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Abstract:

A firm owns the investment rights over one undeveloped oilfield with technical uncertainties on the

size and quality of the reserve. In addition, the long run expected oil price follows a stochastic

process. The firm needs to select the best alternative of investment in information with different costs

and different revelation powers. The modeling of technical uncertainty uses the practical concept of

revelation distribution, which works directly with the possible new expectations after the information

revelation caused by an investment in information. Expectations drive the valuation of the

development option exercise. With a partial revelation of uncertainty of a technical parameter, is

necessary to know only the initial uncertainty (prior distribution) and the expected percentage of

variance reduction induced by the investment in information. After the information revelation, the

development threshold decision depends on the value of the project normalized by the development

cost. This normalized threshold is the same for any technical scenario revealed by the new

information when the oil price follows a geometric Brownian motion. In addition, there is a time to

expiration of the rights for the option to develop, so that the normalized threshold is a free boundary

obtained from the optimal stochastic control theory. The model includes a penalty factor for the lack

of information, which causes sub-optimal development, and this factor is introduced into the

dynamic real options model. The model outputs are the real options value with and without the

technical uncertainty, with and without the information, and the dynamic net value of information.

Keywords: value of information, dynamic value of information, real options, investment in

information, information revelation, revelation distribution, Monte Carlo simulation, optimization

under uncertainty, investment under uncertainty, valuation of projects.
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1 - Introduction

Technical uncertainties and learning processes have been frequent issues in the literature of real

options in petroleum3. The investment in additional information before the development of

petroleum reserves is a very important alternative for both the earlier oilfield development and the

waiting for better market conditions. For the cases without technical uncertainty, the choice is

reduced between immediate investment and the "wait and see" policy, that is, the traditional real

options model. There are at least two important sources of uncertainties, market uncertainty

represented mainly by the oil prices, and technical uncertainty about the size and the quality of the

reserve4. The aim of this paper is to build a model that evaluates the investment in additional

information in a dynamic way (considering the factor time), taking into account different sources of

uncertainties and the revelation power for each alternative of investment in information.

The selection of the best alternative for the investment in information (including not investing in

information) is very important. But it presents complex practical challenges, even more in a dynamic

framework considering the expiration of the option to start the oilfield development, the time to learn

(the gathering of data and the processing takes time) and interaction with market uncertainties. This

paper presents a practical way to simplify this job, keeping a sound theoretical foundation.

The information revelation is modeled in one or more discrete-time points (event-driven process)

rather in continuous-time as adopted in other papers5. The reason is that the development plan is

revised only if there is new (relevant) technical information, and after the processed information to

become knowledge or wisdom about the reserve properties. See Chen & Conover & Kensinger

(2001) for an in-depth discussion of a real options model of information gathering, storage and

                                                

3 See Chorn & Carr (1997), Chorn & Croft (2000), Dias (2001a), Galli & Armstrong & Jehl (1999), Whiteside & Drown
& Levy (2001) among others. For a discussion of real options models, see Dixit & Pindyck (1994) and Trigeorgis (1996).
The term "real options" was first used by Myers (1977) and the real options in petroleum started with Tourinho (1979).
4 Quality of the reserve includes permeability/porosity properties of the reservoir-rock, oil and/or gas properties, reservoir
inflow mechanism and other issues. For deepwater oilfields, uncertainty on the reserve quality includes the uncertainty
about the cost and performance of new technology. The quality of the reserve later will be more precisely defined.

5 Martzoukos & Trigeorgis (2001) is one exception. They model the costly learning (investment in information) as a
jump of random size activated by the management (so, it’s an event-driven process like here). In their setting, the
learning is related only with the underlying asset value (here is included the effect on the exercise price of the option) and
their focuses are the timing of learning and the multistage learning. Here the focuses are the distribution of expectations
(jump size) after the investment in information and the selection of the best project to invest in information.



processing. In other words, the new expectation about reserve size and quality revealed by the

investment in information is a good reason for a revision of the development plan. Hence, the new

expectations for the technical uncertainties are event-driven process6 (the event is the new knowledge

after the investment in information) rather time-driven process as in the case of market uncertainties7.

The technical uncertainty is modeled into a dynamic framework of real options with the concept of

revelation distribution8. The main contribution of this paper are not the proofs of the propositions9,

but the recognition of the practical value for the distribution of expectations and its insertion into a

dynamic real options model to evaluate investments in information.

After the revelation, the threshold for the optimal development exercise is the same even changing

the exercise price of the option, since the model uses a normalized threshold curve that is the same

after any revelation. This approach saves computational time because the threshold is calculated

once. Without the normalization, each iteration in the Monte Carlo simulation requires a new

threshold value estimate, because the exercise price of the real option to develop changes with the

revelation (we will see this in section 3, equation 4).

The paper is divided as follow. In the second section is presented the technical uncertainty modeling

using the concept of revelation distribution and three properties. In the third one is presented the

payoff function for the real options exercise (the NPV function), how the uncertainties can be

inserted into the model, and the effect of technical uncertainty on the NPV function (penalty

function). The fourth section presents the real options model, including the risk-neutral simulation

equation for the oil prices, the normalized threshold curve and how the revelation distribution is

placed into the real options simulation. The fifth section presents some case studies with numerical

                                                

6 Lawrence (1999, p.156) argues that it is a time-driven process with different chronological length because the events
are successive along the time. It doesn't work here because the events are optional, activated by the firm, and in parallel
there is another process (oil prices) which the information arrive continuously along the time, which is not optional. The
complexity of these two superposed processes (revelation process and market process) requires a special approach.
7 Even for a low explored basin, with many different firms with tracts in this basin, new information from a drilling or
from new processed seismic data can take many months. This issue can be modeled with a Poisson process (discrete-time
process). In other words, the model of technical information arriving continuously along the time is not appropriate for
petroleum exploration and production investments at firm level.

8 The revelation distribution helps to solve the apparent real options paradox (Why learn?) described in the interesting
paper of Martzoukos & Trigeorgis (2001).

9 Even because the propositions are based in some selected known theorems from the conditional expectations literature.



results. The sixth section presents some extensions, such us the timing of investment in information,

the sequential investment in information case and the (event-driven) martingale property for the

revelation distribution; and a non-linear case for the NPV function that occurs with the petroleum

fiscal regime of production sharing. The last section concludes the paper. In the appendix are

presented the proofs for the propositions and some others conditional expectation properties.

2 - Investment in Information and the Revelation Distribution

Assumption (Investment in Information Goal): the primary goal of any investment in information

is to reduce the uncertainty on one or more parameters. In other words, the main benefit of an

investment in information is the reduction of uncertainty, which can be conveniently expressed as the

percentage of variance reduction. All the other benefits from an investment in information (if any)

are extra benefits, which need to be quantified in monetary terms and in present value, if relevant.

After a new information, the manager decision is driven by the new expectation about the value of

the variable and the uncertainty around this new expectation. So, the decision after the information

depends of the properties of the distribution of expectations. The distribution of conditional

expectations10 here is named the revelation distribution. This denomination11 emphasizes the change

of expectations of the manager with the revealed new scenario and the process of learning or

discovery process towards the true value of the variable12.

The concept of revelation here is different of the famous principle of revelation, from the literature

of asymmetric information (or more specifically of the theory of mechanism design) and in Bayesian

games. Our setting means the revelation of the true state of the technical parameter (true state of the

                                                

10 The use of conditional expectation as basis for decision has strong theoretical basis. Imagine a variable with technical
uncertainty X and the new information I, random variable defined in the same probability space (Ω, Σ, P). We want to
estimate X by observing I, using a function g( I ). The most frequent measure of quality of a predictor g is its mean
square error defined by MSE(g) = E[X − g( I )]2 . The choice of g* that minimizes MSE(g) is exactly the conditional
expectation E[X | I ]. This is a very known property used in econometrics, see for example Gallant (1997, pp.64-65).
11 Denomination of revealed variance and related concepts has been used in papers on value of information in a dynamic
framework. For example, Childs & Ott & Riddiough (2001, p.46) names "revealed variance" the variance of conditional
expected values. Here this variance is named variance of revelation distribution.

