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Consider an undeveloped oilfield with uncertainty about the size and quality of its reserves. There are

some alternatives to invest in information to reduce the risk and to reveal some characteristics of the

reserve. This paper presents an evolutionary real options model of optimization under uncertainty with

genetic algorithms and Monte Carlo simulation, to select the best alternative of investment in information.

There is a legal time to expiration of the option to start the investment for the oilfield development. The

model considers both the technical uncertainties revealed by the information and the market uncertainty

using two different stochastic processes for the oil prices, which are simulated. Monte Carlo simulations

evaluate the decision rule curves generated in the evolutionary process. The process evolves toward a near

optimum solution, giving the real option value and the optimal decision rule. The evolutionary

programming under uncertainty was performed in C++ environment with good results and a description of

the programming procedure is provided.
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1 - Introduction

The investments to development of petroleum reserves are both large and face considerable uncertainty.

There are at least two important sources of uncertainties, market uncertainty represented mainly by the oil

prices, and technical (or private) uncertainty about the size and the quality of the reserve1. Information

about oil in the ground is relatively expensive and reveals partial information on the size and the quality of

the reserve. The selection of the best alternative for the investment in information (including not investing

in information anymore) is one very important but complex practical challenge, even more in a dynamic

framework considering the expiring time of the option to start the oilfield development, and the market

uncertainty.

Real options approach has been used lately to consider both the uncertainties and the managerial

flexibility (options) available into a dynamic framework with the aim to maximize the value of the

investment opportunity. See for example Dixit & Pindyck (1994), Trigeorgis (1996), and Dias (1999). In

an earlier paper (Dias, 2000), was pointed out that the practical problems of the curse of dimensionality2

and the curse of modeling3 have driven part of the recent real options research to the Monte Carlo

simulation approach4, due to its modeling flexibility. The major problem is the difficulty to perform

optimization (backward) with simulation (forward), which in general is necessary for American-type5

options.

This paper follows the precedent work (Dias, 2000) in the sense of investigating a more direct6 alternative

to optimize the real option value using evolutionary approach combined with Monte Carlo simulations of

stochastic processes and technical uncertainties. Specifically as optimizer tool is used genetic algorithms

(GA) with data structures, so the evolutionary programming in the sense of Michalewicz (1996). The

optimization problem is performed through the evolution of solutions toward the optimum, using genetic

operators like special crossover and mutation operators. This follows the Darwin’s principles of evolution,

                                                          
1 Quality of the reserve is in a broad sense, not only properties of permeability/porosity of the reservoir-rock, the quality and
properties of the oil and/or gas, and reservoir inflow mechanism. In cases as of deepwater offshore oilfields, uncertainty about
the quality of the reserves includes the uncertainty about the technology cost and performance. The quality of the reserve later
will be more precisely defined.
2 Curse of dimensionality is the exponential computational time explosion with the problem dimension.
3 Curse of modeling is a problem formulation with an explicit system. Changing some aspects of the model is necessary to
change all the optimization procedure.
4 See for example Cortazar & Schwartz (1998) and Ibáñez & Zapatero (1999).
5 American options can be exercised before the expiration, so there is the problem to find out the optimal earlier exercise of the
American option. The optimal exercise curve or the threshold curve is the decision rule along the time that maximizes the value
of the option.
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so there are analogies: the chromosomes with some genes (characteristics of the chromosomes) evolve by

reproduction (crossover operators) and mutation. There is a population of chromosomes that evolve along

generations. The best-adapted (high fitness) chromosomes have more chances to pass their genetic

material (genes) for the following generations. Here fitness means the real options value of the alternative.

The chromosome here is the set of characteristics of the decision rule of investment that maximizes the

real option value of each alternative.

The literature of genetic algorithms and evolutionary programming is today well developed. See for

example the classic texts of Holland (1975), Goldberg (1989), Davis (Eds.) (1991), and Koza (1992), and

more recent contributions of Michalewicz (1996), and Michalewicz & Fogel (2000). For an overview see

Pacheco (2000) and for applications in the petroleum industry see Mohaghegh (2000). For complex

applications of investment under uncertainty, an evolutionary real options approach is birthing, and the

aim of this paper is to contribute in this process.

The technical uncertainty is modeled with distributions of probabilities that are revealed by the investment

in information. There are different alternatives of investment in information with different costs. The

market uncertainty is divided into two cases and modeled with two stochastic processes. The first one is

the more popular geometric Brownian motion. The second one is the more realistic mean-reversion model

for the oil prices. The results are present for the two cases. Computational details are also discussed.

This paper is organized as follows. In the second section is described the petroleum field case and the

alternatives to invest in information. In the third section is described the evolutionary approach modeling

issues like the genetic operators and the chromosome, and is described the programming issues. The

results are presented in the fourth section. The fifth section presents the concluding remarks.

