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Abstract

We propose a log-transformed binomial lattice approach for pric-

ing options whose payo� depends on several state variable following

a joint di�usion process. Our method extends the log-transformed

approach proposed by Trigeorgis [31] to several state variables and

improves other known lattice algorithms (Boyle, Evnine and Gibbs [7]

and Kamrad and Ritchken [19]). The method we propose is consistent,

stable and e�cient. We present some applications of our method both

to �nancial and real option pricing problems.

1 Introduction

Contingent claims dependent on more than one state variable can be found

in �nancial economics both in �nancial and real investment valuation prob-

lems. As far as �nancial contingent claims are concerned, many authors

have studied pricing models for contracts on several underlyings (Stulz [28],

Johnson [21], Boyle [6] and Boyle, Evnine and Gibbs [7] provide models to

price options on the maximum and on the minimum of several asset prices,

just to mention a few) or on more than one state variable (e.g., Hull and

White [18], Schwartz [27]). For what concerns multi-factor real investment

valuation problems, real options have been studied for instance by Brennan

and Schwartz [10], Triantis and Hodder [30], Cortazar and Schwartz [12],

Geltner, Riddiuogh and Stojanovic [15], Cortazar, Schwartz and Salinas

[13], Martzoukos and Trigeorgis [23], Brekke and Schieldrop [8] and others.

�The authors are grateful to Matteo Tesser at Real Options Group for computation

assistance.
yDepartment of Financial Studies - University of Verona and Real Options Group.
zDepartment of Public and Business Administration - University of Cyprus, Graduate

School of Business - University of Chicago and Real Options Group.
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Unfortunately, closed-form solution for the contingent claim valuation

problems are rarely available and, quite soon, numerical methods must be

employed to price options. Many methods have been proposed to numeri-

cally tackle the option pricing problem. They can be divided into three main

classes: �nite di�erence methods (�rst introduced by Brennan and Schwartz

[9]), Monte Carlo simulation methods (introduced by Boyle [5]) and lattice

methods �rst proposed by Cox, Ross and Rubinstein [14] (CRR in what

follows). In this paper we propose a new binomial lattice approach to price

contingent claims whose payo� depends on several state variables following

a joint (correlated) geometric Brownian motion.

In the �nancial literature, many extensions of the CRR algorithm have

been proposed to approximate the price of options written on asset prices

following a geometric Brownian motion. Rendleman and Bartter [26] and

Jarrow and Rudd [20] propose binomial lattice approaches with di�erent

choices of parameters for jumps and probabilities. Boyle [6] and Kamrad

and Ritchken [19] propose a trinomial lattice algorithm to improve over the

other binomial lattice algorithms. The accuracy of the method they propose

depends on a choice of a given \stretch parameter" that need to be chosen

before implementing the algorithm. Although they improve the accuracy,

this is done at the cost of increasing the computational e�ort. Boyle [6] and

Kamrad and Ritchken [19] provide also an extension of their three-state ap-

proach for option valuation problems with several underlying assets. Trige-

orgis [31] provides a log-transformed binomial lattice algorithm for complex

contingent claims depending on a single state variable which presents several

improved qualities: it proves to be more e�cient than other lattice schemes,

keeping the appealing simplicity of the CRR approach. Boyle, Evnine and

Gibbs [7] (BEG, from now on) provide a straightforward extension of the

CRR approach to several underlyings. This keeps the features of the CRR

scheme and can be easily extended to any number of underlyings. As Boyle,

Evnine and Gibbs acknowledge, their scheme provides positive probability

if the size of the time step is small (i.e., if the number of steps, is large

enough). Unfortunately, if the number of underlying assets is high, one can

hardly a�ord a reasonably large number of steps because of the exponen-

tial complexity of the lattice approach. So it may happen that for some

values of the parameters, the probability of the jumps in BEG's scheme

(which is based on CRR's choice of probability) are negative, giving inac-

curate estimates of the value of the option. Other lattice approaches have

been proposed to cope with di�erent stochastic models (see Nelson and Ra-

maswamy [25]) or with time-varying variance-covariance structures (see Ho,

Stapleton and Subrahmanyan [17]) for the underlying asset prices.

We extend the log-transformed binomial lattice approach proposed by

Trigeorgis [31] to several state variables. We obtain an improvement over

other known lattice (CRR, BEG and Kamrad and Ritchken) algorithms.

The method we propose is: consistent (i.e., the mean and the variance of
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the approximating stochastic process are the same as the mean and the

variance of the di�usion process of the state variables), stable (that is, the

approximating errors are not ampli�ed) for a wide choice of parameters and

e�cient (i.e., the computational cost for accuracy of a given approximation

is lower than in other methods).

The paper is organized as follows. In Section 2 we review the log-

transformed binomial lattice approach proposed by Trigeorgis [31]. In Sec-

tion 3 we propose a �rst extension of the log-transformed binomial lattice

approach to a multi-dimensional setting in the spirit of Boyle, Evnine and

Gibbs [7]. In Section 4 an improved log-transformed approach is given to

overcome the drawbacks presented by the �rst log-transformed extension. In

Section 5 we illustrate some applications of our algorithm to option pricing

problems with an increasing number of (up to �ve) assets.

2 The log-transformed binomial lattice approach

Trigeorgis [31] proposed a log-transformed binomial lattice method for valu-

ing options with one underlying asset to overcome known drawbacks of the

classical binomial scheme proposed by Cox, Ross and Rubinstein [14] in

approximating the continuous-time Brownian motion of the return of the

underlying asset.

Consider an asset whose price Xt follows a di�usion process

dXt

Xt

= �dt + �dZt X0 = x (2.1)

under the risk-neutral or martingale probability where � is the risk-neutral

drift, � is the volatility of asset return and dZt is the increment of a Gauss-

Wiener process. As shown in Harrison and Kreps [16], under the martingale

probability the risk-neutral drift can be written as � = �̂� RP, where �̂ is

the actual drift (i.e., the drift under the empirical probability) and RP is a

risk premium. If the security is traded and pays a dividend (or convenience)

yield, �, and r is the risk-free interest rate then the risk-neutral drift becomes

� = r � �.

Given a derivative security (e.g., a �nancial or real option) whose payo�

depends on the price of the asset, Xt, its market price F (t; Xt) must satisfy

the following partial di�erential equation (p.d.e.)

1

2
FxxX

2
t + �FxXt + Ft � rF = 0

and some appropriate boundary conditions, as shown by Black and Sc-

holes [4] and Merton [24]. The boundary conditions can be as simple as

F (T;XT) = max fK �Xt; 0g, as in the case of European put option with

exercise price K or can be quite complex because of the early exercise fea-

ture, as in the case of an American-type put option. An analytic solution is
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feasible with some derivative securities, like European call and put options,

which have a closed-form solution to the above p.d.e.. In other cases, e.g.

with American put options or American call options on a dividend paying

(� 6= 0) underlying asset, numerical methods must be employed to evaluate

F (t; X).