12 The author has been using this concept since 1998, and it appeared in Dias (2001a). However, here it is presented in a
more formal framework and also the nice properties of the revelation distribution.



nature of one parameter), whereas the mechanism design concept is when the revelation of the true

type of one agent is optimal (a direct mechanism that is optimal to say the truth).

The highest efficiency for one investment in information is when reduce to zero the variance of the

posterior distribution, resulting in a full revelation (reveal the truth on the technical parameter). What

are the possible scenarios after this very efficient investment in information? Of course all the

scenarios from the previous total uncertainty (a priori distribution) are possible. With this reasoning,

let us consider the first proposition for the revelation distribution13.

Proposition 1 (full revelation): For the full revelation case, the revelation distribution is equal to the

unconditional (prior) distribution.

This proposition is obvious and draws directly from the definition of prior distribution, because the

prior distribution represents the total technical uncertainty about one single parameter, so that

represents all the possible values that the parameter can assume. In case of full revelation, one value

from this distribution will be revealed, and the probability for this value to be revealed must be the

same from the prior distribution in order to preserve the consistency.

Hence, for the full revelation case is trivial to obtain the revelation distribution. However, in real life

typically we obtain only a partial revelation with the investment in information. The concept of

partial revelation is related with the concept of "imperfect information", whereas the concept of full

revelation is related with "perfect information"14 one from decision analysis literature. As in this

literature, the value of information with partial revelation cannot exceed the value of information

with full revelation (see the equivalent in decision analysis in the book of Pratt & Raiffa & Schlaifer,

1995, p.252). However, in this paper the concept of partial revelation is introduced into a more

dynamic framework, putting the revelation distributions into the real options model.

                                                

13 These propositions are valid almost surely, that is, are valid except in a set with probability measure equal to zero, and
use other regular assumptions (e.g., X is integrable). See the appendix for technical details.

14 Lawrence (1999, p.69) states: "Perfect information occurs when the information structure provides categorical direct
messages that identify precisely and unequivocally the state that occurs". Childs & Ott & Riddiough (2001, p.47) use the
terminology "full information" with the same meaning. Here is used full revelation.



How to proceed in the partial revelation case? Fortunately, the revelation distribution has some nice

probabilistic properties that help us to model dynamically the value of information. The expected

value and the variance from the revelation distribution are given below15.

Definition: Let X be the variable with technical uncertainty (e.g., the reserve size B), and the

investment in information reveals the information I = i. Revelation distribution is defined as the

distribution of RX = E[X | I]. The revelation distribution properties such us the mean and variance,

are presented as propositions.

Proposition 2: The expected value for the revelation distribution is equal the expected value of the

original (a priori) technical parameter distribution (proof: see the appendix)16.

E[RX]  =  E[X]                                                              (1)

Hence, the weighted average of the conditional expected value of X given that I = i (that is, RX)

being each term RX(i) = E[X | I = i]  weighted by the probability of the event on which it is

conditioned, is simply the original (unconditional) expected value of X.

Proposition 3: the variance of the revelation distribution is equal to the expected reduction of

variance induced by the new information. This result is not obvious (proof: see the appendix).

Var[RX]  =  Var[X] −−−− E[Var{X | I }]                            (2)

This is an outstanding issue that makes the revelation distribution very useful for practical purposes.

By knowing only the original variance and the percentage of reduction of variance, we can find the

variance of revelation distribution. Note that the right side is just the difference between the variance

before the information (unconditional) and the expected remaining variance after the information.

For the full revelation case (imagine a very efficient investment in information revealing all the

uncertainty), the residual variance is zero, and hence Var[RX] = Var{X} as required for the

consistency between Propositions 1 and 3.

                                                

15 See the book of Sheldon Ross (1998) for a good introduction to conditional expectation without measure theory.

16 This can be viewed as an application of a property known as law of iterated expectations, from conditional expectation
literature.



The above formulas allow a practical way to ask the technical expert on the power of revelation of a

specific investment in information. It is necessary to ask him/her for the following information:

• What is the total uncertainty of a particular parameter (e.g., the reserve size B)? The specialist

answer needs to specify the distribution of technical uncertainty, that is, mean, variance, and the

class of distribution (Triangular, LogNormal, Uniform, etc.).

• What is the expected percentage of reduction of uncertainty (read reduction of variance) with this

new information?

With these two answers from the experts we can specify the mean and the variance of the revelation

distribution, which is used in our dynamic framework for the value of information. The best way to

understand the concept of revelation distribution is by using a simple example.

Simple Numerical Illustration of Revelation Distribution

Consider the following stylized oilfield with technical uncertainty on the reserve volume B (in

million barrels, displayed as MM bbl), illustrated in the Figure 1.

Figure 1 - Stylized Oilfield with Technical Uncertainty

Assume that there are three alternatives17 of investments in information, besides the alternative zero

of not investing in information. The alternative 1 drills one appraisal well in the area B and revel all

                                                

17 In reality in these alternatives are not mutually exclusive and can be performed sequentially. However, here we
consider as three different alternatives in terms of cost of information and power of revelation, in order to develop the
intuition for the revelation distributions for alternatives with different powers of revelation. Later we examine the case of
sequential investment in information.



about that area, but nothing about the remaining areas C and D (partial revelation). The alternative 2

have a higher revelation power because drills two appraisal wells (e.g., in the areas B and C). The

alternative 3 have the highest power revelation by drilling three appraisal wells, and in this example

this means the condition of full revelation.

First note that the initial uncertainty (unconditional distribution or prior distribution) is represented

by the following discrete scenarios distribution:

• 100 million bbl with 12.5 % chances;

• 200 million bbl with 37,5 % chances;

• 300 million bbl with 37,5 % chances; and

• 400 million bbl with 12,5 % chances.

It is easy to see that the expected value for the unconditional distribution is E[B] = 250 million bbl

and the variance is Var[B] = 7500 (million bbl)2. Let us see what happen with the different

investments in information, in both the posterior (or conditional) distribution and the revelation

distribution.

The revelation distribution obtained with one alternative is the distribution of expectations after the

information revelation for each alternative. What are the new possible scenarios of expectation after

the appraisal drilling in the area B (Alternative 1)?

Alternative 1 generate two possible scenarios, because the well B result can be success proving more

100 million bbl (positive revelation with 50% chances) or dry (negative revelation with 50%

chances). These two scenarios of new expectations revealed with one appraisal well, form the

discrete revelation distribution for Alternative 1. This revelation distribution is presented below.

     E1(B|A1) = 100 + 100 + (0.5 x 100) + (0.5 x 100) = 300 million bbl …… with 50% chances

     E2(B|A1) = 100 + 0 + (0.5 x 100) + (0.5 x 100) = 200 million bbl   …….  with 50% chances

Where E1(.)  is the expectation in case of positive revelation (good news) and E2(.) is the expectation

for negative revelation (bad news). Note that, with the Alternative 1, it is impossible to reach more

extreme scenarios of revelation such us 100 million bbl or 400 million bbl. This is because the

revelation power of Alternative 1 is not sufficient to change the expectation of the entire reserve so

much to reach extreme cases.



Alternative 1 reaches only a partial revelation, so that the uncertainty remains and the posterior

distribution B|A1 has variance nonzero. What is the expected variance for the posterior distribution

with the Alternative 1?

