. The base case parameters are

I1 = I2 50
X 30

e1 = e2 0.5
k 0.5
V0 S
T1 T − 2
T2 T
T3 T − 0.5
r 0.05

The results for a wide set of parameter values, are in Table 5.

As an application of the stylized option problem in Example 4, we apply
our numerical methodology to an actual case study drawn from Lint and
Pennings [33] and Martzoukos and Trigeorgis [38].

The case can be described as follow: there is a firm which is considering
the development of two product standards in consumer electronic industry
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in a given time horizon. There is a cost outlay to be paid upfront to obtain
the options to invest in the two product standards. The standard that finally
will prevail is uncertain at the date of the first outlay. If the firm invests in
both technologies, it acquires an option on the best of two assets (product
standards). Each underlying asset of this option is the market (present)
value of the resulting cash flows if that standard prevails. Moreover, the
underlying assets are correlated. The cost of introducing each standard is
the strike price of the option. Also the strike prices for the two technologies
are stochastic and correlated with the other state variables.

The underlying assets are Vi, the market value of i-th business (i.e.,
the value of cash flows obtained by product standard i), and Ci, the cost to
introduce the standard i, i = 1, 2. These variables are assumed to follow cor-
related geometric Brownian motions (under the equilibrium martingale mea-
sure) with equilibrium rate of return shortfall and volatilities respectively
δVi , σVi , δCi and σCi , i = 1, 2. Correlations are ρij , i 6= j, i, j = 1, . . . , 4.

Hence, the investment project has the following embedded options:

option to defer investment: by paying I we can acquire the option to
choose the best of the two standards later on. This option can be
exercised within T0 (years). The payoff is Π0 = max{G− I, 0}, where
G is defined below, and its value is F0;

options to defer investment: with an additional capital expenditure Ch,
we can get the value of the related product standard, Vh. The maturity
of this option is Th. The related payoff is Πh = max{Vh − Ch, 0} and
the value is Fh, h = 1, 2.

As usual, since the option to invest in both standards provides the op-
portunity to choose for the best, then the actual payoff of the first option
is

max{G(t, V1, V2, C1, C2)− I, 0}.
The base case parameters are

Vi(0) 100 i = 1, 2
Ci(0) 100 i = 1, 2

r 0.07 i = 1, . . . , 4
δi 0.1 i = 1, . . . , 4
σi 0.2 i = 1, . . . , 4
ρij 0.5 i 6= j, i, j = 1, . . . , 4
T0 0
I 0
Ti 2 i = 1, 2
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Besides the above described case, we have evaluated different versions of the
investment problem by considering several features of the set of opportuni-
ties. In particular, we have evaluated also the impact of higher volatility,
lower correlation, longer maturity and different investment scale on the op-
tion value.

To compare numerical results with exact solutions, we consider also the
case of non-stochastic development costs for both technologies and C1 = C =
C2. With this choice of parameters the problem has an analytic solution: if
both the dividend yields are zero (δV1 = 0 = δV2), then the model reduces to
the European25 option on the maximum of two risky assets and the solution
formula has been provided by Stulz [46]; if at least one of the dividend yields
is not zero, the extension of Stulz’ formula for the European option on the
maximum of two assets is in Martzoukos and Trigeorgis [38]. Moreover, if
V2(0) = C2(0) = 0 (i.e., only one of the two standards is valuable), the
options are European and I = 0.1C1(0), then the problem reduces to the
compound-exchange option studied by Carr [13] and a closed-form valuation
formula is available. Again, if at least one of the dividend yield is not
zero, the extension of Carr’s formula is in Martzoukos and Trigeorgis [38].
Numerical results are presented in Table 6. As for the other examples,
accuracy is fair in most of the cases.

5.2 Rational pricing of a growth company

In this section we apply the simulation approach described above to value a
growth company according to Schwartz and Moon [44].26 Since in Schwartz
and Moon [44] no real option (but the option to default) has been foreseen
for such a company, we extend their analysis by explicitely introducing some
growth options in the strategy of a growth company, while preserving the
option to default.27

25Note that, if both the dividend yields are zero, the American option and the European
option are the same.

26Although in Schwartz and Moon [44] the model has been applied to internet com-
panies, it is suited to describe the dynamic of the value of any company with growth
characteristics.

27A more advanced model has been proposed by Schwartz and Moon [45]. In that paper,
besides some refinements of the previous model, a specific (path-dependent) pattern of
growth of physical capital has been introduced. Since in this model, capital expenditure
is a fixed proportion of revenues (i.e., not a contingent decision), the growth of physical
capital is not the result of the exercise of expansion/growth options. For this reason,
in what follow, we will explicitly include in the model expansion/growth options whose
underlying is the value of cash flow from the business.
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What remains of this section is organized as follows: first we describe
the dynamics of the (present) value of the cash flows from the business with
no option, and next we value some typical strategic (real) growth options
on that business, as per the stylized examples seen in the first part of this
section.

Schwartz and Moon’s [44] model has two sources of uncertainty: revenues
and growth rate of revenues. Let {R(t)} denote the rate of revenues at t. It
is a stochastic process

dR(t)
R(t)

= µ(t)dt + σ(t)dB1(t) with R(0) = R0

where µ is the actual expected growth rate of revenues. It is assumed that
{µ(t)} is a stochastic process whose dynamic is

dµ(t) = κ(µ̄− µ(t))dt + η(t)dB2(t) with µ(0) = µ0

and dB1dB2 = ρdt. The volatilities of these two processes are assumed to
follow a deterministic pattern towards a long term value:

σ(t) = σ̄ + e−κt(σ0 − σ̄)

and
η(t) = η0e

−kt

Note that in this model, κ is a global rate of mean-reversion: it is related
to the average time of normalization of the firm; i.e., the time needed for
the firm to assume its long-term growth characteristics (as introduced in
Schwartz and Moon [45]).