2 – Description of the Petroleum Field Development Problem, the Uncertainties, and the

Alternatives

2.1 – The Petroleum Field Development Problem and the Main Variables

Suppose there is an oilfield that was discovered, (partially) delineated, remaining undeveloped with T

years before the expiration of the option in the block concession7. The reserve size (B, in million of

                                                                                                                                                                                                            
6 The traditional optimization under uncertainty is the Bellman’s backward procedure (dynamic programming).
7 This means that if the option time expires without the oil company (owner of the track rights) presenting a plan to immediate
start of investment, the National Agency get back the block and may to bid it again.
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equivalent8 barrels) is uncertain. The investment to develop9 (D, in million US$) the oilfield is function of

the reserve size.

The goal of the paper is to select the best alternative to invest in information, prior the development of the

oilfield, and to compare with the alternative of not investing in information. Before describing the

alternatives to invest in information, is necessary to set the base case for the oilfield development and the

main equations to evaluate the decision to develop the oilfield.

In the base case, D is estimated in US$ 480 million (all monetary values are present values) and the

expected reserve size is 120 million barrels. The investment is optional (is not obligatory) and this option

expires in two years. The traditional value of the petroleum field is given by the static net present value

(NPV). The NPV expression can be written:

                                                             NPV = q P B – D                                                                     (1)

Where:

q = economic quality of the reserve10, which is uncertain with expected value of 20%;

P = petroleum price, suppose the current value is US$ 20/bbl and the future value is uncertain;

B = reserve size, which is uncertain but expected to be 120 million barrels; and

D = development cost, function of B, is assumed to be US$ 480 million for B = 120 million barrels.

Note that for the base case value pointed above, the NPV is zero (= 0.2 x 20 x 120 – 480).

The investment cost D is at least a function of the reserve size (B). Hence, for larger reserves the

investment must adjust the oilfield scale, and so on. The equation for the development investment is given

by the simple equation (all values in millions), with the values adopted for the base case:

                D = fixed investment + (variable cost x B)  =  240 + (2 x B)      [in $million]                        (2)

                                                          
8 All the oil reserves have associated gas. Equivalent reserves means that the gas reserve is added into the value of B, using the
economic equivalence between x m3 of gas with one barrel of oil, where x depends mainly of the local gas market demand.
9 In order to develop the oilfield is necessary to invest in development wells, production platform and its processes facilities,
pipelines, etc.
10 The reserve is more valuable as higher is q. The value of q depends of several factors: the permo-porosity properties of the
reservoir-rock; the quality and properties of the oil and/or gas; reservoir inflow mechanism; operational cost; country taxes;
discount rate; etc. For details about q see: http://www.puc-rio.br/marco.ind/quality.html
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2.2 – The Uncertainty in the Oil Prices Modeled with Two Stochastic Processes

The model of the market uncertainty represented by the oscillations in the oil prices is performed with

stochastic processes and is divided into two cases. The first one is the traditional geometric Brownian

motion, which is used in most financial and real options models. The theoretical solution, by using a

difference finites approach to solve a partial differential equation (PDE), is available so that is possible to

compare this solution with the evolutionary approach solution. The second stochastic process is a more

realistic one for the oil prices (and most cases of price of commodities), the mean-reversion stochastic

process. There is no alternative theoretical solution for the specific mean-reversion process specified in

this paper, although is possible the alternative PDE approach.

The introduction of a non-standard mean-reverting process illustrated an advantage of the evolutionary

approach over the PDE method. While is easy to change the stochastic process for the oil prices in this

evolutionary model, the PDE approach needs the rebuilding of the PDE and new software to solve the

PDE using finite difference methods. For the evolutionary approach, is necessary only to change the

function that simulates the oil prices, because the rest of the program remains the same.

2.2.1 – Geometric Brownian Motion

First, assume that the oil prices follow the popular Geometric Brownian Motion (GBM), in the format of a

risk-neutralized stochastic process11, that is, using a risk-neutral drift (r – δ) instead the real drift α, is:

                                                  dP  =  (r – δδδδ ) P dt   +  σ σ σ σ P dz                                                    (3)

Where:

r  =  interest rate, assumed to be 8% p.a.;

δ =  convenience yield of the oil, assumed to be 8% p.a., too;

σ =  volatility of the oil prices, assumed to be 25% p.a.; and

dz  =  Wiener increment =   dt εεεε  , where ε  ~ N(0, 1)

The equation necessary to perform the Monte Carlo simulation of petroleum price sample paths is:

Pt = Pt−−−−1 exp{ (r − δ − δ − δ − δ  −  0,5 σ −  0,5 σ −  0,5 σ −  0,5 σ2222) ∆∆∆∆t  + σ  Ν(0, 1)σ  Ν(0, 1)σ  Ν(0, 1)σ  Ν(0, 1)    t∆∆∆∆ }                                                                                                                (4)                            

                                                          
11 For a discussion of this equation and its discretization in order to perform the Monte Carlo simulation, see for example
Clewlow and Stickland (1998), and for general discussion of discretization of stochastic differential equations see the more
advanced text of Kloeden & Platen (1992).
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2.2.2 – The Mean-Reversion Process

In opposite to the geometric Brownian motion case, there is no consensus about the best format for a

mean-reverting stochastic process. One of most famous mean-reversion model is due to Schwartz (1997).

