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Abstract

An investor owns a right to invest in a project that generates positive cash
flows when the investment is undertaken. Both the value of the future cash
flows and the investment cost follow stochastic processes. Thus, the investment
project takes the form of an exchange option of American type. In the paper we
analyze this investment project when the investor needs an agent to undertake
the investment of the project, and the agent has private information about the
investment cost.

In the first part of the paper we assume that there is only one agent hav-
ing private information, and the problem is analyzed within a principal-agent
framework. The investor’s problem is to optimize the compensation to the
agent. To induce the agent to make the preferred investment decision, the
investor needs to leave the agent some information rent.

In the second part we extend the model by assuming that n agents compete
about the contract. Each agent has private information, and the competition is
organized as an auction. We discuss how competition reduces the information
rent and the inefficiency of the chosen investment strategy.
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1 Introduction

The starting point of the analyzes is a standard real option problem: An investor
owns a right to invest in a project that generates positive net cash flows when
the investment is undertaken. Both the net present value of the future cash flows
and the investment cost follow stochastic processes. To maximize the value of the
investment project, the investor aims to find the optimal time to exercise the option
to invest. Thus, the investment project takes the form of an exchange option of
American type.

The purpose of this paper is to analyze how the value of the real option is changed
when the investor needs an expert to undertake the investment of the project, and
the expert has private knowledge about the investment cost. In the first part of the
paper we assume that there is only one agent having private information. Thus,
we analyze the optimal stopping problem within a principal-agent framework. In
the second part we assume that two or more agents compete about the contract of
managing the investment. The problem is analyzed in an auction model.

Both the investor and the agents are value maximizers. If the investor had the same
information as the agents, the investment problem would be optimized according
to the investor’s first-best preferences, and the agent who wins the contract would
be compensated by the investment cost, only. However, because of the agents’
private information, they can increase their value by signalling investment costs
different from their true ones. Alternatively, the agents may have incentives to
maximize slack in their organizations, thereby increasing the realized investment
cost compared to the necessary cost. The investor’s problem is how to compensate
the agent in order to maximize the principal’s value of the investment project. This
problem amounts to finding the optimal trade-off between keeping the compensation
to the agent low, and transfer some information rent to induce the winning agent
to behave according to the investor’s preferences.

The problems presented here are extensions of the problem in Mæland (1999). The
main difference in assumptions between the two papers, is that the agent’s private
information is constant in Mæland (1999), whereas it is driven by a stochastic
process in the models presented here.

A conclusion from the model in Mæland (1999), is that the optimal investment
trigger is higher in the case of asymmetric information than under full information,
and therefore may lead to under-investment. Furthermore, we find an optimal
(second-best) compensation function that is increasing and concave in the stochastic
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value of the future cash flows. Corresponding results are found in the sections below,
i.e., when the private information is stochastic.

An application of the problems discussed in Mæland (1999) and in this paper, is
the case where a principal owns natural resources (say, a petroleum resource), and
needs an agent to manage the investment strategy of the project. The assumption
of a constant investment cost is realistic in cases where the investment consists of
standard technology. In other cases the investment project has the character of
being more like a development project, with new technical solutions, or frequent
changes in the design of these. For such investment projects it is more realistic to
assume that the agent’s private information changes as time passes, as is assumed
in the models to be presented below.

In the case where the private information is constant, the agent reports only once,
and the investment strategy is based on that report. Thus, the agent is committed
to this report. In the case where the private information changes continuously, the
agent correspondingly reports continuously. In this paper we want to see how the
value of the contract changes when the private information is stochastic. A question
we will discuss is whether the value of private information is higher when the agent
is not committed to earlier reports.

The investor cannot do better than to compensate the agent based on the optimal
compensation function. This means that the investor is better off by entering into
a contract as found in this paper, than to sell the option to invest. The reason is
market failure because of asymmetric information: If the investor ex ante wants to
sell the investment project at a price based on his expectation of the investment
cost, the investor knows that if the agent accepts the price, the investor can do
better by entering into a contract with the agent. If the investor’s price is too high,
then the agent will not buy the investment project.

In section 2 we assume that the parties consist of the investor and only one agent
having private information. The problem is solved in a principal-agent model where
the investor is the principal. To solve the optimization problem the principal has
to find an optimal compensation function. In order to optimize the compensation
function for all possible functions, we apply the revelation principle, see for exam-
ple Salanié (1994) for a discussion of the principle. By the revelation principle,
we reduce the possible set of compensation function to those where lying is not
profitable. The reason we can confine attention to truthful contracts, is that for
each possible contract between the principal and the agent, we can find a truthful
contract with the same outcome.
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Bjerksund and Stensland (2000) analyze a dynamic strategy problem within a
principal-agent framework, but where the private information is constant. Parts
of the analyzes in Mæland (1999) is built on the model in Bjerksund and Stensland
(2000), and thus, the results in the two papers are of the same type: As the agent’s
private information is constant, the cost is reported only once. Second-best dy-
namic strategies are found. In both models the principal’s value is reduced because
of an extra cost parameter in the principal’s optimization problem, leading to a
lower value than under full information.

In Antle, Bogetoft and Stark (1996) and in MacKie-Mason (1985) the private in-
formation is privately observed by an agent at certain points in time. Antle et al.
analyze a two-period model, where the principal decides to make an investment
in period one of the two periods, or no investment at all. The only uncertainty
in the model is the cost of the investment project, which changes stochastically
from one period to another. Thus, the problem can be interpreted as compound
options of the European type. The respective investment triggers at each of the
two periods are given by two constants. Antle et al. find that the incentive effects
from private information tend to defer investment because the investment is done
at a higher cost under asymmetric information than under full information. On the
other hand, increased volatility by postponing investment tend to reduce the value
of waiting, thereby leading to earlier investment. The reason is that an inefficient
investment trigger in the last period reduces the principal’s advantage of delaying
the investment to the last period.

MacKie-Mason (1985) models sequential decision problem, where the private infor-
mation is given in a similar way as Antle et al. As in Antle et al. the investment
trigger, and thereby the compensation, is given by constants, and the private in-
formation leads to under-investment. Also in the models to be presented below are
under-investment a result of private information.

In section 3 the principal-agent model is extended to a model where two or more
agents compete about obtaining the contract. The purpose is to analyze how much
the investor’s value of the project is increased by competition, and whether the
inefficiency in the second-best investment strategy in the principal-agent model is
reduced.

The competition is organized as an auction. The incorporation of competition is
done by an approach similar to Laffont and Tirole (1987). They assume that the
respective agents’ private information is constant and formulate their model as a
second-price sealed-bid private-values auction, also called a Vickrey auction. In
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such an auction, each bidder simultaneously submits a bid, without seeing others’
bids, and the contract is given to the bidder who makes the best bid. However, the
contract is priced according to the second-best bidder.

It can be shown that in a Vickrey auction, it is a dominant strategy for the bidder to
bid according to his true value. Hence, we see a correspondence to the situation of
no competition: truth telling is an optimal strategy for the agents participating in
a Vickrey auction, as well as in a principal-agent relationship. This resemblance is
emphasized in Laffont and Tirole (1987). Furthermore, the resemblance is exploited
in the presentation of the auction model in our paper.

