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A recent topical problem is how to deal with claims on `non-traded' assets. A natural

approach is to choose another similar asset or index which is traded to use for hedging purposes.

To model this situation, we introduce a second non-traded log Brownian asset into the well

known Merton investment model with power-law utility. The investor has an option on units

of the non-traded asset and the question is how to price and hedge this random payo�. The

presence of the second Brownian motion means that we are in the situation of incomplete

markets. Employing utility maximisation and duality methods we obtain an approximation to

the optimal hedge and reservation price. These are computed for some example options and the

results compared to those using exponential utility.
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1 Introduction

Valuing claims on non-traded assets presents new challenges in option pricing theory. An agent

expects to receive or pay out an unhedgeable claim on an asset, and must decide how to best manage

this risk. One method is to choose another similar asset or index which is traded and use this for

hedging purposes. Clearly the higher the correlation between the traded and non-traded assets,

the better we expect the hedge to perform. However, there is a need to quantify such statements

and to give a framework under which we evaluate the optimal hedge and reservation price using a

close asset. This is the objective of the paper.

To model these ideas mathematically, we introduce a second asset into the Merton investment

model (Merton [24]) on which no trading is allowed. In the Merton model, the agent seeks to

maximise expected utility of terminal wealth, where utility is constant relative risk aversion, U(x) =
x
1�R

1�R . When the asset price follows exponential Brownian motion, the optimal behaviour for an
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agent in the model is well known: a constant proportion of wealth is invested in the risky asset.

Now suppose the investor has an option on the second non-traded asset, payable at time T . The

problem is how to price and hedge this random payo� when trading in the second asset is not

permissible. This is an incomplete markets problem and this type of risk is often called `basis risk'.

These problems occur often in practice. An example given by Davis [6] is an option on Dubai

oil, where the liquid market is in Brent crude. Other examples are a portfolio of illiquid shares

hedged with index futures, a basket option hedged with an index, or a �ve year futures contract

hedged with a one year futures contract. In many of these situations, the underlying assets can be

traded (eg stocks in a basket option), however, transactions costs may make it preferable to hedge

with an index.

Another area where claims involving non-traded assets occur frequently is that of real options,

see Dunbar [14] and the book by Dixit and Pindyck [9]. Some examples of real options problems

include extraction rights to an oil reserve or the option to start up an R&D venture.

A related problem involving stochastic income has been examined in the literature, beginning

with He and Pag�es [17]. El Karoui and Jeanblanc-Pique [15] and Cuoco [2] both assume the income

is spanned by assets but impose a liquidity constraint. DuÆe and Zariphopolou [13], DuÆe et al

[10] and Koo [23] consider in�nite horizon optimal consumption and investment with stochastic

income inperfectly correlated with the risky asset. Numerical solutions have been given in Munk

[25] using a Markov chain approximation. DuÆe and Jackson [11] and Svensson and Werner [27]

each consider a number of simple examples and DuÆe and Richardson [12] �nd explicit solutions

under a quadratic utility.

Zariphopoulou [28] studies a related general problem of utility maximisation under CRRA and

employs a transformation to reduce the pde to a linear one. The coeÆcients of the di�usion price

process for a traded asset depend on a `stochastic factor' correlated with the asset price, creating

unhedgeable risks. An example in the paper looks at non-traded assets by obtaining price bounds

for claims on the traded asset, where the price process is a�ected by the non-traded asset. This

paper and the earlier paper of Henderson and Hobson [18] di�er from Zariphopoulou [28] by directly

pricing a claim on an non-traded asset by including it in the utility from wealth.

Davis [6] applies the dual approach to non-traded assets with the exponential utility function.

Under exponential Brownian motion, he obtains an expression for the optimal hedge involving the

solution to a non-linear pde. Hobson [19] took the primal approach to the same problem and

also obtained the hedge as a solution to a non-linear pde. We later compare our results to those

obtained using exponential utility.

Our model considers agents with constant relative risk aversion or power law utility. As is often

the case, it appears there is no closed form solution for the utility maximisation problem in our

model, as the pde resulting from the stochastic control problem is highly non-linear. We assume

that the money value in the non-traded asset is small compared with wealth and that the payo�

is bounded below. Under these assumptions, we \guess" the hedge and prove optimality using

a dual approach. From this we obtain a series expansion for the value function and reservation

price. The use of an expansion enables us to avoid solving the pde numerically and allows for easier

interpretation.
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Two examples, a call option and a `power' payo� are used throughout the paper and prices and

hedges are calculated from the general results.

The remainder of the paper is organised as follows. Section 2 sets up our model with an

additional non-traded asset and de�nes the value function for the problem. We use the power law

utility of the form U(x) = x1�R=(1 � R) where R = 1 corresponds to logarithmic utility. The

complete markets case when the non-traded asset can be perfectly replicated is treated in Section

3. Section 4 considers the incomplete case and we give an expansion for the value function of

the agent as well as for her reservation price and the optimal strategy. The price and strategy

are computed for the two example options. In Section 5 we compare our results with exponential

utility and specialise to the examples. Section 6 concludes.

2 The Merton Problem with an additional Non-Traded asset

We consider the problem of an agent faced with receiving (or paying) a claim on a risky asset on

which trading is not possible, or not allowed. The agent must decide how best to price and hedge

this claim. Note we refer to the asset as non-traded, however this can be interpreted in a number

of ways. The asset may not be traded at all, or else there may be some restrictions to prevent the

agent trading it. One case is when it is illiquid and too expensive to trade, and another may be

when the agent is not permitted to trade in the asset, as with executive stock options.

Begin by assuming the non-traded asset S follows an exponential Brownian motion

dS

S
= �dt+ �dZ (1)

where Z is a Brownian motion and �; � are constants. We will take r = 0 throughout the paper for

simplicity, although this is equivalent to using discounted variables.