A �rst set of numerical option pricing methods tackles the valuation

problem by approximating the p.d.e. (e.g., as proposed �rst in Brennan

and Schwartz [9]). A second class of numerical techniques approximates the

underlying di�usion process in (2.1) with a suitable discrete-time process

f bXtg and then estimates F (t; X) with respect to bX. This family of numerical

methods includes the Monte Carlo simulation approach for the valuation of

European-like derivatives (see Boyle [5]).1

One of the most exible and appealing methods in this second family of

numerical approaches is the binomial lattice approach, �rst proposed in Cox,

Ross and Rubinstein [14] (in what follows, we will refer to this as the CRR

approach) and thereafter extended in several directions. According to this

method, the continuous-time di�usion fXtg is approximated by a discrete-

time process in a time interval [0; T ] for valuing an option written on Xt.

Usually, T is taken equal to the maturity of the option. By considering

y = log x, the process fYtg has dynamic

dYt =

�
��

�2

2

�
dt+ �dZt Y0 = y: (2.2)

Given n, the interval [0; T ] is subdivided in n subintervals of length �t =

T=n. In the dates f0;�t; 2�t; : : : ; n�tg, the discrete-time process approxi-
mating fYtg proposed in [14] is

bYj = bYj�1 + gUj for j = 1; : : : ; n; bY0 = y (2.3)

where fUjg is a family of i.i.d. binomial random variables with

Uj =

(
1 with probability q

�1 w.p. 1� q;

for each j, g = �
p
�t and

q =
1

2

�
1 +

m

�

p
�t
�

1Recently, a big e�ort has been done to extend the pleasant features of Monte Carlo

simulation also to the valuation of American-style securities (i.e., contingent claims that

can be exercised at any date before maturity). Examples are the model proposed by Tilley
[29], Barraquand and Martineau [3], Broadie and Glasserman [11], Longsta� and Schwartz

[22].
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where m = � � �2=2. Note that the up-step of Xt is u = eg = e�
p
�t and

the down-step is d = 1=u = e��
p
�t. Hence, the discrete-time process of the

underlying asset price is bXj = bXj�1egUj

for j = 1; : : : ; n. This approximation is consistent in the limit (when �t

goes to zero): the mean of the increment is

E[�bYt ] = m�t = E[�Yt ]

and the variance

Var[�bYt] = �2�t �m2 (�t)2 � �2�t = Var[�Yt]:

Note that, the variance of the increment of the discrete-time process is gen-

erally biased downward by the square of the mean. If the volatility or the

number of steps used are small with respect to the (risk-adjusted) drift �,

then the method becomes unstable because the probability (and the vari-

ance) can turn negative (see Figure 1). A very important feature of the

CRR method is that it makes pedagogically clear the relationship between

the no-arbitrage (or risk neutral valuation) argument and the hedging argu-

ment. Having said that, it does not need to be also the best approach from

a numerical viewpoint. Several other approaches have been proposed.

Figure 1: CRR probability and log-transformed (Trigeorgis [31]) probability

vs volatility (with � = 0:05, T = 1 and �t = 0:1).
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Among other lattice approximations2 the log-transformed approximation

2See Jarrow e Ruud [20], Boyle [6], Kamrad e Ritchen [19], for one state-variable.

5



has been proposed by Trigeorgis [31] to overcome some of the above aws

presented by the CRR approach. The geometric Brownian motion in (2.2)

is approximated by a discrete-time process

eYj = eYj�1 + hUj for j = 1; : : : ; n; eY0 = y

with parameters:

� =
m

�2
=

�

�2
�
1

2
k = g = �

p
�t

h =
p
k2 + (k2�)2

p =
1

2

�
1 +

k2�

h

�
:

Note that the up step here is u = eh and d = 1=u and the discrete-time

process of the underlying asset price is

eXj = eXj�1ehUj

for j = 1; : : : ; n and where the probabilities of fUjg are now replaced by p

and (1 � p). A remarkable feature of this method is that, since h � jk2�j,
then 0 � p � 1 with no need of external constraints on the parameters.

Thus a key feature of the log-transformed approach is that it allows for

unconditional stability. This is so because the time unit is k instead of

�t; i.e., time is measured in units of variance. This feature makes the log-

transformed approximation consistent at each step n (not just in the limit

as n!1, as in CRR):

E[�eYt ] = m�t Var[�eYt] = �2�t:

For this reason, unlike the CRR approach, it does not explodes for small

volatility and/or number of time steps, as can be seen in Figure 1. In

addition, as proved by Trigeorgis [31], the CRR approach and the log-

transformed approach are equal in the limit.

Trigeorgis [31] presents an extensive numerical comparison with other

methods for the American put option case and for a wide choice of parameter

values. The log-transformed method generally shown to be more accurate

and more e�cient than the other methods providing estimate errors with

respect to the true value within 1% with much less time steps.3

In the subsequent sections of this paper we present two extensions of

the log-transformed approach to numerically evaluate options with multiple

3Trigeorgis [31], following Barone-Adesi and Whaley [2], considers the value obtained
by a �nite di�erence approximation of the Black and Scholes p.d.e. for the American

put as the benchmark. Trigeorgis [31] shows that the log-transformed binomial lattice

algorithm is as accurate with n = 50 time steps as the CRR algorithm with n = 500 steps.
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underlying assets. Our aim is to generalize to multi-dimensional cases the

numerically attractive features obtained in [31] with one underlying asset.

The e�ciency of the log-transformed method proves to be even more impor-

tant when evaluating options with many underlyings because memory and

computational constraints do not allow for a high number of steps.

3 Extension of the log-transformed binomial ap-

proximation to several underlying assets

This section presents �rst an extension of Trigeorgis' [31] log-transformed bi-

nomial approach to several underlying assets along the line of Boyle, Evnine

e Gibbs [7]. The basic idea is to approximate a multi-dimensional di�usion

process with a lattice so that the �rst two moments (mean and variance-

covariance) of the continuous process match the corresponding moments of

the discrete distribution.4 As we will see, this approximation su�ers with

the same drawbacks as in CRR (and BEG) scheme because of the pres-

ence of correlation. If the multiple underlying assets were uncorrelated,

then the multi-dimensional extension of the log-transformed approximation

would have the same features as the case one-dimensional case. In the next

section we show that, if we are able to change the coordinate system in or-

der to have a set of uncorrelated di�usions, then we can evaluate an option

written on multiple assets while preserving many of the positive features of

the log-transformed approach. This section proceeds as follows: to give the

avor of the log-transformed approach in the multi-dimensional case we �rst

develop the two-dimensional case and then we describe the three- and the

N -dimensional case.

Consider N correlated assets whose price dynamic5 X> = (X1; : : : ; XN)

is aN -dimensional geometric Brownian motions (under the martingale prob-

ability):

dXi

Xi

= �idt+ �idZi i = 1; 2; : : : ; N (3.1)

where �i is the risk-adjusted drift of the i-th asset price and E[dZidzj ] =

�ijdt, i 6= j.

Given a derivative security with maturity T and price F whose pay-

o� depends on the underlying assets prices, we want to estimate the risk-

neutral price of the derivative security. Following the usual argument �rst

introduced by Black and Scholes, the valuation p.d.e. for F in the multi-

4As shown in [7], this is the same as approximating the characteristic function of the
increments of the di�usion process with a second order Taylor expansion.