In the next section we solve the optimal stopping problem when there is only one
agent. The investment problem when n agents compete about a contract is solved
in section 3. Section 4 concludes the paper.

2 The principal-agent model

2.1 Problem formulation

We assume that an investor owns a possibility to invest in production of petroleum,
and that he needs an agent to manage the investment of the project. We can split
the risk of the project into two main parts. The first one is market uncertainty,
which is uncertainty correlated to the activity in the economy. The second is
technical uncertainty. An example of technical uncertainty is uncertainty due to
new technical solutions of the investment of the project. The agent has private
information about the technical uncertainty.

We assume that the investment cost K(t) of the project is a function of an observ-
able variable C(t) and an unobservable variable θ(t). The variable C(t) represents
the part of the cost that is due to market uncertainty, and θ(t) is the part of the
cost due to technical uncertainty. This approach is similar to the cost assumptions
in Pindyck (1993), where the cost uncertainty consists of technical uncertainty de-
fined as uncertainty of the physical difficulty of completing a project, and input
cost uncertainty, which covers the uncertainty that is external to the agent.

In Pindyck (1993) it is assumed that the technical uncertainty changes only when
investment occurs. Our model is, however, not directly comparable to Pindyck’s,
as we have not taken into consideration that investment takes time. Thus, in our
model the technical uncertainty changes even if no investment occurs. We assume
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that the agent obtains private information about the investment cost from other
sources than the investment project in the model. For example, the agent may
manage other, similar investment projects as well, continuously receiving private
information from these. Another example is that the agent obtains private infor-
mation about technical innovations.

Formally, the part of the investment cost that is private information to the agent
is given by the stochastic process,

dθ(t) = σ2θ(t)dB2(t), θ0 = θ(0), (1)

where σ2 is the volatility parameter, and B2(t) is a standard Brownian motion. As
θ(t) is a measure of technical uncertainty only, we assume that θ(t) is independent
of market uncertainty.

The observable part of the investment cost may be correlated with capital markets.
The risk adjusted process is given by,

dC(t) = (r − δc)C(t)dt+ σ1C(t)dB1(t), c0 = C(0). (2)

The parameter r denotes the risk-free rate, δc is the convenience yield parameter
of C(t), the volatility parameter is given by σ1, and B1(t) is a standard Brownian
motion that may be correlated with capital markets.

The cost variables θ(t) and C(t) are both log-normal processes, and therefore the
product of the variables leads to a new log-normal process. We assume that the
true cost, K(t) is given by the function K(t) = C(t)θ(t). To justify this function
we think of θ(t) and C(t) as suitably normalized ”indexes” representing the market
uncertainty and the technical uncertainty, respectively, and where the product of
the indexes leads to the true investment cost. By Ito’s Lemma we find that the
stochastic process of the true investment cost is given by

dK(t) = (r − δc)K(t)dt+ σ1K(t)dB1(t) + σ2K(t)dB2(t), k0 = K(0). (3)

The expected, future net cash flows from the investment project, if it were com-
pleted at time t, has a present value of S(t). Information about S(t) is common
knowledge. Thus, the principal obtains all the cash flows when the investment is ex-
ercised and the contracted compensation is transferred to the agent. The stochastic
process S(t) is given by

dS(t) = (r − δs)S(t)dt+ σsS(t)dW (t), S(0) ≡ s0, (4)
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where δs is the convenience yield parameter of S(t), σs is its volatility parameter,
and W (t) is a standard Brownian motion.

It is assumed that the Wiener processes W (t) and B1(t) are independent of B2(t).
The Wiener processes W (t) and B1(t) may be correlated. Furthermore, it is as-
sumed that the parties are well diversified. As the variables S(t) and C(t) are
assumed to be spanned by capital markets, all risk can be hedged against. The
variable θ(t) consists only of technical uncertainty privately known to the agent,
and is uncorrelated to capital markets. Thus, the uncertainty in θ(t) is fully diver-
sifiable.

The probability space corresponding to the Brownian motions W (t), B1(t) and
B2(t), starting at t0, is given by (Ω,F , Q). The agent’s information is given by FS,K

t ,
which is the σ-algebra generated by {S(ξ),K(ξ), ξ ≤ t}. The ”twin assets” S(t)
and C(t) are priced in complete markets, and the respective stochastic processes
therefore can be adjusted to the risk adjusted measure Q(t). The part of the cost
with price equal to θ(t) is uncorrelated with capital markets. As long as the parties
are well diversified, as assumed above, the price process of θ(t) is the same under
the (true) P and the (risk adjusted) Q measures.

The principal’s information is formalized by the σ-algebra FS,C
t , generated by

{S(ξ), C(ξ), ξ ≤ t}. The principal knows the distribution of θ(t) at any time t ≥ t0.

Although we restrict our analysis to the case of geometric Brownian motions, we do
not need to make this restriction. The main result (given by (21)) is reached also
when we assume that the stochastic processes are given by general Itô processes,
and the true investment cost K(t) is given by a function K(t) = h(C(t), θ(t)).
However, an assumption we need to make is that the fraction F (K(t))/f(K(t))
is increasing in K(t), where F (·) is the cumulative distribution function of K(t),
and f(·) is the corresponding density function. The reason we assume that the
stochastic processes are log-normal, is that it is then easier and more informative
to compare our results to the well-known case of no private information. When the
agent has no private information, the option problem is identical to an exchange
option of American type, cf. section 2.2.

We assume that the optimal stopping problem is delegated to the agent. Thus,
we want to find a compensation function that induces the agent to behave in the
preferred way, and at the least cost to the principal. It may seem to be a difficult
problem to find an optimal function. However, the revelation principle helps us at
the task of capturing the set of possible compensation functions. The revelation
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principle is based on the observation that to each set of implementable incentive
mechanisms, a contract with the same outcome can also be implemented through
a direct truthful mechanism where the agent reveals his private information. By an
incentive mechanism, we mean the tools the principal employ in order to induce
the agent to behave in a certain way. In our model the incentive mechanisms are
given by the compensation function and the observable investment strategy. By a
direct mechanism we mean the agent’s report of his private information.

As the optimal stopping problem is delegated to the agent, the reports from the
agent to the principal is just a device of finding the optimal investment strategy, and
hence finding the optimal contract. Moreover, given truthful reports, it does not
matter which party decides on the investment strategy, as the same outcome will
occur. Our aim is to find a compensation function where communication between
the principal and the agent is not necessary, and to find a contract that is as good
as any contract in which the agent communicates the private information to the
principal.

The compensation X(·) is transferred at the time when the investment is made,
and may be based on the agent’s report at the stopping time. The agent’s report
is denoted K̂.

