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Introduction

In this short paper, the (Kulatilaka, 1988) is reinterpreted as a dynamic generalization of the traditional cost

volume profit analysis (CVP) under uncertainty, see (Hilliard and Leitch, 1975), (Chan and Lauhland, 1976)

and (Lee, 1993) in (Aggarwal, 1993). In the latter articles the CVP analysis is used in a comparative statics

framework without taking account of the flexibility options of any industrial plant investment project. As a

matter of fact, before investing in an industrial plant, it is possible to wait until the uncertainty conditioning

firm operations has been resolved, option to wait. Moreover, it is possible to shut down temporarily the

plant when it becomes sufficiently1 unprofitable, mothballing option. To continue, it is possible to switch

between production modes, switching option. Last, but not least, it is possible to abandon the project,

abandonment option.

All these flexibility options are quite common in any industrial, mining and transportation investment

project. Because of this, the model of (Kulatilaka, 1988) can be extended to a variety of industrial plants

that is much wider than the flexible manufacturing systems in a narrow sense.2

This paper is organized as follows. In section 1, the (Kulatilaka, 1988) model is revisited in a CVP

budgeting framework. In this section, I have tried to bridge the gap between traditional CVP analysis and

real options interpretation of investment project flexibilities. This has been done using a notation which

is homogeneous with later Kulatilaka papers. Finally, the computational issues in applying the Bellman

Dynamic Programming algorithm in a Walrasian general equilibrium framework3 are explained using a

general exposition and a couple of Mickey Mouse examples which draw a parallelism between a lattice and

a grid specifications of the continuous stochastic process discretizations.

In section 2, some numerical examples have been derived. Examples inputs are intended to draw the

reader’s attention on the capabilities of the dynamic programming algorithm and its specification given in

this paper4.

In particular, the value of a plant is decomposed in its naked value, without flexibility options, and in

the value of various combinations of options.5 Finally, the mode bounds have been derived for each option
1I will show that this kind of judgment is rather more difficult that at first sight.
2Moreover, after (Kulatilaka, 1988) the analysis of FMS in the real options literature has had further developments which have

delved better into problems which are very much specific to numerical control manufacturing machines, see for instance (Chen
et al., 1998).

3Namely, the measure of probability to use in computing expected values and the appropriate interest rate to compute
present values.

4In another paper I will apply these codes to real data from the shipping industry, the cement industry and the oil industry.
Some of the data required are of quite easy availability, e.g. the state variable represented by some commodity prices, some
others, instead, require a case study for each different industry and plant. Therefore, they deserve a dedicated paper in order to
examine thoroughly the CVP analysis of the cost structure of the average plant in these industries and the interaction among
the real options.

5It should be stressed the fact that real options seldom respect the value additivity principle. More often their values are
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with respect to any other production mode.6 Section 3 reports summary and conclusions and it sets the

blueprint for further extensions of the General Real Options Pricing model of Kulatilaka in a CVP budgeting

framework.

1 A CVP Analysis with Irreversible and Recurrent Real Options

Decisions concerning an investment project differ depending on the horizon on which they are taken, their

irreversibility and the kind of management (passive or active) of the project when coping with a changing

environment. In traditional CVP analysis decisions can be taken according to both a myopic single period

comparative statics and a multi period static expectations, passive management framework. The short-

comings of this approach is that it cannot take account of decisions irreversibility, e.g. for investment or

abandonment, and, for the same reason, of project active management flexibility, e.g. switching to the best

production mode or mothballing the project. Moreover, CVP analysis is not capable of taking into account

the fact that reversible decisions too, having transition costs, can have different value depending on the

different sequence in which they are taken.

Although that is true, CVP analysis helps to bridge the gap that widened lately between accounting

and budgetary control literature on one side and financial economics models evaluating real investments, in

particular real options literature, on the other. As a matter of fact, CVP analysis can be considered a useful

tool to specify correctly the interactions among the various profitability drivers and design accordingly the

real option valuation framework. On the other hand, budgetary control procedures should take the necessary

feedback from financial modeling of investment projects, focusing their attention on the variables considered

most important in determining profitability.7 In this section, CVP analysis is very briefly introduced as a

comparative statics benchmark to decisions taken in a dynamic programming framework using a notation

similar to (Kulatilaka, 1995).

Suppose to have an industrial plant which can be operated in at least two production modes. In the

first one, production Mode A, net operating income is given by equation 1 while for production mode B the

same variable is given in equation 2. To help intuition of the reader, one may think of a capital intensive

plant, mode A, compared to a work intensive one, mode B. In the former fixed costs are high while variable

are low, thus producing a very high contribution (gross) margin per unit produced and sold. In the latter

the reverse is true.

super or sub additive.
6This result is not given in (Kulatilaka, 1988) although it shows how much powerful is this simple DP algorithm when

compared to similar results derived through difficult stochastic algebra, see for instance (Dixit and Pindyck, 1994) page. 111
for a difficult derivation of the abandonment threshold curve and chapter 7 for the other mode bounds.

7For an attempt to recast budgetary control targets in terms of real options see chapter 8 of (Trigeorgis, 1996).
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NOIa = πm
(
θit

)
a
= Q · (P − vc) − F = θ · 2− .6 (1)

NOIb = πm
(
θit

)
b
= Q · (P − vc)− F = θ · 0.6 − .1 (2)

where:8

Q : quantity produced and sold, measured in units of production;
P : price for each unit produced;
vc : variable costs for each unit produced, those are costs that are linked to the unit of

production, such as raw materials, energy, hours of direct work, freight and other
logistics costs;

F : total fixed costs, those are cost that do not vary with the amount of production, such
as depreciation, overhead cost for administration and skilled labor force;

In the traditional CVP analysis Q, the quantity produced and sold, is chosen as state variable. In

(Kulatilaka, 1988) any exogenous variable which is not under control and cannot be forecasted with a high

degree of confidence can be chosen as state variable. The choice will depend on how much crucial is that

variable in determining the investment profitability. In conclusion, the most important profitability driver

should be chosen as state variable.

The choice of Q in CVP analysis is due to the fact that this kind of study of a firm profitability is aimed

at separating the profits due to individual production lots as programmed in specific production budgets

covering sub periods of the year. Quantity produced and sold is a pivotal variable in production budgets.

Because of this, accounting students use to give a comparative statics overview of how the firms breaks even

using a diagram like the one reported in figure 1 panel A, which comes usually along with the representation

of profit functions on different levels of Q, see panel B. In these graphs the decision to operate or not is

taken on a single period horizon, i.e. it is a myopic comparative statics framework in which one period

profitability is compared across different and alternative production modes.

This way of representing firm profitability as dependent on an exogenous variable can be considered as

a useful tool to specify correctly the interactions among the various profitability drivers. In order to get

profits as represented in equations 1 and 2 a lump sum is invested at time t = 0, I = 1. Then, in each

period of the life of the plant, set equal to 120 budget periods, a sum is spent on fixed costs together with

another, fluctuating with the state variable Q. Depending on the assumptions made on the management of

the plant and on the behavior of the state variable, several kind of values of the plant can be derived.

Under the hypothesis of no change throughout the whole life of the project of the initial level of the
8Those variables are derived under an accrual basis of accounting. With some adjustment those same variables can be

transformed into the cash flows used for capital budgeting purposes. Although the basis of accounting changes, the classification
between fixed and variable with respect to θ stays the same and it is quite crucial for real option derivation
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Panel A: Break even analysis of production mode A. Panel B: Profit function for mode A against θ.