5The symbol > denotes transposition.
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dimensional case is

1

2

NX
i=1

NX
j=1

�i;j�i�jXiXj

@2F

@xi@xj
+

NX
i=1

�iXi

@F

@xi
+
@F

@t
� rF = 0

with appropriate boundary conditions.

Since in general an analytic solution to this p.d.e. (for given bound-

ary conditions) does not exist, we can obtain a numerical solution by ap-

proximating the continuous-time dynamics in (3.1) with a binomial lattice

approach.

To illustrate the process more simply, we �rst show the two-dimensional

case, N = 2. First, we take the log- of the asset values: Yi = logXi, i = 1; 2.

The dynamic of Y > = (Y1; Y2) is

dYi =

�
�i �

1

2
�2i

�
dt+ �idZi; i = 1; 2: (3.2)

Given the time interval [0; T ] speci�ed by the maturity of the option, we

consider n subintervals of width �t = T=n. Following the standard approach

(see for instance [14, 7]), we approximate the continuous-time process fY g
with the discrete-time one f(bY1; bY2)g. The approximation criterion is the

following: the discrete-time process approximates the di�usion if the char-

acteristic function of the �rst one approximates the characteristic function

of the second one. This is equivalent to matching the �rst two moments of

the distributions. The discrete process is

bYi(t) = bYi(t� 1) + hiUi(t) i = 1; 2

t = 1; : : : ; n where (U1; U2) is a bi-variate i.i.d. binomial random variable:

(U1; U2) =

8>>>><>>>>:
(1; 1) with probability p1

(1;�1) w.p. p2

(�1; 1) w.p. p3

(�1;�1) w.p. p4

(3.3)

and
P4

i=1 pi = 1. Let

�i = �i=�
2
i � 1=2;

ki = �i
p
�t;

hi =

q
k2i + (k2i�i)

2; (3.4)

Rij = kikj=(hihj);

Mi = k2i �i=hi;
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i = 1; 2. Note that ui = ehi , di = 1=ui. Moreover, let

p1 = puu = (1 + (R�+M1M2) +M1 +M2) =4;

p2 = pud = (1� (R�+M1M2) +M1 �M2) =4;

p3 = pdu = (1� (R�+M1M2)�M1 +M2) =4;

p4 = pdd = (1 + (R�+M1M2)�M1 �M2) =4;

(3.5)

where � = �12 and R = R12.

With these parameters, the �rst moments of the increment of the discrete-

time process match the �rst moments of the increment of the continuous-

time process for any given time step �t:

E[�bYi ] = k2i �i = E[�Y ] =

�
�i �

1

2
�i

�
�t;

Var[�bYi] = k2i = Var[�Y ] = �2i�t;

i = 1; 2 and

Cov[�bY1;�bY2] = �12k1k2 = Cov[�Y1;�Y2] = �12�1�2�t:

Hence, the approximation of the bi-variate geometric Brownian motion fXg
is given by the process f( bX1; bX2)g such that

bXi(t) = bXi(t� 1)ehiUi

t = 1; : : : ; n, i = 1; 2, Ui as in (3.3).

Following the same argument, it is easy to extend this analysis to N > 2

assets. For example, the three-dimensional case is given by expressions (3.4)

for the parameters and the probabilities are lengthy expressions of the form

(for brevity, we show only the case with an up-jump for security 1 and 3

and a down-jump for security 2):

pudu = (1� (R12�12+M1M2) + (R13�13 +M1M3)

�(R23 +M2M3) +M1 �M2 +M3) =8:

To develop more compact expressions for the resulting probability in the

N -dimensional case, we can observe that, at the end of any time interval

of length �t, starting from a given state, we can be in one of 2N possible

states. Let s = 1; : : : ; S = 2N be one of these states. We denote

�ij(s) =

(
1 if both asset prices i and j jump up or down together

�1 if the asset prices take antithetic jumps

(3.6)
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i; j = 1; : : : ; N , i 6= j and

�i(s) =

(
1 if asset price i jumps up

�1 if asset price i jumps down
(3.7)

for i = 1; ::; N . Note that �ij(s) = �i(s)�j(s). Given the parameters in (3.4),

the two-dimensional case probability can be expressed in the more compact

form:

p(s) =
1

4
[1 + �12(s)(R12�12 +M1M2) + �1(s)M1 + �2(s)M2] ; (3.5')

s = 1; : : : ; 4.

More generally, the probabilities for the log-transformed approximation

in the N -dimensional case are:

p(s) =
1

S

241 + X
1�i<j�N

�i;j(s)(Rij�ij +MiMj) +

NX
i=1

�i(s)Mi

35 ; (3.8)

s = 1; : : : ; S, where S = 2N .

With these parameters it can be veri�ed that

E[�bYi ] = k2i �i =

�
�i �

1

2
�i

�
�t; i = 1; : : : ; N ;

Var[�bYi] = k2i = �2i�t = i = 1; : : : ; N ;

and

Cov[�bYi;�bYj ] = �ijkikj = �ij�i�j�t i 6= j:

The approximation of the geometric Brownian motion fXg is then given by

the discrete-time process f( bX1; : : : ; bXN)g such that

Xi(t) = Xi(t� 1)ehiUi(t) i = 1; : : : ; N

t = 1; : : : ; n, with f(U1(t); : : : ; (UN(t))g being a i.i.d. N -variate binomial

process (an N -dimensional extension of (3.3)).

It is easy to see that the options price estimates obtained with the multi-

dimensional log-transformed algorithm are the same as the one given by the

BEG's algorithm when the width of the time step shrinks to zero. Actually,

if �t �! 0, then by Equation (3.4) we obtain hi = �i
p
�t, Rij = 1, and the

probabilities in (3.8) converge to the BEG's probabilities (see [7, Equation

(15)]).

Although this probability distribution is an improvement over the BEG's

extension, which it follows, still for some values of the parameters, it can
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have negative values. In Figure 2 we compare log-transformed probabilities

with BEG probabilities for the same parameters. Obviously the correlation

plays an important role in the ability to maintain a positive probability in all

states. If the asset returns are uncorrelated, then the log-transformed prob-

ability is always strictly positive. In the following section, we exploit this

fact to provide an alternative, improved, log-transformed binomial lattice

approach for the N -dimensional case.

Figure 2: Log-transformed probabilities (above) and Boyle-Evnine-Gibbs

[7] probabilities (below) vs volatility of the �rst underlying asset (�1) in a

two-dimensional case (with �1 = 0:05 = �2, �2 = 0:3, � = 0:9, T = 1 and

�t = 0:1).
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4 An improved extension of the log-transformed

lattice approximation

In this section, we propose an improved log-transformed binomial exten-

sion based on the idea of transforming the basis to have uncorrelated as-

sets; that is, we change the basis of RN, the market space generated by

the N -dimensional di�usion of the asset returns Y > = (Y1; : : : ; YN), so

that the price of the derivative security is dependent on an N -dimensional

di�usion y> = (y1; : : : ; yN ) obtained by a change of basis such that its com-

ponents yi are uncorrelated. Note that if we change the basis of the market

space we have to change also the payo� function accordingly: denoting by

�(Y ) the payo� of the contingent claim, and W the matrix representing

the change of basis, the expression of the payo� with respect to the new

basis is b�(y) = �(Wy). The dynamics of the returns y can then be ap-

proximated by a suitable log-transformed binomial lattice that overcomes

the problems presented at the end of the previous section. In particular

this method maintains the stability feature of the approach presented in the

one-dimensional case by Trigeorgis [31] for a wider choice of parameters than

the log-transformed extension presented in the previous section.