In case of positive revelation, the posterior distribution is {200 million bbl with 25 % chances; 300

million bbl with 50 % chances; and 400 million bbl with 25 % chances}. For the negative revelation

scenario, the posterior distribution is {100 million bbl with 25% chances; 200 million bbl with 50%;

and 300 million bbl with 25%}.

The reader can calculate that the remaining variance (variance of posterior distribution) in both

scenarios of revelation are 5000 (million bbl)2, and so the expected variance of posterior distribution

is also 5000 (million bbl)2. So, Alternative 1 reduces the variance of B in 33% (from 7500 to 5000).

Let us check the Propositions 2 and 3. The expected value of the revelation distribution for the

Alternative 1 is:

EA1[RB]  =  50% x E1(B|A1)  +  50% x E2(B|A1) = 250 million bbl

As expected by the Proposition 2. The variance of the revelation distribution for Alternative 1 is:

VarA1[RB]   =   50% x (300 −−−− 250)2  +  50% x (200 −−−− 250)2  =  2500 (million bbl)2

As expected by the Proposition 3, the variance of revelation distribution is equal to the expected

reduction of variance with the investment in information (7500 − 5000).

The reader can check the Propositions 2 and 3 for the Alternatives 2 and 3, and the Proposition 1 for

Alternative 3 (full revelation). The reduction of variance of Alternative 2 is 66% (from 7500 to

2500), whereas the reduction of variance for Alternative 3 is 100% (from 7500 to zero).

Figure 2 shows the revelation distributions for the three alternatives (MM = million). Note that, as

higher is the revelation power as higher is the variance of revelation distribution.



Figure 2 - Alternatives of Investment in Information and Revelation Distributions

The remaining issue: How about the class of the revelation distribution (in case of partial

revelation)? In general this depends of the distribution of the outcomes from the new set of

information, that is, the conditioning distribution (e.g., for Alternative 1, a discrete distribution with

50% for success and 50% for dry well).

Although texts on conditional expectation are very common, the study of the distribution of

conditional expectations (revelation distribution) when the conditioning is discrete is hard to find.

One exception is Lee & Glynn (1999), which uses Monte Carlo methods plus some theorems to

estimate this distribution. Of course we can use this more sophisticated setting, but there is an

additional cost of complexity. The setting below is more simplified, aimed to practitioners.

For the limiting case (full revelation), Proposition 1 tells that revelation distribution and the prior

distribution are of the same class (in reality are equal). Even the partial revelation distributions

having different shapes (see the last picture to see this), as the variance grows the tendency for the

shape of these distributions is to evolve towards the prior distribution class. Simply we assume that



the class of distribution for partial revelation is the same of the prior distribution of technical

parameter, but with variance given by the Proposition 3. For example, if the reservoir engineer expert

uses a triangular distribution for the prior distribution of the reserve size B, the partial revelation

distributions will be also triangular but with the variance given by Proposition 3. This is absolutely

correct for the full revelation case and a convenient simplification for the partial revelation case.

Figure 3 illustrates this example and compares the effect of expected variance reduction of the

posterior distribution18 over the revelation distribution, for different levels of variance reduction. The

displayed variances are exact, but the distribution shapes of partial revelation are approximated.

Figure 3 - The Variance of Posterior and Revelation Distributions

                                                

18 In our setting doesn't matter the posterior distribution class, only its variance is necessary to estimate the variance of
the revelation distribution and the penalty factor for the NPV function. In general the posterior distribution doesn't need
to have the same type of the prior distribution. However, this occurs for the conjugate distributions, e.g., the exponential
families (exponential, gamma, normal), see for example Bedford & Cooke (2001, pp.67-70) or Jammernegg (1988, p.10).



3 - The Payoff for the Exercise of the Option to Develop: the NPV Function

3.1 - NPV Function for Monte Carlo Simulation and Related Topics

The exercise of the development option provides the project Net Present Value (NPV)19 given by the

difference of the value of the developed reserve V with the development cost D.

NPV    =    V  −−−−  D                                                                (3)

The value of the developed reserve V is given by market value from developed reserves transactions

or most commonly by the discounted cash flow (DCF) approach. With the DCF approach, V is the

present value of the revenue net of operational costs and taxes, whereas the investment D is the

present value of the flow of investment20 net of tax benefits.

The challenge is how to change the NPV function when performing a Monte Carlo simulation of the

key factors with technical and economic uncertainties.

There are at least three alternatives to consider both technical and economic uncertainties into the

NPV function. First using a model as simple as possible but considering the main uncertainties,

which are parameterized from the DCF model. This model and its associated reserve business vision

will be detailed later.

The second alternative is by working directly with the cash-flows, for example an integral with

revenues and costs explicitly written as function of variables with uncertainty21. This can be done

also by putting formulas and correlation among cells in the spreadsheet linked to the sources of

uncertainties, because the Monte Carlo simulation needs to change every cell in the appropriated

way. Although this is possible, the formulas can be complex to link the uncertainties on the reserve

                                                

19 Bjerksund & Ekern (1990) showed that for initial oilfield development purposes, in general is possible to ignore both
temporary stopping and abandonment options in the presence of the option to delay the investment (the abandon is very
far in time to weight in the development decision). In some case (short-duration projects, projects with option to expand)
can be necessary to consider other options when exercising the development option. See Trigeorgis (1993) and Dixit &
Pindyck (2000) for discussion of interactions of different real options.
20 The cost of abandon can be considered as investment, and its present value (net of tax benefit) is included in D.

21 This second way was used in the PUC-Petrobras research project to model an option to expand the production through
new wells. This case was easier than the general case because the technical parameter was set at well level outcome.



size and productivity of wells, complicating the interpretation and with a much higher computational

cost than the first alternative.

The third alternative for a Monte Carlo simulation of the NPV function is by using more complex

models and tools in tandem. The uncertainties are introduced into the reservoir simulator software,

generating the distribution of production profile with its associated values for V and D (and so the

NPV = V − D) in the NPV spreadsheet. The problem is that the reservoir simulator is called for every

sample used in the Monte Carlo simulation, and the reservoir simulator (that solves a system of

partial differential equations) is not fast enough, so that the computation is very slow22.

The first way is used in this paper for the NPV function simulation. It is necessary to think about the

main sources of uncertainties, which have important impact in the NPV. Let us use also the business

intuition of market value of a developed reserve.

The developed reserve value V, in both DCF valuation and reserve market valuation, is an increasing

function of some important factors:

• the reserve size B (expressed in million of equivalent oil barrels23);

• the technical quality of this reserve, that is, the fluids quality and the permo-porosity quality of
the reservoir, which can be represented by a normalized productivity index (PI/h) for the wells in
this reserve;

• the (long-run) oil prices P (US$/bbl); and

• the financial-economic quality of the reserve, which depends of the location, factors like the
discount rate (function at least of the basic interest rate, the risk-premium for the E&P business,
and the country risk-premium), the country's fiscal regime, and operational costs (e.g., reserves in
deepwaters have higher maintenance cost for the wells).

The development investment D is function of the reserve size B. The function D(B) depends of the

reserve location (shallow water x deepwater; near to petroleum industry infrastructure or remote

area; etc.) and can be estimate using historical data or estimating the cost of systems for different

reserve sizes. Empirical data has been pointing the linear equation with fixed and variable factors, as

a good approximation.

                                                

22 In the future, it will become the preferable one because uses the revelation distributions in a more realistic way.
23 The associate gas reserve in this oilfield problem is incorporated into the reserve value B by using an economic
equivalence relation between the gas and the oil. This relation depends on the local gas market price and demand.



                                 D = fixed cost factor + (variable cost factor x B)                                   (4)

The value of a developed reserve V is an increasing function of B, for a positive24 value of one barrel

of developed reserve v. Let us assume that for oilfield development projects, the NPV is also an

increasing function of reserves volume B. The gain of scale with the reserve size B is a widely

known feature for the NPV function of E&P projects. In addition, the value of reserve V is

increasing with its qualities in terms of reservoir properties, fluid properties, extraction cost

environment, taxes, and so on. It is possible to think these qualities linked with a market value or

some estimate using a discounted cash flow. Let us explore this point now.

