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Real Options and Competition:  

The Impact of Depreciation and Reinvestment 

1. Introduction 

One of the most important developments in economics during the last decades was the 

recognition that the Net Present Value (NPV) criterion in investment theory can be 

misleading under certain conditions. These conditions are: the returns of an investment are 

subject to an ongoing uncertainty, the investment is (at least partly) irreversible (i.e. the 

investment causes sunk costs), and the investor can suspend the investment decision for 

some time. If all these conditions are fulfilled, even in case of risk neutrality, it is not 

necessarily optimal to invest if the expected present value of the future returns covers the 

investment outlays. Rather, one should assign a positive value to the preservation of the 

flexibility whether to invest or not; in other words, waiting for new information has a value. 

This insight led to the development of the real options approach to investment (Henry, 

1974a, McDonald and Siegel, 1986, Pindyck, 1991).1 It exploits the analogy between a 

financial option and a real investment. The opportunity to conduct an investment can be 

compared with a call option on financial markets: like the owner of a call, the investor has 

the right but not the obligation to pay a fixed sum I and to receive a stochastic cash flow 

with an expected discounted value V. While classical investment theory tells us this 

investment opportunity is worth V-I, i.e. the NPV, it is well known from the theory of 

financial derivatives that V-I measures only one part of the value of the option to invest, 

namely the intrinsic value. In addition, the opportunity to invest has a continuation value, 

which is the discounted value of the expected appreciation of the option. The option should 

only be exercised if the intrinsic value exceeds the continuation value.2  

Unfortunately, the practical application of the real options approach is not that easy. 

Analytical solutions of optimal investment triggers only exist for rather restricted situations, 

for example, if the expected returns of the investment follow a geometric Brownian motion 

and the investment option never expires. Thus, for practical applications of the real options 

                                                 
1  The idea that the preservation of unique environmental goods and of historical buildings has an options 

value was first proposed by Arrow and Fischer (1974) and Henry (1974b). 
2  For a detailed criticism of traditional capital budgeting techniques see Trigeorgis (1996, ch. 1-2) and 

Amram and Kulatilaka (1999). Dixit and Pindyck (1994) present an extensive introduction into this 
approach. 



 2

approach one either has to find evidence that the assumptions of a geometric Brownian 

motion and of an infinite lifetime of the option are fulfilled. Alternatively, one has to resort 

to approximation techniques to price them. Hull (2000, ch.  16), for instance, provides an 

overview of the various methods.  

A look at the literature reveals that very often the first strategy is chosen: Authors take time 

series data on prices or returns for a given branch or market and apply a Dickey-Fuller test 

or an augmented Dickey-Fuller test to find evidence for a geometric Brownian motion 

(GBM). Then the volatility of the returns is estimated and taken to compute the optimal 

investment trigger (e.g. Pietola and Wang, 2001; Bessen, 1999). However, for competitive 

industries this “standard procedure” seems to be problematic, because the evolution of the 

returns is hardly purely exogenous, as implicitly stated by the GBM assumption. Rather the 

evolution depends to some extent on the behavior of competitors. Accordingly, one could 

argue that deferring an investment until prices or returns are at least equal to the investment 

trigger may be inferior because competitors could enter the market at lower prices and 

thereby prevent prices to rise. Dixit and Pindyck (1994), however, find that this argument 

does not hold. They show for certain settings that the optimal investment trigger P* is not 

affected by competition, i.e. the investment trigger is the same for exclusive investment 

options and for investment options under competition. Nevertheless, Dixit and Pindyck find 

that the price dynamics is somewhat different: The investment trigger forms a kind of 

reflecting barrier. As long as prices are lower than the trigger price, prices follow a 

geometric Brownian motion. If market conditions prosper, prices rise up to the trigger price 

and additional firms enter the market and prevent prices to rise above the trigger. If 

thereafter market conditions worsen, then those firms that have invested continue to 

produce and prices decline proportional to the market conditions. Figure 1 illustrates this 

dynamics for a price Pt , a demand parameter αt , output Xt , with Pt  = αt /Xt  and αt  follows 

GBM. A particular implication of this price dynamics is that in average competition does 

not allow for profits. Investment at the trigger price P* just fulfils the zero profit 

assumption which is a central equilibrium condition for competitive markets. Lower 

investment triggers imply losses and are consequently inferior. Higher triggers do not allow 

for profits because they do not allow to exercise the investment option. 