The agent is to receive (or pay) an option with payo� h(ST ) at a future time T <1. A natural

idea to approaching this problem is to look for a close or similar asset which is traded in the market,

and use this asset to hedge the position. Introduce a traded asset P

dP

P
= �dt+ �dB (2)

where B is correlated to the Brownian motion Z, with correlation �. The idea is to choose P such

that � is high, so we are mainly concerned with high, positive �. In practice, the asset P may be a

related index, or another stock from the same industry group.

It is convenient to think of Z as a linear combination of two independent Brownian motions B

and W . Thus

Zt = �Bt +
p
1� �2Wt:

For j�j < 1 the presence of a second Brownian motion W , and the fact that no trading is allowed

on S, means that we are in an incomplete market situation.

Our agents' aim is to maximise expected utility of wealth, where, in addition to funds generated

by trading, the agent is to receive (or pay out) � units of the claim h(ST ). The value function of
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the agent is given by

V (t;Xt; St;�) = sup
(�u)u�t

E [U(XT + �h(ST ))jFt]: (3)

We will consider utilities with constant relative risk aversion of the form U(x) = x1�R

1�R for

R > 0; R 6= 1. R = 1 corresponds to logarithmic utility.) For this choice of family of utility

functions, utility is only de�ned for positive wealth. Wealth is given by XT = Xt +
R
T

t
�u(dPu=Pu)

for some adapted � which is constrained to ensure that XT+�h(ST ) > 0 almost surely, see Karatzas

and Shreve [22, Chapter 5.8]. Note that �t is the cash amount invested in the traded asset P at

time t. For this wealth restriction to hold, we need the following assumption on the payo�:

Assumption A: Either:

(i) 0 � h � b (eg. put option) and � can be positive or negative; or

(ii) h � 0 but not bounded above (eg. call option) and � can only be positive.

If h is bounded below by �c then by considering ~h = h+ c we reduce to the above cases.

This assumption allows for three of the four simple option positions. When this assumption

does not hold (say a short call, where h is not bounded above but � < 0) we have that V is

identically minus in�nity. (This problem is common to many utility functions.) This is because

the potential obligation is unbounded, and no hedging strategy can completely remove this risk.

In particular, for any XT which can be generated from a �nite initial fortune x, and investments

in the traded asset P , we have

P(XT + �h(ST ) < 0) > 0:

Since U � �1 on the negative real line, we have

V (t;Xt; St; �) = �1; j�j < 1; t < T:

This value function is a modi�cation of the traditional Merton [24] problem to include the

additional payo�. We can thus think of this problem as the Merton wealth problem adjusted to

include the non-traded asset. In the simple Merton problem, we have

V (t; x) =
x1�R

1�R
exp

�
1
2

�2

�2
(1�R)

R
(T � t)

�
(4)

and if �t =
�t

Xt
is the proportion of wealth invested in the risky asset, then

�t =
�

�2R
(5)

which is constant, the so called `Merton proportion'.

Now return to the problem with random endowment, h. We �rst show that V exists in (�1;1).

Under Assumption A, if (ii) holds so h � 0 and � > 0 then V (t;Xt; St;�) � V (t;Xt; St; 0) where the

`no claim' position is given in (4) above. When (i) holds, �h � �j�jb so XT + �h(ST ) � XT � j�jb
and V (t;Xt; St;�) � V (t;Xt � j�jb; St; 0).
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Now we can �nd a simple upper bound for V by considering the dual problem. The problem

is to maximise E (U(XT + �h(ST ))) over feasible values of the terminal wealth XT . For a positive

random variable � consider

E

�
U(XT + �h(ST ))� �

�
XT �

�
x+

Z
T

0

�t
dP

P

���

= EfU(XT + �h(ST ))� �(XT + �h(ST ))g + Ef�(x + �h(ST ))g+ E

�
�

Z
T

0

�t
dP

P

�
:

Suppose � is of the form � = �dQ=dP for some change of measure Q . Then, with ~U(y) =

supx(U(x)� xy),

sup
XT

EfU(XT + �h(ST ))g � inf
�
Ef ~U (�) + �(x+ �h(ST ))g

= inf
�
inf
Q

�
EP
�
~U

�
�
dQ

dP

��
+ �x+ ��EQh(ST )

�

For the power law utility U(x) = x1�R=(1 � R) we have ~U(y) = (R=(1 � R))y(R�1)=R. The

problem is now to choose � in an optimal fashion. Set

dQ

dP
= exp

�
�
�

�
BT �

�2

2�2
T

�
=
dP0

dP

where P0 is the minimal martingale measure. It makes the price process P into a martingale

without a�ecting the Brownian motion W . Under the minimal martingale measure of F�ollmer and

Schweizer [16], processes contained within the span of the traded assets (such as �Bt+�t) become

martingales, and martingales which are orthogonal to this space are unchanged in law. Thus under

the minimal martingale measure P0

dS

S
= �dt+ ��dB + �

p
1� �2dW

=
�
� �

���

�

�
dt+

��

�
(�dB + �dt) + �

p
1� �2dW

where the �nal two terms in the last expression are both martingales. Thus S has drift Æ = �� ���

�

under P0. Then

EP
�
~U

�
�
dQ

dP

��
=

R

1�R
�(R�1)=RA;

where

A = efm(1�R)=RgT

and m = 1
2

�
2

�2R
. The minimisation over � involves �nding the minimum of

R

1�R
�(R�1)=RA+ �(x+ �E0h(ST )):

The minimum and our upper bound is now easily seen to be

1

1�R
AR(x+ �E 0h(ST ))

1�R = V (t;Xt; St; 0)

�
1 +

�

x
E 0h(ST )

�1�R
:
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The value function can be used to �nd the price that the agent is prepared to pay for the

claim �h(ST ). It is common folklore how to price in a utility maximisation framework: the idea

is to compare the expected utility for an agent who does not receive any units of the claim to the

expected utility of the agent who receives �h(ST ). The adjustment to the initial wealth which

makes these values equal gives the so-called reservation price of the option. Equivalently, the

investor is indi�erent between the investment problem with zero endowment and the problem with

the additional opportunity to buy the claim. Mathematically, given an initial (time 0) wealth of x,

the reservation price is the solution to the equation V (0; x � p; S0;�) = V (0; x; S0; 0), see Hodges

and Neuberger [20], Davis [4], Davis [5], Davis et al [7], Constantinides and Zariphopoulou [1],

Hobson [19], Rouge and El Karoui [26] and Henderson and Hobson [18].