The economic rationale of the approach based on a change of basis is

the following. We want to price the contingent claim with payo� �(Y ),

where Y are the returns of the assets traded in the market, in a risk neutral

setting. If the �nancial market is complete6, we can generate N portfolios

with the original assets: we denote w>i = (wi1; : : : ; wiN) the i-th portfolio,

i = 1; : : : ; N , where wij is the position in the j-th asset in portfolio i.

We can see these portfolios as new synthetic assets spanning the (same)

market space. Any contingent claim which is redundant with respect to the

original assets is redundant also with respect to these synthetic assets. The

N portfolios we generate are selected so as to have uncorrelated returns. The

contingent claim to be priced is dependent on the returns of the synthetic

assets and is denoted by b�(y). Since the risk structure of the market is

unchanged,7 we can price the claim according to a risk-neutral approach

with respect to a martingale probability derived by the original one by a

simple change of basis.

6A market is complete if the number of non-perfectly correlated traded assets is equal

to the number of the sources of uncertainty. In a complete market any risk can be hedged
with a suitable portfolio strategy and hence a contingent claim can be valued by replication

if there are no arbitrage opportunities. Moreover, in a complete market there is only one

equivalent martingale probability. The contingent claim can be valued with a risk neutral
approach by taking expectation of its terminal payo� with respect to the martingale

probability. The argument here presented remains valid also in the more general case

of valuation of a contingent claim, which is redundant with respect to the asset span,

according to the (unique) equilibrium martingale probability.
7The market spanned by the synthetic assets is the same as the assets span generated

by the primitive securities. The only thing that changes is the representation of returns.
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Let

dYi =

�
�i �

1

2
�2i

�
dt + �idZi; i = 1; : : : ; N

be the log- of the dynamics of the underlying prices X> = (X1; : : : ; XN)

given in Equation (3.1) or, with a vector notation,

dY = adt+ bdZ

where a> = (a1; : : : ; aN), with ai = �i � �2i =2, dZ
> = (dZ1; : : : ; dZN) such

that8

dZdZ> =

0BBB@
1 �12 � � � �1d
�12 1 � � � �2d
...

...
. . .

...

�1d �2d � � � 1

1CCCAdt = �dt

and

b =

0BBB@
�1 0 � � � 0

0 �2 � � � 0
...

...
. . .

...

0 0 � � � �N

1CCCA :

In what follows, we hypothesize that dY has a time-independent covariance

matrix. The covariance matrix of dY is

dY dY > = bdZdZ>b> = b�b>dt = 
dt:

Hence, 
 is independent on time if � and b are independent on time.

By de�nition, 
 is a symmetric positive de�nite square matrix. Hence,

there exists a N � N matrix W such that W>W = IN , with IN the N -

dimensional identity matrix, such thatW>
W = �, where � is the diagonal

N -dimensional matrix (�i), with �i > 0.9 The matrixW represents a change

of basis in RN and, from an economic viewpoint, it is a set of N portfolios

of the original assets.

We denote y = W>Y the returns of the synthetic securities obtained by

linear combinations of the original securities spanning the �nancial market.

The di�usion of y is

dy = Adt +BdZ

8With the usual rules: dtdZi = 0; (dt)2 = 0, dZidZj = �ijdt.
9Given the square matrix 
, the columns of W are the eigenvectors and the diagonal

of � are the eigenvalues of 
, that is 
W = �W .
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where A = W>a and B = W>b. The covariance matrix of dy is

dydy> = �dt;

that is, the components of y> = (y1; : : : ; yN) are uncorrelated: dyidyj = 0

whenever i 6= j and (dyi)
2 = �idt.

Let �(X(t)) = �(X1(t); : : : ; XN(t)) be the payo� of the contingent

claim. According to the change of variable in (3.2) the payo� is

�(X1(0)e
Y1(t); : : : ; XN(0)e

YN(t)):

We make the derivative security dependent on y = W>Y by changing the

payo� function as follows:

b�(y(t)) = �
�
X1(0)e

(Wy(t))1; : : : ; XN(0)e
(Wy(t))N

�
where (Wy(t))i is the i-the component of Y (t) = Wy(t).

The risk-neutral price of b�, denoted bF , is equal to the risk neutral price

of �, F :

bF (y(t)) = er(T�t)Ey
hb�(y(T ))i= er(T�t)EY [�(Y (T ))] = F (Y (t)) (4.1)

where Ey [�] denotes the risk neutral expectation with respect to �y , the

martingale probability of the process fyg, and EY [�] is the expectation w.r.t.
�Y , the martingale probability of the process fY g.10 Note that, although

we have phrased the argument for an European-like contingent claim, the

above is true also for an American-like contingent claim as con�rmed by the

numerical results presented in Section 5.11

The economic intuition behind Equation (4.1) is that a change of basis

does not change the risk structure of the market. The geometric intuition

is the following: since the covariance matrix 
 is time-independent, the

measure �Y is invariant under a change of basis. Given this result, we can

numerically evaluate bF (y) by approximating the martingale probability �y .

To illustrate this alternative log-transformed binomial technique, we

present the two-dimensional case. Suppose

dYi = aidt + �idZi; i = 1; 2

10Equation (4.1) can be derived as follows

F (Y ) =

Z
e
�rT�(YT )�Y (dYT )

=

Z
e
�rT�(WyT )�Y (WdyT )

=

Z
e
�rT b�(yT )�y(dyT ) = bF (y)

where �y(dy) = �Y (WdyT ) and integration is over the support of Yt and yT respectively.
11A formal proof of this statement would follow the argument presented in Amin and

Khanna [1] for the BEG algorithm.
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where � = �12 and

� =

�
1 �

� 1

�
and b =

�
�1 0

0 �2

�
:

Since


 =

�
�21 �1�2�

�1�2� �22

�
we get � = (�i), a two-dimensional diagonal matrix, where

�1;2 =
1

2

�
�21 + �22 �

q
�41 + 2(1� 2�2)�21�

2
2 + �42

�
;

and

W =

 �
�1
�1�2

� �2
�1

�
= (�c1)

�
�2
�1�2

� �2
�1

�
= (�c2)

1=c1 1=c2

!

where

ci =

s
1 +

�
�i � �22

�2
�2�21�

2
2

:

The processes of the returns of the synthetic securities are

dyi = Aidt +Bi1dZ1 + Bi2dZ2 i = 1; 2

where B = (Bij) = W>b and A = W>a. We approximate fyg with a dis-

crete process: given the time interval [0; T ] and n, we consider subintervals

of width �t = T=n. The discrete process is ey> = (ey1; ey2) with dynamic

eyi(t) = eyi(t� 1) + `iUi(t) i = 1; 2 (4.2)

t = 1; : : : ; n where (U1; U2) is a bi-variate i.i.d. binomial random variable

with distribution as in (3.3).