Here Figure 1 

During the last years several authors have taken the finding of Dixit and Pindyck (1994) as 

an argument to ignore competition and to apply the already mentioned “standard 
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procedure”. In the remainder of this paper we will demonstrate that for many investment 

decisions this procedure is not appropriate. The reason behind is a central assumption in the 

Dixit and Pindyck framework. They implicitly assume that the assets have an infinite 

lifetime. Consequently, the aggregate output on the market may increase over time but it 

cannot decline as it is shown in figure 1, i.e. if assets do not need to be replaced and if 

prices cannot become negative (which is implicit for GBM) then the asset will be used for 

an infinite time. However, if one assumes that assets are subject to decay or that they have a 

limited lifetime, the price dynamics changes: There still is a certain trigger price that forms 

a reflecting barrier for an increasing demand parameter αt. However - and in contrast to the 

Dixit and Pindyck model - a decrease of αt can at least partly be compensated by a 

subsequent output decrease if there are some “depreciated”3 production facilities that will 

not be replaced because expected prices are lower than the trigger price. Hence, downward 

price reactions are dampened as it is shown in figure 1. Consequently, under competition 

the equilibrium investment trigger for assets with finite lifetime is lower than for identical 

investment opportunities that are exclusive.4 

In principal, one could argue that the damping effect of depreciation causes a lower price 

volatility. Consequently, the application of the “standard procedure” may lead to lower 

investment triggers anyway, i.e. the “standard procedure” may be appropriate. Our analysis 

does not support this conclusion. On the contrary: We find that the estimated price volatility 

does not significantly differ from the volatility of the demand parameter αt. Thus - as 

already mentioned - we conclude that the “standard procedure” is not appropriate! 

Our results are obtained by a discrete time agent-based approach in which N agents 

represent N identical firms which compete on a certain market. Each of these firms 

possesses its individual investment trigger which is derived by linking the agent-based 

model with a genetic algorithm (cf. Arifovic, 1994). In section 2 the firms’ investment 

problem, their interaction, as well as the linkage to the genetic algorithm (GA) are 

presented in detail. In section 3 results are presented and analyzed. Moreover, we identify a 

direct rule of determining the price dynamics in competitive markets with depreciable 

assets. This rule allows us to validate our findings as well as to compute investment triggers 

                                                 
3  Note, that we understand depreciation not in terms of bookkeeping or accounting but as the deterioration of 

assets with increasing age. 
4  The effect of lower trigger prices caused by depreciated assets in competitive markets should not be 

confused with the reduction of trigger prices that result of reinvestment opportunities for exclusive 
investment options. Cf. table 1. 
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for different parameter settings with less computational effort than the agent-based 

approach. In section 4 the approach and our findings are summarized and discussed.  

2. The Model  

2.1. The investment problem 

Consider a number of N = 50 firms, each having repeatedly the opportunity to invest in 

identical assets or a fraction thereof, i.e. the assets are divisible. Initially no firm has 

invested. The asset has a maximum size of 1 and can be used by firm n to produce up to 

1, =ntx  unit of output per production period. Size, investment outlay and production are 

proportional. If a firm invests for the first time, its maximum initial investment outlay 

max
,ntM  is I. The investment outlay Mt,n is considered to be totally sunk after the investment 

is carried out. For every period, we consider a geometrical decay of the asset. The asset's 

productivity declines to (1-λ) of the previous period's output, i.e. we consider a depreciation 

rate λ such that ntntt xx ,, )1( ⋅−=∆+ λ .5 However, in every period, each firm can invest or 

reinvest in order to increase production or to regain a production capacity of up to one unit 

of output. The outlay Mt,n then has a maximum amount max
,ntM  depending on the missing 

production capacity, i.e.  

[ ] IxM ntnt ⋅⋅−−= ,
max
, )1(1 λ  (1) 

such that 1max
, =∆+ nttx . Each firm’s investment decisions aim to maximize the expected net 

present value of the cash flows by choosing a specific investment trigger *
nP , i.e. the goal of 

firm n can be formulated as 

( ) ( )( ) ( )
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with Pt as the output price in period t and ∇t , - n  denoting a certain market operator that 

captures demand developments which are assumed to be stochastic as well as depend on the 

                                                 
5  The use of the decay parameter λ is analogous to the probabilistic approach presented in Dixit/Pindyck 

(1994, pp 200). To understand this, simply consider that any firm n actually considers of an infinite number 
of identical infinitely small firms. 
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behavior of the other firms.6 Accordingly, we consider that the firms compete and interact 

on a market. To capture the competition, the firms and their interaction are represented in 

an agent-based setting in which the firms are represented as agents that perceive their 

environment and respond to it.  

In our model, the environment consists of two parts. The one is the behavior of the other 

firms. The other is the demand for outputs, which is modeled in terms of a demand 

function. The environment can be described as follows: 

Total supply in period t is 

∑
=

=
N

n
nt

S
t xX

1
,  (3) 

and demand is 

t

tD
t P

X
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=  (4) 

For identity of demand and supply, we get  
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t
t XX

P
αα

==  (5) 

Consider now that the dema nd parameter αt follows geometric Brownian motion. 