This paper will present another mean-reverting model, which he used before in practical project finance

applications. Simulations of this model was compared with the Schwartz model, and although the

Schwartz model is slight simpler, the adopted model performs better in the region near the long run

equilibrium price level12. This case is developed because is a not a standard of the literature.

Initially consider the following Arithmetic Ornstein-Uhlenbeck process for a stochastic variable x(t):

                                                       dx = ηηηη ( x −−−− x) dt + σσσσ dz                                                                 (5)

This means that there is a reversion force over the variable x toward an equilibrium level x . This is like a

spring force. The velocity of the reversion process is given by the parameter η. The solution of this

equation can be view below including the stochastic integral (see for example Kloeden & Platen, 1992):

                               x(T) = x(0) e− η− η− η− η T + x  (1 −−−− e− η− η− η− η T )   + σσσσ e− η− η− η− η T  dz(t)e çt
T

0

−−−−∫∫∫∫                                     (6)

The variable x(t) has Normal distribution with the following expressions for the mean and variance13:

                                               E[x(T)] = x(0) e− η− η− η− η T + x  (1 −−−− e− η− η− η− η T )                                                       (7)

                                                   Var[x(T)] = (1 − − − − e− η− η− η− η T )  σσσσ2222/(2 ηηηη)                                                         (8)

The equation 7 can be view as a weighted average between the current level x(0) and the equilibrium level

x . The weights sum one and depend of the time and the reversion speed. Equation 8 shows that in the

long run, the variance reaches an asymptotic value of σ2/(2 η).

Now the stochastic process for the oil price P(t) is chosen so that the oil prices are function of x(t)

described by the equation 5. First let us to set x  = ln(
_
P), where  

_
P  is the price of equilibrium in the long

                                                          
12 The mean-reversion force near of the equilibrium level is too weak compared with the adopted model. In addition, in this
paper the adopted starting oil price (current price) was equal to the equilibrium level of US$ 20/bbl, so the adopted model
permits to study better the reversion effect, contrasting with the geometric Brownian case.
13 See for example Dixit & Pindyck (1994, chapter 3).
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run. The idea is to set the prices as Log-Normal, with mean E[P(T)] = eE[x(T)]. The process P(t) = ex(t)

doesn’t work because the exponential of a Normal distribution adds the half of the variance in the Log-

Normal distribution. In order to reach the goal, the half of the variance is compensated using the equation:

                                                              P(t) = exp{x(t)  –  0.5 Var[x(t)] }                                                  (9)     

Where Var[x(t)] is given by the equation 8. In the risk-neutral format14, the process x(t) (equation 5) is

simulated using the expression15:

      xt = xt −−−−1 e
− η− η− η− η ∆∆∆∆t + [ln(

_
P) + ((r – ρρρρ)/ηηηη)] (1 −−−− e−  η ∆−  η ∆−  η ∆−  η ∆t ) )  +  σσσσ ) t))/(2  2 exp(  1( ηηηη∆∆∆∆ηηηη−−−−−−−−  N(0, 1)          (10)

Where ρ is the risk-adjusted discount rate for the developed reserve. The simulation of the process is now

simple. Calculate x(t) using the equation 10 and sampling the standard Normal distribution. Use the

equation 9 combined with the equation 8 to get the price process P(t).       

The adopted values for the mean-reversion variables are:

• Long run equilibrium price 
_
P  = US$ 20/bbl;

• Mean-reversion speed16 η =  0.3466 year − 1;  and

• Risk-adjusted discount rate ρ = 12% p.a.