3 The complete markets case

In a complete market, the asset S can be traded and there is only one source of risk. Mathematically,

the correlation is one and Brownian motions Z and B are equivalent. We may compute the price

and hedge directly, as there will be a unique martingale measure. With � = 1, dS=S = �dB + �dt

giving the relationship

dS

S
=

�

�

dP

P
+
�
� �

��

�

�
dt

or

St = S0e
ct

�
Pt

P0

� �

�

(6)

where c = � � �

�
�+ 1

2
�(�� �). The measure under which P is a martingale must also make S into

a martingale. Call this measure �Q and � = ��=�.

We wish to solve the utility maximisation problem in (3). By considering the new wealth

variable Yt = Xt + � �Ct where �Ct = E
�Q
t
h(ST ), we can solve the problem explicitly in this case.

De�ne �CS
t = @

@S
E
�Q
t
h(ST ), �CSS

t = @

@S
�CS
t . By using the pde for �C

_�C + 1
2
�CSSS2�2 = 0;

Y solves

dY =

�
� +

� �CS
t St�

�

�
�dB +

�
� +

� �CS
t St�

�

�
�dt = ~�t(�dB + �dt);

where ~� = (� + � �CS
t St�=�), and the agent seeks to maximise EU(YT ). This corresponds to the

Merton [24] problem, with a modi�ed strategy. From the results of Section 2, the optimal ~� is
�

�2R
Yt and ��, the optimal amount of cash invested in P , is

�� =
�

�2R
Yt �

�

�
� �CS

t St =
�

�2R
(Xt + � �Ct)�

�

�
� �CS

t St: (7)
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Using wealth Y , the value function is given by

V (t;Xt; St;�) = E [U(YT )jFt] =
Y 1�R
t

1�R
e(1�R)m(T�t)

=
X1�R
t

1�R
e(1�R)m(T�t)

�
1 +

� �Ct

Xt

�(1�R)

:

Following the arguments at the end of the previous section, the price the agent will pay for �h(ST )

is

p = � �Ct = �E
�Q
t
h(ST ): (8)

This is the expected value of the claim under the risk neutral measure �Q , as is to be expected in a

complete market.

4 The incomplete markets case

As described earlier, if j�j < 1, the market is incomplete as the position in S cannot be replicated

with P . We assume the value of the claim under the minimal martingale measure �E 0t h(ST ) is small

relative to current wealth x. Henderson and Hobson [18] concentrate on the case where the claim

is proportional to the share price ST , ie. h(ST ) = ST . This allowed scalings within the problem

to be exploited to reduce the dimensionality by one. The resulting non linear pde was approached

using a series expansion. If we follow a similar approach here and derive the pde associated with

the value function, we have an extra variable. Using the value function in (3), write

V (t;Xt; St;�) = sup
(�u)u�t

X1�R
t

1�R
E

�
XT

Xt

+
�h(ST )

Xt

�1�R
=
X1�R
t

1�R
g(T � t; St;Xt) (9)

where g(0; s; x) = (1 +
�h(s)
x

)1�R.
Using Itô on V and the fact that V is a supermartingale under any � and a martingale under

the optimal strategy gives

(� _g + gSS� + 1
2
gSSS

2�2) +
[�(gx +

g(1�R)
X

) + ���(gxsS + gs(1�R) S
X
)]2

4�2( 1
2
gxx � 1

2
gR(1 �R)=X2 + gx(1�R)=X)

= 0 (10)

This is a non linear pde in three variables, and the method used in the linear case does not seem

straightforward. In this paper we take a di�erent approach to treat the general claim h(ST ). Since

scaling can no longer be used, we conjecture the form of the optimal strategy �� and verify this

gives an upper and lower bound on the value function which agree to order �2. For this approach,

we need to assume �E 0t h(ST )=x is small.

In the main theorem of the paper, we prove that our conjecture for the optimal strategy is

indeed optimal, and derive an expansion for the value function, V2 up to order �2.

Theorem 4.1 (1) De�ne Ct = E 0t h(ST ), C
S
t = @

@S
E 0t h(ST ). For h and � satisfying Assumption

A, the optimal strategy �� is given by

��(t;Xt; St;�) =
�

�2R
(Xt + �Ct)�

��

�
�StC

S

t +O(�2): (11)
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(2) Using �� we de�ne

V2(t;Xt; St;�) =
X1�R
t

1�R
e(1�R)m�

�
1 + �

Ct

Xt

�
�2

2
R�2(1� �2)Ê

Z
T

0

S2
uC

S2
u

X02
u

du

!1�R
(12)

where dP̂
dP

= exp(
�(1�R)
�R

BT � 1
2
(
�(1�R)
�R

)2T ) and m = 1
2

�
2

�2R
. Then for � and h satisfying Assumption

A, the value function V (t;X; S;�) is given by

V (t;Xt; St;�) = V2(t;Xt; St;�) +O(�3): (13)

We �rst consider some examples before returning to prove the Theorem.