By assigning the parameters

�i = Ai�t

`i =

q
�i�t + �2

i

Li = �i=`i

(4.3)

i = 1; 2 and probabilities

p(s) =
1

4
(1 + �12(s)L1L2 + �1(s)L1 + �2(s)L2) s = 1; : : : ; 4; (4.4)
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for the discrete-time process, we have the following:

E [�eyi] = �i = Ai�t i = 1; 2

Var [�eyi] = `2i � �2i = �i�t i = 1; 2

Cov [�ey1;�ey2] = 0:

Hence, this discrete process is consistent with the continuous process for any

time step (not just in the limit). Note that the up-steps here are ui = e`i

and the down-steps di = 1=ui.

If the correlations �ij = 0 for all i 6= j, then the improved log-transformed

approach is the same as the log-transformed method proposed in Section 3,

because, in this case, matrix W reduces to the identity matrix IN .
To illustrate the above, consider the following numerical example.

Example 1. Let the parameters of the process (3.1) be �1 = 0:05, �2 = 0:08,

�1 = 0:02, �2 = 0:3, � = 0:9 and dt = 0:1. Given these parameters, the

covariance matrix is


 =

�
0:0004 0:0054

0:0054 0:09

�
:

The eigenvalues of 
 are �1 = 0:0001 and �2 = 0:0903 and

W =

�
�0:9982 0:0599

0:0599 0:9982

�
:

With this change of basis, the parameters of the process in (4.2) are

A =

�
�0:0476
0:0379

�
; B =

�
�0:0199 0:0179

0:0012 0:2994

�
;

`1 = 0:0055 and `2 = 0:0951. Since L1 = �0:8658 and L2 = 0:0399, the

resulting probabilities of the process in (4.2) are:

puu =p1 = 0:0349

pud =p2 = 0:0322

pdu =p3 = 0:4850

pdd =p4 = 0:4479:

The above can be easily generalized to the N -dimensional case: con-

cerning the matrices � and W , instead of having exact expressions as in

the two-dimensional case, in the N -dimensional case they are be computed

numerically (with fair accuracy). The discrete process ey> = (ey1; : : : ; eyN)
such that

eyi(t) = eyi(t� 1) + `iUi(t) i = 1; : : : ; N

16



Figure 3: Log-transformed probability (p1; p2; p3; p4) vs volatility of the �rst

underlying asset (�1) in a two-dimensional case (with �1 = 0:05, �2 = 0:08,

�2 = 0:3, � = 0:9, T = 1 and �t = 1=10).

0.05 0.1 0.15 0.2 0.25 0.3

0.1

0.2

0.3

0.4

0.5

has parameters as in (4.3) for i = 1; : : : ; N and probabilities:

p(s) =
1

S

0@1 + X
1�i<j�N

�ij(s)LiLj +

NX
i=1

�i(s)Li

1A (4.5)

with s = 1; : : : ; S, where S = 2N is the number of states at the end of any

time step. This approximates the �rst two moments of the continuous-time

di�usion y:

E [�eyi] = �i = Ai�t i = 1; : : : ; N

Var [�eyi] = `2i � �2i = �i�t i = 1; : : : ; N

Cov [�eyi;�eyj] = 0 i 6= j

for any time step.

It can be easily proved that the probabilities of the improved log-transformed

approximation are positive and lower than one for any parameter values in

the two-dimensional case, we observe that Equation (4.4) can be written

also as

p(s) =
1

S
(1 + �1(s)L1) (1 + �2(s)L2) :

Since jLij < 1 for all i, from Equation (4.3), then 0 < p(s) < 1 for all s =

1; : : : ; S. Note also that the same argument applies for the �rst kind of log-

transformed approximation if, in Equation (3.8), the correlation parameters

are all zero.
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The fact that the probability of the improved log-transformed approach

is always positive makes the method unconditionally stable in the two di-

mensional case. Numerical experiments suggest that the probabilities are

positive (and the algorithm stable) for a wider choice of parameters than

the BEG and the log-transformed algorithms presented above.

5 Applications

The numerical procedure to evaluate a contingent claim dependent on sev-

eral underlying assets according to the log-transformed approximation is

similar to the BEG algorithm (see [7]): �rst, a multi-dimensional binomial

tree of future asset prices is generated according to the parameters in (3.4)

for the log-transformed or (4.3) for the improved log-transformed until the

time horizon is attained. Next, if the option is European, we need only to

evaluate the payo� on the leaves of the tree and properly averaging and

discounting (according to a risk-neutral valuation approach) to obtain the

current (t = 0) market price of the contingent claim. If the option is Ameri-

can, we can easily take into account the early exercise feature in a backward

dynamic programming fashion by comparing, at each node of the lattice,

the current payo� with the continuation value obtained by applying the

risk-neutral approach. Also the case of discrete dividend-like payments can

be accommodated (see Trigeorgis [31] for details). For an American con-

tingent claim, the e�ciency is improved (i.e., the computational e�ort is

reduced, leaving accuracy unchanged) if, instead of generating the whole

lattice at the outset, at each time step t, only asset prices for t and t+1 are

generated, in order to apply the dynamic programming valuation.

In this section we provide the results of some numerical experiments to

illustrate the accuracy and e�ciency of the log-transformed methods we pro-

posed compared to the BEG's scheme. Note that the number of operations

and the amount of computing time needed by the three methods are the

same.12

The �rst example is related to a �nancial option pricing problem. We

use the numerical results presented in Boyle, Evnine e Gibbs [7] as a bench-

mark. The second example is a real option valuation problem presented in

Martzoukos and Trigeorgis [23], involving four sources of uncertainty. We

provide numerical valuations and compare them with those presented in [23],

obtained with the BEG's scheme. The third case deals with the option on

the maximum of �ve assets presented in Broadie and Glasserman [11]. Note

that no accurate value is o�ered in the literature for this case. Moreover,

the most accurate results presented by Broadie and Glasserman in this case

are downward biased because, instead of valuing an American option, they

12The routine for diagonalizing the covariance matrix comes into play only once, at the

beginning of the valuation algorithm, and so it does not a�ect computational complexity.
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evaluate a Bermudan option with four exercise dates. Hence, we benchmark

our results also against the ones obtained by Least-Squares Monte Carlo

(LSM) algorithm proposed by Longsta� and Schwartz [22] with a higher

number of dates in which the option can be exercised.

5.1 European and American options on the max, the min

and the average of three assets

As for the �rst example, we evaluate four European options on three un-

derlying assets: an option on the maximum, an option on the minimum, an

option on the geometric average and an option on the arithmetic average of

the prices of the assets. The underlying assets do not pay dividends. The

parameter of the valuation problem are:

initial value: Xi(0) = 100 i = 1; 2; 3

drift: �i = r = 0:1 i = 1; 2; 3

volatility: �i = 0:2 i = 1; 2; 3

correlation: �ij = 0:5 i 6= j; i; j = 1; 2; 3

maturity: T = 1

strike price: K = 100

Table 1 shows the estimates of the option prices given in [7] and the relative

absolute errors with respect to the accurate value. For the option on the

arithmetic average, since in [7] an accurate value is not presented, we take

as accurate the one value obtained by Richardson extrapolation (RE) with

four points (n = 20; 40; 60; 80). As suggested by Boyle, Evnine and Gibbs,

RE is a practical method to obtain accurate approximations of exact values

avoiding unnecessary computing. In particular, we use a four point RE, that

is, we �t option values (as a function of 1=n) with a cubic polynomial.