Assuming discrete time and assuming the absence of a drift rate this can be modeled as 









∆⋅⋅+∆⋅−⋅= ∆− tt tttt εσσαα
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 (6) 

with a volatility σ, a normally distributed random number εt  and a time step length ∆t. Note 

that αt is the expected future demand parameter tt ∆+α̂  for GBM.  

Firm n invests in period t+∆t if the expected price *ˆ
ntt PP ≥∆+ with 
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6  Note, that equation (15) implicitly assumes risk neutrality. 
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The questions now are: Which firms invest and how much do they invest? Therefore, let us 

assume that firms with lower trigger prices *
nP  have a stronger tendency to invest. 

Consequently, all firms can be sorted according to their trigger prices, starting with the 

lowest investment trigger, i.e. *
1

*
+≤ nn PP . The following propositions are straightforward: 

Proposition 1: If firm n does not invest in t then firm n+1 will also not invest in t, i.e.  

00 1,, =⇒= +MM ntnt  (9) 

Proposition 2: If firm n does invest in t then firm n-1 will invest max
1, −ntM  in t, i.e. 

10 1,1
max

1,1,, =⇒=⇒> −+−− xMMM ntntntnt  (10) 

Proposition 3: In every period t, a marginal (or last) firm o
tn  exists which invests max

, οnt
M , 

and Nno
t ≤≤0 .7 

If one would assume that any firm o
tnn >  does neither invest nor reinvest, then total 

production in t+∆t would be 
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Accordingly, the expected price in t+∆t would be 
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Now, o
tn  can be identified by iteratively testing all firms for 

o

o
t

n
ttn

PP ∆+≤ ˆ* . The last firm that 

fulfils the investment condition (12) is o
tn .  

                                                 
7  Notice, no

t  is zero if there is no investor in period t. 
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According to proposition 3 and the subsequent considerations, we only consider firms 

which either invest max
,ntM  or 0. However, we may find the situation that 

o

o

n
ttn

PP ∆++
≤ ˆ*

1
. In this 

case we can consider that firm 1+on  can invest 
1, +ont

M , with max
1,1,

0 ++ << oo ntnt
MM  and 

without violating the condition that the trigger price is less or equal to the expected price. 

Based on equations (7), (8), and (12) we can derive the condition 
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Equation (14) is an equilibrium condition: All firms which fully invest and hence produce 

at maximum capacity have trigger prices which are less or equal to the trigger price of firm 

1+on  which is also equal to the expected price for t+∆t. All firms which do not invest have 

trigger prices which are higher than or equal to the expected price for t+∆t. 

For a given set of trigger prices P* and arbitrary initializations for α0, the expected 

profitability of each strategy 

( ) ( )( )
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can be determined simultaneously by a sufficiently high number of repeated stochastic 

simulations of the market. For our analysis, we consider 5000 repetitions to be sufficient. 

The remaining question is, how to determine appropriate sets of trigger prices *
nP ? For this, 

the N-firms market model is combined with a genetic algorithm (GA). 

2.2. The Genetic Algorithm and its implementation8 

GA are a heuristic optimization technique which has been developed in analogy to the 

concepts of natural evolution and the terminology used reflects this. Even though there is 

no “standard GA” but many variations of GA, there are some basic elements which are 

                                                 
8  The following representation of GA draws on Balmann and Happe (2001). 
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common to all GA (cf. Holland, 1975, Goldberg, 1989, Forrest, 1993, Mitchell, 1996).9 The 

first task of an application of GA is to specify a way of representing each possible solution 

or strategy as a string of genes which is located on one ore more chromosomes. Usually this 

is achieved by representing solutions (e.g. strategies, numbers, etc.) as binary bits, i.e. 

zeroes or ones, which form the genes. Since our problem is relatively simple, i.e. we just 

search for a single value (i.e. every strategy just consists of a certain trigger price), we take 

the investment trigger as a real value and apply the GA operators to the trigger price itself. 

The second task is to define a population of N genomes to which the genetic operators, i.e. 

selection, crossover and mutation, can be applied. The population size here is 50 genomes. 

This allows us to directly map the set of genomes to the firms' strategies, i.e. every firm’s 

trigger price in our model is represented by one genome of the genome population. Vice 

versa every genome can be understood as the strategy of a certain firm. 