Define t0 = 0, corresponding to time equal to zero, as the time when the contract
is entered into. Furthermore, let (s, c, k) = (S(t), C(t),K(t)), and let t be any time
equal to or larger than t0. Then the principal’s optimization problem is given by

V P (s0, c0, t0) = supX(·) v
P (s0, c0, t0)

= supX(·)E
[
e−rτ

(
S(τ)−X

(
S(τ), C(τ), τ ; K̂

))∣∣∣FS,C
t0

]
,

(5)

subject to the agent’s optimization function

V A(s, c, k, t; K̂) = supτ,K̂ v
A(s, c, k, t)

= supτ,K̂ E
[
e−r(τ−t)

(
X
(
S(τ), C(τ), τ ; K̂

)
−K(τ)

)∣∣∣FS,K
t

]
,

(6)
and the participation constraint

V A(s, c, k, t; K̂) ≥ 0. (7)

The principal’s problem in (5) is to find an optimal compensation function, subject
to the agent’s optimization problem in (6), and the participation constraint in (7).
The compensation function X(·) is specified at time t0, when the parties enter into
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a contract. Therefore, the principal’s optimization problem with respect to the
compensation function X(·) must be solved for at (or before) time t0. On the other
hand, the agent’s optimization problem is dynamic: At any time t ≥ t0, the agent
must decide on whether to invest or not, and which report he is to give to the
principal at the investment time. The agent decides on the optimal stopping time
τK̂ . The optimal stopping time is based on the report given at the stopping time,
K̂, i.e., the optimal stopping time is defined by

τK̂ = inf
{
t ≥ t0|V A

(
S(t), C(t),K(t), t; K̂

)
> X

(
S(t), C(t), t; K̂

)
−K(t)

}
.

The agent must choose an optimal stopping time that is consistent with his report
K̂. Otherwise, the principal will detect that the time the agent chooses to invest is
not optimal given the report K̂.

We have included t as a variable that may affect the respective value functions of
the principal and the agent. The reason is that we take into consideration that the
compensation function X(·) may be time dependent.

As the agent continuously obtains new information, application of the revelation
principle implies that the agent correspondingly continuously gives new reports
to the principal. However, in the formulation of the problem the compensation
function is not based on earlier reports. As long as the agent reports costs higher
than the costs at which the parties find it optimal to exercise the option to invest,
the value of the agent’s compensation will not be dependent on the reports.

In section 2.2 we present the investment problem in the case where the agent has
no private information. The case of full information is used as a benchmark when
we analyze the effects of private information.

2.2 Full information

In the case of full information, i.e., where the principal too observes the stochastic
process K(t), the agent’s value of the contract is zero. The reason is that the
principal has the same information as the agent, in addition to observing the agent’s
investment strategy. Thus, the principal can design the contract in such a way as to
punish the agent if he does not act in the way preferred by the principal. Following
this argumentation, the participation constraint is binding, and the optimal transfer
function under full information is given by X(t) = K(t) if the investment is made
at time t, and zero otherwise.
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Under full information the principal’s optimization problem is time homogeneous.
Therefore, the principal’s optimization problem is given by

V P
sym(s, k) = sup

τ
E
[
e−rτ (S(τ)−K(τ))

∣∣FS,K
t

]
, (8)

where the subscript sym indicates that this is the principal’s value of the contract
when information is symmetric.

The optimization problem has the form of an exchange option (sometimes called a
Margrabe option, as Margrabe (1978) analyzed European options to exchange one
asset for another). In the case where both S(t) and K(t) are geometric Brownian
options, the option problem in equation (8) is, among others, solved by McDonald
and Siegel (1986), Gerber and Shiu (1996) and Øksendal and Hu (1996).

Øksendal and Hu (1996) state all the necessary conditions with respect to the
parameters of the problem, needed for the validity of the result. Thus, we choose
to present the results as stated in Øksendal and Hu (1996).

The trigger for investment is given by a linear relationship between S(t) and K(t),
S(t) = µK(t), where µ is a constant. The solution to equation (8) is given by

V P
sym(s, k) =


Asλk1−λ when s ≤ µk

s− k when s > µk,
(9)

where

A =
1
λ

(
λ

λ− 1

)1−λ
,

and
µ =

λ

λ− 1
.

Furthermore, we have

λ =


1
a

[
1
2a+ δs − δc +

√(
1
2a+ δs − δc

)2
+ 2aδc

]
if a > 0

δc
δc−δs if a = 0,

where a = σ2
s−2ρσsσ1 +(σ2

1 +σ2
2), and ρ is the correlation coefficient between W (t)

and B1(t). We need to ensure that λ > 1, which leads to the following restrictions,
δc + 1

2

(
σ2

1 + σ2
2

)
≥ δs + 1

2σ
2
s if a > 0

δc > δs if a = 0.

10



The principal’s value function in (9) equals the principal’s value of the contract.
Below we shall see how the principal’s contract value, as well as the optimal in-
vestment strategy, is changed when the agent has private information about the
investment cost.

2.3 The agent’s optimization problem

In this section we analyze the agent’s optimization problem in equation (6), and
characterize the agent’s value of private information.

Following Salanié (1994), section 2.1.2, the revelation principle implies that we can
”confine attention to mechanisms that are both direct (where the agent reports
his information) and truthful (so that the agent finds it optimal to announce the
true value of his information)”. The principal’s set of tools to induce the agent
to behave in a certain way is given by the incentive mechanisms (X(K̂), τK̂). If
this set of mechanisms can be implemented, then we can implement these incentive
mechanisms through a direct truthful mechanism, (X(K̂), τK̂ , K̂), where the agent
reveals his private information. Thus, we can find a direct truthful mechanism
(X(K̂), τK̂ , K̂) with the same outcome as for any incentive mechanisms (X(K̂), τK̂).
Applied to our model, the revelation principle is shown in the appendix, section
A.1.

Guess on a trigger function ψ(c, t; K̂) such that the option to invest is exercised
immediately when s > ψ(c, t; K̂), whereas it is optimal to wait when s ≤ ψ(c, t; K̂).
This means that the optimal stopping time is given by

τ = inf
{
t ≥ t0|S(t) > ψ(C(t), t; K̂)

}
.

Note that the investment strategy is based on the agent’s report K̂. Furthermore,
define wA(s, c, k, t; K̂) as the agent’s value function when s ≤ ψ(c, t; K̂). The agent’s
value function can then be expressed as

vA(s, c, k, t; K̂) =


wA(s, c, k, t; K̂) if s ≤ ψ(c, t; K̂)

X(s, c, t; K̂)− k if s > ψ(c, t; K̂).
(10)

At any time t the agent’s truth telling condition is given by the first-order condition

∂vA(s, c, k, t; K̂)
∂K̂

∣∣∣∣∣
K̂=k

=


∂wA(s,c,k,t;K̂)

∂K̂

∣∣∣∣
K̂=k

= 0 if s ≤ ψ(c, t; K̂)

∂X(s,c,t;K̂)

∂K̂

∣∣∣∣
K̂=k

= 0 if s > ψ(c, t; K̂).

(11)
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We now emphasize that the report K̂ is dependent on the true investment cost k,
i.e., K̂ = K̂(k). By the envelope theorem we find that1

dvA(s, c, k, t; K̂(k))
dk

=


wAk (s, c, k, t; K̂(k)) if s ≤ ψ(c, t; K̂(k))

−1 if s > ψ(c, t; K̂(k)),
(12)

where wAk (s, c, k, t; K̂) is defined as the derivative of wA(s, c, k, t; K̂) with respect
to k.

We may observe that the optimization of the report K̂ at the time of investment
corresponds to an impulse in an impulse control problem.