Figure 1: CVP Analysis of an industrial plant.
Legend: Assuming quantity Q produced and sold as state variable,

Graph in Panel A reports the revenue function S = Q · P , the total fixed cost function FC = F ∀Q, the total variable cost function
V C = vc ·Q and the total cost function TC = F + vc ·Q.
Graph in Panel B reports the net operating income NOI = Q(P − vc) − F for production mode A whose cost and revenue functions are

reported in panel A.

state variable9 and of a passive management of the plant, the BEP diagram can be translated into an NPV

diagram, showing the level of the state variable for which NPV > 0, see figure 2, left hand graph, (Rao,

1992) page. 227. Present values have been computed using a risk free interest rate rf = 5%.
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Figure 2: Mirrored NPV for CVP Analysis of an industrial plant.
Legend: Assuming quantity Q produced and sold as state variable, and a life of the investment project of 10 years divided into 12 budget

period for each year, interest rates are rf = 5%. Present values are computed as monthly annuities, a
120|,5%.

PV O represents the present value of outflows, TC = F + vc · Q; PV I represents the present value of inflows, S = Q · P . NPVinvest =

−I − PV O + PV I, NPVabandon = +E + PV O − PV I

The hypothesis under which values of the project are derived in figure 2 is very restrictive and useless

in practice. As a matter of fact, it is quite unusual that a state variable like Q does not change during the

whole life of the project. Moreover, it is definitely irrational that when the state variable pulls profitability

in the losses region the plant will be kept running in the ordinary production mode. Under the hypothesis of
9These are the so called “static expectations”, see page 219 of (Dixit and Pindyck, 1994).
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static expectations it is possible to compute threshold levels for both investing and abandoning the project,

see right hand graph in figure 2, (Dixit and Pindyck, 1994) page 225. As a matter of fact, while in a pure

comparative statics framework the plant starts producing profits for θ > .30, in order to have a positive net

present value I need to have a θ > 0.3633. Instead, considering a negative scrapping value E = −.5, a net
present value for abandoning the project can be computed for each level of θ. In this case, at time t = 0

I have NPVabandon > 0 for θ < 0.2683. Even under the hypothesis of static expectations there is a range

of values of θ for which even if the plant is profitable in the short run, the investment is not implemented,

to be specific, .30 < θ < .3633. Moreover, there is a range of values of the state variable for which, even

if the plant generates short run losses, it is not abandoned, namely, .2683 < θ < .30. Overall, the interval

.2683 < θ < .3633 resembles to an hysteresis band in which the plant keeps being operated in the same

mode in which it entered the interval. Static expectations and passive management of the plant do not take

into account options that could be taken temporarily. As a matter of fact, both investing and abandoning

modes are irreversible states of the investment project.

Instead, if the state variable reaches very low levels, the plant will be closed temporarily, mothballed,

waiting to be reopened when the state variable is back at convenient levels. Therefore, for both production

modes A and B, I need to have the minimum costs that are incurred when the plant temporarily stops

production, aka minimal maintenance costs.10

Mode Description Profit flow per period

1 waiting to invest 0

2 production mode A πm
(
θi

t

)
a

3 production mode B πm
(
θi

t

)
b

4 shut down -MB
5 abandon 0

Table 1: Modes of production, their descriptions and payoffs

Moreover, when the level of the state variable will be particularly high, it would be convenient to switch

to the more aggressive production mode, reducing variable costs and increasing fixed costs, production mode

A. On the other hand if the level of the state variable is exceptionally low for many production budgets,

then it would be wise to abandon the project. This last remark leads naturally to conclude that the very

initial investment could be implemented waiting for uncertainty resolution. All these different payoffs are

summarized in table 1 and depicted in figure 3. It is important to notice the indifference levels of θ between

10In (Kulatilaka, 1988) these costs are the same as fixed costs F . Actually, considering that a switching cost is paid to
mothball the plants, mothballing mode costs and fixed cost in production mode can differ. Moreover, it is quite straightforward
to show in a CVP graphical analysis that if mothballing costs are equal to fixed costs, then it is never convenient to mothball
the plant because losses are at most equal to fixed costs for Q = 0. See also page 229 of (Dixit and Pindyck, 1994).
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the production modes, see from left to right θ4→2, θ1→2, θ2→3. These levels are derived without taking

into account any transition cost. Hence they can be defined as Marshallian thresholds. They are a good

benchmark for comparing optimal management in a dynamic and in a comparative statics framework. As

a matter of fact they would represent the levels for which the plant mode is changed to the most profitable

one in a myopic single period comparative statics framework. Blatantly enough, figure 3 reports threshold

levels for all modes but the abandonment mode. The reason is that while the others are all alternative

recurrent modes, abandonment mode is an absorbing, i.e. irreversible, mode. In other words, when the

plant is abandoned, it would not be any longer possible to switch back to any production mode.

-0,60

-0,40

-0,20

0,00

0,20

0,40

0,60

0,00 0,10 0,20 0,30 0,40 0,50 0,60

Q

F
C

,T
C

,R
ev

1

2_A

3_B

4

5

Figure 3: Profit Functions for the Fixed Modes against θ.
Legend: Assuming quantity Q produced and sold as state variable. Mode 1: waiting to invest; Mode 2: production mode A, capital

intensive; Mode 3: production mode B, work intensive; Mode 4: mothballed state; Mode 5: abandoned project.

This last observation shows why comparative statics analysis is not appropriate for the study of even the

simplest of the industrial plants. As a matter of fact production modes listed in table 1 should be considered

as alternative choices that are made in an optimal sequence, depending on the time series behavior of the

state variable. These sequential choices would take into account the levels of θ for which payoff curves cross

in figure 3 for all production modes but the abandonment mode. Being this an absorbing state, choices with

respect to abandonment should be taken choosing the production mode which is most profitable not in the

individual period11 but the one that maximizes investment value within an optimal sequence of production

mode choices. Moreover, this kind of path dependency in mode production choice extends to the other

production modes too when taking into account the costs of transition from one mode of production to

the other. In this case, it is not possible to represent modes payoffs in one graph like the one reported in

11This would be a simple comparative statics rationale in choosing among production modes.
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figure 3. Instead, I need a graph for each beginning mode of production drawing the value of the plant for

any subsequently chosen mode, see figure 4.

δ =




δ1,1 δ1,2 δ1,3 δ1,4 δ1,5

δ2,1 δ2,2 δ2,3 δ2,4 δ2,5

δ3,1 δ3,2 δ3,3 δ3,4 δ3,5

δ4,1 δ4,2 δ4,3 δ4,4 δ4,5

δ5,1 δ5,2 δ5,3 δ5,4 δ5,5




=




0 1 1 +∞ +∞

+∞ 0 .005 .01 +∞

+∞ .005 0 .01 +∞

+∞ .01 .01 0 +∞

+∞ +∞ +∞ .5 0




(3)

Sunk costs of transition from one production mode to the other have very direct intuitive meaning, see

expression 3 for the matrix of transition costs. Costs of staying in one mode are set to zero and are reported

in the main diagonal of the matrix. Costs of passing from the waiting to invest mode 1 to production mode

2 or 3 are δ1,2 = δ1,3 = 1. Costs of passing from one production mode to the other are δ3,2 = .005 and

δ2,3 = .005.12. Costs of mothballing the plant from either production mode are δ2,4 = .01 and δ3,4 = .01.

Costs of starting up again in any production mode from the mothballed state are δ4,2 = .01 and δ4,3 = .01.

Plant production modes 2,3,4 are recurrent states, see page 140 of (Ross, 1993), meaning that the

dynamic system goes from one state to the other an infinite number of times. Instead, plant abandonment

is an absorbing state, meaning that it is impossible to come back from that state. Moreover, following

(Kulatilaka, 1988) model and other authors, e.g. (Dixit and Pindyck, 1994) page 230, this state is made

accessible only through the mothballed state. Because of this, transition costs are set equal to +∞ for all

the transitions from and to mode 5 except δ4,5 = .5. When the mothballed plant is abandoned it is supposed

to be taken by an environmental services company for a sum that is one half of the initial investment.13

Hence there is a cost in abandoning the project.14 Moreover, state 1, waiting to invest, is an unaccessible

state from any of the other production modes, see page 143 of (Ross, 1993). As a matter of fact the decision

to invest is irreversible. Because of irreversibility, transition costs from any other state to state 1 are set to

+∞. To the same token, other two non rational transitions have infinite costs, namely from the waiting to

invest to the mothballed and the abandoned state.15

12In this case they are set as symmetric but they do not need to be necessarily so.
13This scrap value may be positive if wreckage materials can be sold at a profit. Frequently, these materials require cleanup

and environmental restoration. In those cases transition costs to the abandonment state can be very high and comparable to
the initial investment.