Each application of the genetic operators to the population of genomes creates a new, 

modified generation of genomes. The number of generations depends on the problem to be 

solved. It can range from some 50 to a couple of thousand. In most GA applications the first 

generation of genomes is initialized by random values or it is set arbitrarily. During the 

following generations, the genome population passes through the following steps: 

a) Fitness Evaluation 

Each time before the GA operators b) to d) are applied, the goodness of every genome is 

evaluated by applying a fitness function. This function assigns a score to each genome in 

the current population according to the capability of the genome strategy to solve the 

problem at hand. The better the strategy performs, the higher its fitness value. For our 

applications, the fitness value is directly derived from the strategy's average profitability 

Πn(Pn*) or payoff in 5000 stochastic simulations of the market model.  

b) Selection and Replication 

Selection determines the genetic material to be reproduced in the next generation. The fitter 

the genome (i.e. the better adapted it is to the problem) the more likely it is to be selected 

for reproduction. Selection can be implemented in many different ways. In this model the 

20 most successful genomes always survive. The next 15 genomes are replaced with a 

                                                 
9  Regarding other GA-applications to real options cf. Balmann, Mußhoff and Odening (2001) and Diaz 

(2000). These studies consider exclusive real options, i.e. investment problems of single, non-interacting 
firms are considered. 
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certain likelihood by the 15 most successful genomes of the last simulation series. The next 

10 genomes are replaced by the 10 fittest genomes with a higher likelihood. And the least 5 

successful genomes are always replaced by the 5 most successful genomes. Summarizing, 

the 5 most successful genomes can quadruplicate, the next 5 can triplicate, and the next 5 

most successful strategies can double. 

c) Crossover 

Figure 2 shows the simplest case of a 1-point-crossover, where the coded strings of two 

parent genomes are split at a randomly chosen locus and the sub-strings before and after the 

locus are exchanged between the two parent genomes resulting in two offspring of the same 

string length.  

Here Figure 2 

This technique is also used for our GA implementation. With a certain likelihood, for every 

genome a a partner b is randomly chosen from the selected genomes. The values are cut at 

a randomly chosen digit. If e.g., the numbers are cut after the third digit, offspring a' gets 

the first three digits of parent a and all further digits of parent b and vice versa. Thus the 

triggers a=1.2345678 and b=1.1111111 become a'=1.2311111 and b'=1.1145678.  

d) Mutation 

Mutation also brings new genetic varieties into the population of genomes. Furthermore, 

mutation serves as a reminder or insurance operator because it is able to recover genetic 

material into the population which was lost in previous generations (Mitchell 1996). This 

insures the population against an early and permanent fixation on an inferior genotype. 

Mutation is implemented here by multiplying every solution with a certain, but small 

likelihood with a random number between 0.95 and 1.05. The mutation likelihood as well 

as the range of the random number may be chosen according to experience as well as 

according to the already obtained results. Figure 3 describes how the GA is implemented in 

our model. 

In one particular point our GA application deviates from conventional applications. Here, 

the GA is not just used to solve a more or less complex optimization problem in which the 

goodness of the solution and the problem at hand are directly related. But, in our case, the 

goodness of a solution rather depends on the alternative solutions generated by the GA. In 

other words: in conventional GA applications the fitness of a genome can be obtained 
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directly from a comparison of payoffs of the different solutions. And, the payoffs of a 

certain solution are independent of the competing solutions. In our model, every solution’s 

payoff depends directly on the other solutions. Thus, we are applying the GA to a game 

theoretic setting which makes a significant difference. We are not searching for an optimal 

solution, but for an equilibrium solution, i.e. the Nash-equilibrium strategy. Fortunately, a 

number of publications during the past 10 years show that this approach functions quite 

well. Examples are given for instance in Arifovic (1994, 1996), Axelrod (1997), Balmann 

and Happe (2000), Dawid (1996) and Dawid and Kopel (1998).10 

Here Figure 3 

 

2.3. The scenarios 

The model as it is presented above can be used for many different scenarios. However, the 

motivation of this paper is to demonstrate that the “standard pr

approach (as we have called it in section 1) leads to wrong results for reasonable 

assumptions, i.e. we argue that the standard approach overestimates the investment trigger. 

Hence, in order to falsify this approach, it is sufficient to demonstrate the principal impact 

of depreciation for one specific scenario. This specific scenario is based on an interest rate 

of r = 6%, Iλ=5% = 8.36364, and no further production costs. This implies total production 

costs of 1 per unit of output. The volatility σ is assumed to be 0.2. For the case without 

depreciation, i.e. λ = 0, and average production costs of 1 the investment costs are adjusted 

to Iλ=0% = 16.66667. In order to consider that our model is based on discrete time steps 

while the theoretical literature usually is based on continuous time, we vary the time step 

length ∆t from 1 to 0.1 and we will show that smaller time steps do not offer any evidence 

against our basic message.11 The total time span T simulated in every stochastic simulation 

is determined as 100 years. For later periods the expected returns are set equal to the returns 

in year 100. The possible error can be assumed to be negligible since later returns are 

discounted by more than 99.7%.  