In order to get a simple and adequate equation for the NPV, think about the market value of one

barrel of reserve v (that is, v is the price of the barrel of reserve). If this reserve price v is directly

related with the long-run oil prices, let be q the factor of proportionality25 so that v = q P. For

developed reserve transactions, as higher is the price per barrel of a specific reserve, as higher is the

economic quality for that reserve. For a fixed reserve size and fixed oil price, as higher is the factor q

as higher is the value of this reserve. So, let call the factor q as the economic quality of the reserve26.

By using this insight, the value of a reserve V is the price of the barrel of reserve v times the size of

this reserve B, that is, V = v B.  The equation for the developed reserve value V is:

                                                           V   =   q P B                                                               (5)

This is the easiest way to work with the three most relevant variables to access the value of a

developed reserve, using business thinking, which is very adequate for market valuation. The value q

can be assessed either by market transactions in markets like USA (see Adelman & Koehn & Silva,

1989; and Adelman & Watkins, 1996) or by using the discounted cash flow approach (see below).

                                                

24 For geriatric reserves (reserves near of the abandonment time) are possible to get developed reserve assets with
negative value because there is the abandon cost  (environmental recovery cost). This can be ruled out by incorporating
this cost into the development cost account D instead V (abandon cost is not operational cost). Even if by convenience
the abandon cost is accounted in V, our problem is the investment decision on the oilfield development, that is, an option
to get young reserves and not the geriatric one. So, here the value of the barrel of reserve always is positive.

25 Paddock & Siegel & Smith (1988) claims that the one-third rule (q = 1/3) for the US reserves is a good first estimate.

26 We can think that q has a technical component qT ∈ [0, 1] representing the fluid quality and the productivity (for
example the average normalized well productivity index), and another component qM representing market characteristics.
The expectation of qT changes only when a new investment in information is performed, whereas the market component
qM evolves continuously with time, starting with qM(t = 0) = 1. This is left for a future extension of the model.



The three factors in the equation above are assumed random in this paper. These factors can be

considered the three basic sources of uncertainties for the reserve value V, which are assumed

mutually independent27.

For the fiscal regime of concessions (USA, UK, Brazil, and others), the linear equation for the NPV

with the oil prices is at least a very good approximation. The NPV equation with the oil prices P,

considering the factor q is given below.

                                                  NPV   =   q P B   −−−−   D                                                        (6)

Without a good market value for q, by using the discounted cash flow analysis we can assess the

quality parameter. Most cash flow spreadsheets present a chart with the sensitivity analysis of NPV

with the (long-run) oil prices P. Figure 4 presents the link between this chart and the above equation.

Figure 4 - The NPV x P Function for Petroleum Concessions

                                                

27 This assumption simplifies the model but it is not necessary. We could think q and B with a small positive correlation.
Using a positive correlation between q and B enhances the value of information, but with some costs in computational
time, input design and output interpretation. By considering the reserve quality q linked to a normalized productivity
index (dividing by the thickness of reservoir, the net pay) instead the productivity index itself, is easier to agree with the
simplifying independence assumption. In addition, in a more rigorous setting B is not independent of P, because higher P
permits to extend the reserve life. The volume of oil and gas in-place are the true pure technical parameters independent



3.2 - The Effect of Technical Uncertainty on the NPV function

The theory of finance tells that the technical uncertainty (like the uncertainty on reserve volume B)

has correlation zero with the market portfolio, so that it doesn't demand risk-premium considering

that the stockholders of the firm are diversified investors28. However, the optimal management of

technical uncertainty is appreciated by the investors because can leverage value either by optimal

management of the opportunities of investment in information, as by the more valuable exercise of

option to develop the oilfield using an optimized alternative of development. The exercise of the

option to develop without know the correct volume of reserve B and the technical factors affecting

the quality of the reserve, almost surely will conduct to sub-optimal development (e.g., see cases

reported in Demirmen, 2001). Let us quantify the losses with sub-optimal development.

The net present value equation NPV = V − D  =  q P B − D(B) is based on expected value for the

cash-flows, and it is necessary answer the following question: Is the NPV the same if we have no

technical uncertainty on q and B and the case with technical uncertainty and using E[q] and E[B]?

The answer is negative and the reason is given below.

First, with information on the reserve size B we can fit the optimal investment D to its size B. It is

partially performed in this model because the investment cost D is a function of the reserve B and the

optional nature of development. For example, knowing that B is lower than expected, it is possible

reduce according the investment D. So, it is possible to exercise option with positive NPV in some

scenarios of B, which could be negative NPV if using investment D higher than the necessary.

There are some sources of value for the investment in information. The best fit of D with B and the

asymmetry caused by the optimal option exercise is the one source29. However this is not all, there

are other losses in NPV function due the lack of information. The value of V depends on q, and it

                                                                                                                                                                   

of P. However, for development decisions, most people from oil industry model B and P as independent variables. Of
course is possible to set correlation between q, B, P, at cost of complexity, using concepts of revelation and real options.

28 If we forget that the rational stockholders of the firm are diversified investors, rejecting investment opportunities with
positive NPV because the risk-aversion of managers for these kind of uncertainties (as argued by traditional decision
analysis), we could be destroying value of the stockholders. Agency conflicts between managers and stockholders are
largely reported in finance literature, and they can have very different risk preferences, see for example Byrd & Parrino
& Oritsch (1998) for the problems of "differential risk preference" and "different horizon for investment results".

29 In other words, the knowledge that the reserve size is lower than we estimate before permits to reduce the investment
D, exercising options with positive NPV (that could be negative with over-investment).



depends of technical factors. The quality q is related with the present value of net revenues, that is,

with the speed that the reserves are extracted and sold in the market.

If the capital in place is under-dimensioned for the reserve size (B is revealed higher than expected),

then the capacity limitation30 reduces the associated value of q. This occurs because even if all the

reserve volume B can be extracted with the under-dimensioned capital D, the present value of

reserve (the product q P B) is lower due the slower extraction schedule. This limitation suggests a

penalty factor for the quality q for the cases where the reserve size reveals higher than expected31.

The same reasoning is possible if the average well productivity is higher than expected (the revealed

higher productivity cannot be plenty transformed in value because the under-dimensioned capacity in

place). Let us call this penalty factor of  γγγγup, which is defined in the interval (0, 1]. This factor

penalizes the value of the developed reserve V if q B > E[q B].

We could define another penalty factor γγγγdown for the cases where the capital in place D reveals over-

dimensioned for the reserve size and/or for the average well productivity. However, some empirical

studies have been showing this value is near one, and in some special cases can be even higher than

one. This occurs because if the reserve B is lower than expected, then an over-investment in capacity

can permit a little bit higher production-peak when compared with the optimized process plant32.

This can makes the value of V a little bit higher, although the NPV remains lower than the optimized

case (with full information) because the cost D is higher than the necessary (an apparent positive

NPV can reveal an ex-post negative NPV). However, even in this case the factor γdown can be lower

than 1 because the location of the wells could not be optimal and even with more wells than

necessary the speed of extraction can be slightly lower than the optimal wells grid with full

information. These offsetting effects explain why empirical studies points γdown ≈ 1.

                                                

30 Limitation of processing facilities in the platform, limitation of the pipeline capacity, limitation of the number and
position of the wells, limitation of water injection system, etc.

31 This penalty factor is not derived from "risk aversion of managers on technical uncertainty " or "manager's utility " as
used in traditional decision analysis literature. The penalty factors will be derived from discounted cash flow analysis of
value lost due the reserves production with limited capacity system and sub-optimal location for the wells. The method
presented in this paper is simple, but more sophisticated methods can be used for the penalty factors.