From (11) and (12), we see that no contract that depends on the report K̂ dominates
a contract that is independent of the report. Thus, we find that X = X(s, c, t).

Although dependence of the report K̂ does not improve the contract, the agent’s
private information still is of value. To induce the agent to choose the principal’s
preferred investment strategy, the agent must be compensated according to the
value of his private information.

Let ψ(c, k, t) be the investment strategy when truth telling is optimal. Define
wA(s, c, k, t) as the agent’s value function when s ≤ ψ(c, k, t) and when truth telling
is the optimal strategy. Then the agent’s value function, given truth telling, can be
written in the form

vA(s, c, k, t) =


wA(s, c, k, t) if s ≤ ψ(c, k, t)

X(s, c, t)− k if s > ψ(c, k, t).
(13)

Let ϑ(s, c, t) be the inverse trigger function, i.e., it is optimal to invest when k <

ϑ(s, c, t), and optimal to wait when k ≥ ϑ(s, c, t). We find the agent’s value of
private information by integrating both sides of the first-order condition in (12)
with respect to the private information k. This leads to

vA(s, c, k, t) =


−
∫∞
k wAu (s, c, u, t)du if s ≤ ψ(c, k, t)

ϑ(s, c, t)− k −
∫∞
ϑ(s,c,t)w

A
u (s, c, u, t)du if s > ψ(c, k, t)

(14)

Using equations (13) and (14) we find that the compensation function is character-
ized by

X(s, c, t) = ϑ(s, c, t)−
∫ ∞

ϑ(s,c,t)
wAu (s, c, u, t)du, (15)

1 dvA(s,c,k,t;K̂(k))
dk

= ∂vA(s,k,c,t;K̂(k))

∂K̂(k)

dK̂(k)
dk

+ ∂vA(s,c,k,t;K̂(k))
∂k

. The first term on the right-hand

side is zero when K̂(k) is optimal.
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when s > ψ(c, k, t), and otherwise X(s, c, t) = 0. We see that the compensation
function is dependent only on variables observable to the principal. However, so
far we do not know the investment strategy given by ϑ(s, c, t), nor the function
wA(·). The investment strategy is optimized by the principal, given the agent’s
truth telling conditions. This problem is analyzed in the section below.

2.4 The principal’s optimization problem

The principal’s optimization problem in (5) is rewritten here as,

V P (s0, c0, t0) = sup
X
E
[
e−rτgP (S(τ), C(τ), τ)

∣∣∣FS,C
t0

]
, (16)

where
gP (s, c, t) = S(t)−X(s, c, t). (17)

The principal’s problem is to implement an optimal compensation function. In
order to optimize the principal’s payoff value with respect to an optimal stopping
time, we need to replace the unknown compensation function with known functions.
The value of the compensation function X(·) is characterized in (15). Now suppose
that the option to invest is exercised at time t, i.e., that k = ϑ(s, c, t) at time t.
Then replace X(s, c, t) in the principal’s value of the payoff, by the right-hand side
of (15), leading to

gP (s, c, t) = E
[
s−

(
ϑ(s, c, t)−

∫∞
ϑ(s,c,t)w

A
u (s, c, u, t)du

)∣∣∣FS,C
t

]
= E

[
s−

(
k −

∫∞
k wAu (s, c, u, t)du

)∣∣∣FS,C
t

]
=

∫∞
0

(
s− k +

∫∞
k wAu (s, c, u, t)du

)
f(k|c, t)dk.

(18)

The function f(k|c, t) is the probability density of k given the principal’s information
about k.

By partial integration2 we find that the right-hand side of (18) can be formulated
2Partial integration of

∫∞
0

∫∞
k

wA
u (s, c, u, t)duf(k|c, t)dk leads to∫ ∞

0

∫ ∞

k

wA
u (s, c, u, t)duf(k|c, t)dk

=
[∫∞

k
wA

k (s, c, k, t) duF (k|c, t)
]∞
0

− (−)
∫∞
0

wA
k (s, c, k, t)F (k|c, t)dk

=
∫∞
0

wA
k (s, c, k, t)F (k|c, t)dk.
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by

gP (s, c, t) =
∫ ∞

0

(
s− k + wAk (s, c, k, t)

F (k|c, t)
f(k|c, t)

)
f(k|c, t)dk. (19)

The function F (k|c, t) is defined as the cumulative distribution of the investment
cost k.

A condition in the agent’s optimal stopping problem is that the first-order deriva-
tive of vA must be continuous for all the variables included in the problem3. In
particular, we need to check that the value function is continuous at the trigger
where the investment is exercised. Derivation of the value function in (13) at the
trigger where k = ϑ(s, c, t) leads to the following condition

wAk (s, c, ϑ(s, c, t), t) = −1.

This condition is often called the ”smooth pasting condition” or the ”high contact
principle”. Under the assumption that the investment is made at time t, we use
the smooth pasting condition to replace wAk (s, c, k, t) in (19) by -1, leading to

gP (s, c, t) =
∫ ∞

0

(
s− k − F (k|c, t)

f(k|c, t)

)
f(k|c, t)dk. (20)

Thus, we have reformulated the principal’s payoff value so that it consists of known
functions, only, and at the same time is satisfied with respect to the agent’s truth
telling condition.

The time zero discounted value of the payoff, under the assumption that the in-
vestment is made at time t, is given by

e−rtgP (s, c, t) = e−rt
∫∞
0

(
s− k − F (k|c,t)

f(k|c,t)

)
f(k|c, t)dk

=
∫∞
0 e−rt

(
s− k − F (k|c,t)

f(k|c,t)

)
f(k|c, t)dk

= E
[
e−rt

(
s− k − F (k|c,t)

f(k|c,t)

)
|FS,C
t

]
.

The agent’s incentive compatibility restriction is now incorporated in the principal’s
value of the payoff. This means that the agent has no incentives not to report the
true investment cost. Thus, the principal finds the optimal investment strategy by

3The condition is for instance stated in Øksendal (1998), Theorem 10.4.1, where the verification
theorem for variational inequalities for optimal stopping is given.
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solving the following optimal stopping problem,

V P (s0, c0, t0) = supτ E
[
e−rτ

(
S(τ)−K(τ)− F (K(τ)|C(τ),τ)

f(K(τ)|C(τ),τ)

)∣∣∣FS,C
t0

]
= supτ E

[
E
[
e−rτ

(
S(τ)−K(τ)− F (K(τ)|C(τ),τ)

f(K(τ)|C(τ),τ)

)∣∣∣FS,K
t0

]∣∣∣FS,C
t0

]
,

(21)
as if he knows the unobservable variable k0.

If we compare the result in (21) to the case where the principal has full information,
given by (8), we see that the principal’s payoff value is reduced by the fraction
F (·)
f(·) . The fraction is interpreted as the inefficiency due to asymmetric information.
Thus, the relationship between output value S(t) and the investment cost K(t) is
not linear as in the case of full information, see section 2.2, equation (9). Also, the
inefficiency leads to under-investment: Because of the reduced payoff the stochastic
process S(t) must have a higher value, and/or the variables C(t) and K(t) must
be lower, to trigger investment in the case of asymmetric information compared to
the case of full information.