14A kind of barrier to exit in industrial organization literature.
15In the actual implementation of the transition cost matrix, +∞ has been set to a very high number when compared to

other variable levels.
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It is worth noting that transition costs that have finite levels should be in certain proportions that make

economic sense. For instance, the costs of restarting δ4,2, δ4,3 should be always smaller than the costs of

starting operations from scratch. Moreover, this latter cost should be always larger than the payoff from

scrapping the plant in order to rule out a “money machine” of rapid cycles of investment and abandonment.

There are not particular constraints on the other transition costs.

Taking into account transition costs, see figure 4, it is not correct to compare plant operating modes

using individual period profit flows. Instead, the plant values operated in subsequently chosen mode should

be compared. Indifference levels of θ among the production modes differ from those reported in figure 3. For

instance, in graph 1 in panel A, levels of the state variable θ can be partitioned in three regions, according

to the choice that is taken after investing the lump sum in the industrial plant, from mode 1 to modes 1,2

and 3.

θ ≤ θ∗1,3
θ∗1,3 ≤ θ ≤ θ∗3,2
θ∗3,2 ≤ θ

Mode Choice
do not invest;
invest and operate in mode 3;
invest and operate in mode 2;

While, in graph 2 in panel A, payoffs from reaching state 2,3,4 being in state 2 are partitioned according

to the following levels of θ.

θ ≤ θ∗3,4
θ∗3,4 ≤ θ ≤ θ∗3,2
θ∗3,2 ≤ θ

Mode Choice
mothball the plant;
switch to mode 3;
keep operating in mode 2;

Moreover, see graph 3 in panel B, payoffs from reaching states 2,3,4 being in state 3 are partitioned in the

same way by the following thresholds.

θ ≤ θ∗3,4
θ∗3,4 ≤ θ ≤ θ∗3,2
θ∗3,2 ≤ θ

Mode Choice
mothball the plant;
keep operating in mode 3;
switch to mode 2;

Finally, being in the mothballed state, see graph 4 in panel B, payoffs from reaching states 2,3 or 5 are given

by the following partition of the state variable

θ ≤ θ∗3,4
θ∗3,4 ≤ θ ≤ θ∗3,2
θ∗3,2 ≤ θ

Mode Choice
keep mothballing the project;
start again operating in mode 2;
start again operating in mode 3;

It is worth noting that in this last partition the mothballing state is a recurrent state.16 As a matter of fact
16Numbers could be “massaged” to have the mothballing state as a transient state. In that case the NPV from mothballing

the project could have been set at a lower level than the NPV from abandoning the project. As a consequence, abandonment
would have always been preferred to mothballing.
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when comparing its payoff to the one of the abandonment state, the system is reflected back into the choice

of mothballing the project.
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Panel B: Payoffs for the passage from Mode 3 to 1,2,4 and from Mode 4 to 1,2,4.

Figure 4: Profit Functions for the Fixed modes against θ net of transition costs.
Legend: Assuming quantity Q produced and sold as state variable. Mode 1: waiting to invest; Mode 2: production mode A, work

intensive; Mode 3: production mode B, capital intensive; Mode 4: mothballed state; Mode 5: abandoned project. Deponent g/n indicates

gross or net of transition costs.

Having shown the compound, path dependent, nature of the mode choices, it is necessary to derive the

optimal sequence of choices using the appropriate dynamic planning algorithm. Following (Kulatilaka, 1988)

I have chosen Richard Bellman Dynamic Programming (DP), (Bellman, 1957).

There are at least two ways to tackle this problem. The first is to set up an Hamilton-Jacoby-Bellman

(H-J-B) Equation, see page 408 (Judd, 1998) and solve it, see for instance (Knudsen et al., 1999). This

method uses continuous variables and difficult stochastic algebra to derive solutions that are often not so

much straightforward. Certainly this method is unsuitable for pedagogical purposes. The second method

consists in discretizing the problem and deriving results numerically, see page 409 (Judd, 1998). There are
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several methods to derive results of a dynamic programming problem, e.g. the value function iteration or

the policy function iteration. All these methods rely on the (Denardo, 1967) contraction mapping theorem

for dynamic programming.17 Although these methods are certainly easier than the symbolic pde solutions

of the H-J-B equation, they would require a quite long deviation from the main topics within a corporate

finance course.

Therefore, I have chosen to apply the same backward induction method suggested by (Trigeorgis, 1996)

in a numerical example on page 177. There the stochastic variable is discretized in a standard binomial

lattice, here, following (Kulatilaka, 1993), it is discretized in a grid allowing a specification of the stochastic

process that is richer than the standard Brownian motion random walk (RW), i.e. an Ornstein Uhlenbeck

process which covers the RW process as a particular case. The advantage of the grid over the lattice

specification stays in the fact that it is much straightforward to specify the range of variation of the state

variable according to economic intuition, e.g. Q, quantity produced and sold, cannot exceed the maximum

plant production capacity.

This review is organized around this parallelism between a lattice and a grid discretization of the sto-

chastic process generating the state variable. In section 1.1 notation is reviewed in an effort to use the

same symbols for all the problems that can be solved in the Kulatilaka general model of real options, see

(Kulatilaka, 1988), (Kulatilaka, 1993) and (Kulatilaka, 1995).

In section 1.2 it is shown what is the right probability measure to compute expected values when the

stochastic state variable is discretized in a grid. In section 1.3 it is shown under which conditions the drift

rate of the Ornstein Uhlenbeck process can be considered a certainty equivalent drift rate, (Cox et al., 1985)

lemma 4.

In section 1.4 the implementation of the Bellman dynamic programming recursion is analyzed using not

only a general notation but also a couple a Mickey Mouse examples which are intended to help intuition in

grasping this passage, usually the most unfriendly in all the classes in corporate finance I have taught.

17For an application of this theorem to a stationary discounted dynamic programming problem in a numerical example see
(Harris, 1987) page 28.
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1.1 Notation

Following (Kulatilaka, 1995) I define:

θjt : state variable at time t = 1, . . . , Nt = (T/∆ t) and level j = 1, . . . , Ns = (S/∆S), a
scalar in a univariate model;

πm
(
θit

)
: profit function in the interval (t, t + ∆ t) for the state variable level θit and the plant

operating in mode m ∀ m = 1, . . . ,M ;

pi,j : Pr
(
θjt |θit−1

)
probability of passing from state i to state j after ∆ t;

cm,l : cost for passing from production mode m to mode l;

F
(
θit,m, t

)
: Value of the plant for a level of the state variable θi, conditional on an entering mode

m, valued at time t;

S
(
θiT , T

)
: Salvage value for each level of the state variable θi at time t = T , for any entering

mode, hence unconditional on the mode;

ρ : discount factor, when using an EMM ρ =
(
1 + rf,1/m

)−1
. where rf,1/m is the expected

return rate for the fraction 1/m of the year;

1.2 Specifications of pi,j

The exogenous uncertainty faced by the firm is summarized by a state variable θjt which follows a diffusion

process, see equation 4.

d θ = α (θ, t) d t + σ (θ, t) dZ (4)

where:
α (θ, t) : instantaneous drift rate;
σ2 (θ, t) : instantaneous variance rate;

d t : time differential;
dZ : standard Wiener process, normally distributed with E (dZ) = 0 and V ar (dZ) =

E
(
(dZ)2

)
= d t.