As a reference system for our market model, we determine the investment triggers also for 

the case that output prices directly follow GBM. Investment triggers for this problem are 

determined in two alternative ways. Firstly, we also apply GA in combination with 

                                                 
10  For a discussion cf. Chattoe (1998) and for a theoretical analysis cf. Dawid (1996). 
11  For ∆t < 1, the parameters λ, r, and σ are adjusted, i.e. (1-λ∆t) = (1-λ)∆t, (1-r∆t) = (1- r)∆t, σ∆t = σ ∆t0,5. 
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stochastic simulations. Secondly, we apply stochastic simulations to alternative, arbitrarily 

chosen trigger prices and search for the solution with the highest average profit. Though 

this is double work, the latter approach offers additional evidence that the GA-technique is 

appropriate. 

3. Results 

Table 1 shows the results of the presented procedure and allows to compare results with the 

analytical solution. Accordingly, the trigger prices in the case of exclusive options (i.e. 

without considering market effects) generated by the GA approach are quite similar to the 

arbitrary simulation results. For the scenarios with and without depreciation, these values 

differ by about 1%. We have carried out the procedures repeatedly with varying random 

number seeds and we have obtained very similar results. The differences could be reduced 

further by increasing the number of repetitions of the stochastic simulations. Unfortunately, 

this would increase the computational efforts substantially and 1% is an insignificant error 

regarding the purpose to show the effects of competition and depreciation simulations.  

Here Table 1 

Reducing the time step length ∆t leads to a convergence of trigger prices towards the 

analytical solution computed for continuous time, i.e. ∆t � 0. 12 This effect is not 

surprising, because reducing the time step length implies more frequent investment 

opportunities, i.e. one does not need to wait as long before one can decide again and can 

respond more quickly to revealed new information. In summary these results demonstrate 

that the GA approach leads to plausible results for the scenarios without competition.  13 

Let us now consider competition. According to table 1, the GA model with competition 

leads for the scenarios with infinite lifetime of the assets (λ = 0) to trigger prices which do 

not differ significantly from those of the scenarios without competition. Thus, these 

simulations are in accordance with the finding presented in Dixit and Pindyck (1994) 

according to which investment triggers are not affected by competition. However, if we 

                                                 
12  According to Dixit and Pindyck (1994), trigger prices for continuous time can be calculated as  

IrP )(
1'

1

'
1* λ

β

β
+

−
=  with '

1β  is the positive root of ( ) ( ) 012
1 2 =+−− λββσ r .  
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compare the investment triggers with depreciation, then competition leads to investment 

triggers which are some 13% to 15% lower than without competition. Hence, competition 

reduces the difference between trigger price and production costs by some 50%.14 Since the 

absolute as well as the relative differences increase with reducing ∆t, one can conclude that 

this phenomenon has also to be expected for a continuous time scenario. Accordingly, one 

has to state that competition matters if assets are depreciated and are subject to a 

reinvestment option!  

As already mentioned in the introduction, there is a simple explanation for this result: 

Depreciation allows for a certain market response to declining demand, i.e. to a declining α. 

Consider that from period t to t+1 α decreases by 5%. Accordingly, in t+1 prices are 5% 

lower than expected in t, i.e. if the price starts at the trigger price P*, in t+1 the price is 5% 

lower than the trigger price P*. Without depreciation the expected price for t+2 would be 

equal to the actual price in t+1. However, if one considers 5% depreciation per period, i.e. a 

5% reduction of the production capacities, then this reduction compensates the market 

deterioration and the expected price for t+2 is equal to P*. Consequently, as it is also shown 

in figure 1, depreciation reduces the downside market risk and dampens price fluctuations. 

Hence, one can invest at lower trigger prices than in a scenario without depreciation. Figure 

4 shows that the firms obtain profits which are not significantly different from zero. Hence, 

in accordance with Dixit and Pindyck (1994) the zero-profit assumption is fulfilled for all 

our market simulations, i.e. the results satisfy an essential equilibrium condition for 

competitive markets.15 

Here Figure 4 

These reflections on the impact of depreciation on the market dynamics provoke further 

interesting questions. We will concentrate on two. Firstly: Which insights gives the model 

regarding the price dynamics in relation to the dynamics of the demand parameter α? 

Second: Can the competitive price dynamics probably be simulated directly? 

                                                                                                                                                     
13  Principally, one could reduce the time step length even further. For ∆t = 0.05 the arbitrary determined 

trigger price in monopoly without depreciation is 1.734 and with depreciation 1.496. These values are quite 
close to the analytical solution. However, such small time steps require enormous computing capacities. 