Let ṽP (s, c, k, t) be the principal’s value function given that the principal’s infor-
mation is given by FS,K

t ,

ṽP (s0, c0, k0, t0) = E
[
e−rτ

(
S(τ)−K(τ)− F (K(τ)|C(τ),τ)

f(K(τ)|C(τ),τ)

)∣∣∣FS,K
t0

]
. (22)

We find the optimal investment strategy by optimizing equation (22) with respect
to the optimal stopping time. The optimal solution must satisfy the variational
inequalities (Øksendal (1998), Theorem 10.4.1):

ṽP (s0, c0, k0, t0) ≥ g̃P (s0, c0, k0, t0) (23)

LṽP (s0, c0, k0, t0) ≤ 0 (24)

max
{
LṽP (s0, c0, k0, t0), g̃P (s0, c0, k0, t0)− ṽP (s0, c0, k0, t0)

}
= 0, (25)

where g̃P (s, c, k, t) is given by

g̃P (s, c, k, t) = s− k − F (k|c, t)
f(k|c, t)

.

The differential operator L which coincides with the generator A of the states
{s, c, k, t} is given by

LṽP (s, c, k, t) = ∂ṽP

∂t + (r − δs)s∂ṽ
P

∂s + 1
2σ

2
ss

2 ∂2ṽP

∂s2

+(r − δc)k ∂ṽ
P

∂k + 1
2(σ2

1 + σ2
2)k

2 ∂2ṽP

∂k2

+(r − δc)c∂ṽ
P

∂c + 1
2σ

2
1c

2 ∂2ṽP

∂c2
+ ρσsσ1sc

∂ṽP

∂s∂c ,

(26)
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where ρ is the correlation coefficient between the standard Brownian motions W (t)
and B1(t).

There is no analytical solution to the problem in (22), and the optimal investment
strategy must be solved numerically. However, we guess that as ∂(F (k|c,t)/f(k|c,t))

∂k >

0 and ∂2(F (k|c,t)/f(k|c,t))
∂k2 > 0, the optimal investment trigger ψ∗(c, k, t) is strictly

increasing and convex in k, i.e., ∂ψ∗

∂k > 0 and ∂2ψ∗

∂k2 > 0. Thus, the higher k is,
the more severe is the inefficiency in the investment strategy compared to the full
information case (remember that in the full information situation the relationship
between S(t) and K(t) is linear).

The principal’s unconstrained optimization problem in (21) has the same form as
the principal’s optimization problem when the private information is constant: the
principal’s expected payoff consists in both cases of the net present value from
future expected cash flows minus the true investment cost and the fraction F (·)

f(·) .
The only difference is that in the case of a constant private information, the fraction
is a constant, too.

It may be surprising that the principal’s expected value of the payoff is of the same
type, because there seems to be an important difference between the case where
the agent’s private information is stochastic, and the case where it is constant. As
the private information does not change in the first case, the agent is committed
to the same report during the contracting time. However, when the private infor-
mation changes stochastically, the agent continuously submits new reports without
committing to earlier reports (given that the contract does not depend on reports
earlier than the one at the investment time). Intuitively, one may therefore be led
to believe that this gives the agent a higher value of his private information com-
pared to the case where the private information is constant. The principal’s payoff
function above (equation (19)) shows that this is not the case.

One reason for the fact that the agent’s value of private information is of the
same form whether it is constant or stochastically changing, is that in both cases
we find a contract where the investment strategy is delegated to the agent. Thus,
communication has no value. For a discussion of the value of communication versus
delegation, see Melumad and Reichelstein (1987) and (1989).

As mentioned earlier, the result in (21) is not confined to stochastic processes given
by the geometric Brownian motion. We reach the same result if we assume that
the processes are given by general Itô processes. However, a restriction we need to
make is that F (k|c,t)

f(k|,c,t) is increasing in k.

16



Observe that in the case where the stochastic processes are given by geometric
Brownian motions, we can reformulate the principal’s value function to

V P (s0, c0, t0) = sup
τ
E

[
e−rτ

(
S(τ)− C(τ)

(
F (θ(τ), τ)
f(θ(τ), τ)

− θ(τ)
))∣∣∣∣FS,C

t0

]
. (27)

Thus, we see that there is a linear relationship between S(t) and C(t). This result
is consistent to the linear symmetric information case in subsection 2.2. The reason
is that both S(t) and C(t) are observable to the principal. However, the part of the
investment cost that is not observable to the principal, is not linearly dependent
on S(t) and C(t).

2.5 Implementation of the optimal investment strategy

The optimal investment strategy ψ∗ found from equation (21) must be implemented
into the compensation function. Let ϑ∗(s, c, t) be the inverse trigger function, i.e.,
it is optimal to invest when k < ϑ∗(s, c, t), and optimal to wait when k ≥ ϑ∗(s, c, t).
From (15) we find that the optimal compensation function is given by

X∗(s, c, t) = ϑ∗(s, c, t)−
∫ ∞

ϑ∗(s,c,t)
wA∗u (s, c, u, t)du (28)

if the investment is made at time t, and X∗(s, c, t) = 0 otherwise. The function
wA∗ is the optimal value when the optimal investment strategy is followed.

As ϑ∗(s, c, t) is the inverse trigger function of ψ∗(c, k, t) (keeping c and t fixed), we
guess that it is concavely increasing in s, i.e., ∂ϑ∗

∂s > 0 and ∂2ϑ∗

∂s2
< 0. Correspond-

ingly, we find that the optimal compensation function is increasing and concave in
the output value s. As s gets higher, the agent’s value of the contract gets higher.
Hence, even if the agent obtains a lower share of the output value as s increases,
he will at a certain trigger be induced to exercise the option to invest.

We need to verify that the compensation function in (28) is the optimal and in-
centive compatible solution for the agent. This can be done using the verification
theorem (see for instance Øksendal (1998), Theorem 10.4.1)
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3 An auction model: Competition when the agents’
private information changes stochastically

3.1 Problem formulation

Now we introduce competition in the model. We assume that n agents compete
about the contract. The agents’ respective private information is given by indepen-
dent stochastic processes.

We organize the model as an auction of the Vickrey type. As described in the
introduction, in a Vicrey auction each agent simultaneously reports their respective
costs, without seeing each other’s bids, and the contract is given to the agent who
reports the lowest cost. In our problem, the cost variables change continuously
and stochastically, and therefore the basic auction model is slightly changed: New
reports are given simultaneously and continuously by all the agents participating in
the auction, until one or more agents report a cost low enough to trigger investment.
At this point in time, the agent with the lowest cost report wins the contract,
and invests immediately. The investor offers a predetermined compensation to the
agents participating in the auction.

It is not optimal to assign the contract to any of the agents before the time of
investment. The reason is that the investment cost is given by a stochastic process
that is independent of time. This means that the agent reporting the lowest cost at
one point in time, does not necessarily have the lowest cost at a later point in time.
Therefore, we assume that all the agents continuously participate in the auction,
until a cost is reported that is low enough to trigger immediate investment.

The main difference from the assumptions of the principal-agent model is that there
are now n agents competing about the contract. Hereafter the investor will be called
the auctioneer (and he is the same person as the principal in last section).