Example 1: Taking h(ST ) = (ST � �K)+ gives the important example of a call option. We must

have � > 0 (since h is not bounded above) thus the agent is long a call option. We can evaluate the

price under the minimal martingale measure P0. Under this measure, recall S has drift Æ = �� ���

�

hence

E0t (ST � �K)+ = Ct = eÆ(T�t)StN(d+)� �KN(d�) (14)

where d� =
ln

St
�K
+(Æ� 1

2
�
2)(T�t)

�(T�t) and

@

@S
E 0t (ST � �K)+ = CS

t = eÆ(T�t)N(d+)

giving an optimal hedging strategy of:

��t =
�Xt

�2R
+ �eÆ(T�t)StN(d+)

h �

�2R
�
��

�

i
� �

� �K

�2R
N(d�) +O(�2): (15)

If � = 0 we regain the Merton 'constant proportion of wealth' hedge of (5). Taking Æ = 0 and � = 1

we recover the complete case of Section 3 and have �Ct; �C
S
t and the optimal hedge.

We can examine the e�ect of changing � on hedge ��. To get a comparison, we �x � and Æ,

the drift of S under P0. This means that �, the real world drift, varies with �. Figure 1 shows

hedge �� net of the Merton hedge in (5). Thus zero represents the Merton strategy. For this choice

of parameters, the agent holds less of the asset than the Merton hedge, and this decreases with

correlation. When � = 0, the agent follows a strategy close to the `no claim' Merton strategy (in

(5)) as the traded asset is no use in reducing risk. This strategy deviates from Merton as correlation

increases. In Figure 2, the e�ect of changing S on the strategy is displayed. If we �x S then we

recover the behaviour displayed in Figure 1. If S is low, and the option is out-of-the-money, then

it is optimal to use the `no claim' Merton hedge given as zero on the graph. If S is large, and the

option is far in-the-money, the hedge di�ers most from the Merton hedge.

�

Example 2: Taking h(ST ) = S2
T
, we have a `power' payo�. Again we need � > 0 for Assumption

A to hold. This example is used because the price can be calculated explicitly.

Ct = E0S2
T = S2

t e
(2Æ+�2)(T�t) (16)

CS

t = 2Ste
(2Æ+�2)(T�t)

��t =
�Xt

�2R
+ �S2

t e
(2Æ+�2)(T�t)

�
�

�2R
�

2��

�

�
+O(�2):
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Figure 1: The optimal hedge �� for the claim (ST� �K)+ for 0:5 � � �
1. Note the hedge is net of the Merton hedge (5) which is 326.53 in

this example. Parameter values are � = 0:01; S = 100; T = 1; �K =

100; x = 500; R = 0:5; � = 0:04; � = 0:30; � = 0:35; � = ���

�
and

Æ = 0.
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Figure 2: The optimal hedge �� for the claim (ST � �K)+ for 0:5 �
� � 1 and 40 � S � 160. Note the hedge is net of the Merton hedge

(5). Parameter values are � = 0:01; T = 1; �K = 100; x = 500; R =

0:5; � = 0:04; � = 0:30; � = 0:35; � = ���

�
and Æ = 0.
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Interestingly, the sign of the � term in the hedge depends on ( �

�2R
� 2��

�
) where the power two

appears in the second term. For the call example in (15) the same factor decides the sign but the

power is one. �

Proof of Theorem 4.1: We demonstrate the strategy �� is optimal and derive an expansion

for the value function by exhibiting upper and lower bounds for the supremum of expected utility

which agree to order �2.

The exposition for the lower bound requires the fact that �h(ST ) � 0 almost surely. Under

Assumption A (ii), this is satis�ed. Under (i), we have two cases. If � > 0 then again �h(ST ) � 0.

If � < 0 we write �j�jh = �j�jb + j�j(b � h). Thus the payo� has a positive component minus

a constant. In our model, prices for claims are non-linear due to the appearance of (CS)2. Thus

taking two claims h1 and h2, we could not simply compute the second order term for the sum

h� = h1+h2 by adding components. However, if h1 is a constant, then (CS
1 )

2+(CS
2 )

2 = (CS
� )

2 and

the sum of the second order terms (only one of which is non-zero) is equal to the second order term

for the sum. Hence we can split our claim h into a constant part (�b) and a positive component

(b� h).

The Lower Bound

Consider �rst the zero endowment problem where (X0
t ; �

0
t ) is the optimal wealth, strategy pair.

Then dX0
t = �0t dPt=Pt with �0t = (�X0

t )=(�
2R) and

X0
t = x exp

�
�

�R
Bt +

�2

�2R
t�

�2

2�2R2
t

�
:

Now consider the problem with a random endowment of �h(ST ) at time T . We would like to

consider the strategy in Theorem 4.1. However, with this strategy we cannot guarantee that wealth

remains positive, so we use a localised version.

Fix K and let

HK = inf

�
u :

Z
u

0

1

X0
t

�
�

�

�2R
Ct +

��

�
StC

S

t

��dP
P
�
�dt

R

�
= K

�
:

Suppose � < 1
2
K�1. Consider the wealth process X1;K generated from an initial fortune x using

the strategy

�
1;K
t

=
�

�2R
(X

1;K
t

+ �CtI(t<HK))�
��

�
�StC

S

t I(t<HK )

Then X
1;K
t

is given by

X
1;K
t

= X0
t

�
1 + �

Z
t^HK

0

1

X0
u

� �

�2R
Cu �

��

�
SuC

S

u

��dPu
Pu

�
�

R
du

��
:

Note that on HK < T we have X
1;K
T

= X0
T
(1��K) and indeed more generally X

1;K
T

� X0
T
(1��K).

In particular the localisation times HK allow us to bound the wealth process from below.

Now consider the sum of the wealth process and the random endowment. It is convenient to

consider Z
�;K

t
= X

1;K
t

+ �Ct. On t � HK , using the pde satis�ed by the option price C, we have

dZ
�;K

t
=

�

�2R
Z�

t

dP

P
+ �StC

S

t �
p
(1� �2)dW

10



so that, still with t � HK ,

Z
�;K

t
= X0

t

�
1 + �

�
E 00h(ST )

x
+

Z
t

0

SuC
S
u

X0
u

�
p
(1� �2)dW

��
:

Also, Z
�;K

T
= X

1;K
T

+ �h(ST ) � X0
T
(1� �K) + �h(ST ) � X0

T
(1� �K).