Since most of the variables not controlled by a firm tend to revert on some long run level, 18 i.e. they

are mean reverting processes, the diffusion in equation (4) is specified as an arithmetic Ornstein-Uhlenbeck

process19 of the form given in expression (5), see (Dixit and Pindyck, 1994) page 74.

d θ = η ·
(
θ − θ

)
d t+ σθ dZ (5)

18For instance, a commodity price tends to revert towards its long run marginal price.
19The arithmetic version of the O-U process does not guarantee that the state variable does not reach negative levels. An

adjustment in the estimation of the process parameters to get a geometric O-U is contained in (Sick, 1995) in (Jarrow et al.,
1995).
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where, in addition to the previous notation:
η : the speed of reversion, e.g. for η = 0 the process becomes a Brownian motion while

for η > 0 the process tends to be mean reverting;
θ : the normal level of θ, i.e. the level at which θ tends to revert;

In order to discretize this process over the range of possible values that θ can take, following (Kulatilaka,

1993) page. 279 Appendix, I assume that, over the interval ∆t with which the continuous variable is

discretized,

∆ θt ∼ N
(
η

(
θ − θt

)
·∆ t, σ2θ ·∆ t

)

The stochastic process governing θit is discretized through a one step transition probability matrix, (Ku-

latilaka, 1988), (Kulatilaka, 1993) and (Kulatilaka, 1995). This means that the levels of θit can be easily

described by a grid for states i = 1, . . . , S, see page 369 (Hull, 1997), see figure 5, where the investment

horizon is discretized in ∆t intervals while the difference between the maximum, i = S, and the minimum,

i = 1, that the state variable can reach, is discretized in ∆θ steps.

!"#$

!"%&

'()*#+!

*,- *,.

'
(
)*#
+*

Figure 5: A Grid for the DP Approach

The probability of reaching any of the inside nodes j = 2, . . . , S − 1 being in any node i = 1, . . . , S is

defined as

Prob
(
θj,t|θi,(t−1)

)
= Φ


−η

(
θ − θit

)
·∆ t+ (j − i+ 1/2) ·∆ θ

σθ · θit ·
√
∆ t


−Φ


−η

(
θ − θit

)
·∆ t+ (j − i− 1/2) ·∆ θ

σθ · θit ·
√
∆ t




(6)

Instead for the boundary states, e.g. state j = 1, B, being in any node i = 1, . . . , S, one step transition

probabilities are
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Prob
(
θ1,t|θi,(t−1)

)
= Φ


−η

(
−θ − θit

)
·∆ t+ (1− i+ 1/2) ·∆ θ

σθ · θit ·
√
∆ t


 (7)

Prob
(
θB,t|θi,(t−1)

)
= 1− Φ


−η

(
θ − θit

)
·∆ t+ (B − 1− i+ 1/2) ·∆ θ

σθ · θit ·
√
∆ t


 (8)

Notice that probabilities in equation (7) are just those in (8) in reverse order. 20

In an alternative approach, see (Trigeorgis, 1996), the stochastic process governing θit is discretized

through a binomial lattice, see figure 6.

Figure 6: A Lattice for the DP Approach

In this case the probability of the two following nodes is the usual equivalent martingale measure used

in the binomial option pricing model of Cox Ross Rubinstein (1979) (Cox et al., 1979).

qu =
(1 + rf )− d

u− d

qd = 1− qu

where:
rf : risk free rate over the interval ∆ t;
u : eσ·

√
∆ t

d : e−σ·
√
∆ t

20Equation A2 in (Kulatilaka, 1993) is slightly different. As a matter of fact there is a (B − i+ 1/2) instead of
(B − 1− i+ 1/2). In other words it seems that the number of nodes in the grid in which the Smax − Smin has been missed for
the number of intervals. No references are given nor a derivation is reported in the reference just cited.
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1.3 The Discount Rate

Equations (6)-(8) provide a natural measure of probability being impossible to construct an EMM for a

grid. It is shown that this natural measure of probability can actually be considered as a EMM being the

drift rate of the Ornstein-Uhlenbeck process adjusted for the risk premium. Because of this, it is possible

to use the risk free rate to compute present values.

Following (Cox et al., 1985) (Lemma 4) as quoted in (Kulatilaka, 1993), I can use these equations to

compute a measure of probability that replaces the actual drift rate of the underlying stochastic process with

a certainty equivalent drift rate (CEDR). This CEDR can be obtained subtracting to the actual drift rate

on θ the risk premium that would be expected on that asset in a market equilibrium model, e.g. (Lintner,

1965), (Sharpe, 1964), (Mossin, 1966) CAPM.

In general, I have that on a non dividend paying asset,

E (Rj) = rf + [E (Rm)− rf ] · βj
in a Sharpe Lintner Mossin CAPM framework

µ = rf +RP

the drift rate expected in equilibrium

CEDR = µ−RP = rf

the CE drift rate, (Cox et al., 1985)

Instead, on a dividend paying asset expected drift, capital gain, and expected return differ. Then I have,

g = E (Rj)− δ = rf + [E (Rm)− rf ] · βj − δ

expected drift, capital gain, in a Sharpe Lintner Mossin CAPM framework

g = rf +RP − δ

the drift rate expected in equilibrium

CEDR = g −RP = rf − δ

the CE drift rate, (Cox et al., 1985)

In this case,

g −RP = rf − δ
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define δ = (rf +RP )− µ and substitute

= rf − [(rf +RP )− µ]

let RP = 0 for the specific asset considered

= rf − (rf − µ)

let µ = η
(
θ − θt

)
, the Ornstein-Uhlenbeck drift rate.

= rf −
[
rf − η

(
θ − θt

)]
CEDR = g −RP = η

(
θ − θt

)

It is important to notice that CEDR changes from time to time being function of θt. This means that the

CE measure of probability in equations (6)-(8) should be recomputed each time given the current level of

θ reached by the stochastic process within the grid. The intuition of this time varying probability measure

is that the stochastic process has a state dependent dividend. Having shown that the O-U drift rate is

equivalent to the CEDR in a world of risk neutral agents, the probability measure in equations 6-8 is an

EMM in a world of risk neutral agents . Therefore it is possible to discount the expected value computed

on this measure of probability with a risk free interest rate, see (Kulatilaka, 1993) page 274.21

1.4 DP Algorithm Implementation

The implementation of the (Bellman, 1957) dynamic programming recursion is explained in two steps. To

begin with, the general formulation is given. Then, two Mickey Mouse examples are given one for a lattice

the other for a grid specification of the discretization of the state variable. In general, the backward Bellman

recursion process is set up as follows

t = T

F
(
θit,m, t

)
= F

(
θit, T

)
= S

(
θiT

)
(9)

t = T − 1

F
(
θiT−1,m, T − 1

)
=

max
l

{
π

(
θiT−1, l, T − 1

)
− cm,l +

ET−1 [S (θT )]
1 + rf

}
(10)

21In the same way, see (Cox et al., 1979), in the case of a lattice specification of the stochastic process, the expected value
computed on the risk neutral EMM is discounted with the rate paid on a risk free asset, zero coupon, of equal life.
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t = T − 2

F
(
θiT−2,m, T − 2

)
=

max
l

{
π

(
θiT−2, l, T − 2

)
− cm,l +

ET−2 [F (θT−1, l, T − 1)]
1 + rf

}
(11)

∀ t

F
(
θit,m, t

)
=

max
l

{
π

(
θit, l, t

)
− cm,l +

Et [F (θt+1, l, t+ 1)]
1 + rf

}
(12)

Depending on how the stochastic process governing θit is specified, the expected value at each step is

computed in one of the two following ways:

1. stochastic process discretized in a binomial lattice, (Trigeorgis, 1996) page 180:

Et [F (θt+1, l, t+ 1)] = q∗ · F
(
θ+t+1, l, t+ 1

)
+ (1− q∗) · F

(
θ−t+1, l, t+ 1

)

2. stochastic process discretized in aNt = (T/∆ t) byNs = (S/∆S) grid on (time)-(level of θ), Kulatilaka

(1988), (1993), (1995), where ∆t and ∆S are the steps chosen to discretize time and the state variable

respectively:

Et,θi
t
[F (θt+1, l, t+ 1)] =

N∑
k=1

F
(
θkt+1, l, t+ 1

)
· pi,k

In general, the backward dynamic programming solution works as follows:

• at time t = T for any mode of operation and any state θ, the value of the plant is equal to its salvage

value, (Kulatilaka, 1995), if this is set to zero the process simply starts at T − 1, see equation (1)

in (Kulatilaka, 1988). When the salvage value is different from zero, see equation (9) above, the value

of the plant in not conditioned by the operating mode in which the plant is closed. Hence, I have Ns

expressions like (9) one for each level in which it is discretized the state variable.22

• at time t = T − 1 for each entering mode of operation and any state θ I have to maximize over the

production modes choosing the one which maximizes the current profit,23 at time t = T − 1. This

choice has no influence on the salvage value. At the end of this step I have M equations 24 like (10)

for each of the levels of state θ.

• at time t = T − 2 for each m-th entering mode of operation and any state θ I have to maximize over

the production mode choosing the l-th one which maximizes together:
22Instead, in the case of a binomial lattice discretization, I have a salvage value for each of the final nodes.
23Net of switching costs.
24One for each entering mode.
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– the current profit net of switching costs:

π
(
θiT−2, l, T − 2

)
− cm,l;

– the continuation value:
ET−2 [F (θT−1, l, T − 1)]

1 + rf
;

the expected value at the numerator of the last expression is computed choosing among the expected

values computed in equ. (10) of all the l = 1, . . . ,M modes for the appropriate levels of θT−1. In the

case of the lattice specification those are the adjacent nodes, in the case of a grid specification they

are simply all the levels of θT−1.

Hereby two Mickey Mouse applications are reported: the first on a binomial lattice, the second on a grid.

In a three period binomial lattice discretization,t = 0, 1, 2, with a two mode plant m = A,B, see (Trigeorgis,

1996) page. 184, I have at time t = 2

F
(
θ++2 , A, 2

)
= max

[
π

(
θ++2 , A, t

)
− 0, π

(
θ++2 , B, t

)
− cA,B

]
(13)

F
(
θ+−
2 , A, 2

)
= max

[
π

(
θ+−
2 , A, t

)
− 0, π

(
θ+−
2 , B, t

)
− cA,B

]
(14)

F
(
θ−−
2 , A, 2

)
= max

[
π

(
θ−−
2 , A, t

)
− 0, π

(
θ−−
2 , B, t

)
− cA,B

]
(15)

F
(
θ++2 , B, 2

)
= max

[
π

(
θ++2 , A, t

)
− cB,A, π

(
θ++2 , B, t

)
− 0

]
(16)

F
(
θ+−
2 , B, 2

)
= max

[
π

(
θ+−
2 , A, t

)
− cB,A, π

(
θ+−
2 , B, t

)
− 0

]
(17)

F
(
θ−−
2 , B, 2

)
= max

[
π

(
θ−−
2 , A, t

)
− cB,A, π

(
θ−−
2 , B, t

)
− 0

]
(18)

and at time t = 1 I have

F
(
θ+1 , A, 1

)
= max




π
(
θ+1 , A, 1

)
− 0 + PV [E (F (θ2, A, 2))] ,

π
(
θ+1 , B, 1

)
− cA,B + PV [E (F (θ2, B, 2))]


 (19)

where E (F (θ2, A, 2)) is computed on equations 13 and 14;

and E (F (θ2, B, 2)) is computed on equations 16 and 17;
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F
(
θ−1 , A, 1

)
= max




π
(
θ−1 , A, 1

)
− 0 + PV [E (F (θ2, A, 2))] ,

π
(
θ−1 , B, 1

)
− cA,B + PV [E (F (θ2, B, 2))]


 (20)

where E (F (θ2, A, 2)) is computed on equations 14 and 15;

and E (F (θ2, B, 2)) is computed on equations 17 and 18;

F
(
θ+1 , B, 1

)
= max




π
(
θ+1 , A, 1

)
− cB,A + PV [E (F (θ2, A, 2))] ,

π
(
θ+1 , B, 1

)
− 0 + PV [E (F (θ2, B, 2))]


 (21)

where E (F (θ2, A, 2)) is computed on equations 13 and 14;

and E (F (θ2, B, 2)) is computed on equations 16 and 17;

F
(
θ−1 , B, 1

)
= max




π
(
θ−1 , A, 1

)
− cB,A + PV [E (F (θ2, A, 2))] ,

π
(
θ−1 , B, 1

)
− 0 + PV [E (F (θ2, B, 2))]


 (22)

where E (F (θ2, A, 2)) is computed on equations 14 and 15;

and E (F (θ2, B, 2)) is computed on equations 17 and 18;

and for t = 0

F (θ0, A, 0) = max

{
π (θ0, A, 1) − 0 + PV [E (F (θ2, A, 2))] ,

π (θ0, B, 1)− cA,B + PV [E (F (θ2, B, 2))]

}
(23)

where E (F (θ1, A, 1)) is computed on equations 19 and 20;

and E (F (θ1, B, 1)) is computed on equations 21 and 22;

F (θ0, B, 0) = max

{
π (θ0, A, 1) − cB,A + PV [E (F (θ1, A, 2))] ,

π (θ0, B, 1)− 0 + PV [E (F (θ1, B, 2))]

}
(24)

where E (F (θ1, A, 1)) is computed on equations 19 and 20;

and E (F (θ1, B, 1)) is computed on equations 21 and 22;

Instead, in a grid discretization, the DP algorithm works as follows. In this Mickey Mouse model the

horizon is discretized in three times t = 0, 1, 2, and the state variable in four levels θit ∀i = 1, . . . , 4. The
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plant has two production modes as before m = A,B.

At time t = 2 for every level θi2, the value function is equal to the salvage value only

F
(
θi2, A, 2

)
= S

(
θi2

)
(25)

F
(
θi2, B, 2

)
= S

(
θi2

)
(26)

I have S = 4 times M = 2 values for these equations: each mode for the last possible level of the state

variable. In this case I have chosen to specify the salvage value as unconditional on entering mode.

At time t = 1 for every level θi1, the value function is equal to

F
(
θi1, A, 1

)
= max

{
π

(
θi1, A, 1

) − 0 + ρ · E1 [S (θ2)] ,
π

(
θi1, B, 1

) − ca,b + ρ ·E1 [S (θ2)]

}
(27)

F
(
θi1, B, 1

)
= max

{
π

(
θi1, A, 1

) − cb,a + ρ · E1 [S (θ2)] ,
π

(
θi1, B, 1

) − 0 + ρ ·E1 [S (θ2)]

}
(28)

At time t = 0 for every level θi0, the value function is equal to

F
(
θi0, A, 0

)
= max

{
π

(
θi1, A, 1

) − 0 + ρ · E0 [F (θ1, A, 1)] ,
π

(
θi1, B, 1

) − ca,b + ρ · E0 [F (θ1, B, 1)]

}
(29)

F
(
θi0, B, 0

)
= max

{
π

(
θi1, A, 1

) − cb,a + ρ ·E0 [F (θ1, A, 1)] ,
π

(
θi1, B, 1

) − 0 + ρ · E0 [F (θ1, B, 1)]

}
(30)

Expectations at time t = 0 of the value function at time t = 1 in equations 29 and 30 are computed on

the value function for the same mode in each of the θi1.