To comment the results, the numerical estimates of the option prices

given by the three approaches (BEG, LT1 and LT213) converges as the

number of steps grows. As far as accuracy is concerned, generally, both the

log-transformed approaches are more accurate that the BEG' scheme. As

for the options on the max and on the min, either LT1 or LT2 seems to

have the same accuracy for as few as 20 time steps as the BEG's approach

for much higher number of steps. The only exception is the case of the put

option on the arithmetic average of the prices of the underlying assets: here

the log-transformed approaches are dominated by the BEG approach. One

possible reason for this to happen is our choice for the accurate value.

13LT1 stands for the �rst log-transformed approach (Section 3) and LT2 for the improved
log-transformed approach (Section 4).
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5.2 Bets of product standards with four underlyings

The second numerical example is related to real option valuation and is

drawn from Martzoukos and Trigeorgis [23]. This example permits to see

the inuence of various parameter values on the accuracy of the numerical

methods proposed in this work.

In particular, there is a �rm which is considering the development of two

product standards in consumer electronic industry in a given time horizon.

The standard that �nally will prevail is uncertain. If the �rm invests in

both technologies, it acquires an option on the best of two assets (product

standards). Each underlying asset of this option is the market value of the

resulting cash ows if that standard prevails. Moreover, the underlying as-

sets are correlated. The cost of introducing each standard is the strike price

of the option. Also the strike prices for the two technologies are stochastic

and correlated with the other state variables. Hence, we have evaluated an

American-like option to invest in both technologies with payo�

maxfV1 � C1; V2� C2; 0g

where Vi is the market value of i-th underlying (i.e., the value of cash ows

obtained by product standard i), Ci is the cost to introduce the standard

i, i = 1; 2. These variables are assumed to follow correlated geometric

Brownian motions. Besides the above described case (see Table 2), we have

evaluated di�erent versions of the investment problem by considering several

features of the opportunity of the �rm. In particular, we have evaluated

also the impact of higher volatility, lower correlation, longer maturity of the

option, di�erent investment scale on the option value and for a completely

di�erent choice of parameters with respect to the base case. The results14

show that the LT2 algorithms is, for the same number of steps, far better

accurate than the BEG and the LT1 algorithms and, when correlations

�ij = 0 for all i 6= j, the numerical results obtained with LT1 and LT2

approximations are the same.

The base case parameters are

initial asset value: Vi(0) = 100 i = 1; 2

initial cost value: Ci(0) = 100 i = 1; 2

drift: �i = r = 0:07 i = 1; : : : ; 4

volatility: �i = 0:2 i = 1; : : : ; 4

correlation: �ij = 0:5 i 6= j; i; j = 1; : : : ; 4

maturity: T = 2

To compare numerical results with exact solutions, we consider also the

case of non-stochastic development costs for both technologies and C1 = C =

14The numerical results for the variations on the base case though not included in this

paper for the sake of brevity, are available from the Authors on request.
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C2. With this choice of parameters the problem has an analytic solution: if

both the dividend yields are zero (�V1 = 0 = �V2), then the model reduces to

the European15 option on the maximum of two risky assets and the solution

formula has been provided by Stulz [28]; if at least one of the dividend yields

is not zero, the extension of Stulz' formula for the European option on the

maximum of two assets is in Martzoukos and Trigeorgis [23].16

By inspection of the numerical results, it can be easily assessed that the

improved log-transformed approach is the most e�cient one in all cases. The

accuracy of the improved log-transformed with 12 or 24 steps is comparable

to the one given by the other methods with a much higher number of steps.

Moreover, if we compare the numerical estimates of option prices with exact

prices (see Table 3), then we can see that the accuracy of the improved

log-transformed approach is much greater than the one o�ered by the other

methods for the same number of steps.

In Figure 4 we describe the convergence of the three binomial lattice

approaches for an option on the max of two asset prices both of the European

and the American type. It is easy to see that the convergence rate of the

improved log-transformed approach is faster than the other two methods

and that the rate of convergence of the LT1 approach is the same as the

BEG algorithm.

5.3 American options on �ve assets

This example is drawn from Broadie and Glasserman [11]. We estimate the

price of an American option on the maximum of �ve assets. In the article

[11, Tables 5 and 6]), Broadie and Glasserman (BG, thereafter) provide con-

�dence bounds for the price estimate of this option by means of a numerical

approach based on simulated trees with a small number of dates where early

exercise is allowed (in their examples, there are only 4 dates) and with a

15Note that, if both the dividend yields are zero, the American option and the European

option are the same.
16For convenience, we report the valuation formula for the European option price Cmax

on the maximum of two assets with �Vi
= �i 6= 0, �Vi

= �i, i = 1; 2:

Cmax = CBS (V1; C; �1; r; T ) + CBS (V2; C; �2; r; T )� Cmin (V1; V2; C; �1; �2; r; T ) (5.1)

where CBS is the price of the European call option according to Black and Scholes formula,

and Cmin is price of European option price on the minimum of two assets:

Cmin = V2e
��2TN

h
d1 + �2

p
T ;

�
log(V1=V2) + (�2 � �1 � �

2
=2)T

�
=(�

p
T ); �1

i
+ V1e

��1TN
h
d2 + �1

p
T ;

�
log(V2=V1) + (�1 � �2 � �

2
=2)T

�
=(�

p
T ); �2

i
�Ce

�rTN [d1; d2; �12]

where N [a; b; �] is the bivariate cumulative Normal distribution integrated up to a and

b for two variables with correlation �; �1 = (�12�1 � �2) =�; �2 = (�12�2 � �1) =�; � =�
�
2

1 + �
2

2 � 2�12�1�2
�
1=2

, di =
�
log(Vi=C) + (r� �i � �

2

i =2)T
�
=(�i

p
T ), i = 1; 2.
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large number of branches (50) at each node. With respect to this, BG do

not value truly American options: actually, they price Bermudan options

with four exercise dates. Moreover, although they present accurate values

with two underlying assets (based on Kamrad and Ritchen algorithm [19]),

in the �ve asset case there is no such value. Hence, no assessment of the

relative error is available from BG [11] for the �ve asset case.17

The main aw in the BG's approach is that the value it provides is

always downward biased as far as truly American options are concerned,

because they compute sub-optimal values when early exercise is allowed in

any date before maturity. Actually, their con�dence range is always lower

than the true con�dence range for an American option. This is apparent

especially when they improve their estimates by a Control Variate technique:

their con�dence bounds shrinks around a sub-optimal value for the American

option, though optimal for a Bermudan option with four early exercise dates.

In order to overcome this aw and to assess accuracy of the log-transfor-

med algorithms, �rst we present numerical results for the two-dimensional

case [11, Table 3] based on the Least-Squares Monte Carlo18 approach (LSM)

proposed by Longsta� and Schwartz [22] and we benchmark our results over

both the results provided by LSM and the con�dence bounds given Broadie

and Glasserman to establish accuracy of our method. Next, we proceed with

the �ve-dimensional case, where there are no known results, providing the

values based on the LSM algorithm. Then we show that the log-transformed

algorithm provide accurate estimates for the American option price on �ve

assets with a fair number of steps.