From Taylor's expansion we have U(y+h) = U(y)+hU 0(y)+ 1
2
h2U 00(y+�h) with � = �(�;K; !) 2

[0; 1]. We will take y = X0
T
and h = Z

�;K

T
�X0

T
, and consider the expected value of this expansion

term by term. The �rst term yields E (U(X0
T
)) = V (0; x; S0; 0). For the second term, note that

U 0(X0
T ) = x�R exp

�
�2

2�2
(1�R)

R
T

�
dP0

dP

where P0 is the minimal martingale measure. Then since both X0 and X1;K are martingales under

P0, we have

E [(Z
�;K

T
�X0

T )U
0(X0

T )] = x�Re(1�R)mT E 0(�h(ST ))

For the �nal term in the Taylor expansion we have that for � = �(�;K; !) 2 [0; 1],

X0
T + �(Z

�;K

T
�X0

T ) � X0
T (1� �K):

Then, since U 00 is increasing,

1

�2
(Z

�;K

T
�X0

T )
2U 00(X0

T + �(Z�

T �X0
T ))

� (X0
T )

2

�
E 00h(ST )

x
+

Z
T

0

StC
S
t

X0
t

�
p
(1� �2)dW

�2

U 00(X0
T (1� �K))I(HK�T )

+ (h(ST )�X0
TK)2U 00(X0

T (1� �K))I(HK<T ):

By the dominated convergence theorem, on taking expectations and letting � # 0, we �nd for

each K that ��2(EU(Z�

T
)� EU(X0

T
)� �E [h(ST )U

0(X0
T
)]) is bounded below by

1
2
E

"
(X0

T )
2U 00(X0

T )

�
E00h(ST )

x
+

Z
T

0

StC
S
t

X0
t

�
p
(1� �2)dW

�2

I(HK�T )

#

+ 1
2
E
�
(h(ST )�X0

TK)2U 00(X0
T )I(HK<T )

�
:

Letting K " 1 this expression becomes

1
2
E

"
U 00(X0

T )(X
0
T )

2

�
E 00h(ST )

x
+

Z
T

0

StC
S
t

X0
t

�
p
(1� �2)dW

�2
#
: (17)

We can interpret U 00(X0
T
) as a constant multiplied by a change of measure which a�ects the drift

of dP=P . With this interpretation it is straightforward to show that (17) becomes

�
R

2
E

"
(X0

T )
1�R

�
E00h(ST )

x
+

Z
T

0

StC
S
t

X0
t

�
p
(1� �2)dW

�2
#

= �
R

2
x1�Rem(1�R)T Ê

"�
E00h(ST )

x
+

Z
T

0

StC
S
t

X0
t

�
p
(1� �2)dW

�2
#

= �
R

2
x1�Rem(1�R)T

"
E 00h(ST )

2

x2
+ �2(1� �2)Ê

 Z
T

0

S2
t (C

S)
2

t

X02
dt

!#
; (18)

11



where P̂ is the measure under which both B̂t � Bt � (�(1 � R)=�R)t and Ŵt � Wt are Brownian

motions.

In conclusion

lim sup
K"1

lim
�#0

1

�2
(EU(Z�

T )� EU (X0
T )� �E [U 0(X0

T )h(ST )])

is greater than the expression (18). Further manipulations yield that

sup
XT

EU(XT + �h(ST )) � EU(Z�

T ) � V2(0;X0; S0;�) + o(�2);

where V2 is given in Theorem 4.1, (12). Hence V2 is a lower bound to order �2. Note that we can

extend this result to prove that the correction is O(�3) rather than just o(�2) by considering higher

order Taylor expansions of the utility function.

The Upper Bound

An upper bound on the value function will be found by considering the dual problem as in Section

2. We re�ne our choice of measure Q to obtain a higher order bound. For each � > 0 we show

V2 + ��2 is an upper bound.

Let Mu = �
p
1� �2

R
u

0
(StC

S
t =X

0
t )dWt and for any K > 0 de�ne

TK = inf fu : jMuj+ [M ]u = Kg :

Now choose K large enough so that

Ê [[M ]T � [M ]TK ] < �:

Let QK be given by

dQK

dP
= exp

�
�
�

�
BT �

�2

2�2
T

�
exp

�
�R�MTK

� 1
2
R2�2[M ]TK

�
:

Then

EP
�
~U

�
�
dQK

dP

��
=

R

1�R
�(R�1)=RAK ;

where

AK = E

�
exp

�
�(1�R)

�R
BT +

�2(1�R)

2�2R
T

�
exp

�
(1�R)�MTK

+ 1
2
R(1�R)�2[M ]TK

��
= efm(1�R)=RgT Ê

�
exp

�
1
2
(1�R)�2[M ]TK

��
:

Note that the measure P̂ is the measure which arose in the calculation of the lower bound. Here

[M ]TK is bounded so AK can be written as an expansion in �

AK = efm(1�R)=RgT
h
1 + 1

2
(1�R)�2Ê [M ]TK +O(�4)

i
:

� efm(1�R)=RgT
h
1 + 1

2
(1�R)�2(Ê [M ]T � �I(R>1)) +O(�4)

i
: (19)

12



Now

EQK h(ST ) = Eh(ST )
dP0

dP

h
e��RMTK

� 1
2
�
2
R
2[M ]TK

i
= E0h(ST ) [1� �RMTK

] = E 0h(ST )� �RE0MTK
h(ST ) +O(�2)

If we now show

E0MTK
h(ST ) = xÊM2

TK
= xÊ [M ]TK (20)

then

EQK h(ST ) = E 0h(ST )� �RxÊ [M ]TK +O(�2) � E 0h(ST )� �Rx(Ê [M ]T � �) +O(�2): (21)