2 Numerical Examples

In this section I have evaluated two stylized industrial plants:

1. a simple one production mode plant, very much like those used in basic CVP analysis. Its operating

options, namely to wait, to mothball, to abandon, are analyzed choosing as state variable the quantity

produced and sold. In this example I focus on downside risk options;

2. a two production modes plants, very much like the one described in section 1. In addition to operating

options listed for the previous one, in this case the plant can be exercised in two production modes
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which differ on the relative level of fixed costs and relative costs chosen in each budget period. Hence,

in addition to downside risk options there is one upside risk switching option.

Both models have been developed over an annual period meaning that production mode decisions can

be revised year after year. This should be taken as an example only. As a matter of fact, the period in

which to divide the useful life of a plant should be chosen considering technical features such as minimum

resetting time for plant machinery and organization and the length of the period covered by budgets within

the year. Finally, in this paper I have focused my attention on cost structures. Therefore, I do not give

further details about the estimation of the Ornstein Uhlenbeck parameters, see (Alesii, 2000) for a review

of the econometric methods about this.

2.1 A Simple Production Plant

This example slightly resembles the one on page 238 (Dixit and Pindyck, 1994). Here I differentiate the

example using a different cost structure that has both fixed and variable costs with the quantity produced

and sold Q. Having chosen this state variable I need an upper bound because quantities produced and

sold which exceed the maximum production capacity do not have any economic meaning. Because of this

for the examples that follow, Q is not the absolute value of units produced and sold but the percentage

of plant capacity which is actually exploited, therefore 0 < Q < 1. The stochastic process generating Q

is an Ornstein Uhlenbeck process with the following parameters η = .05; θ = .5; σθ = .5. Risk free rate

is supposed to be rf = 5% and the risk adjusted rate µ = rf being the systematic risk of the investment

project β = 0.

The plant data can be summarized as follows:

I = 40 initial investment;
Em = 2 one time costs of mothballing;
Es = -5 one time costs of scrapping (if negative wreckage is sold at a profit);
R = 4 one time cost of reactivating;
M = 1.5 cost of being in the mothballed state;
C = 7 fixed cost of operating;
P = 23 gross revenue from operating per unit sold;
V c = 3 Unit variable cost;
Cm = 20 contribution margin;
T = 50 life of the investment project;

The investment project has then the following real options:
1. :waiting;
2. :operating;
3. :mothballing;
4. :abandoned.
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Data about transition costs can be summarized as in expression 31.

δ =




δ1,1 δ1,2 δ1,3 δ1,4

δ2,1 δ2,2 δ2,3 δ2,4

δ3,1 δ3,2 δ3,3 δ3,4

δ4,1 δ4,2 δ4,3 δ4,4



=




0 −40 +∞ +∞

+∞ 0 −2 +∞

+∞ −4 0 5

+∞ +∞ +∞ 0




(31)

In a static expectations framework the plant could be operated at a profit for Q > QBep = .3500, see

panel A in figure 7. Although that is true, the 40 M$ would be invested, only if Q > QInvest = .4596.

Instead, it would be wrecked only if Q < Qabandon = .3363, see panel B in figure 7. Finally, on a pure

comparative statics framework, the plant would be mothballed if Q < Qmothball = .2750. In conclusion, in a

static expectations framework too there is a kind of hysteresis region in which decisions taken with respect to

the long run differ from those taken in the short run. As a matter of fact, in the interval .3500 < Q < .4596

although the plant is profitable it would not be built. Instead, in the interval .3363 < Q < .3500 although the

plant is not profitable, it is not abandoned.25 Overall, there is a kind of hysteresis band, .3363 < Q < .4596

in which the plant is kept in the same state in which it entered this region disregarding short run profitability

and taking into account only long run net present value of the invest and abandon decisions.

25As a matter of fact, once the investment is implemented, if the state variable moves in the interval .3363 < P < .3500,
under the hypothesis of static expectations, the value of the plant is smaller if it is abandoned than if it is kept working.
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Panel A: BEP diagram for the one production mode plant.
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Figure 7: Profit Functions for the Fixed Modes against θ.
Legend: Assuming quantity Q produced and sold as state variable. FC: Fixed Costs, Rev: Revenues, TC: Total Costs; NPVi: net

present value from the decision to invest; NPVa: net present value from the decision to abandon; NOI: net operating income set equal to

operating cash flows;
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The value of the plant was computed including the flexibility options which in this case are expecially

downside risk options. Following (Dixit and Pindyck, 1994) cap. 7, the values of the plant are reported for

both waiting to invest and operating modes at time t = 0, see figure 8. In panel A the values of the plant

at time t = 0 are reported for both mode 1: (Waiting to invest) and mode 2: (Operating). It is interesting

to examine the difference between these two curves, see panel B of figure 8. The intuitive meaning of

this variable is the incremental value of becoming active or of implementing the investment project, see

equation 32.

Gain(Q) = V alues0,m=2 − V alues0,m=1 (32)

The plot of the incremental value of becoming active is a cross check of mode bounds levels at time

t = 0. As a matter of fact it is actually used by Dixit and Pindyck to derive threshold levels to invest and

abandon the project, see figure 7.6 and 7.5 on page 229 of (Dixit and Pindyck, 1994). The “s” shape of

the curve in panel B is influenced by the amounts that the investment project requires to be implemented

I = 40, upper bound, and the one that it yields in case it is abandoned, lower bound, E = 5. As the state

variable increases, the advantage of becoming active levels off to an ordinate that is equal to the lump sum

to invest at time t = 0, in this case I = 40. The abscissa for which Gain(Q) levels off is the threshold

level of the state variable for the optimal exercise of the waiting option. For all the levels for which the

incremental value of becoming active is less than I = 40 it is convenient to wait. For levels of Q that exceed

the threshold, it is convenient to invest I = 40 and become active.

As the state variable decreases, the incremental value of becoming active decreases and it becomes

negative for some levels. Had it reached the level E = −5, the sum reaped in case of abandonment, the

plant would have been worth more if abandoned than if operated and the abscissa for which this happened

would have been the threshold for which to abandon the plant. This does not happen for any level of Q

because in this case in addition to the abandonment option like in the Dixit Pindyck example I have waiting

and mothballing options too. Because of the presence of these options there is no level of Q for which it

would be optimal to abandon the plant at time t = 0. This is also due to the fact that the abandoned state

is not reachable from the wait to invest or the operative mode A state.26

26As it is shown below, there is a threshold for abandonment even for t = 0, see figure 11. In figure 8 it cannot be observed
simply because the abandoned state is not accessible through the states represented, to wait and to operate, but only through
the mothballed state.
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Figure 8: Values of the Plant Under Ornstein Uhlenbeck Evolution of θ and Flexibility Options.
Legend: Assuming quantity Q produced and sold as state variable. Mode 1: waiting to invest; Mode 2: production mode; Mode 3:

mothballed state; Mode 4: abandoned project. V alues0,m=1: Value of the plant with all the options at time t = 0; V alues0,m=2: Value

of the plant with all the options but already operating at time t = 0. The difference between the two values is the incremental value of

becoming active, V alues0,m=2 − V alues0,m=1 resembles to figures 7.1 page. 220 and 7.6 page.229 in (Dixit and Pindyck, 1994)
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It is interesting to compare the value of the plant with all the options with its “naked value” or the value

of the plant without any of the downside risk options, that is a plant working in any contingency in the

operating mode, see figure 9. The value of the plant with all options is the one already shown in panel A

of figure 8, value of the plant in the waiting mode 1. Instead, the value of the plant without all options has

been computed substituting for any payoff previously used the CVP equation so that the profit generated

in any of the four modes would be always the same of the operating mode. Moreover, since in this way the

initial lump sum invested δ1→2 is not taken into account, this is subtracted from the expected value of the

plant as previously computed.