32 It is optimal to make some limitation in the capacity, by design a plateau of production peak for 2 to 4 years instead
designing a more expensive higher capacity to meet a maximum production for a single year. See for example Ekern
(1988) for the typical production profile in this kind of projects.



In general, the NPV function with remaining technical uncertainties can be estimate with a Monte

Carlo simulation of the distributions of q and B, by using the following equations33:

NPV  =  q P B  −−−−  D(B)               if    q B = E[q B]                                                                   (7a)

NPV  =  q P B γγγγup  −−−−  D(B)          if    q B > E[q B]                               (7b)

NPV  =  q P B γγγγdown  −−−−  D(B)       if    q B < E[q B]                               (7c)

To apply these equations, the remaining issue is how to estimate the value of the penalty factors. It

can be done using discounted cash flow analysis by fixing the investment (capacity) and calculating

the present value of the net revenues (that is, calculating V) for different scenarios for q and B.

A practical way to estimate γ is by performing this analysis for a few representative scenarios of the

technical distribution and assuming that the penalty factors changes only with the variance of the

technical uncertainty. For the partial revelation case (even with the information there is a remaining

technical uncertainty) the penalty factor must be updated to a value between the previous value of γ

(without information) and the penalty factor for the full revelation case (for the full revelation, γ = 1).

If we build some rule of update for γ such us "the difference between γ and 1 is proportional to the

remaining variance of technical uncertainty", it is easy to update the value of γ without the necessity

of running additional DCF analysis34 for different levels of partial revelation.

By using the above practical updating procedure for γ, we need only to estimate the penalty factors

for the initial technical uncertainty (before the investment in information). One suggestion is to

reduce the technical uncertainty distribution into three scenarios: upside, expected, and downside35.

                                                

33 Of course, considering the independence between q and B, it is possible to simplify writing E[q B] = E[q] E[B].

34 But is possible if a better precision is required in the model. The simplification reduces the number of DCF rounds.

35 The upside scenario can be a subjective representative optimistic scenario or, even better, the expected value of the
upside distribution obtained by truncating the original distribution at the original expected value.



By running the DCF analysis for these scenarios with and without full information, with D projected

for the expected case, we have typically the values36 of V displayed in the Figure 5.

Figure 5 - Lack of Optimization Analysis to Set the Penalty Factor

The picture above illustrates a case with γdown = 1 (the value Vd is the same for the cases with and

without information37). The factor γup is given simply by:

γγγγup   =   Vu / Vu, i                                                               (8)

In words, the factor γup is the relation of the reserve value without information with the reserve value

with full information for the upside scenario. This factor depends also on the flexibility embedded

into the development plan.  In case of using a development system with an option to expand, the

value γup can be designed nearer of 1 than in case of a production system without flexibility (see

Dias, 2001b, for the option to expand case).

                                                

36 The value V in each scenario s is simply Vs = NPVs − D. Remember that D is in present value and the NPVs are
obtained by running three times the DCF spreadsheet, using different production profiles (constrained in the upside
scenario) and operational costs, but the same investment.

37 However, the NPV with information generally is higher than the NPV without information for the downside scenario
because the revelation of a lower value for B permits that the investment D be reduced.



4 - The Real Options Framework with Monte Carlo Simulation

First, assume that the long-run expected oil price follows the popular Geometric Brownian Motion

(GBM)38. The risk-neutralized format for this stochastic process is obtained using the risk-neutral

drift (r – δ) instead the real drift α.

                                                  dP  =  (r – δδδδ ) P dt   +  σ σ σ σ P dz                                                    (9)

Where:

r  =  interest rate, assumed to be 6% p.a.;

δ =  convenience yield of the oil, assumed to be 6% p.a., too;

σ =  volatility of the long-run oil price, assumed to be 20% p.a.; and

dz  =  Wiener increment =   dt εεεε  , where ε  ~ N(0, 1)

The equation necessary to perform the Monte Carlo simulation of petroleum price sample paths is:

Pt = Pt−−−−1 exp{ (r − δ − δ − δ − δ  −  0.5 σ −  0.5 σ −  0.5 σ −  0.5 σ2222) ∆∆∆∆t  + σ  Ν(0, 1) σ  Ν(0, 1) σ  Ν(0, 1) σ  Ν(0, 1) t∆∆∆∆ }                                                                                                                (10)                            

With the simulated oil price P(t) is possible to estimate the value of a developed reserve given by

V(t) = q B P(t). The simulation equation above is exact (doesn't need small time step).

The development threshold gives the decision rule for the optimal development. In order to ease the

model, is better to work with normalized value of the reserve V/D. For V/D = 1, the NPV is zero.

The use of normalized value of the developed reserve V/D, instead for example the oil price, for

decision rule curve permits to combine the technical and market, that is values of P, q, B, D(B), into

the same threshold curve. Note that without the normalization, after a revelation of the reserve size

B, the exercise price of the development option changes because D is function of B and so the

threshold curve making much more time consuming the evaluation of the Monte Carlo simulation.

This normalization is possible because the real option value F is homogeneous of degree one39 in V

and D, that is, F(V/D, D/D) = (1/D) F(V, D), and it permits to use V/D in the maximization problem.

                                                

38 Analyzing the case of petroleum real assets, Pindyck (1999) concludes that for applications like real options “the GBM
assumption is unlikely to lead to large errors in the optimal investment rule”. This conclusion is reaffirmed in his more
recent study (Pindyck, 2001). See Dias (2001b) for a discussion of different stochastic processes for oil prices.

39 A function is homogeneous of degree n in x if F(tx) = tn F(x) for all t > 0, n ∈ Z, and x is a vector of variables.



The threshold (V/D)* is homogeneous of degree zero in V and D, see McDonald & Siegel (1986,

p.713) and Dixit & Pindyck (1994, pp.207-211). This trick was proved only for the Geometric

Brownian Motion case, and extensions to other stochastic processes are a research matter.

The normalized threshold is the critical (V/D)* level that makes optimal the immediate investment to

develop the oilfield. It is the decision rule to exercise the option (exercise at or above the threshold),

which maximizes the real options value. The optimal exercise curve (V/D)* of real option is function

of the time and, for the GBM, depends only of σ, r, and δ. The threshold is obtained from the

stochastic optimal control literature, the earlier exercise curve for American options (free boundary).

Figure 6 shows the how the risk-neutral simulation of oil prices is combined with the revelation

distributions for the technical uncertainties. This occurs at the "revelation time", when the

information becomes knowledge on the reservoir properties, changing the expectation on the reserve

size and quality. So, the model considers the issue of "time to learn", penalizing the alternatives that

takes much time to reveal the information/knowledge. Figure 6 shows also the normalized threshold

curve considering two years for the expiration of the development rights, and how the simulated

sample paths are evaluated in this real options model.

Figure 6 - The Sample Paths, Revelation Jumps, and Optimal Development Threshold



There are two sample paths in the picture. In the first (blue, almost continuous line) the normalized

value V/D evolves randomly due the risk-neutral simulation of the oil prices component. At the

revelation time are drawn one sample from each revelation distribution (q and B) and the normalized

value of reserve jumps (in this case jumps-up) almost surely, reflecting the new expectation on these

technical parameters in this path. The value V/D continues its random trajectory, now due only the

(long-run) oil price oscillations, and in this case reaches the threshold curve at the point A (see the

picture). The option is optimally exercised and multiplied by the risk-free discount rate factor.

The second path (gray dashed line) evolves similarly but after suffering a jump-down from the

samples of revelation distributions, the path evolves until the expiration without reaching the

threshold line and expires worthless (point B). The value of option for this path is zero (or negative,

considering the cost of information). After thousands of simulated paths, we get an estimate of the

real options value by summing the value of the options F from the sample paths and dividing by the

number of simulations.