2.3 – The Optimal Decision Rule: the Investment Threshold

The development threshold gives the decision rule for the development. With the simulated oil price P(t)

is possible to estimate the value of a developed reserve V(t) = q B P(t). In order to ease the model, is better

to work with normalized value of the reserve V/D. For V/D = 1, the NPV is zero. The use of normalized

value of the developed reserve V/D, instead for example the oil price, for decision rule curve permits to

combine the technical and market, that is values of  P, q, B, D(B), in the same threshold curve. The real

                                                          
14 In the risk-neutral format, the drift α of the process is replaced by r − δ, where δ is the dividend yield. In the mean-reversion
case, the dividend yield is not constant, it is function of P:  δ  =  ρ − α  =  ρ – η ( x − x) . The risk neutral format permits to use
the risk free interest rate as the correct discount rate.
15 The correct discrete format for the continuous-time process of equation 5 is a first-order autoregressive process, AR(1), see
Dixit & Pindyck, 1994, p.76. The process is risk neutralized by changing the drift.
16 There is the following relation between the mean-reversion speed η and the half-life of the process H: H = ln(2)/η. Half-life
is the time that is expected for the variable stochastic x to reach the half of way toward the equilibrium level. The value of η
corresponds to H = 2 years, which is a reasonable value for the logarithm of the oil price process.
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option value F is homogeneous of degree one17 in V and D: F(V/D, D/D) = (1/D) F(V, D); and it permits

to use V/D in the maximization problem. The threshold (V/D)* is homogeneous of degree zero in V and

D, see the classical paper of McDonald & Siegel (1986, p.713). See Dixit & Pindyck (1994, pgs.207-211)

for the homogeneity concept in the real option stochastic differential equation context.

The threshold is the critical (V/D)* level that makes optimal the immediate investment to develop the

oilfield. It is the rule to exercise the option (exercise at or above the threshold). The threshold curve is the

decision rule that maximizes the real options value, determining the optimal exercise of the real option,

and it is function of the time. The threshold curve will be determined using the evolutionary approach.

Before, is presented how work the threshold curve with the simulation of the uncertain V/D.

The figure below illustrates this point. Two sample paths of the normalized value of the reserve V/D are

showed. One path reaches the threshold line at the point “A”, so the decision rule is to exercise the option

at this time (the option is “deep in the money”), earning F(t = 1) = NPV = V – D. This value is a future

value (t = 1 year), so to calculate the present value just multiply by the discount factor exp(− r t). The

other path pass all the option period without reach the threshold curve (see point “B” in the figure), in this

case the option values zero.

Figure 1 – The Threshold Curve and Exercise of the Real Option Simulated Value
                                                          
17 A function is homogeneous of degree n if F(tx) = tn F(x) for all t > 0, n ∈þ, and x is the vector of variables.
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The picture above shows the time for the information to be available, too. This time depends on the

alternative of investment in information adopted. The alternatives are presented below.

2.4 – The Alternatives to Invest in Information

Each alternative for the acquisition of information has a cost and reveals different levels of information.

After the investment in information, there are several possible scenarios for B and q (but the expected

values remains the same). These scenarios are assumed to follow triangular probability distributions that

are defined by the parameters (minimum, probable, maximum). In addition, investing in information

means to delay the possibility to exercise the development investment option, because in most cases there

is no sense to invest in information in parallel with the development investment. The investment in

information has the objective to design the development plan. The alternatives are modeled considering its

cost (cost of information), the information revelation potential given by the probability distributions, and

the time to delay the development option exercise possibility. The alternatives are:

Alternative 1: Long-Term Test

This alternative is simply to stay with a rig over a drilled well performing a long-term test in this well, that

is, to produce the well for 25 days measuring flow rate, bottom-hole pressure, and wellhead pressure. The

rig daily rate is assumed to be US$120,000 per day.

Cost = 25 days/rig x 120 M$/day = US$ 3 MM

Development Delay: 30 days

Revealed Information: B ~ Triang (B0 x 0.8 ; B0 ; B0 x 1.2);

                                     q ~ Triang (q0 x 0.9 ; q0 ; q0 x 1.1)

Alternative 2: Additional Well (ADR, Slim)

This alternative comprises to drill a slim (cheaper) well known as “acquisition of data from the reservoir”

(ADR) in a reservoir region with high degree of uncertainty.

Cost = US$ 4 MM

Development Delay: 30 days

Revealed Information:  B ~ Triang (B0 x 0.5 ; B0 ; B0 x 1.5);

                                     q ~ Triang (q0 x 0.9 ; q0 ; q0 x 1.1)
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Alternative 3: Drilling Schedule without Test

The idea is to set the (development) drilling schedule in order to optimize the information rather than to

optimize the drilling costs. In practice, the optimum for drilling cost is to drill all the wells in one cluster

of wells, and only after this to mobilize the rig to another cluster. The optimum for the information

typically will be to drill only one well in one cluster and to mobilize the rig to another cluster and again

drilling only one well there. With this procedure, more parts of the reservoir are investigated by the

development drilling. The costs are the additional rig time to mobilize/demobilize and the additional time

on the development schedule. In case of the alternative 3, no tests are performed in the well after the

drilling.