The combined value of the three downside options is higher for low levels of the state variables, see panel

B of figure 9. This result is intuitively immediate and does not deserve further explanations. It is worth

noting that in this case the value of the options is a relevant percentage of the investment project level

for QBEP = .35. As a matter of fact, at this level of the state variable the expanded NPV of the plant is

NPVexp = 16.43. Of this value, options accounted for O.V. = 47.18 being the “naked value” of the plant

NPVnak = −30.76. This can be summarized as in equation 33. Blatantly enough, real options are a relevant
part of the initial investment.

NPVexp = NPVnak +O.V = −30.76 + 47.18 = 16.43 (33)

From a practical point of view it is important to disentangle the value of the individual options from the

combined options value. This can be done computing the value of the plant excluding some real options.

For instance, in order to compute the value of the option to abandon within the combined value depicted in

panel B of figure 8 I have computed the value of the plant without the options to mothball and to wait, see

panel A of figure 10. Then I have computed the value of the option to wait and to mothball just subtracting

the value of the all option inclusive plant from the one previously computed, see panel B of figure 10. Finally,

I have subtracted the combined value of the options to wait and to mothball from the all options combined

value and I have obtained the value of the options to abandon by difference, see panel C in figure 10.

This method to obtain option values can be criticized on the grounds that option values are not perfectly

additive. Because of this, the value of the option to abandon may be different in the presence of an option

to wait or to mothball. As a consequence, intuition suggest that the value of the abandonment option that

I have computed is overvalued with respect to the one included in the all option plant. As a cross check of

the non perfect additivity of real options, I have computed the value of the option to wait and compared

it to the combined value of the option to wait and to mothball, see panel B of figure 9. As it would have
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been expected the values of these two options are subadditive. As a matter of fact, having the option to

wait reduces the value of the opportunity to mothball and the other way around.
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Panel A: Values of the plant at time t = 0 for the plant with and without all downside risk options.
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Figure 9: Plant and Options Values against θ: All Options.
Legend: Assuming quantity Q produced and sold as state variable. The value of the plant with all options is the value of the plant at

time t = 0 in the waiting mode, the value of the plant without all options, naked value, is the expected value of the plant working in any

contingency in the operating mode. The difference in ordinates between the two is the combined value of the options to wait, to mothball

and to abandon.
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Figure 10: Plant and Options Values against θ: To Wait and to Mothball Options.
Legend: Assuming quantity Q produced and sold as state variable. The value of the plant with all options is the value of the plant at

time t = 0 in the waiting mode, the value of the plant without options to wait and to mothball is the expected value of the plant working

in any contingency in the operating mode but abandoned for levels below the abandonment threshold. The difference in ordinates between

the two is the combined value of the options to wait and to mothball.
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Together with the value of the plant, it is very much important from a practical point of view to derive

mode bounds, i.e. the threshold levels for which it is optimal to change production mode within a dynamic

program. While both Kulatilaka and Dixit and Pindyck, cap.7 (Dixit and Pindyck, 1994), derived these

threshold levels for time t = 0 only, it is easy to derive them for the whole life of the project. This is

particularly important for those thresholds that change a lot during the life of the project.

For instance, the abandonment threshold27 is the boundary of the region of the state variable for which

the plant would be optimally abandoned. This level is very low at the beginning of the life of the project

and it grows towards the end of the useful life of the plant. The shape of the investment implementation

threshold is slightly similar. Around the end of the project it would not be convenient to invest but for very

high levels of the state variable.

Between those two levels the mothballing and restarting thresholds are reported. They form an hysteresis

region being the restarting level much higher than the mothballing one. It is important to notice that after

time t = 27 the option to mothball is completely offset by the option to abandon being the latter bound

stricter than the former. The option to reactivate the project is instead exercised for levels much lower than

those for which the investment is implemented.
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Figure 11: Mode Boundaries during the Project Life.
Legend: Assuming quantity Q produced and sold as state variable. Four threshold levels for a dynamical program are represented:

Q1→2: levels for Q for which it is optimal to pass from the waiting to invest mode 1 to the operating mode 2; Q2→3: levels for which it is

optimal to pass from the operating mode to the mothballed plant mode 3; Q3→2: levels for which it is optimal to restart the plant; Q3→4:

levels for which it is optimal to abandon the plant, mode 4, being in mode 3 mothballed plant.

27Whose shape resembles the one reported in (Dixit and Pindyck, 1994) page 111 where it was derived through difficult
stochastic algebra.
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2.2 A Two Production Modes Plant

This example slightly resembles to (Kulatilaka, 1988). There it was conceived as an FMS system, here,

more generally it is intended as a representation of a simple manufacturing plant in which it is possible to

trade off between per budget fixed and variable costs. For instance, it is possible to buy some machinery in

order to perform the same task that in the alternative mode was performed by another company for a cost

variable with the quantity produced and sold. In this way the contribution margin is increased together

with the break even point. This makes this production mode more risky with respect to the other with less

fixed costs and more variable costs. Therefore, I define this production mode Aggressive while the other

Conservative.

To give the reader a benchmark of comparison and for not to laden this paper with another data set, I

simply add a more aggressive production mode to the one of the previous example. The cost volume profit

equations 34 and 35 summarize the differences between the two production modes.

NOIA = πm
(
θit

)
A
= Q · (P − vc)− F = θ · 20− 7 (34)

NOIB = πm
(
θit

)
B
= Q · (P − vc) − F = θ · 35− 14 (35)

In addition to plant data already given in section 2.1, the following switching costs should be considered

in computing the value of the flexible plant:

EA→B = 1 one time costs of aggressive switch A → B;
EB→A = 1 one time costs of conservative switch B → A;

The investment project has then the following different modes of operations:
1. :waiting;
2. :operating A (conservative);
3. :operating B (aggressive);
4. :mothballing;
5. :abandoned;

Before being actually implemented the investment project is “dressed” with all the real options, namely

option to wait; to operate in A or B, to mothball and to abandon. Although that is true, while waiting to

invest, the direct real option available is to start operations in the conservative mode. Operating in mode

A, the plant offers the following real options: to switch to mode B and to mothball. Being in the mothballed

state, instead, the plant can be restarted in the conservative production mode A or it can be abandoned. In

conclusion, not all the modes of operation are accessible from any other. This corresponds to the transition

cost matrix reported in expression 36.
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Threshold Levels
Mode B Mode A

Qinvest 0.4626 0.4596
Qabandon 0.3922 0.3363

Qbep 0.4000 0.3500
Qmothballing 0.3571 0.2750

Table 2: Threshold Levels for Operating Modes
Legend: thresholds are derived under the hypothesis of static expectations, θinvest =

F C
CM

+ I
CM·a

n|i
, θabandon =

F C
CM

+ E
CM·a

n|i
,

θmoth =
F C−Em

CM
.

δ =




δ1,1 δ1,2 δ1,3 δ1,4 δ1,5

δ2,1 δ2,2 δ2,3 δ2,4 δ2,5

δ3,1 δ3,2 δ3,3 δ3,4 δ3,5

δ4,1 δ4,2 δ4,3 δ4,4 δ4,5

δ5,1 δ5,2 δ5,3 δ5,4 δ5,5




=




0 −40 −∞ −∞ −∞

−∞ 0 −1 −2 −∞

−∞ −1 0 −∞ −∞

−∞ −4 −∞ 0 5

−∞ −∞ −∞ −∞ 0




(36)

In a static expectation framework, for operating mode B the breakeven chart is reported in panel A

in figure 12. BEP, investment, mothballing and abandonment thresholds are higher than those found for

operating mode A, see table 2.