The dynamic net value of information is the difference between two real options value. The real

option value with investment in information (using the revelation distribution) and the real options

without investing in additional information. Let us see some case studies.

5 - Case Studies and Numerical Results

Before presenting the examples, let us see the model outputs that we are interested:

• NPV without Technical Uncertainty: This is the NPV calculated with the Equation 6 and using

the current expectations on q, B and P;

• Real Options without Technical Uncertainty: This is the traditional real options value

considering only the uncertainty on the oil prices and using the current expectations on q and B;

• Simulated NPV with Technical Uncertainty (with γup): The NPV function is calculated by

simulation considering the penalty factor γup (Equations 7a, 7b, 7c), and so it is lower than the

NPV without technical uncertainty;

• Simulated Real Options without Information: The real options payoff is penalized by the factor

γup, and so its is lower than the traditional real options value (without technical uncertainty);



• Simulated Real Options with Technical Uncertainty and with Information Revelation: The real

options model considers one alternative of investment in information. This value is different for

each alternative of investment in information. This value is net of the information cost, and

considers the time to learn. This value or the next select the best alternative (the higher one); and

• Dynamic Net Value of Information: It is the difference between the real options with and

without the investment in information. This value is different for each alternative of investment

in information. This value (or the previous) selects the best alternative (the higher one)40.

Let us consider two oilfields cases, with two alternatives of investment in information for each case.

What is the better alternative in each case? Is the investment in information better than the not

investing in information?

Consider first the Oilfield 1. The technical uncertainties for q (in %) and B (in million barrels) are

modeled with triangular distributions (minimum; most likely; maximum):

B ~ Triang (300; 600; 900)

q ~ Triang (8%; 15%; 22%)

The gamma factor (γup) is 75%.

Alternative 1 is the less expensive one and consists in drilling one vertical well. The learning cost is

US$ 10 million and takes 45 days to get the information and knowledge on q and B. The revelation

power (percentage of reduction of variance) for B is 50%, whereas for q is 40%.

Alternative 2 consists in drilling one horizontal well. The cost is US$ 15 million and takes 60 days to

get the information (knowledge on q and B). The revelation power (percentage of reduction of

variance) for B is 75%, whereas for q is 60%.

The development cost function is:  D(B)  =  310  +  (2.1 x B)

The results for the Oilfield 1 are given in the Table 141.

                                                

40 Because it is the difference of two simulated values, the error can be larger than the previous indicator.

41 Used 10,000 iterations for Alternative 1 and 100,000 for Alternative 2, with a hybrid quasi-Monte Carlo simulation (it
is more efficient than traditional Monte Carlo) see http://www.puc-rio.br/marco.ind/quasi_mc.html. The estimated errors
of the simulation were lower than − 0.3% for both alternatives. The computational time using Pentium III, 1 GHz, were
less than 2 minutes for 10,000 iterations and about 16 minutes for 100,000 iterations, with Excel spreadsheet.



Table 1 - Real Options Results for Oilfield 1

Alternatives Alternative 1 Alternative 2

(1) NPV without Technical Uncertainty 230 230

(2) Real Options without Technical Uncertainty 302.1 302.1

(3) Simulated NPV with Technical Uncertainty (with γup) 178.6 178.9

(4) Simulated Real Options without Information 267.9 263.3

(5) Simulated Real Options with Technical Uncertainty
and with Information Revelation from Alternatives

298.4 307.0

(6) Dynamic Net Value of Information [ (5) − (4) ] 30.4 43.7

There are some values in the table that are different only due the simulation error (rows 3 and 4). The

last two rows in the table present values net of cost of information. By looking the row 5 or 6, we

conclude that the Alternative 2 is the best even being 50% more expensive. It is recommended to

increase the number of simulations in case of smaller differences between the alternatives.

Now consider the Oilfield 2. This second case study was presented in Souza Jr. & Dias & Maciel

(2002). The development cost function is the same of Oilfield 1 given by D(B)  =  310  +  (2.1 x B).

The technical uncertainties for q (in %) and B (in million barrels) are also modeled with triangular

distributions (minimum; most likely; maximum):

B ~ Triang (145; 320; 560)

q ~ Triang (6%; 15%; 25%)

The gamma factor (γup) is 65%.

Alternative 1 is the less expensive one and consists in drilling one vertical well, but without

performing production test. It costs US$ 6 million and takes 35 days to get the information and

knowledge on q and B. The revelation power (percentage of reduction of variance) for B is 75%,

whereas for q is 60%.

Alternative 2 consists in drilling one vertical well, but this time performing a production test. It costs

US$ 12 million and takes 65 days to get the information and knowledge on q and B. The revelation

power (percentage of reduction of variance) for B is 80%, whereas for q is 70%.

The results for the Oilfield 2 are given in the Table 2.



Table 2 - Real Options Results for Oilfield 2

Alternatives Alternative 1 Alternative 2

(1) NPV without Technical Uncertainty 20.3 20.3

(2) Real Options without Technical Uncertainty 116.2 116.2

(3) Simulated NPV with Technical Uncertainty (with γup) − 32.5 − 33.1

(4) Simulated Real Options without Information 87.8 86.6

(5) Simulated Real Options with Technical Uncertainty
and with Information Revelation from Alternatives

128.3 126.6

(6) Dynamic Net Value of Information [ (5) − (4) ] 40.5 39.9

In the case of Oilfield 2, the less expensive Alternative 1 is the best one. However, the difference is

too small, so that is recommended another simulation with a higher number of iterations. In addition,

we can revaluate the production test just after the drilling. But it requires quick evaluation of the new

expectations of reserve size and productivity, because the deepwater rig is very expensive.

6 - Extensions

6.1 - Timing Issue for the Investment in Information

Investment in information is expensive (e.g., drilling offshore well demands an amount ranging from

US$ 4 million to US$ 20 million) and reveals only partial information on the size and the quality of

the reserve. However, the investment cost for the oilfield development in general is much higher than

the cost to acquire additional information (an offshore development typically requires more than US$

1 billion). So, the development cost is typically about 100 times the cost of learning!

Hence, for the petroleum case, the issue of optimal timing of learning is not so relevant as the issue

of optimal timing of development. The postponement of the investment in information has the

benefit to delay a cost, but it has the disadvantage of delay the exercise of possible "deep-in-the-

money" projects (in case of revelation of good news)42. Even a neutral revelation (imagine the

expectations remain the same after the revelation), the real options value is improved with the

revelation because the penalty factor on the NPV function is lower after the new information.

                                                

42 In addition, the incremental value of appraisal is higher for out-of-money projects than for in-the-money projects (see
Whiteside & Drown & Levy, 2001, p.6).



Let us reexamine the case study presented before, if we delay six months and one year the

investment in information. The present value of investment in information is reduced with the

discount factor43, but the development option exercise is allowed only after this delay (6 months or

one year) plus the time to learn. The results for the case of oilfield 1 are given in the Table 3.

Table 3 - Simulated Real Options with Technical Uncertainty and with Information Revelation
for Oilfield 1 - Immediate Learning versus Learning Delay

Alternative 1 Alternative 2

Real Option without Learning 267.9 (a) 263.3 (b)

Real Option with Immediate Learning 298.4 (a) 307.0 (b)

Real Option with Learning Delay of 6 Months 293.9 (c) 305.9 (d)

Real Option with Learning Delay of 1 Year 291.2 (e) 299.7 (f)

Order of simulation errors44: (a) − 0.26%  (b) − 0.29%  (c) − 0.03% (d) − 0.16% (e) − 0.36% (f) − 0.43%.

The immediate learning is better for the Alternative 1 and slightly better for Alternative 2.