Using Itô on MtCt and since Mt; Ct are P
0-martingales,

E 0MTK
h(ST ) = �2(1� �2)E 0

Z
TK

0

S2
t (C

S
t )

2

X0
t

dt: (22)

Now using dP̂
dP

= e
�(1�R)

�R
BT� 1

2
(
�(1�R)

�R
)2T and dP0

dP
, we derive the relationships

(X0)
1�R

x1�R
=
dP̂

dP
em(1�R)T

and

dP0

dP
=

(X0)
�R

x�R
e�m(1�R)T :

Thus

ÊM2
TK

= E

"
M2

TK

em(1�R)T

(X0)
1�R

x1�R

#
=

1

x
E0M2

TK
X0
T

=
1

x
E0
Z

TK

0

X0(dM)2 =
�2(1� �2)

x
E 0
Z

TK

0

S2
t (C

S)
2

t

X0
t

dt (23)

using Itô on M2
t X

0
t . Thus (20) holds using (22) and (23).

Now

sup
XT

E (U(XT + �ST )) � inf
�
inf
Q

�
R

1�R
�

1�R
R AK + �x+ ��EQK h(ST )

�
(24)

=
1

1�R
(AK)

R(x+ �EQK h(ST ))
R

and using (19) and (21) we see for some constant c0

inf
�
E

�
V

�
�
dQK

dP

�
+ �(x+ EQK h(ST ))

�
� V2(0; x; S0;�) + c0��

2 +O(�3):

Higher Order Expansions

By combining the upper and lower bounds we conclude that, for � and h satisfying Assumption A,

the expansion given to order �2 given in Theorem 4.1 is valid. In order to extend this result, and to

13



prove that the expansion can be continued to higher orders, it is necessary to re�ne the strategy �

used in calculating the lower bound, and the martingale measure Q for the upper bound. There are

no obvious problems with this approach, although the calculations would become very involved.

�

We can also calculate the expansion for the reservation price, p the agent would be willing to

pay for � units of the claim h(ST ). As discussed earlier, this involves solving

X1�R
t

= (Xt � p)1�R
"
1 +

�E 0h(ST )

Xt � p
�
�2

2
R�2(1� �2)Ê

Z
T

0

S2
u(C

S)2

u

X02
u

du

#1�R
(25)

where X0
0 = x� p.

Theorem 4.2 For h and � satisfying Assumption A, the time t price p for � units of h(ST )

delivered at time T , given a current wealth Xt is:

p(t;Xt; St;�) = p = �E0t h(ST )� �2
R

2
xÊ [M ]T +O(�3) (26)

= �E0t h(ST )� �2
R

2

�2

x
(1� �2)Ê

Z
T

t

S2
u(C

S)
2

u

(X0
u=x)

2
du

= �E0t h(ST )� �2
R

2
�2(1� �2)E 0

Z
T

t

S2
u(C

S)
2

u

X0
u

du

Note that when � = 1, Æ = 0 we recover the price in the complete market case, (8).

Example 1 continued:

We wish to calculate the price of the call with h(ST ) = (ST � �K)+. From (26)

p = �E0t (ST � �K)+ � �2
R

2
�2(1� �2)E 0

Z
T

t

S2
u(C

S)
2

u

X0
u

du (27)

The �rst term is simple, we have a closed form expression in (14). The second term is more involved

and we simulate this. The simulation results gave standard errors of less than 0.2%.

Note if we �x Æ the second order term is increasing in �. The minimal martingale measure term

is unchanged with �, so the price in (27) is increasing in �. This is consistent with the idea that as

the correlation approaches 1, the traded asset gives a better hedge, and the position is less risky.

The agent is thus willing to pay more for the claim.

A plot of the second order term in (27) is given in Figure 3. Parameters used are: � = 0:01; S0 =

100; T = 1; � = 0:8; R = 0:5; � = 0:04; � = 0:30; � = 0:35, Æ = 0, � = ���

�
and 0 � �K � 200 . In

both Figures 3 and 4, we plot the second order term divided by �2:

R

2
�2(1� �2)E 0

Z
T

t

S2
u(C

S)
2

u

X0
u

du (28)

or equivalently the second order term with � = 1. In Figure 3, this is about 0.07, for �K = 100. For

comparison, the �rst order term (with � = 1 and for � = 0:8, S = 100, �K = 100 say) is 11.924.
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Figure 3: The 2nd order term of the reservation price of the claim

(ST � �K)+ for 0 � �K � 200, as given in (28). Parameter values are

� = 0:01; S = 100; T = 1; R = 0:5; � = 0:04; � = 0:8; � = 0:30; � =

0:35, Æ = 0 and � = ���

�
.

Thus the second term is about 0.6 % of the �rst. To obtain the comparison for di�erent �, we can

simply multiply this percentage by �.

Returning to Figure 3, as �K ! 0, the payo� approaches ST and we recover the linear case in

Henderson and Hobson [18]. In this case we have a simple second order term and it has greatest

e�ect on the price. As �K ! 200 the option will not pay out and hence the second order term tends

to zero.

For a strike of �K = 100 the second order term in (27) is graphed in Figure 4 for varying values

of the asset price S. Note this appears to look like a call option payo�. With the parameter Æ = 0

note that the �rst term is simply the complete (risk neutral) price.