Costs have two components: a part which is (costant) proportion of
revenues (γR), and a fixed part (committed investment) (F ) per year. So,
total cost are C(t) = γR(t) + F . To simplify the analysis, we omit loss-
carry-forward and the related tax savings.

Hence, the cash flow available to the firm is

Y (t) = [R(t)− C(t)] (1− τ)

where τ is the corporate tax rate and depreciation and interest tax shields
are omitted for simplicity.

For valuation purposes, we introduce a risk-neutral probability measure
by adjusting the drifts of the value drivers. In particolar, following Schwartz
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and Moon [45], we assume that only revenues has a “beta” risk premium.28

Hence, given a market unit risk premium λ̄, the risk premium on reveues
is λ(t) = λ̄σ(t). According to the risk-neutral probability measure, the
stochastic process of revenues is

dR(t)
R(t)

=
[
µ(t)− λ̄σ(t)

]
dt + σ(t)dB∗

1(t).

Moreover, we assume that, over the valuation period, there is a non-stocastic
risk-free rate r.

In this setting, the value of the firm is the expected value of discounted
cash flow. As it is customary, we assume that, after a prespecified T , the
company will be in its steady state. Hence, to obtain the value of the firm,
we sum up the value of cash flow obtained within T to the terminal value,
given by M times the EBITDA, R(T )− C(T ):

V (t) = E∗
t

[∫ T

t
Y (s)e−r(s−t)ds + M [R(T )− C(T )] e−r(T−t)

]
In what follows, we assume that M = 1/r.

Differently from Schwartz and Moon [44] and [45], we omit the possibility
that the firm goes bankrupt when the accumulated cash flow level reaches
a predetermined threshold Y ∗. Instead, we will model bankruptcy as an
option to abandon the current business (put option), with “strike price”
S.29 This option is exercised when the value, V (t), of the firm reaches an
endogenously determined level, V ∗(t).

In order to determine the value of shares of this company, P = V/n,
where n is the number of outstanding shares, we will assume that the number
of share is fixed over the time horizon and that the firm is all equity financed.
The parameters of the model are in Table 1.

In order to apply our simulation approach, we take time steps of one
month. Hence N = 72 and K = 100 000 paths.

Now, we can evaluate the business without options. By adopting the
discrete-time approximation in Schwartz and Moon [45, Eq. (25)-(27)], the
distribution of the t = 0 present value of cash flow is represented in Figure
1. The expected value is 17.266 and the standard deviation is 0.076.

Next, we add to the base case, the following real options:
28We point out that this is slightly in contrast with the assumption that the rate of

growth of revenues can be correlated with the revenues rate, as assumed by Schwartz and
Moon [45].

29In Merton’s [42] framework, S is the level of debt.
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Table 1: Firm valuation: parameters of the model

valuation horizon T 6 y
initial value of revenues R0 500 m
initial volatility of revenues σ0 0.15
long term volatility of revenues σ̄ 0.08
mean-reversion rate κ 0.2
initial growth rate µ 0.4
long term growth rate µ̄ 0.05
initial volatility of growth rate η0 0.3
correlation ρ 0
annual fixed costs F 35 m
operative costs (% of revenues) γ 0.7
tax rate τ 0.35
market unit risk premium λ 1.25
risk-free rate r 0.05
number of shares n 100 m

1. an option to expand, with expansion rate e, investment cost I, and
maturity T1;

2. a staged expansion strategy, with maturities T2 = T1/2 and T3 ≡ T1,
expansion rate respectively e1 = e2 = e/2, and investment costs I1 =
I2 = I/2;

3. an option to abandon, with strike price S and maturity T3;

4. the best of the following two alternatives: an expansion option accord-
ing to (2) or an option to abandon as per (3).

For every strategic plan we will consider both the American and the Euro-
pean case. The parameters of the real option valuation problem are:

T1 4 y
e 0.5
I 1000 m
S 1000 m

To solve the above real options problems, we take V (t) obtained from
the simulation of business as the underlying asset of the options; i.e. the
simulation approach proposed in Section 4 for real option valuation uses

28



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

17.266 40 60 80 100 120

pr
ob

ab
ili

ty

NPV

Figure 1: Rational pricing of a growth company: NPV distribution
(E[NPV ] = 17.266, standard deviation = 0.076)

directly {V (t, ω)}, for t = 1, . . . , N and ω = 1, . . . ,K, as per the result of
the above simulation.

The numerical results are presented in Table 7. The accuracy, measured
by standard deviation of the numerical results, is fair. It can be seen that
the value of the shares according to each and every flexible strategy is higher
than the price of the share in the base case. Moreover, from Table 7, we can
appreciate the incremental contribution of every option to the value of the
strategic plan.
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Table 7: Rational pricing of a growth company

American European
Sim std.dev. Sim std.dev.

Abandon 22.005 0.083 22.012 0.089
Expansion I 19.923 0.089 18.749 0.106
Expansion II 19.968 0.099 19.160 0.089
Best of two strategies 24.568 0.106 23.868 0.141

“Sim” is the estimate provided with the extended LSM approach with N = 72 time steps,

power series with J = 9 terms and simulating K = 100 000 paths.

“std.dev” is the standard deviation of the LSM estimate. It is obtained by iterating 20 times

the LSM and then calculating the standard deviation of the estimate.

Base case: NPV = 17.266 with standard deviation 0.076.
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