Cost = 4 mob/demob = 4 x 10 days x 120 M$/d = US$ 4.8 MM

Development Delay: 5 months

Revealed Information:    B ~ Triang (B0 x 0.4 ; B0 ; B0 x 1.6)

                                        q ~ Triang (q0 x 0.8 ; q0 ; q0 x 1.2)

Alternative 4: Drilling Schedule with Well-Testing

This alternative is similar to the alternative 3 except that production test is performed in each well drilled.

Each test is assumed to take 10 days, so the cost is two times the alternative 3, but the information

revealed is richer.

Cost = 4 mob/demob + tests = 4 x (10 + 10) days x 120 M$/d = US$ 9.6 MM

Development Delay: 6 months

Revealed Information:      B ~ Triang (B0 x 0.3 ; B0 ; B0 x 1.7)

                                          q ~ Triang (q0 x 0.6 ; q0 ; q0 x 1.4)

3 – Evolutionary Approach Modeling Issues

3.1 – The Genetic Algorithm Codification

The evolutionary approach job is to generate decision rules (the threshold lines) that maximize the value

of the option. In order to do this, the threshold line needs to be coded by a set of genes with characteristics

of this threshold line. This is performed by using two free points and one function. By changing the time

variable, that is, using the time to expiration (τ = T – t) instead the chronological time, is possible to use a

known function, the logarithm function. So, the threshold curve is modeled using with two free points (to
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represent the threshold curve near of the expiration) and one logarithm function18 (for most of the

threshold curve). The picture below illustrates this point.

Figure 2 – The Threshold and the Points and Function Approximation

The function has the format (V/D)ττττ = c + d ln(ττττ), where the “c” and “d” are coefficients of the function

and τ (= T – t)  is the time to expiration. The fixed point for τ = 0, is the known heuristic that at the

expiration (without option to delay) the NPV rule works, so invest if NPV = V – D > 0, which

corresponds to invest if V/D > 1, in this normalized approach.

The experience shows that near of expiration the threshold has a more variable shape. The free points are

sufficient flexible to capture these shape variations. This heuristic representation of the threshold curve

with four variables is sufficiently simple and reaches the range of possible optimal solutions. In the

genetic algorithm model, each chromosome has 4 genes representing the four parameters that characterize

the threshold curve. The genes comprise the free values (a, b) and the coefficient values for the logarithm

curve (c, d). The picture below illustrates this gene codification.

                                                          
18 For American put, Ju (1998) uses a multipiece exponential function to approximate the early exercise boundary (threshold
curve). For American call, the logarithm approximation is the analogue idea. The symmetry put-call is nowadays well known in
the literature of American options (see for example Carr & Chesney, 1996).



12

Figure 3 – The Genes of the Chromosome

The vector (a, b, c, d)T  will be decoded to the threshold curve (V/D)t, through the (V/D)t vector

generation  function. The free points “a” and “b” are chosen to be V/D respectively at the times τ = 0.1

year and τ = 0.2 year (near of the expiration, where the logarithm function doesn’t work well). Between

the fixed point (V/D = 1 at τ = 0) and the free points, a linear interpolation is used. The logarithm curve

“start” (by the expiration time point of view) at the point immediately after the point “b”. For the model,

which needs to work in discrete-time, the logarithm function “starts” at the instant 0.2 + ∆t, where ∆t is

the discrete time interval used in the model.

It is important also to set some restrictions for the genetic algorithm in order to accelerate the algorithm

convergence.  In order to do this, is used a heuristic that the threshold curve is monotonically decreasing

(increasing) with the chronological (expiration) time. So there are the following restrictions in the GA

model:

                                                                            b > a                                                                         (11)

                                                            c + d * ln(0.2 + ∆∆∆∆t)  > b                                                           (12)

Note that both restrictions are linear restrictions (the logarithm argument is a number, not a gene). In

addition to the restrictions, is necessary to specify the domain for the genes. The model will work with

floating point numbers (real numbers) instead the binary representation common in genetic algorithms

textbooks. These domains are:

   a ∈ (1.0, 1.6)

   b ∈ (1.0, 1.8)

   c ∈ (1.0, 2.0)
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   d ∈ (0.0, 0.6)

The genetic algorithm procedure is summarized in the picture below. The steps comprise:

• the initialization of the population (initial set of candidate solutions, which needs to be feasible with
the restrictions and the genes domains);

• the valuation of the chromosomes (the more complex part, which will use the Monte Carlo simulation
and the concepts of real options, see next topics);

• the ranking of the chromosomes for the parents selection;

• the parents selection for the reproduction;

• the reproduction with the help of the genetic operators of crossover and mutation (generating a new set
of candidate solutions); and

• the process evolves through the “generations” (the above procedure is repeated for n generations),
until an optimum (or more frequent, a near optimum) solution is reached. See the figure below.