We assume that each agent has private information about the part of the investment
cost that is due to technical uncertainty, θi(t). The variable θi(t) is independently
distributed between the agents. Each agent i’s variable θi(t) is given by the stochas-
tic process

dθi(t) = σ2θ
i(t)dBi(t), θi0 = θi(0). (29)

All the agents face the same volatility parameter σ2. The investment cost of each
agent i is given by the function Ki(t) = C(t)θi(t), with the stochastic process

dKi(t) = (r − δc)Ki(t)dt+ σ1K
i(t)dB1(t) + σ2K

i(t)dBi
2(t), ki0 = Ki(0). (30)
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Each agent i receives the compensation Xi. Analogously to the situation where
there is no competition, the compensation is paid at the time the investment is
made.

The vector of reports is denoted K̂ = (K̂1, ..., K̂n). At the time the investment
is made, agent i has a probability yi(K̂(t)) of winning the action, where K̂(t) =
(K̂1(t), ..., K̂n(t)) is the vector of reports at time t. We make the assumption∑n

i=1 y
i(K̂(t)) ≤ 1 for any K̂(t), t ≥ t0. (31)

Furthermore, we need

yi(K̂(t)) ≥ 0 for any K̂(t), t ≥ t0. (32)

The optimal stopping time of agent i is denoted τ i
K̂

. The subscript K̂ indicates
that the optimal stopping time of each agent may be dependent on the vector of
all the reports at the stopping time.

The set of incentive mechanisms (Xi(·), τ i, yi(·)) constitute at each point in time
the auctioneer’s set of incentive mechanisms.

In the auction model we assume that (Ω,F , Q) is the probability space correspond-
ing to the (2 + n)-dimensional Brownian motion (W (t), B1(t), B2(t)), where B2(t)
is the n-dimensional Brownian process given by B2(t) = B1

2(t), ..., Bn
2 (t). Agent

i observes the variables S(t), C(t) and Ki(t). Agent i does not observe the vec-
tor K−i(t) = (K1(t), ...,Ki−1(t),Ki+1(t), ...,Kn(t)), but he knows the expectation
and the variance of the competitors’ private information. We denote FS,Ki

t as the
σ-algebra generated by {S(ξ),Ki(ξ), ξ ≤ t}.

As earlier we denote s = S(t), c = C(t) and ki = Ki(t).

Agent i’s value function is

vi(s, c, ki, t; K̂i)

= E
[
e
−r(τ i

K̂
−t)
(
Xi
(
S(τ i

K̂
), C(τ i

K̂
), τ i

K̂
; K̂i

)
− yi(K̂)Ki(τ i

K̂
)
)∣∣∣FS,Ki

t

]
.

(33)

The auctioneer’s information at time t is given by the σ-algebra FS,C
t . This means

that the auctioneer does not observe the vector K(t) = (K1(t), ...,Kn(t)). However,
he knows the expectation and the variance of each agent’s private informationKi(t).
The auctioneer’s value function at time t0 is given by

vP (s0, c0, t0) = E

[
n∑
i=1

e
−rτ i

K̂

(
yi(K̂)S(τ i

K̂
)−Xi

(
S(τ i

K̂
), C(τ i

K̂
), τ i

K̂
; K̂
))∣∣∣∣∣FS,C

t0

]
.

(34)
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We see that the auctioneer’s and the agents’ respective value functions are similar
to the ones in equations (5) and (6).

The auctioneer’s optimization problem is given by

V P (s0, c0, t0) = sup
Xi(·),yi(·),τ i

vP (s0, c0, t0), (35)

subject to all the n agents’ optimization problems, where agent i has the following
optimization problem,

V i(s, c, ki, t; K̂i) = sup
K̂i

vi(s, c, t; K̂i), (36)

and the participation constraint of agent i is given by

V i(s, c, ki, t; K̂i) ≥ 0. (37)

In the principal-agent problem, we want to find a contract where the investment
decision is delegated to the agent. In the auction model, the investment strategy
cannot be delegated. The reason is that the winner of the contract is chosen at the
same time as the investment is made.

3.2 The agents’ optimal reporting strategies

As in the principal-agent model, truth telling is a dominant strategy in the auction.
Thus, we follow the same approach as for the principal-agent model when we analyze
each agent’s optimal reporting strategy.

Define gi(s, c, ki, t; K̂i) as the value of agent i’s payoff if the investment is made at
time t, i.e,

gi(s, c, ki, t; K̂i) = E
[
Xi(s, c, t; K̂)− yi(K̂)ki|FS,Ki

t

]
(38)

As in the one-agent case, only reports at the investment time affect the compensa-
tion function. Thus, incentive compatibility requires that all the n agents’ payoff
values satisfies the following first order condition,

∂gi(s, c, ki, t; K̂)
∂K̂i

∣∣∣∣∣
K̂i=ki

= E
[
XK̂i(s, c, t; K̂)− yi

K̂i(K̂)ki|FS,Ki

t

]
= 0 (39)

where the subscripts of Xi
K̂i and yi

K̂i denote the first-order derivatives of the re-
spective functions.
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Let gi(s, c, ki, t) be the value function of agent i when truth telling is optimal, and k
is defined as the vector of the agents’ true investment cost at time t, k = (k1, ..., kn).
Then we state agent i’s payoff value when truth telling is optimal by

gi(s, c, ki, t) = E
[
Xi(s, c, k, t)− yi(k)ki|FS,Ki

t

]
(40)

By the envelope theorem, agent i first order condition is then written as

dgi(s, c, ki, t)
dki

= E
[
−yi(k)|FS,Ki

t

]
. (41)

The truth telling condition in (41) is similar to the truth telling condition in the
principal-agent model. The main difference is that the condition in (41) includes
the probability yi(k), which implies that we cannot exclude the possibility that the
optimal expected compensation is dependent on agent i or the competing agents’
reports.

3.3 The auctioneer’s optimization problem

To solve the auctioneer’s optimization problem, we incorporate the n agents’ truth
telling restrictions into the auctioneer’s optimization problem in (35)-(37). The
approach is similar to the one in the principal-agent model, subsection 2.4.

When the agents’ truth telling restrictions are satisfied, the auctioneer’s value func-
tion can be formulated as

vP (s0, c0, t0) = E

[
n∑
i=1

e−rτ
i
KgPi

(
S(τ iK), C(τ iK), τ iK

)∣∣∣∣∣FS,C
t0

]
, (42)

where gPi (s, c, t) equals

gPi (s, c, t) = E
[
yi(k)s−Xi(s, c, k, t)|FS,C

t

]
. (43)

The function gPi (s, c, t) is interpreted as agent i’s contribution to the auctioneer’s
payoff value. We replace the compensation function in (43) with agent i’s value of
private information given investment at time t. Thus, using equation (40), equation
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(43) is reformulated to

gPi (s, c, t) = E
[
yi(k)s−Xi(s, c, k, t)|FS,C

t

]
= E

[
E
[
yi(k)s−Xi(s, c, k, t)|FS,Ki

t

]
|FS,C
t

]
= E

[
E
[
yi(k)

(
s− ki

)
− gi(s, c, ki, t)|FS,Ki

t

]
|FS,C
t

]
= E

[
yi(k)

(
s− ki

)
− gi(s, c, ki, t)|FS,C

t

]
.