17In [11, page 1339] they note that \relative errors are not reported because the true

value is unknown. [ : : : ] With k = 5 [i.e., with �ve assets] the computations are prohibitive

for n as small as 50. And even if the computations could be done, the resulting value would

not be very accurate." Later, in the Conclusions, they suggest to use parallel machines or
network of workstations to evaluate truly American options.

18The LSM algorithm is suited to properly evaluate the early exercise feature of the

American-style securities. It is based on the Bellmann dynamic programming approach.
In order to determine the exercise date (stopping time) of the option, at any time step

they compare the payo� from immediate exercise with the expected value of the option

one step ahead (continuation value). To estimate the continuation value, they simulate
several paths of the underlying asset prices and approximate the continuation value (i.e.,

the expected value of the future payo� of the option calculated with respect to the con-

ditional probability) with a suited polynomial of the asset prices. At each time step, the
continuation value is estimated by regressing (by the least-squares method) the present

value of the payo� of the option in the subsequent steps on a polynomial of the realizations

of the underlying asset prices in the current step. Once the stopping time are determined

for each path, the value of the option in computed by averaging the present value of the

payo� obtained by applying, for each path, the above determined stopping rule. As ob-

served by Longsta� and Schwartz [22], an approximation error of the continuation value

in the LSM algorithm produces a downward biased option price estimate.
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Concerning numerical experiments, the case parameters are

initial asset values: Xi(0) = 100 i = 1; : : : ; 5

drift: �i = 0:1 i = 1; : : : ; 5

volatility: �i = 0:2 i = 1; : : : ; 5

correlation: �ij = 0:3 i 6= j; i; j = 1; : : : ; 5

risk-free rate: r = 0:05

maturity: T = 1

strike: K = 100

and the option payo� is maxfX1 �K; : : : ; X5�K; 0g.
To comment the results, by inspection of Table 5.3 we observe that

in the case with two assets the lattice algorithms gives results within BG

con�dence bounds.19 Also the results obtained by the LSM algorithm are

within that bounds, though downward biased as observed in Longsta� and

Schwartz [22]. Generally, the option prices provided by the LT1 and LT2

lattice algorithms are closed to the value given by BEG lattice algorithm,

though the LT2 algorithm converges faster than the other lattice approaches

to that value, as already observed in Figure 4. For the �ve asset case, the

results obtained by the three lattice algorithms are almost the same and

sometimes (S0 = 130) are outside BG con�dence intervals. In Figure 5.3

we presents the convergence rate for the three binomial lattice methods and

compare them to the con�dence bounds. As can be easily seen, the value

obtained by lattice methods is always closer to the high estimator than to

the low estimator in the BG's algorithm. Notably, the LT2 method provides

options values very close to the most accurate ones with very few steps (with

as few as 10 steps the di�erence from the value obtained with 27 steps is less

that 0:1). Also in this case, the LSM algorithm provides downward biased

option price estimates, though always within the con�dence bounds. As for

the computational cost of the three lattice methods, the log-transformed

algorithms proves to be less time-consuming than the LSM.20 Though the

BG con�dence bounds can be obtained very fastly, we should benchmark the

e�ciency of our approach with the BG's algorithm with a higher number of

exercise dates to obtained results not a�ected by the aw of sub-optimality

with respect to American exercise feature. In that case, the e�ciency of

BG's algorithm would decline sharply.

19This is not the case if we consider the con�dence bounds by BG improved with the

control variate technique, as can be checked by comparing our results with [11, Table 6].
20One computation with LSM with �ve assets, n = 50 time steps and 50 000 paths

takes about 10 minutes, whereas the LT algorithms takes 12 minutes with n = 26, on a
standard PC with CPU speed 866 MHz and RAM of 320 MB. Nevertheless, we think that

for problems with dimension higher than �ve the LSM algorithm is the most suited to

evaluate American options.
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Figure 4: Convergence of the three binomial algorithms for European and

American options on the max of two assets.
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The payo� is max fV1 �C;V2 � Cg with C1 = C2 = C = 100) and �i = 0:1, i = 1; 2

and the other parameters are the same as in the base case.
a) European option. AC = 11:41 is the exact value from the analytic formula (see

Martzoukos and Trigeorgis [23] or Equation (5.1).

b) American option. AC = 12:566 is the value obtained by the BEG algorithm with
n = 500.

c) Relative errors for the three binomial algorithms for the case with �i = 0, i = 1; 2

(the other parameters are the same as above). The exact value from the analytic
formula in Stulz [28] is AC = 26:61. The relative error is����F (n)�AC

AC

���� � 100
where F (n) is the value of the option computed with n time steps.
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Table 1: European Call and Put Options on the max, on the min and on

the arithmetic average of three stochastic underlying prices.

n BEG LT1 LT2 BEG LT1 LT2

MAX Call Put

20 22.281 22.311 22.685 0.919 0.935 0.951

(1.725%) (1.591%) (0.058%) (1.816%) (0.064%) (1.595%)

40 22.479 22.495 22.679 0.925 0.933 0.941
(0.851%) (0.779%) (0.032%) (1.175%) (0.276%) (0.575%)

60 22.544 22.555 22.677 0.928 0.933 0.938

(0.565%) (0.516%) (0.023%) (0.855%) (0.314%) (0.259%)

80 22.576 22.585 22.676 0.929 0.933 0.937

(0.423%) (0.385%) (0.019%) (0.748%) (0.327%) (0.104%)

RE1 26.673 22.672 22.673 0.936 0.933 0.933

AV2 22.672 0.936

MIN Call Put

20 5.226 5.266 5.241 7.24 7.264 7.403

(0.438%) (0.323%) (0.144%) (2.202%) (1.879%) (0.001%)
40 5.237 5.257 5.244 7.323 7.335 7.405

(0.229%) (0.147%) (0.095%) (1.081%) (0.919%) (0.023%)

60 5.241 5.254 5.245 7.35 7.359 7.405
(0.152%) (0.093%) (0.070%) (0.716%) (0.599%) (0.031%)

80 5.243 5.253 5.246 7.364 7.370 7.406

(0.114%) (0.068%) (0.057%) (0.527%) (0.440%) (0.034%)

RE1 5.249 5.249 5.248 7.403 7.406 7.406

AV2 5.249 7.403

ARITH Call Put

20 12.06 12.103 12.062 2.566 2.593 2.550
(0.199%) (0.156%) (0.181%) (0.000%) (1.038%) (0.633%)

40 12.072 12.094 12.079 2.567 2.581 2.564

(0.099%) (0.081%) (0.045%) (0.039%) (0.568%) (0.068%)
60 12.076 12.091 12.083 2.567 2.576 2.568

(0.066%) (0.055%) (0.012%) (0.039%) (0.405%) (0.062%)

80 12.078 12.089 12.084 2.567 2.574 2.569
(0.050%) (0.041%) (0.000%) (0.039%) (0.318%) (0.106%)

RE1 12.084 12.083 12.085 2.566 2.567 2.569

AV2 12.084 2.566

The payo� of the option on the arithmetic average is maxf(X1+X2+X3)=3�K;0g.
Case parameters: Xi(0) = 100, �i = r = 0:1, �i = 0:2, i = 1; 2; 3, �ij = 0:5, i 6= j,

i; j = 1; 2; 3, T = 1 and K = 100. BEG is the result from Boyle, Evnine and Gibbs

[7] algorithm; LT1 from the log-transformed approach and LT2 is from the improved

log-transformed approach.