Figure 4 – Flowchart for the Genetic Algorithm
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The option to work in a C++ environment calls the idea of looking for a C++ library that works with

floating point genes, linear restrictions, and permits to regulate the selection pressure. See in Dias (2000)

the critic of the RiskOptimizer because it uses very low selection pressure and doesn’t permit the user to

change this set. The C++ environment is also faster than Excel for the evaluation of the chromosomes that

need the Monte Carlo simulation.

The only free C library available with these characteristics is the software Genocop, developed by the

Prof. Michalewicz and available to download in his website19. There are Genocop versions that handle

linear restrictions (Genocop I) and more recent version that handles non-linear restrictions (Genocop III).

In this paper was chosen the Genocop I (version 3.0) because there are only linear restrictions and this

version is easier to adapt in the C++ program. The major adaptations in the Genocop code were: changes

due moving from C to C++ language; integration with a complex evaluation module; and moving from the

original Genocop “chromosome by chromosome” evaluation, to parallel evaluation of all population.

Genocop I works with until seven genetic operators. However the boundary mutation operator will not be

used because is known that the domain boundaries are not optimal for the genes. Other operator (whole

non-uniform mutation) is only a small variation and will be not used. Michalewicz (1996) describes the

five operators used in this paper. The operators are:

• Uniform Mutation;

• Non Uniform Mutation;

• Arithmetical Crossover;

• Simple Crossover; and

• Heuristic Crossover.

3.2 – Modeling the Optimization under Uncertainty

The figure below presents the idea for the evolutionary real options approach. The genetic algorithm (GA)

generate a population of decision rules, the threshold curves candidates to be the optimal decision rule.

The Monte Carlo simulation generates the stochastic process for the oil prices and combine with the

probability distribution revealed by the information. The threshold curve determines the level which the

option is exercised. The rule is evaluated. The process is stopped only when the number of generations

matches the total generations set as program input.

                                                          
19 See the Genocop website at http://www.coe.uncc.edu/~zbyszek/gchome.html
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Figure 5 – Flowchart of the Evolutionary Real Options Model

The Monte Carlo simulation is divided into two parts. First the generation of technical scenarios (k) and

second the generation of the petroleum prices iterations. NIT denotes the number of iterations for the

technical scenarios and NI denotes the number of petroleum prices iterations. For each technical scenario

are performed NI iterations for the oil prices. So, the total number of Monte Carlo simulations corresponds

to NIT x NI. For the base case with NIT = 50 and NI = 1,000 the total of iterations is 50,000. By using a

time step of 0.05 year, meaning 40 time intervals in each path for the two years to expiration base case.

For each time step, a set of calculus is performed, so to evaluate each chromosome are performed 50,000

x 40 = 2 millions of sets of calculus and instructions!  A number much higher than the used in the earlier

paper (Dias, 2000) in the Excel environment.

The idea of Monte Carlo simulation to evaluate the chromosome (the threshold curve) is illustrated below

for three technical scenarios revealed by the investment in information, an out-of-money option (bad

technical news), an at-the-money option (neutral news), and an in-the-money option (good news was

revealed), respectively.
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Figure 6 – The Monte Carlo Simulation Starting from a Bad Scenario

Figure 7 – Monte Carlo Simulation Starting from an Expected Scenario
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Figure 8 – Monte Carlo Simulation Starting from a Good Scenario

The most interesting practical idea in this programming was the use of text files with previously simulated

technical scenarios and standard Normal distributions. The C++ program  read two text files, one file with

a table of technical scenarios and other file with a table of N(0, 1). See the picture below.

Figure 9 – Offline Simulations Are Read from Two Files
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The first file has a matrix with two columns (the product q*B and the correspondent D, which is function

of the B used in the first column) and NIT rows (where NIT = number of technical scenarios). The other

file has T/∆t columns and NI iterations (NI = number of paths for the petroleum price simulation.

The advantages of this procedure (using two text files) are:

(a) All the chromosomes of all generations are evaluated using the same random numbers set, preventing

luckly valuation of bad chromosomes with dissemination of bad genetic material for the next

generations. In addition, is possible to use commercial Monte Carlo softwares that have techniques of

variance reduction20;

(b) Permits to work offline searching for a near statiscally “perfect” set of technical scenarios distribution

and set of N(0, 1) values. It is possible to run several simulations offline until to get a non-biased table

of values (matching the desired mean and other probabilistic moments). The online simulation of

scenarios and N(0, 1) doesn’t permit this control;

(c) The N(0, 1) file is very flexible21, because all practical stochastic processes for oil price will need

N(0, 1). For other stochastic process, just change the function of oil price in the C++ program that is

possible to use the same file of N(0, 1). For larger time to expiration, just add more columns of

selected simulations of N(0, 1); and

(d) With two files the evaluation of alternatives is very flexible. For another alternative of investment in

information, which will reveal a new set of scenarios, is necessary only to change the file with

technical scenarios, because the file with standard Normal numbers is the same. The N(0, 1) file only

change if you want more precision or if the time to expiration changes (in the last case, only add new

columns with independent simulations for higher T, or reduce the number of columns for lower T).