�

Example 2 continued: For h(ST ) = S2
T
the price can be calculated explicitly.

p = �S2
t e

(2Æ+�2)(T�t) � 2�2R�2(1� �2)
S4
t

x

0
@e

(3�2+6Æ+
�2

�2R2 )(T�t) � 1

3�2 + 6Æ + �2

�2R2

1
A+O(�3)

�

Returning to some more general remarks on Theorem 4.2, if we consider the reservation price

for the random payment of �h(ST ), and convert it into a unit price, we �nd

p

�
= E 0t h(ST )� �

R

2

�2

x
(1� �2)Ê

Z
T

t

S2
u(C

S)
2

u

(X0
u=x)

2
du+O(�2): (29)
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Figure 4: The 2nd order term of the reservation price of the claim

(ST � �K)+ for 50 � �S � 150, as given in (28). Parameter values are

� = 0:01; T = 1; �K = 100; R = 0:5; � = 0:04; � = 0:8; � = 0:30; � =

0:35, Æ = 0 and � = ���

�
.

The `marginal' price of a derivative is the price at which diverting a little money into the derivative

at time zero, has a neutral e�ect on the achievable utility. This is given by

lim
�#0

p

�
= E 0t h(ST ): (30)

Of note is that the marginal price is independent of the risk-aversion parameter R. This is an

example of a general result which states that the marginal price is independent of the utility

function, see Davis [5], Hobson [19, Theorem 1] or Karatzas and Kou [21]. Further the marginal

price is the expected payo� under the minimal martingale measure P0. Importantly, and unlike

in the complete market scenario of Section 3, the marginal price the agent is prepared to pay for

h(ST ) depends on the drift � of the traded asset.

As we remarked above, conclusions about the marginal price the agent is prepared to pay for

the asset are independent of the agent's utility. However the reservation price for a non-negligible

quantity of non-traded asset does depend on the utility as expressed in the �2 term in the expansion

(26). Note that the correction term to order �2 is negative, since [M ]T � 0, using (26). This is

because utilities are concave, so that the agent is prepared to pay a lower (unit) price for larger

quantities.

We now examine the unit price in (29). Putting � > 0 gives a `buy price' of

E 0t h(ST )� �

and likewise � < 0 gives `sell price'

E 0t h(ST ) + �

16



where � = j�jR
2
xÊ [M ]T > 0 using the equivalent formulation in (26). Perhaps this di�erence 2�

can be seen as a proxy for the bid ask spread and on the option and might be useful for comparing

two claims on non-traded assets.

We can see also from (29) that if initial wealth increases, with �xed S and �, then the holding

in derivatives is diluted, and the price larger. For the Merton utility, the absolute risk aversion

�U 00(x)

U 0(x)
= R

x
is a decreasing function of wealth and thus the higher wealth, the higher price the

agent is willing to pay. In contrast, for the exponential utility which has constant absolute risk

aversion, the price would be independent of wealth. We examine this utility function brie
y in the

next section.

5 A Comparison with Exponential Utility

Another popular utility function widely used in the literature is the exponential utility, U(x) =

� 1


e�
x, see for example, Hodges and Neuberger [20], Svensson and Werner [27], DuÆe and Jack-

son [11], Davis [6], Cvitanic et al [3], Delbaen et al [8] and Rouge and El Karoui [26]. This utility has

constant absolute risk aversion, and its popularity is derived in part from its separability properties.

Again, let V (t;Xt; St;�) be the value function for the agent who at time t has wealth Xt and

who will receive �h(ST ) at time T . Here we take U(x) = � 1


e�
x. Then

V (t;Xt; St;�) = sup
�

E tU(XT + �h(ST ))

= �
1



e�
Xt inf

�

E t (e
�
 R T

t
�u(dPu=Pu)�
�h(ST ))

= �
1



e�
Xtg(T � t; log St)

where g(0; z) = e��
h(e
z). Using the fact that V is a supermartingale for any strategy, and a

martingale for the optimal strategy, we �nd that g solves the pde:

_g � �gz + 1
2
�2gz � 1

2
�2gzz + 1

2

(���gz + �g)2

�2g
= 0:

We follow Hobson [19] and the example in Henderson and Hobson [18] to solve this equation. If we

set g(�; y) = e��G(�; y + ��)b then we �nd that G solves

b _G� 1
2
�2bGyy � 1

2
�2(b(b� 1)� �2b2)

G2
y

G

+
h
b(� + 1

2
�2 � � +

���

�
)
i
Gy +

�
�+

�2

2�2

�
G = 0:

Choosing

b =
1

(1� �2)
; � = �

�2

2�2
; � = � �

���

�
� 1

2
�2 = Æ � 1

2
�2

we �nd that G solves

_G = 1
2
�2Gyy:
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This is the heat equation, with solution

G(�; y) =

Z 1

�1
G(0; y + z)

e
� z2

2�2�

�
p
2��

dz

so

g(�; y) = e
��2�

2�2

2
4Z 1

�1
G(0; y + (Æ � 1

2
�2)� + z)

e
� z2

2�2�

�
p
2��

dz

3
5

1

1��2

= e
��2�

2�2
�
E(G(0; y + (Æ � 1

2
�2)� + �

p
�N))

� 1

1��2

whereN is a standard normal random variable. Using the boundary conditionG(0; y) = e�(�
=b)h(ey) =

e��
(1��
2)h(ey):

V (t;Xt; St;�) = �
1



e
�
Xt� �2

2�2
(T�t)

�
h
E

�
exp(��
(1 � �2)h(Ste

Æ(T�t)e�
p
T�tN� 1

2
�2(T�t)))

�i 1

1��2

:

It follows that the reservation price pe for receiving a random payo� �h(ST ), given as the

solution to V (0;X0 � pe; S0;�) = V (0;X0; S0; 0), is

pe = �
1


(1� �2)
log E

h
exp

n
��
(1� �2)h(S0e

ÆT e�
p
TN� 1

2
�
2
T )
oi

:

We want to �nd an expansion in terms of small � which we can compare to our results using the

Merton utility. The expansion is

pe = �Eh(S0e
ÆT� 1

2
�
2
T+�

p
TN )�




2
�2(1� �2)V ar(h(S0e

ÆT� 1
2
�
2
T+�

p
TN )) +O(�3)

which is equivalent to the price found in Davis [6]. We �nd that to leading order the price is precisely

the expected value of the claim under the minimal martingale measure. Hence we concentrate on

the correction term. Note that the second order correction is linear in the risk aversion parameter