14  It is quite interesting that depreciation together with the subsequent option to replace depreciated assets 
already reduces the investment trigger for exclusive options substantially (cf. table 1 and figure 6, as well 
as Dixit and Pindyck, 1994). The reason is that the earlier the initial investment has been made, the earlier 
the reinvestment options plays a role. I.e., the reinvestment option serves as an opportunity cost of the 
investment option.  

15  This is also in accordance with other GA based economic market studies that consider competition. Cf. 
Arifovic (1994), Dawid and Kopel (1998), and Balmann and Happe (2000). 
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Let us start with the first question. Consider an equilibrium trigger P* and assume that in 

period t-1 firms have invested according to *ˆ PPt = . From equations (5) and (6) we know 

that after the investment decisions are made, Pt purely depends on the relation of αt and αt-

∆t. Hence, the price in t will be 









∆⋅⋅+∆⋅−⋅= ttPP tt εσ

σ
2

exp
2

*  (16) 

Consider now that the actual price in period t is *PPt ≥ . Then the firms will respond and 

invest such that *ˆ PP tt =∆+ . Now consider tPP ≥* . Then, two cases have to be 

differentiated. If ** )1( PPP t ⋅−≥≥ λ then some firms will reinvest, such that *ˆ PP tt =+∆  

Otherwise, if *)1( PPt ⋅−≤ λ  no firm will reinvest and )1/(ˆ λ∆ −=+ ttt PP . With this 

knowledge and in accordance with equations (1) to (14) the price dynamics can be 

described as 
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 (17) 

With equation (17) price dynamics can be simulated directly, i.e. without the explicit 

representation of firms. Moreover, (17) can be used to determine the equilibrium 

investment trigger P*. Repeated stochastic simulations of equation (17) for various values 

of P* should reveal that the zero-profit condition will only be fulfilled if P* is equal to the 

equilibrium investment trigger. If P* is higher, the dynamics should allow for profits. If P* 

is smaller, this should imply losses. Accordingly, the equilibrium trigger price P* can be 

determined by minimizing the square of the expected profits, i.e. 

( )[ ] ( )( )














∑ +−⋅=
∞

=

⋅−
⋅⋅⋅⋅

0

*
,,,

2*2 )1(,min
* l

tl
ntlntltlntl rPxMPxEPE

P

∆
∆∆∆∆Π  (18) 

with *
0 PP =  and Pt follows equation (17). 16 

                                                 
16  This optimization problem can be solved by combining the required stochastic simulations with a GA. 
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Figure 5 shows that for identical trigger prices and identical αt, the agent-based model and 

the direct price simulation lead to an identical price path. Moreover, as table 2 shows, the 

direct price simulations practically lead to identical trigger prices. Hence direct price 

simulation allows to validate the results of the agent-based approach. Moreover, it offers an 

alternative technique to compute equilibrium trigger prices, which is actually less 

computing intensive. Unfortunately, this approach is not applicable as generally as the 

agent-based approach. If, for instance, firms are heterogeneous or if depreciation is non-

geometrical, aggregation problems arise. 

Here Figure 5 

Here Table 2 

As mentioned in the introduction, one could raise the question whether the price volatility 

measured in the market is significantly lower than the volatility of α. If this proved to be 

true, competition could probably be ignored, because the smoothing effect of depreciation 

is already implicit in the price volatility. However, this argument does not hold in general. 

According to table 2 the determined volatilities of αt and Pt are very similar and do not lead 

to meaningful differences in the short run. Only for longer periods (i.e. a multiple of ∆t), 

the price volatility is somewhat lower. This can be explained by the fact that to some extent 

demand reductions are always compensated over the next periods. Nevertheless, these 

slightly lower volatilities do not explain the reduction of the trigger price of considering 

competition.17  

A second critical question is whether competitive prices can be considered as a random 

walk. Usually, the random walk hypothesis is tested by unit root tests, like a Dickey-Fuller 

(DF) and Augmented Dickey-Fuller (ADF) tests (cf. Pietola and Wang 2001). Table 3 

shows the test results for our simulations. Accordingly, for many simulations the hypothesis 

that prices follow a random walk is rejected. However, in most cases the hypothesis is not 

rejected - this particularly holds for the ADF tests. Transferring this result to real markets 

means that unit root tests do not offer a reliable justification to ignore competition for the 

determination of investment triggers.  