                                                          
20 Example is the @Risk, which has embedded the efficient Latin Hypercubic sampling.
21 In addition, note that the offline simulation of P(t) or even V, instead N(0, 1) is not practical, because every time you want to
change the initial P, you need to perform other offline simulations and to generate other text file with a table. Using a text file
of N(0, 1) is much more flexible than the direct generation of P(t) or V or V/D.
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The picture below shows the flowchart of the program where the entire population is evaluated in parallel.

So, this picture presents the evaluation of one generation with J chromosomes (population size = J). The

cycle is repeated for G generations. The evaluation of each technical scenario is displayed separately for

sake of space and understanding.

Figure 10 – Flowchart for the Evolutionary Programming
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The technical scenario evaluation is performed according the following flowchart, which details the

previous flowchart. For each chromosome j in each path i and in each instant t of this path is performed

the comparison between the simulated (V/D)i, t with the chromosome threshold level (V/D)j, t. If the

simulated V/D is higher the option is exercised in that path and for that chromosome j. Before passing to

another path, the program wait until all chromosomes to be evaluated in that path. The option value for

each chromosome in a scenario k is the average option value for NI paths. The chromosomes evaluation

vector (j = 1, 2, ….J) in scenario k is storaged.

Figure 11 – The Flowchart of a Scenario Evaluation

Although the flowcharts present the evaluation of a single chromosome, as is performed in the original

Genocop program, the final version of the program evaluate all the population in parallel, improving a lot

the computational efficiency22.

                                                          
22 Thanks for Prof. M.A.C. Pacheco for the idea.
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4 – Results from the Model

Several experiments were performed for both stochastic processes and for all the alternatives, including

the alternative zero, the alternative of not investing in information. In most cases more than one

experiment were performed for the same case changing a small genetic algorithm parameter or even

without changing anything, just to see the effect of the random initial population in the evolutionary

process.

For all cases at least one experiment with population23 of 40 chromosomes and 30 generations was

performed. In reality 31 generations because the original Genocop names generation 1 for the two first

generations (it is possible to think the first one as generation zero). The typical computational time for a

Pentium III with 800 MHz is presented in the table below (the case presented is the GBM for alternative 3

using the parallel version).

Table 1 – Computational Time for Pentium III, 800 MHz

Total running time for 31 generations x population of 40 1,763 sec. (29.38 min.)

Time for each generation 56.87 seconds

Time for each chromosome 1.42 sec.

The average time for each chromosome depends mainly of the population size. Higher population means

lower average time for each chromosome because the program print in the output file the chromosomes

genes and its evaluation, in each change of generation (access to the hard disk reduces the computational

efficiency).  This computational time is excellent considering that one of main criticism of the genetic

algorithm is the slowness to reach an acceptable solution.

                                                          
23 The optimal balance population x generations x number of experiments is a difficult empirical question. Sometimes even a
small population is sufficient to perform a good job. This is the case of Vallée & Basar (1999, p.207), who used an initial
population of only 4 chromosomes of 14 genes, and their algorithm got fast convergence (10 to 20 generations) to Stackelberg
equilibrium for both action and cost in a fish war game problem.
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Now let us see if the evolutionary approach reaches acceptable solutions or not. For this, the case of

geometric Brownian motion and the case of mean-reversion are examined separately.

4.1 – Results for the Geometric Brownian Motion

This section is started with the theoretical results for the alternative zero. The theoretical results were

calculated using two methods. First was used the software “Extendible” (see Dias & Rocha, 1998) to get

directly the real option value for the alternative zero, which reached the value of US$ 60.165 millions.

Second, the approximated chromosome was estimated to match the threshold curve generated by the

genes (like a theoretical chromosome). Using this “theoretical” chromosome and the same procedure to

evaluate a chromosome used by the C++ program, that is, the same file of technical scenarios and the

same file with a fixed table of random numbers sampled from a standard Normal distribution24, the value

was US$ 61.174 millions. The difference is due the numerical errors of both the finite differences used in

the Extendible and the sampled distribution used in the second case.

The evolutionary program result was very close to the theoretical solution. In reality the GA’s real option

value was even higher than the theoretical value: US$ 62.367 million! The difference can be attributed to

the numerical errors mentioned before and to the distributions sampling imperfections. For the random

numbers used for the price paths and scenarios, the GA solution is even better than the “theoretical”

solution. Probably this occurred due the imperfections in the sampled numbers used. But given the table of

random numbers used, the GA performed its job searching for an optimal (or near) solution.