(44)

Define Y i(ki) = E
[
yi(k)|FS,Ki

]
. Since yi is linearly dependent on gPi we see that

we can simplify equation (44) to being dependent on the uncertainty with respect
to ki, only, i.e.,

gPi (s, c, t) = E
[
Y i(ki)

(
s− ki

)
− gi(s, c, ki, t)|FS,C

t

]
. (45)

The next step in finding an unconstrained optimization problem for the auctioneer,
is to incorporate an expression of agent i’s value of private information into the
auctioneer’s optimization problem. Correspondingly to the definition of wA(·) in the
principal-agent model, we now define wi(s, c, ki, t) as the value of the option when
agent i does not find it optimal to report a cost low enough to trigger immediate
investment. Suppose that the investment is exercised at time t, by agent i with the
probability of Y i(ki). From the principal-agent model we know that each agent’s
value of private information can be expressed as

gi(s, c, ki, t) = −
∫ ∞

ki
wiu(s, c, u, t)du, (46)

when the investment is made at time t.

We insert the expression in (46) into (52), and by some derivations (see the ap-
pendix, section A.2) we find that

gPi (s, c, t) = E

[
Y i(ki)

(
s− ki − F (ki|c, t)

f(ki|c, t)

)∣∣∣∣∣FS,C
t

]
. (47)

From equation (43) we see that the control variable yi(k) is linearly dependent
on agent i’s contribution to the auctioneer’s value. This means that the optimal
value of yi(·) is given by 0 or 1. Suppose that yi(k) = 1, i.e., that agent i is the
winner of the contract, and that his investment cost at time t is low enough to
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trigger investment. Then the auctioneer’s optimization problem with respect to
the investment strategy, is given by

sup
τ i

E

[
e−rτ

i

(
S(τ i)−Ki(τ i)− F (Ki(τ i)|C(τ i), τ i)

f(Ki(τ i)|C(τ i), τ i)

)∣∣∣∣∣FS,C
t0

]

= supτ i E
[
E
[
e−rτ

i
(
S(τ i)−Ki(τ i)− F (Ki(τ i)|C(τ i),τ i)

f(Ki(τ i)|C(τ i),τ i)

)∣∣∣FS,Ki

t0

]∣∣∣FS,C
t0

]
.

(48)

For simplicity we have suppressed the subscript K̂ of τ i in (48), but the auctioneer’s
investment strategy is still dependent on the cost reports, which now are ensured
to be truth telling. However, note that in the auctioneer’s optimization problem
in (48), the optimal stopping time τ i), no longer depends on the vector of all the
agents’ investment cost variables. Instead, the investment strategy depends on the
reports of agent i, only. Thus, the optimization problem is split into n programs,
where each program i only depends on the cost reports of agent i.

As the control variable yi is linear in the auctioneer’s payoff values, we find that at
any time t ≥ t0, the optimal solution of yi(k) is given by

yi∗(k) = 1 if ki < minj 6=i kj and ki < ϑi(s, c, t), t ≤ τ i

yi∗(k) = 0 if ki > minj 6=i kj ,
(49)

where the function ϑi(s, c, t) is the trigger for investment.

The auctioneer’s optimization problem with respect to each agent is identical to
the principal’s optimization problem given by equation (21). This means that the
optimal investment strategy is not improved when two or more agents compete
about a contract. However, as the winning agent in a competition probably has
a lower investment cost than the agent in a principal-agent model, the investment
will probably take place at a lower cost. Moreover, if the number of competing
agents gets large, the winner’s cost level gets close to the lowest possible investment
cost, at which point the cumulative distribution F (·) converges to zero. Thus, the
inefficiency leading to under-investment is not so severe in the case of competition
as in the case of only one agent having private information.

In the auction model presented here we have assumed that the admissible set of
investment cost variables of the agents have a lower level of zero and no upper level,
as is the admissible values of log-normal variables. If the number of competing
agents gets very large, the agent with the lowest cost will approach the lower cost
level of zero. This is in most cases not a realistic assumption. Hence, in this case
we need to assume that the number of agents participating in the auction is not
”too” large.
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3.4 Implementation

Let the optimal investment strategy found from optimization of (48) be given by
ψi∗(c, ki, t). This means that based on agent i’s cost report, it is optimal to invest
immediately when s > ψi∗(c, ki, t) and wait when s ≤ ψi∗(c, ki, t). Let ϑi∗(s, c, t)
be the inverse trigger, i.e., we invest immediately if ki < ϑi∗(s, c, t) and wait if
k ≥ ϑi∗(s, c, t). Furthermore, Y i∗(ki) is defined as the optimal Y i(ki).

Agent i’s optimal compensation function Xi∗ when s > ψi∗(c, ki, t), is equal to (see
the appendix, section A.3 for derivation of the result)

Xi∗(s, c, ki, t) = Y i∗(ki)ki +
∫ ϑi∗(s,c,t)

ki
Y i∗(u)du−

∫ ∞

ϑi∗(s,c,t)
wiu(s, c, u, t)du, (50)

if s > ψi∗(c, ki, t). Otherwise, Xi∗(c, ki, t) = 0. Note that, in contrast to the
principal-agent model, the expected compensation function Xi is dependent on ki

under competition. This means that the expected compensation is implemented by
a direct mechanism, instead of the investment decision being delegated to a winning
agent.

So far we have only found each agent’s optimal reporting strategy on average, i.e.,
given the other agents’ strategies through the expectation Y i. We now construct
a dominant strategy auction4 that implements the same investment strategy as
the one found from optimizing equation (48). In addition, the dominant strategy
auction selects the firm with the lowest investment cost at the time of investment.
Let

X̃i∗(s, c, k, t)

=


ϑi∗(s, c, t) +

∫ kj

ϑi∗(s,c,t)w
i
u(s, c, u, t)du if ψi∗(c, ki, t) < s ≤ ψi∗(c, kj , t)

kj if s > ψi∗(c, kj , t).
(51)

if ki = minh kh and kj = minh 6=i kh. Otherwise, X̃i∗(s, c, ki, t) = 0.

In the appendix it is shown that Xi∗(s, c, ki, t) = E
[
X̃i∗(s, c, k, t)|FS,Ki

t

]
. Hence,

we conclude that the contract given by equation (51) is the optimal contract under
competition.

By implementing the contract in (51), the agent having the lowest investment cost
at the time the investment is exercised, wins the contract. If agent i wins the

4A dominant strategy auction is an auction in which each agent has a strategy that is optimal
for any strategies of its competitors.
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contract, the agent’s compensation equals the value of his private information when
the distribution is truncated at kj . Thus, competition for the winner implies that
the interval of possible investment cost variables, (0,∞), is truncated to (0, kj),
where kj is the second-lowest bid at time t.