Here Table 3 

                                                 
17  Considering ∆t=1, ( )( ) 1710195004 ..ˆ*P t ==+ασ and ( )( ) 1500182604 ..ˆ*P t ==+ασ . Hence the error is 

relatively small compared to neglecting competition which implies P*(σ = 0.2) =  1.36.  
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Summarizing, one can conclude that the "standard procedure" of applying the real options 

approach to investments in competitive markets is highly problematic. The procedure of (i) 

testing market prices for a random walk, then (ii) estimating price volatilities, and finally 

(iii) calculating investment triggers by treating the investment as an exclusive option leads 

to an overestimation of the investment trigger. Instead, one should explicitly consider 

competition. In order to give an idea about the differences, tables 4 and 5 illustrate the 

impact of several parameter settings. The finding is that the depreciation rate has a decisive 

impact. As figure 6 shows, the impact of depreciation on the relation of investment triggers 

with and without competition is most relevant for a depreciation rate between 5% and 50%, 

i.e. an asset's average lifetime of 2 to 20 years. This range covers most real investments. 

Moreover, tables 4 and 5 show that for a higher depreciation rate than the volatility would 

imply the trigger prices differ only slightly from the production costs. This can be explained 

by the fact that with depreciation being higher than the volatility almost every demand 

reduction can be compensated by a supply reduction within one period. In these cases the 

real options approach is practically irrelevant.18 Practically every price signal has a value 

for one period only. 

Here Table 4 

Here Table 5 

Here Figure 6 

4. Summary and conclusions 

This paper explicitly includes competition into a real options framework by using an agent-

based approach of competing firms. The firms derive their investment triggers from a 

genetic algorithm which exploits the results of repeated stochastic simulations of the 

market. The results contradict the widespread opinion that optimal investment triggers are 

not affected by competition. The investment triggers we find for real options under 

                                                 
18  The test statistics are quite interesting. For λ = 0.2 and σ = 0.2 the annualized average volatilities 

σ̂ (αt+4∆t)  and σ̂ (Pt+4∆t) are 0.1987 and 0.1695, respective. The hypothesis of a unit root is rejected by a 
Dickey-Fuller test at a 5% level for αt in 3.6% and for Pt in 98.9% of 1000 simulations. The Augmented 
Dickey-Fuller test (fist three differences) rejects the hypothesis for αt in 0.1% and for Pt in 92.4% of the 
simulations. This has to be explained by the fact that with a depreciation of 20% almost every demand 
shock is compensated in the following period. This has an interesting consequence. If on a certain market 
the assets are depreciated at a rate higher than the price volatility, prices cannot follow GBM. If unit root 
tests suggest that they would, then further effects influence prices which have to be analyzed carefully. 
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competition are substantially lower than those which we find and expected for exclusive 

options. Finally, our search for an explanation directed us to the impact of depreciation, i.e. 

to the fact that the lifetime of assets used for production is limited. The presence of 

depreciation, i.e. the necessity of reinvestments in order to maintain a certain production 

level, reduces the downside market risk of demand shocks.  

Our main findings can be summarized as follows: 

� The real options approach leads to investment triggers which are substantially higher 

than the classical NPV criterion. However, if one considers depreciation and 

competition, the increase of the investment trigger is substantially reduced. If the 

depreciation rate is higher than the demand volatility, the real options approach is 

practically even irrelevant. 

� The 'negative' impact of competition and depreciation on investment triggers in the case 

of a randomly driven demand is not healed by deriving the volatility from market 

prices. In general, we do not find significant differences in the volatility of market 

prices and the demand parameter. Moreover, it is demonstrated that unit root tests are 

no reliable instrument for testing the hypothesis that prices follow a random walk. 

Accordingly, the application of the real options approach to investments in competitive 

markets should explicitly consider the effects of competition. 

� The results obtained by the agent-based model can be validated by an alternative model 

which has been identified by analyzing the simulation results. Instead of an agent-based 

approach, this second model is based on direct repeated stochastic simulations of the 

price dynamics. These price dynamics consider that the investment trigger delivers a 

kind of attractor for the prices. If a demand shock causes prices to be slightly higher or 

lower than the trigger price, the expected future price is the investment trigger. If prices 

are much lower, the movement towards the equilibrium depends on the demand 

volatility and the depreciation rate. For identical investment triggers and identical 

random numbers, the price dynamics of both modeling types are identical. 

These results show several directions for further research. For instance, the experiments in 

this paper are based on geometric Brownian motion, geometric depreciation of assets, and 

iso-elastic demand functions only. However, at least the agent-based approach allows to 

modify these and many other assumptions in a straightforward way.  
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Table 1: Trigger prices depending on depreciation and competition 

 Monopoly / exclusive option Competition 

∆t Infinite lifetime 
(λ=0) 

Depreciation  
(λ=5%) 

Infinite lifetime 
(λ=0) 

Depreciation  
(λ=5%) 

 GA** arbitrary GA** arbitrary GA** GA** 

0 1.7676* 1.5194* 1.7676* n.a. 