Remember that Alternative 2 is more expensive than Alternative 1. The option to delay learning can

be of some importance for cases of high cost of learning, lower power of revelation, lower

penalization in the NPV function (γup near 1), and real options "out-of-money".

6.2 - Valuation of Sequential Investment in Information

The valuation of an entire appraisal plan, with two or more appraisal wells (for offshore oilfields,

generally one to three sequential drilling), is a typical case encountered in the upstream oil industry.

The economic value for the last wells are less obvious. Let us return to the stylized example from

Section 2, the rectangular oilfield where each well can be success or dry hole. What happens if after

drilling the first well "B", the drilling of the second well "C" is conditional to the success scenario for

the first well? This path-dependence can be important in the investment in information analysis.

When comparing the parallel drilling of the wells "B" and "C" (Alternative 2 from Section 2) with

the sequential drilling, both have the same revelation distribution after the two wells, see Figure 7.

                                                

43 The discount factor is e− rt. For r = 6%, the discount factors are 0.970 and 0.942, respectively for 6 months and 1 year.

44 These values are for 10,000 simulations, except items (b) and (d), which were used 100,000 simulations due the close
values. The error is only an estimate because compares the traditional real options value resulted from the simulation
with the efficient analytic approximation for American call option of Bjerksund & Stensland (see Haug, 1998, pp.26-29).



Figure 7 - Two Sequential Investments in Information and the Resultant Revelation Distribution

However, the sequential drilling alternative has an additional option of not drilling the second well in

case of first bad news, that is, the option to abandon the appraisal plan. So, the sequential drilling is

more valuable than the parallel drilling45. The parallel drilling is calculated as a single shot

investment in information, the alternative 2 estimated in section 2. So, that alternative 2 value is a

lower bound for the value of the alternative of sequential investment in information.

In order to simulate adequately the path-dependence nature of sequential investment in information,

the revealed scenario by the first well becomes the new expectation for the second revelation

distribution. By definition, the revealed scenario is the new expectation for the technical parameter

(reserve size), so by Proposition 2 the revelation distribution at this point has mean equal to the

current revealed scenario. This insight is useful for the Monte Carlo simulation of sequential

investment in information, in order to consider the path-dependence of sequential investment with

options that can be exercised along the path. The forward-looking path needs to be evaluated

backwards in order to consider the possibility of options exercise between the revelations (option to

abandon the appraisal plan, option to delay the second investment in information, and even the

                                                

45 See Dias (1997) for a numerical example of value added with the option to abandon the sequential appraisal plan.



option to develop the oilfield without gather more information). These more complex issues will be

object of another paper, but note that after this paper approach is valid to evaluate the last revelation.

In addition, when no option is exercised after the first revelation (so that there is a new revelation in

every scenario of the first revelation), the distribution of revelation after two sequential investments

in information has the same expected value of the first revelation distribution. See in the last picture

the revelation distribution after two sequential investments that this expectation is 250, that is the

same of the revelation distribution for the Alternative 1 (single revelation, see section 2). So, the ex-

ante expected value of revelation distributions for sequential investments in information, are all the

same. This is a very general result and led us to the following proposition.

Proposition 4: The sequential revelation distributions {RX,1, RX,2, RX,3, …} are (event-driven)

martingales46 (proof: see appendix). In short, ex-ante these random variables have the same mean47.

You can think martingale as a "fair" game. Let Kn be capital of a gambler after the bet n and if all

bets are fair in the sense that result in zero expected gain, then for n ≥ 0, Kn are martingales. Think

bets as investments in information and Kn as the (conditional) expectation of a technical parameter

after the n "bets". This property is useful for sequential investment in information because there is a

well-developed theory of optimal stopping for martingales. A bit more complex case is when we

allow the earlier development option exercise between two revelations48 (or two planned investments

in information). In other words, consider the option to abandon the sequential investment in

information because is optimal the exercise of the option to develop the oilfield with the current

accumulated level of revelation. In this case there is a free-boundary threshold for optimal

development between two revelations. This more complex case was studied in a real case for the

fiscal regime of production sharing (see next sub-section) and will be presented in another paper.

                                                

46 For a discussion on martingales, see the didactic book of Williams (1991).

47 Although in the Monte Carlo simulation the second revelation distribution uses as mean the scenario revealed by the
first revelation (path-dependence), the combined distribution resultant from the two revelations has the mean equal the
mean of the first revelation distribution.

48 For example, the first revelation occurs after the drilling of the wells from a Pilot Production System (small system)
and the second revelation occurs after two years of pilot production when we can learn about the aquifer performance as
primary reservoir inflow mechanisms. Imagine the oilfield become "deep-in-the-money" oilfield after the first revelation.



6.3 - The Fiscal Regime of Production Sharing

The main fiscal regimes in petroleum upstream are the concessions system and the production

sharing one. The production-sharing regime has two main phases. The first one is named cost

recovering, so that the revenues net of operational cost from the first years are destined to the oil

companies, in order to recover the amount invested in the petroleum field (in general considering an

interest like Libor plus x%). In this phase, the Government Take (GT) is inexistent or very small. The

second phase, named profit phase, the revenues net of operational cost are destined to both Govern

(larger part) and oil companies. It seems like two different regimes, if the project (ex-post) has no

profit, the GT is zero or very small49, whereas for ex-post profitable projects the GT is significant.

Figure 8, the typical chart NPV x P for Production Sharing Regime, illustrates these two different

phases. Remember that for the fiscal regime of concession, this chart has a straight line.

Figure 8 - The NPV x P Function for the Fiscal Regime of Production Sharing

                                                

49 For the concessions regime, profit or non-profit project is an oil company problem. Even with negative NPV, the oil
companies pay royalties, income tax (if the company is profitable, doesn't matter the project), and other taxes.



If the oil price is under $ 15, the project has lower fiscal charge because it stays in the cost

recovering phase50, but for higher prices the fiscal charge is heavier because the project reaches the

profit phase. This case is a bit more complex to simulate (the simple equation 6 is not useful here).

7 - Conclusions

The paper presents a dynamic approach to combine the technical uncertainties with market

uncertainties using a Monte Carlo simulation. The contributions of the paper are the concept of

revelation distribution to work with technical uncertainties and its insertion in the real options model.

As the volatility in traditional real models, the revelation distribution variance adds value to the real

option. As higher is the revelation power of one alternative of investment in information, as higher is

the revelation distribution variance.

The approach presented simplifies the implementation of real options model considering costly

learning because the technical expert has to estimate only the initial (prior) distribution and, for each

relevant alternative of investment in information, the expected percentage of reduction of variance.

By using a simple parameterized NPV function, it is possible to get faster results using a simple

spreadsheet with Monte Carlo simulation facility. The simple equation adopted is based in a business

vision on the quality of reserve, and considers other uncertain key parameters like the reserve volume

and the oil price. In addition, the exercise price of the option (the development investment) changes

with the revealed size of reserve, including this realistic aspect of the investment decision.

The case studies presented illustrated the applicability of the methodology in practical problems,

including a factor due the sub-optimal development due the incomplete information. The

methodology permits to select the best alternative of investment in information from a relevant set,

because it considers the cost of learning, the time to learn, and the revelation power, for each

alternative of investment in information. Some extensions were briefly analyzed, such us the timing

of investment in information, and the sequential (optional) investment in information. An in-depth

analysis of these extensions is left to a future work.

                                                

50 This change of regimes is not at the NPV = 0 level because the discount rate for NPV is different of the discount rate
used by the National Agency to reward the investment for cost recovery rule purposes.