In a dynamic management and Ornstein Uhlenbeck expectations framework, as expected, the value of

the plant is increased by the presence of the option to switch to a more aggressive production mode, see

panel A in figure 13 expecially for higher levels of the state variable, instead the option to switch is not

worth much for very low levels of the state variable, see panel B in figure 13. Computing the value of the

plant managed in a dynamic program optimally switching between production modes only, it is possible to

get, by difference with the value of the all options “dressed” plant, the combined value of the downside risk

options, i.e. option to wait, to mothball and to abandon. These options value has just the opposite behavior

of the upside risk option to switch to the aggressive mode. Computing the value of a one production mode

A plant, “naked” of all options, it is possible to get by difference the aggregate value of the downside and

upside options. These have a “V” shape having lower value for levels in which an hysteresis effect prevails

and it is optimal to keep the plant in the mode in which it entered the hysteresis region. It is worth noting

that upside and downside risk options have a super additive value that enhances their value in the trough

represented by the hysteresis region.



A CVP Analysis with Irreversible and Recurrent Real Options - Feb-2002 - Giuseppe Alesii 31

It is possible to cross-check what just stated observing the mode bounds derived for the six possible

passages between modes, see figure 14. In panel A activation and abandonment thresholds are derived. In

this case too, the abandonment threshold has the same shape as in (Dixit and Pindyck, 1994) page 111.

These two thresholds have been put in one graph since they are respectively non recurrent and absorbing.

Their shape has a quite clear intuitive explanation. It would be not worth abandoning the project in the

early stages of the industrial plant life because, in the presence of an “aggressive” production mode, the

expected value of the plant would be much higher if mothballed for very low levels. Moreover, it would not

be convenient to start the plant for a quite high, higher than under static expectations, level of Q. This

threshold increases taking into account that the project should have enough time to repay the investor and

this could be done only for very high levels of Q in a short period.

Between the activation and abandonment thresholds the plant is managed choosing the optimal recurrent

mode according to the aggressive and conservative switch thresholds and the mothballing and reactivating

ones. Two almost non overlapping hysteresis regions are created by the recurrent modes thresholds. As a

matter of fact, the reactivation threshold is lower than the conservative switch bound. Because of this the

plant will always be in the “conservative” mode when crossing the mothballing bound. Moreover, it will

be restarted in the same “conservative” mode. Because of this between the restarting and the conservative

switch thresholds, the plant will always be exercised in the “conservative” production mode A.

In the last periods of the life of the project the reactivation and the mothballing bounds widen a lot

making it unprofitable to restart (mothball) operations but for very high (low) levels of Q. Instead, switches

between the two production modes are governed by much more stable thresholds. Although that is true, in

this latter case too the hysteresis region is widened in the last periods of the project life. The presence and

the shape of these hysteresis regions confirms the explanation given above for the “V” shape of aggregate

value of the upside and downside risk real options.
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Panel A: BEP diagram for the aggressive production mode plant.
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Figure 12: Profit Functions for the Fixed Modes against θ.
Legend: Assuming quantity Q produced and sold as state variable. FC: Fixed Costs, Rev: Revenues, TC: Total Costs; NPVi: net

present value from the decision to invest; NPVa: net present value from the decision to abandon; NOI: net operating income set equal to

operating cash flows;
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Figure 13: Plant and Options Values against θ: All Options.
Legend: Assuming quantity Q produced and sold as state variable. The value of the plant with all options is the value of the plant at
time t = 0 in the waiting mode, the value of the plant without all options, naked value, is the expected value of the plant working in any
contingency in the best operating mode or in the only mode available, Mode A. The difference in ordinates between the{
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Figure 14: Mode Boundaries during the Project Life.
Legend: Assuming quantity Q produced and sold as state variable. Six threshold levels for a dynamical program are represented, levels
of Q for which it is optimal to:
Q1→2 : pass from the waiting to invest mode 1 to the operating mode 2 (investment threshold);
Q2→3 : pass from the operating mode A “conservative” to operating mode B “aggressive” (aggressive move threshold);
Q3→2 : reverse the previous move, (conservative move threshold);
Q2→4 : mothball the plant, (mothballing threshold);
Q4→2 : restart the plant, (restarting threshold);
Q4→5 : abandon the plant being in mode 3 mothballed plant (abandonment threshold).
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3 Conclusions

This paper is aimed to entail in traditional CVP analysis a dynamic perspective in decision making, taking

into account not only irreversible decisions, such as investing in or abandoning a project, but also recurrent

decisions, e.g. mothballing plant, restarting operations, switching to a different production mode. This is

performed drawing a parallelism between traditional CVP analysis and the Kulatilaka real options approach

to investment evaluation. The traditional concept of break even point is reinterpreted in a dynamic framework

and substituted for time varying thresholds between operating modes of the investment project.

How to solve the dynamic programming problem involved by Kulatilaka GROPM is explained drawing

a parallelism between the DP implementation on a lattice reported in (Trigeorgis, 1996) on page 177 and

the one actually implemented in this paper on a grid. A couple of Mickey Mouse examples explain plainly

the mechanics of backward induction.

As a completely new result, it is worth noting the derivation of mode bounds that neither (Kulatilaka,

1988) nor (Dixit and Pindyck, 1994) chapter 7 derive for the whole useful life of the project. The analysis

of the latter provides a kind of cross check for threshold levels at time t = 0 and for the shape of the

abandonment threshold, see page 111 in (Dixit and Pindyck, 1994). The amazing thing is that I reach the

same results that Dixit and Pindyck get through very difficult stochastic algebra28. While their method

is certainly more elegant and based on solid theoretical grounds, the one used in this paper is coarser and

sometimes controversial29 from a theoretical point of view. Although that is true, the former is very difficult

to teach in an MBA class requiring long and tiresome diversions to build up ad hoc stochastic algebra tools.

Moreover, it is very difficult to apply requiring numerical methods that even Dixit and Pindyck do not

suggest30. Instead, Kulatilaka approach is intuitively direct even in its numerical solution method and it is

easy to teach. Because of this, I expect the latter method to become widely used in real business situations.

28Although Professor Pindyck claims in an e-mail to the author that chapter 7 model can be easily extended to any time of
the life of the project, it seems to me that it is not easy, if ever possible, to “tame” the non linear system, eq.(9)-(12) on page
218, to give us all the thresholds for the whole life of the project.

29There are a number of issues that are still to be understood:

• why should the plant have a β = 0? See section 1.3;

• the choice of the θ boundary levels heavily conditions results and it is not so clear how should the interval be selected
expecially when the variable is completely out of control;

• Cumulating probabilities for the boundary levels of the state variable θ has not a clear meaning. If it means that the
transition probability is with respect to that level and not to higher levels, then I can use as θ even variables than have
an upper or lower bound, e.g. quantity produced and sold bounded upward by the maximum production capacity of
the plant. If this is not the case, then these kind of models cannot be applied to state variable that have an economic
meaning only below a certain level. From this point of view a lattice discretization accommodates better state variables
with barriers, see page 476 (Hull, 1997);

30How should be solved the non linear system of equations on page 218 of (Dixit and Pindyck, 1994)?
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There are many extensions to the General Real Option Pricing Model (GROPM) of Kulatilaka in a

CVP framework analysis. These are possible thanks to the simple numerical approach that avoids difficult

stochastic algebra which is unmanageable beyond some levels of sophistication.

The first extension is a multivariate CVP analysis with irreversible and irreversible real options where

all the primitive variables in the CVP analysis are specified as stochastic. This in turn can be implemented

on a discretization like the multivariate binomial lattice of (Boyle et al., 1989) or in a generalization of the

univariate grid to accommodate both Brownian motions and O-U simultaneously. The second extension

is to derive the value at risk of plants which have real options in order to compare them with those that

have rigid technologies. This could be done levering on the Ornstein Uhlenbeck specification of the data

generating process in order to construct Monte Carlo experiments. Finally, the Cartesian product of these

extensions could really make GROPM a model general enough to tackle almost any kind of real options

problem. Although that is true, many theoretical issues wait in ambush the student of real options when it

comes to fill all the cells of these extensions Cartesian products.
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