If we compare the compensation functions under competition (51) and under no
competition (28), we find that the compensation functions are very similar. One
difference is that the compensation under competition cannot be higher than kj .
Therefore, the transferred amount is lower under competition. The closer the in-
vestment cost reported by the second-best agent is to the winner’s report, the lower
is the winner’s information rent. This implies a higher value to the auctioneer. An-
other difference between the two models is that the optimal investment strategy
under competition is not as inefficient as under no competition. The reason is that
the winner of the contract under competition probably has a lower investment cost
than the agent’s investment cost when there is only one agent.

4 Conclusion

In this paper we study effects of stochastically changing private information on an
optimal stopping problem. In the first part of the paper we formulate a principal-
agent model where an agent has private information about the investment cost.
We find that due to private information, the optimal investment trigger will be
higher (i.e., more inefficient) than the optimal investment strategy in the case of
full information. Thus, for some intervals of the variables included in the valuation,
private information leads to under-investment.

We extend the principal-agent model to the case where there are two or more agents
competing about obtaining a contract that gives the winner the right to invest in
the project. Each agent has private information about the investment cost of the
project, and each agent’s investment cost is different. As each agent’s investment
cost is independent of each other, it is not optimal for the auctioneer to enter into a
contract with any of the agents before the point in time when it is optimal to invest.
If the auctioneer were restricted to choose an agent before the time of investment,
the auctioneer’s value of the auction would be lower than in the auction model
presented in section 3.

We find that the optimal investment strategies are the same in the auction model
and in the principal-agent model. However, the winner’s compensation is lower
under competition, because the winner’s value of private information is truncated
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to the report given by the agent with the second-lowest investment cost. Thus,
the investor’s value of the investment project is higher under competition than in
the principal-agent model, and the inefficiency leading to under-investment is less
severe under competition.

In this version of the paper, we have not implemented the results numerically. How-
ever, in order to say something more about how much the investor’s and the agents’
values are changed because of private information, we need to include numerical
analyzes. This will be done in a later version of the paper.

A Appendix

A.1 The revelation principle applied to our model

Applied to the model in this paper, the revelation principle can be shown by the
following arguments (we follow the proof used by Salanié (1994), section 2.1.2).

Define a trigger function ψ(c, t; K̂) such that the investment strategy is based on the
agent’s report K̂. The option to invest is exercised immediately when s > ψ(c, t; K̂),
whereas it is optimal to wait when s ≤ ψ(c, t; K̂). This means that the optimal
stopping time is given by

τ = inf{t ≥ t0|S(t) > ψ(C(t), t; K̂)}.

LetM be the space of admissible reports, and let (X(·), ψ(·),M) be a set of incentive
mechanisms that implement the compensation function X∗, and the investment
strategy ψ∗. Moreover, let K̂∗(k) be the optimal report if it is given at time t, so
that X∗ = X∗(K̂∗). Now consider the direct mechanism (X∗, ψ∗, k). If it were not
truthful, then an agent would prefer to announce some k′ other than k, and we
would have

vA(s, c, k, t;X∗(k′), ψ∗(k′)) > vA(s, c, k, t;X∗(k), ψ∗(k)).

But by definition this would imply that

vA(s, c, k, t;X∗(K∗(k′)), ψ∗(K∗(k′))) > vA(s, c, k, t;X∗(K∗(k)), ψ∗(K∗(k)))

so that K∗ would not be an optimal given that the true investment cost equals
k. Hence the direct mechanism (X∗, ψ∗, k) must be truthful, and implement the
compensation X∗ and the investment strategy ψ∗.
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A.2 Derivation of equation (47).

By inserting (46) into (44), we find that

gPi (s, c, t) = E
[
Y i(ki)

(
s− ki

)
+
∫∞
ki wiu(s, c, u, t)du

∣∣FS,C
t

]
=

∫∞
0

{
Y i(ki)

(
s− ki

)
+
∫∞
ki wiu(s, c, u, t)du

}
f(k|c, t)dk.

(52)

Partial integration of the
∫∞
0

∫∞
ki wiu(s, c, u, t)duf(k|c, t)dk leads to

gPi (s, c, t) = E

[
Y i(ki)

(
s− ki + wiki(s, c, ki, t)

F (ki|c, t)
f(ki|c, t)

)∣∣∣∣∣FS,C
t

]
. (53)

If agent i’s compensation function is to be self-selective, among other requirements,
smooth pasting must be satisfied. This means that at the investment time we need
to have

wiki(s, c, ki, t) = −Y i(ki),

where wiki denotes the first-order derivative of wi with respect to ki. The smooth
pasting condition is found from agent i’s value function given by (40). Replace
wiki(s, c, ki, t) by −Y i(ki) in (53), and we find the result in (47).

A.3 Derivation of the compensation function under competition

From equation (40) we find that agent i payoff value, given that the optimal invest-
ment strategy is implemented, equals

gi(s, c, ki, t) = Xi(s, c, ki, t)− Y i(ki)ki,

which can be written asXi(s, c, ki, t) = Y i(ki)−gi(s, c, ki, t). The value of gi(s, c, ki, t)
is found by integration on both sides of the equality in (41), i.e.,∫ ϑi(s,c,t)

ki

dgi(s, c, u, t)
du

du = −
∫ ϑi(s,c,t)

ki
Y i(u)du,

which leads to

gi(s, c, ki, t) =
∫ ϑi(s,c,t)
ki Y i(u)du+ gi

(
s, c, ϑi(s, c, t), t

)
=

∫ ϑi(s,c,t)
ki Y i(u)du+

∫∞
ϑi(s,c,t)w

i
u(s, c, u, t)du.

Hence, we find that

Xi(s, c, ki, t) = Y i(ki)ki +
∫ ϑi(s,c,t)

ki
Y i(u)du+

∫ ∞

ϑi(s,c,t)
wiu(s, c, u, t)du.
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A.4 Equality between the two approaches of finding the optimal
compensation function when n agents compete about a con-
tract

As each agent’s true investment cost is independently drawn, the probability Y i∗(ki)
is given the principal’s optimal choice of the agent to win the contract, equals[
1− F (ki)

]n−1, where we define F (ki) = F (ki|c, t). Substitution of Y i∗(ki) =[
1− F (ki)

]n−1 in (50), leads to

Xi∗(s, c, ki, t)

= ki
[
1− F (ki)

]n−1 +
∫ ϑi∗(s,c,t)
ki [1− F (u)]n−1 du−

∫∞
ϑi∗(s,c,t)w

i
u(s, c, u, t)du.

(54)

We will now show that Xi∗(s, c, ki, t) = E
[
X̃i∗(s, c, k, t)|FS,Ki

t

]
. We treat kj as

the first-order statistic in a sample of size n− 1. Observe that the compensation is
zero if kj is less than ki, and is given by (51) is kj is higher than ki. Then we find
E
[
X̃i∗(s, c, k, t)|FS,Ki

t

]
as follows

E
[
X̃i∗(s, c, k, t)|FS,Ki

t

]
=

∫ ϑi∗(s,c,t)
ki kjd

(
−[1− F (kj)]n−1

)
+
∫∞
ϑi∗(s,c,t)

{
ϑi∗(s, c, t) +

∫ kj

ϑi∗(s,c,t)w
i
u(s, c, u, t)du

}
d
(
−[1− F (kj)]n−1

)
.

(55)
Partial integration of (55) leads to equation (54).
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