. We equate the local absolute risk aversion in the Merton and exponential utility models to

compare the results. This involves identifying the parameter 
 with R=x. The price becomes

pe = �Eh(S0e
ÆT� 1

2
�2T+�

p
TN )�

R

2x
�2(1� �2)V ar(h(S0e

ÆT� 1
2
�2T+�

p
TN )) +O(�3): (31)

Example 1 continued: We can evaluate (31) for the call option with � > 0. Calculations give

pe = �E 0(ST � �K)+ �
R

2

�2

x
(1� �2)[E 0 (ST � �K)2I(ST> �K) � (E 0(ST � �K)+)2] (32)

where E 0t (ST � �K)+ is given in (14) and

E (ST � �K)2I(ST> �K) = S2
t e

(2Æ+�2)(T�t)N

 
ln(St�K ) + (Æ + 3

2
�2)(T � t)

�
p
(T � t)

!
(33)

+ �K2N

 
ln(St�K ) + (Æ � 1

2
�2)(T � t)

�
p
(T � t)

!
� 2 �KeÆ(T�t)StN

 
ln(St�K ) + (Æ + 1

2
�2)(T � t)

�
p
(T � t)

!
:
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Figure 5: The 2nd order term of the reservation price of the claim

with payo� (ST � �K)+ for 0 � �K � 200. The lower line uses the

power law utility whilst the higher line uses the exponential utility.

Parameter values are �S0 = 1:0; T = 1; R = 0:5; � = 0:04; � =

0:8; � = 0:30; � = 0:35, Æ = 0 and � = ���

�
.

Figure 5 graphs the second order term in (32) and the Merton price (27) over values of the

strike �K. The numbers are extremely close (since we equated local absolute risk aversion) however

the exponential utility gives a larger correction over the whole range. This is worthy of further

investigation.

Now we consider the dependence of the reservation price on the risk aversion parameter with

surprising results. Comparing the forms of the exponential and power utilities in the limit as the

risk aversion parameter tends to zero, we see

lim

#0

1� e�
x



= x = lim

R#0
x1�R

1�R
;

but in the former case the domain of de�nition is R whereas in the latter it is R+ . Hence there is

no reason to expect identical behaviour in the limit as risk aversion decreases to zero.

In Figure 6 we graph the second order price term as a function of R. Note we plot �(pe �
�E 0(ST � �K)+)=�2 and the equivalent price for the Merton case. The solid line uses the exponential

utility whilst the broken line uses the power utility. We see that over most of the parameter range,

as risk aversion increases so the reservation price falls. The agent is willing to pay less for the non-

traded stock as she becomes less tolerant of risk. However, surprisingly this relationship reverses

for the power utility as R gets very small. For the parameter choices in Figure 5 this happens for

R below approximately 0.1. As R decreases below this value the agent is prepared to pay less for

the risky non-traded asset even though she is becoming more tolerant of risk.

Recall the optimal strategy given in Theorem 4.1:

��(t;Xt; St;�) =
�

�2R
(Xt + �Ct)�

��

�
�StC

S

t +O(�2):
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Figure 6: The 2nd order term of the reservation price of the claim

with payo� (ST � �K)+ for 0:03 � R � 1. Parameter values are

�S0 = 1:0; T = 1; �K = 100; � = 0:04; � = 0:8; � = 0:30; � = 0:35,

Æ = 0 and � = ���

�
. The broken line uses the power utility whilst the

solid line uses the exponential utility.

As R # 0, both the �rst term, the Merton proportion, and the �rst order correction term become

large. Fluctuations in the value of P and S are magni�ed into large 
uctuations in the �nal wealth.

The price an agent is prepared to pay for a random payo� depends on two factors. The �rst is her

level of risk aversion, but the second is the magnitude of the unhedgeable component of the random

payo�. Thus even though the agent is only mildly risk averse, the large 
uctuations in �nal wealth

have a non-negligible e�ect on expected utility, and hence price. �

Example 2 continued: For h(ST ) = S2
T

pe = �E0S2
T �

R

2

�2

x
(1� �2)[E 0S4

T � (E 0S2
T )

2]

where E 0S4
T
= S4

0e
4(Æ+ 3

2
�2)(T�t). �

6 Conclusion

This paper has studied the utility maximisation pricing of claims on non-traded assets, using a close

asset to hedge. Under the assumptions of CRRA and exponential Brownian motion, the techniques

of duality were used to approximate the option hedge and obtain a reservation price. The results

hold under the assumption that the money value in the non-traded asset is small in comparison to

wealth. As expected, the reservation price depends on the drifts of the assets and the level of risk

aversion. The marginal price however, is independent of the utility function.
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The examples of a call and `power' option were analysed, concentrating on the call. We show

the reservation price is increasing in correlation, hence the agent is willing to pay more when he is

more likely to have a reasonable hedge. The second order correction term was about 0.6% of the

�rst order (minimal martingale measure) term when � = 1. A comparison of the reservation price

with the exponential utility price showed, for the call, the corrections were very close. However,

they behave very di�erently as a function of risk aversion as risk aversion tends to zero. This

might be explained by the fact that the power utility is de�ned for positive wealth whereas the

exponential utility also allows wealth to go negative.

A shortcoming of this analysis and others in the literature is that it cannot be used to price a

short call position due to the unbounded nature of the payo�. Recall, the payo� used in this paper

must satisfy Assumption A. The utility approach is not suitable for short calls and further work

could be done in this area.

An area where these results can be applied is that of executive stock options. These are

options on the stock of the company, and are given to executives as part of their compensation

package. However, frequently executives are not permitted to trade away the risk using the stock

or derivatives on the stock, so that they are essentially receiving options on an non-traded asset.

Work is being done on this topic by the author.
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