In parentheses, the relative absolute error with respect to the accurate value.
1 RE = Richardson extrapolation for n = 20; 40; 60; 80.
2 AV = accurate value from [7].
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Table 2: Option to choose the best of two product standards, each with

stochastic cost: four stochastic assets.

European American

n BEG LT1 LT2 BEG LT1 LT2

12 15.503 15.502 15.797 16.217 16.219 16.467

(1.631%) (1.636%) (0.237%) (1.597%) (1.587%) (0.078%)
24 15.641 15.644 15.786 16.360 16.362 16.483

(0.753%) (0.738%) (0.167%) (0.727%) (0.717%) (0.019%)

36 15.684 15.686 15.779 16.404 16.405 16.485
(0.482%) (0.471%) (0.123%) (0.463%) (0.455%) (0.030%)

48 15.704 15.706 15.775 16.425 16.426 16.485

(0.353%) (0.344%) (0.097%) (0.337%) (0.330%) (0.030%)

RE1 15.760 15.760 15.760 16.484 16.483 16.482

Base case parameters: Vi(0) = 100, Ci(0) = 100, �i = r = 0:07, �i = 0:2, �ij = 0:5

and T = 2. MT2 = 15:76 for European and MT2 = 16:48 for American option.

In parentheses, the relative absolute error with respect to the accurate value.
1 RE = Richardson extrapolation for n = 12; 24; 36; 48.
2 MT = results from Martzoukos and Trigeorgis [23].
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Table 3: Option to choose the best of two product standards (on \dividend"

paying assets) with non-stochastic development costs as known benchmarks.

�i = 0:1 European American

n BEG LT1 LT2 BEG LT1 LT2

12 11.056 11.131 11.388 12.324 12.394 12.601
(3.107%) (2.443%) (0.189%) (1.925%) (1.366%) (0.277%)

24 11.234 11.272 11.404 12.442 12.478 12.596

(1.545%) (1.206%) (0.054%) (0.987%) (0.702%) (0.242%)
36 11.293 11.319 11.407 12.489 12.513 12.587

(1.027%) (0.799%) (0.025%) (0.612%) (0.419%) (0.169%)

48 11.322 11.342 11.408 12.510 12.528 12.583
(0.768%) (0.596%) (0.015%) (0.446%) (0.301%) (0.140%)

RE1 11.411 11.411 11.410 12.549 12.549 12.583

�i = 0 European

n BEG LT1 LT2

12 25.998 26.072 26.452

(2.298%) (2.020%) (0.595%)

24 26.307 26.346 26.534

(1.138%) (0.993%) (0.285%)

36 26.408 26.434 26.560

(0.759%) (0.661%) (0.188%)

48 26.458 26.478 26.572

(0.570%) (0.496%) (0.141%)

RE1 26.608 26.608 26.607

The parameters are the same as in the base case but the costs are non stochastic and

C1 = C2 = C = 100). The problem collapses on the valuation of an option on the

max of two assets with a given strike price C: max fV1 �C;V2 � Cg. We consider

both the case with � = 0 and �i = 0:1, i = 1; 2. AC2 = 11:41 for the European

and AC2 = 12:566 for the American option with �i = 0:1; AC2 = 26:61 for both the

European and American option when �i = 0.

In parentheses, the relative absolute error with respect to the accurate value.
1 RE = Richardson extrapolation for n = 12; 24; 36; 48.
2 As far as the American option with � = 0:1 is concerned, AC is the value obtained

by the BEG algorithm with n = 500; for the European options, AC is the exact

value from analytic formula (see Stultz [28] for the case � = 0 and Martzoukos and

Trigeorgis [23] or Equation (5.1) for the case � 6= 0).
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Table 4: American option on the maximum of �ve assets (Broadie and

Glasserman [11, Table 5]).

S0 L&S BEG LT1 LT2 Bounds BG

70 0.541 0.544 0.553 0.568 [0.536,0.581]

80 2.633 2.761 2.782 2.790 [2.578,2.746]
90 7.678 8.009 8.037 8.019 [7.674,8.069]

100 15.756 16.178 16.202 16.214 [15.634,16.319]

110 25.740 26.210 26.226 26.237 [25.359,26.276]
120 36.519 36.984 36.996 37.026 [36.121,37.107]

130 47.422 48.000 48.012 48.051 [46.785,47.888]

The payo� is maxfX1 � K; : : : ;X5 � K;0g. The parameters are r = 0:05, T = 1,

K = 100, Xi(0) = 100, �i = 0:2, �ij = 0:3 and �i = 0:1 for all i.

The upper and lower bounds in the last column are represented by the 90% con�-

dence interval of the distribution of the estimate of the option price from Broadie and

Glasserman [11].

BEG, LT1, LT2: average of the value obtained with 25 and 26 steps. We do that

because the numerical results for the BEG and LT1 algorithms oscillate; the LT2 al-

gorithm produce a monotonic path towards the (unknown) asymptotic option value.

L&S: estimate of the option value using the LSM algorithm (see Longsta� and

Schwartz [22]) with n = 50 time steps and 50 000 paths; we approximate the contin-

uation value of the option by regressing data on a 5 degree polynomial including all

mixed terms up to second degree.

Table 5: American option on the maximum of two assets (Broadie and

Glasserman [11, Table 3]) as known benchmarks.

S0 L&S BEG LT1 LT2 Bounds BG

70 0.237 0.245 0.245 0.245 [0.234,0.263]
80 1.259 1.305 1.306 1.305 [1.191,1.281]

90 4.081 4.216 4.218 4.215 [3.938,4.200]

100 9.475 9.628 9.630 9.636 [9.075,9.644]

110 17.210 17.347 17.349 17.350 [16.558,17.461]

120 26.388 26.544 26.545 26.548 [25.515,26.599]

130 36.346 36.453 36.453 36.457 [35.221,36.583]

The parameters are r = 0:05, T = 1, K = 100, Xi(0) = 100, �i = 0:2, � = 0:3 and

�i = 0:1 for all i.

The upper and lower bounds in the last column are represented by the 90% con�-

dence interval of the distribution of the estimate of the option price by Broadie and

Glasserman [11].

BEG, LT1, LR2 with n = 300 time steps.

L&S: estimate of the option value using the LSM algorithm (see Longsta� and

Schwartz [22]) with n = 50 time steps and 100 000 paths; we approximate the contin-

uation value of the option by regressing data on a 5 degree polynomial including all

mixed terms up to second degree.
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Figure 5: Convergence paths for the three binomial algorithms for an Amer-

ican option on the max of �ve assets (Broadie and Glasserman [11]). The

stright lines in each plot represents the upper and lower bounds given by

Broadie and Glasserman (Table 5) obtained by simulation.
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The parameters are r = 0:05, T = 1, K = 100, Xi(0) = 90; 100; 110 respectively,

�i = 0:2, �ij = 0:3 and �i = 0:1 for all i.
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