The chart below illustrated the comparison between the theoretical threshold and the threshold that the

evolutionary program reached. Note that only near of the expiration the GA threshold is clearly different

of the theoretical solution. The vertical graph scale was amplified to highlight the differences.

                                                          
24 An Excel file with Visual Basic macro was developed to both debug the C++ program and to evaluate specific chromosomes.
This spreadsheet perform exactly the same job than the C++, except the part of GA. The Excel of course is much slower than
C++, but permits to examine specific chromosomes, including the “theoretical” chromosome.
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Figure 12 – Comparison of the Theoretical and the GA Solutions (Alternative 0)

The table below presents the best GA solutions for each alternative of investment in information.

Sometimes a larger experiment does not improve the solution. The vector X is the chromosome and

comprises 4 values (the genes), as described before.
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Table 2 – The Results of the Alternatives: the Geometric Brownian Motion Case

Vector X Alternative
Case 

gen/pop_size
Best Cromosome 

(Real Option) Value
Generation 
of the best

1.07775891 0 46/40 62.367344 20
1.18433571
1.49595857
0.13903511
1.07506621 1 30/40 58.8848 28
1.25485146
1.41950107
0.11539662
1.10754013 2 30/40 60.37175751 30
1.17158198
1.50048268
0.1630988

1.12806344 3 30/40 62.04074097 29
1.20405042
1.4649235

0.15491864
1.13385618 4 30/40 63.13252258 29
1.17532325
1.4527483

0.09308907

Note that the best alternative is the alternative 4 (the more expensive but the alternative that reveals

more information). The alternative 3 has approximately the same value of alternative of not investing in

information. The alternatives 1 and 2 are worse than the alternative zero, so it is better not investing in

information than invest in the alternatives 1 and 2.

4.2 – Results for the Mean Reversion

 The mean reversion case is expected to present lower real options value: because the reversion force, the

price path cannot go to far from the US$ 20/bbl level as occurred with the geometric Brownian motion. In

addition, is expected that the threshold level to be a bit lower than the GBM case.

The following chart presents the GA threshold for the best experiment for the alternative 4 using mean-

reversion. Note that the threshold level is inferior to the GBM case.



25

Figure 13 – The Mean-Reversion Threshold Case: Alternative 4

The following figure presents the GA threshold for the best experiment for the alternative 3 using mean-

reversion. Note that the threshold solution is very close of the alternative 4.

Figure 14 – The Mean-Reversion Threshold Case: Alternative 3
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The following table presents all the best experiment results for the alternatives in the mean-reversion case.

Again the alternative 4 was the best one. In this case, however, the alternative 3 is slightly better than in

the GBM case. Again the alternatives 1 and 2 are worse than not investing in information (alternative 0),

but this time the alternative 2 is very close of alternative 0.

Table 3 – The Results of the Alternatives: the Mean-Reversion Case

Vector X Alternative
Case 

gen/pop_size
Best Cromosome 

(Real Option) Value
Generation 
of the best

1.14562201 0 60/40 49.04401398 40
1.15272117
1.25457656
0.07184473
1.03630149 1 25/20 46.12804794 25
1.04026902
1.22839284
0.0424125
1.13232374 2 30/40 48.77129364 30
1.16823387
1.22926068
0.04372992
1.08463931 3 30/40 50.0196991 30
1.1159513
1.26126921
0.07226396
1.10089219 4 30/40 51.71102524 30
1.15892744
1.2680186
0.07771666

In order to illustrate the performance of the evolutionary programming, the figure below presents the

evolution of the best chromosome through the generations. Sometime a new best solution causes a jump in

this performance curve.
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Figure 15 – The Best Solution Evolution through the Generations (mean-reverting case)

6 – Concluding Remarks

The evolutionary real options approach used to select the best alternative to invest in information revealed

competitive with other more traditional methods like the PDE approach. In addition, the evolutionary

approach looks much more flexible when choosing the stochastic processes and the way to combine

technical and market uncertainties.

The best alternative in this paper was just the more expensive (alternative 4), but revealing more

information than the cheaper alternatives. This result was robust with the stochastic processes used.

Although the real options value is lower for mean-reverting case, the ranking of alternatives remained the

same when passing from the GBM to mean-reverting case.

One important extension is to allow jumps (Poisson process) combined with the mean-reversion, as is

done in Dias & Rocha (1998). This improvement will demand the program to read another file, the jump

frequency and size probabilities distribution.

The faster C++ environment permitted more effective software for professional applications. Additional

optimizations are possible, but the current computational time is competitive for practical applications.
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Appendix: Software Interface

There are two versions for the C++ software in function of the stochastic process used for the oil prices. One is the Geometric Brownian Motion

C++ version and the other one is the Mean-Reversion C++ version. The figure below presents the latter version.
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