0.1 1.715 1.713 1.484 1.478 1.710 1.263 

0.25 1.675 1.677 1.436 1.432 1.680 1.237 

0.5 1.643 1.645 1.404 1.400 1.638 1.211 

1 1.587 1.590 1.367 1.360 1.584 1.180 

* Analytical solution (cf. Dixit and Pindyck, 1994). 

** Average trigger prices of the genome population. 

 

Table 2: Equilibrium Trigger and Volatility* 

∆t P*  σ̂ (annualized) 

 GA Price 
simulation 

αt+∆t, αt Pt+∆t, Pt αt+4∆t, αt Pt+4∆t, Pt αt+10∆t, 
αt 

Pt+10∆t, 
Pt 

0.1 1.263 1.261 0.2000 0.2066 0.1996 0.1945 0.1989 0.1850 

0.25 1.237 1.237 0.1998 0.2100 0.1987 0.1912 0.1967 0.1760 
0.5 1.211 1.210 0.1995 0.2137 0.1975 0.1876 0.1934 0.1665 
1 1.180 1.180 0.1993 0.2189 0.1950 0.1826 0.1865 0.1536 

* for λ = 5%, ó = 0.2, r = 6%. The estimated volatility is based on 5 000 repeated stochastic simulations. 

 

Table 3: Percentile rejection of the hypothesis of a random walk for demand 
parameter and price (Dickey-Fuller (DF) and Augmented Dickey-Fuller 
(ADF) test)* 

DF-test ADF-test  
(first difference) 

ADF-test  
(first three differences) 

∆t 

αt Pt αt Pt αt Pt 

0.1 3.1 43.9 0.5 23.9 0.0 6.3 

0.25 3.5 42.8 0.4 21.7 0.0 5.6 

0.5 3.2 42.0 0.8 17.1 0.0 3.2 

1 3.7 39.3 0.6 14.6 0.0 1.3 
* ë = 5%, ó = 0.2, r = 6%. The DF and ADF test are based on 1 000 repeated stochastic simulations. The 

null hypothesis of a unit root is tested at a 5% level. 
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Table 4: Trigger prices for a monopolistic producer (italic) and under competition 

(fat) for various constellations of λλ  and σσ  (∆∆t = 0.25, r = 6%) 

      λ 
σ 

0 5% 10% 20% 25% 50% 66% 

0.1 
1.315 

1.323 

1.197 

1.058 

1.158 

1.022 

1.108 

1.002 

1.100 

1.000 

1.055 

1.000 

1.040 

1.000 

0.2 
1.677 

1.680 

1.432 

1.237 

1.333 

1.110 

1.228 

1.038 

1.200 

1.023 

1.110 

1.002 

1.081 

1.000 

0.3 
2.148 

2.175 

1.730 

1.443 

1.526 

1.240 

1.358 

1.100 

1.314 

1.070 

1.174 

1.015 

1.116 

1.003 

 

Table 5:  Trigger prices for a monopolistic producer (italic) and under competition 

(fat) for various constellations of λλ  and r (∆∆t = 0.25, σσ  = 0.2) 

      λ 
r 

0 5% 10% 20% 25% 50% 66% 

4% 
1.917 

1.909 

1.491 

1.258 

1.366 

1.118 

1.246 

1.040 

1.209 

1.025 

1.115 

1.002 

1.084 

1.000 

6% 
1.677 

1.680 

1.432 

1.237 

1.333 

1.110 

1.228 

1.038 

1.200 

1.023 

1.110 

1.002 

1.081 

1.000 

8% 
1.548 

1.556 

1.385 

1.186 

1.320 

1.110 

1.220 

1.038 

1.200 

1.023 

1.109 

1.000 

1.078 

1.000 
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Figure 1: Exemplary dynamics in competitive markets.* 
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* Prices just above the trigger arise because of a time lag of production response. 

 

Figure 2: Example of a 1-point-crossover after the 3rd digit. 

parent genomes   offspring genomes 

a … 1 2 3 4 5 6 7 8 … a' … 1 2 3 1 1 1 1 1 …
                    

b … 1 1 1 1 1 1 1 1 … 
→ 

b' … 1 1 1 4 5 6 7 8 …
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Figure 3: Flow diagram of the 
agent-based 
simulation approach. 
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Figure 4:  NPV of the strategies of the genomes (50 generations, 5 000 simulations)* 
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* The slight losses of the first 15 genomes are caused by too low trigger prices which arise through the GA. 

 

Figure 5:  Price dynamics in the agent-based model and in the direct price simulation 

(∆∆t = 0.5, identical trigger prices for all genomes) 
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Figure 6:  Trigger prices* for monopolistic producer vs. competition dependent on the 

depreciation rate (∆∆t = 0.25, σ σ = 0.2, r = 6%) 
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