APPENDIX

Definition of Conditional (on a σσσσ-Algebra) Expectation

Some definitions are possible depending if the conditioning is on an event, discrete random variable

or an arbitrary random variable. Is presented the more general case. Let X be an integrable51 random

variable mapping the probability space (Ω, Σ, P) into a measurable space, where Ω is the sample

space (set of all possible outcomes ω), Σ is the sigma-algebra52 and P the probability measure. Let Ψ

be a sub-sigma-algebra of Σ (that is, Ψ ⊆ Σ )53. The conditional expectation of X given Ψ, E[X | ΨΨΨΨ]

is a Ψ-measurable function54 that satisfies the equation below for every Y ∈ Ψ:

Definition of Conditional (on a σσσσ-Algebra) Variance:

Let the random variable X have a conditional expectation E[X | Ψ] with respect to the sigma-algebra

ΨΨΨΨ of subsets of the sample space Ω. The conditional variance of X is a random variable defined by55:

Var(X | ΨΨΨΨ) = E{( X −−−− E[X | ΨΨΨΨ] )2 | ΨΨΨΨ}

 Where Ψ is a sub-sigma-algebra of Σ, the sigma-algebra from the (unconditional) probability space,

the triple (Ω, Σ, P).

Conditional Expectation Properties & Miscellaneous

Let X1 and X2 random variables, and ψ the possible outcomes from the information revelation56.

                                                

51 A function f that is µ-integrable is written f ∈ L1(Ω, Σ, µ). So, it is assumed that X ∈ L1 (where L is from Lebesgue).

52 Sigma-algebra Σ on Ω  is a family of events E (subsets of Ω), including the empty set, complements of sets that belong
to Σ and countable union of sequence of sets En ∈ Σ.

53 See Shyraiev (1996, p.212) or Williams (1991, p.84).

54 See for example Williams (1991, p.29-30) for the definition of Ψ-measurable functions in a measurable space (Ω, Ψ).

55 See for example Shyraiev, 1996, p.214.



Linearity property:      E[(a X1  +  b X2) | ψψψψ ]     =   a E[ X1 | ψ ψ ψ ψ ]   +   b E[ X2 | ψ ψ ψ ψ ]

Jensen Inequality: If g(.) is a convex function,    g{ E[ X | ψ ψ ψ ψ ] }    ≤≤≤≤    E[ g(X) | ψ ψ ψ ψ ]

Joint Probability Density:    f(x, ψψψψ)    =    fΨΨΨΨ(ψψψψ)  f(x|ψψψψ)

In the petroleum problem, fΨ(ψ) is the density of the outcomes from the investment in information

(e.g., drilling reveals data on net-pay h, area A and productivity index PI), whereas f(x|ψ) is the

density of X (e.g., X is the size of the reserve) conditional on the information revelation.

Existence of Expectation for Revelation Distribution and the Proof of Proposition 2

Assume that X has finite expectation (is "integrable"), and I is the conditioning new information both

in the probability space (Ω, Σ, P). Hence the conditional expectations RX(i) = E[X | I = i] exists and

is finite almost surely (as). This is a consequence of Radon-Nikodým Theorem, see for example

James (1996, p.176) and Kolmogorov (1933, p.53). See Kolmogorov (1933, p.40) to understand why

E[ |X| ] < ∞  is the necessary and sufficient condition for the existence of E[X].

Let X be a random variable with E[ |X| ] < ∞. Let Ψ be a sub-sigma-algebra of Σ. Then exists a

random variable RX such that RX is Ψ measurable and its expectation also exists57. The proofs that if

E[ |X| ] < ∞ ⇒ E[ | RX | ] < ∞ (and hence the existence of revelation distribution expectation) and RX

is Ψ measurable, are given in Williams (1991, pp.85-86).

The Proposition 2 can be formulated as: if RX is any version58 of E[X | Ψ] then E[RX] = E[X]. For a

more general proof, see Williams (1991, p.89). The proof below uses a simpler approach without

concepts from measure theory. First let us prove for the case when the parameter with technical

uncertainty X and the conditioning information I are discrete random variables (the proof follows

Ross, 1998, p.338). In this discrete case the Proposition 2 becomes (P{.} means probability):

                                                                                                                                                                   

56 See for example James (1996, p. 177) or Williams (1991, p.88) for the next two properties.

57 RX is also the Hilbert space projection of X on the closed linear subspace L2(Ω, Ψ, P) of L2(Ω, Σ, P) and hence the
conditional expectation does exist (see Jacod & Protter, 2000, p.196).

58 See Williams (1991, p.84) for the definition of version. If R*
X is a version of RX, we have R*

X = RX almost surely.
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Now the proof for the continuous case (following James, 1996, p.176), when X and I have joint

probability density f(x, i) and the conditional density is f(x|i) = f(x, i)/fI(i), being fI(i) > 0.
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E[X]  dx   (x)fx   dx   di i) f(x, x    (and Proposition 2 is proved)

Proof of Equation of the Variance of Revelation Distribution (Proposition 3)59

Let RX = E[X | I] be the random variable with probability distribution named revelation distribution.

We know that the conditional variance of X given the information I = i, is defined by:

Var(X | I ) = E[(X − E[X | I ])2 | I ]

A very known equation for the variance of a random variable Y is Var[Y] = E[Y2] − (E[Y])2. So60:

                                                

59 The proof is also the solution of the problem 2, Shyraiev, 1996, p.83, and is similar to Ross (1998, p.348).



Var(RX) = Var(E[X | I])   = E[(E[X | I ])2] − (E[E[X | I ]])2  =  E[(E[X | I ])2] − (E[X])2               (*)

By using the same known equation for Var(X | I ), we obtain:

Var(X | I )  = E[X2
 | I] − (E[X | I ])2 . By taking the expectations, we have:

E[Var(X | I )]  = E[E[X2
 | I]] − E[(E[X | I ])2]  =  E[X2] − E[(E[X | I ])2]      (**)

By summing (*) and (**) and rearranging, we complete the proof:

Var(E[X | I])  = Var(RX)  = Var(X) −−−− E[Var(X | I )]

Proof for the Proposition 4 (Sequential Revelation Variables Are Martingales)

The sequential revelation distributions {RX,1, RX,2, RX,3, …} are (event-driven) martingales61.

Proof62: A martingale must meet three conditions (see Williams, 1991, p.94). The first condition is a

consequence of the assumption that the technical parameter with uncertain, X, is integrable and from

the Radon-Nikodým Theorem we must have E[ |RX| ] < ∞ almost surely (existence of revelation

distribution expectation, mentioned before). The second condition, the revelation process is adapted

to a filtration {ℑn: n ≥ 0}, that is, an increasing family of sub-sigma-algebras of Ψ that is, (ℑ0 ⊆ ℑ1 ⊆

ℑ2 ⊆ … ⊆ Ψ). The third condition is that E[RX,n | ℑn − 1]  = RX,n − 1 almost surely. In order to proof

this, let us first set the Tower Property (see Williams, 1991, p.88). If ϒ is a sub-sigma-algebra of Ψ,

then almost surely we have E[RX | ϒ ] (= E[E[X | Ψ] | ϒ ]) = E[X | ϒ ]. This property is immediate

from the definition of conditional expectation (Williams, 1991, p.90)63. Now, we follow the example

of martingale from Williams (1991, p.96) called "accumulating data about a random variable". Let

the variable ξ ∈ L1(Ω, Ψ, P) and define Rn = E[ξ | ℑn]. By Tower Property we have almost surely:

E[Rn  | ℑn − 1]  =  E[E[ξ | ℑn] | ℑn − 1]  = E[ξ | ℑn − 1] = Rn − 1 . Hence, RX, n are martingales.

                                                                                                                                                                   

60 Assume that X is square-integrable, that is, X ∈ L2.

61 The sequence of revelation random variables RX, n are called Doob type martingale (see Ross, 1996, p.297).

62 For a nonmeasure theoretic proof, see Ross (1996, p.297). For any n > 0, E[Rn | I1, I2, ….In−1] = Rn − 1 .
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