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Abstract. We develop a general equilibrium model of an extractable resource

market where both the prices and extraction choices are determined endogenously.

The model generates price dynamics that are roughly consistent with observed oil

and gas forward and option prices as well as with the two-factor price processes that

were calibrated in Schwartz (1997). However, the subtle di�erences between the

endogenous price process determined within our general equilibrium model and the

exogenous processes considered in earlier papers can generate signi�cant di�erences

in both �nancial and real option values.

1. Introduction

Contingent claims analysis is currently being used extensively in the energy industry. For

example, energy traders often use models suggested by Black [1], Brennan and Schwartz

[2], Schwartz [13] and others for risk management as well as for valuing �nancial contracts
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and real investments. These applications, which typically calibrate the models' parameters

using some combination of historical prices and observed forward and option prices, have

proven to be successful in valuing and hedging relatively short-term �nancial contracts.

There is, however, an inherent inconsistency in the application of these models that is

likely to create a problem when the models are applied to value and hedge longer horizon

investments. Speci�cally, although the models assume the parameters in the price process

are constant, the calibration procedures that are used in practice typically provide for

a more 
exible speci�cation by allowing the parameters to change with time. Although

these procedures generally provide reasonably good approximations when the models are

used to interpolate among prices in liquid markets, as we will show, they can generate

biases when the methodology is used to extrapolate from observed derivative prices to

value long term real investments like the pipelines and other infrastructure needed to

exploit oil and gas reserves.

To explore these issues in more detail we develop a general equilibrium model of an

extractable resource market where both the prices and extraction choices are determined

endogenously. As we show, with plausible parameters the model generates prices that

are roughly consistent with observed forward and option prices as well as with the price

processes that were calibrated in Schwartz [13]. However, the subtle di�erences between

the endogenous price process determined within our general equilibrium model and the

exogenous processes considered in earlier papers can generate signi�cant di�erences in

both �nancial and real option values.

The fundamental sources of uncertainty in our model arise because of 
uctuations

in aggregate demand and changes in technology. Aggregate demand, or equivalently

the growth rate in GNP, is assumed to follow a mean reverting process while changes
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in technology, which a�ect the prices of a potential future substitute for the commodity,


uctuates randomly.1 As our analysis illustrates, price responses to both sources of uncer-

tainty are determined in part by endogenously determined supply responses. For example,

temporary demand shocks have little e�ect on prices when producers can costlessly in-

crease or decrease supply. Conversely, current prices will fail to respond to shocks that

a�ect the cost of the future substitute when the costs of altering current production are

su�ciently high. Hence, for the equilibrium price process to demonstrate the long-term

and short-term e�ects observed in the historical data, it is necessary to consider a setting

where producers can alter production at a cost that is signi�cant but not prohibitive.

Our model extends existing general equilibrium models that have appeared in both the

�nance and economics literature. The model is particularly close in spirit to the Pindyck

[9] model, which adds uncertainty to the seminal Hotelling [5] model that describes how

the prices of exhaustible resources evolve through time. It is also related to the more recent

work of Litzenberger and Rabinowitz [8], who argue that because the option to wait has

value in an uncertain environment, resources will be extracted more slowly and prices will

appreciate less rapidly than they would in the Hotelling certainty model. In contrast to

the Pindyck [9] and Litzenberger and Rabinowitz [8] models, the endogenous price process

that arises in our model exhibits mean reversion, which is consistent with the empirical

data discussed by Schwartz [13] and others2. Moreover, our model is consistent with the

1For example, in an application to oil prices one might consider the substitute as tar sands, which

cannot be pro�tably extracted at current prices but are likely to be exploited at future dates when the

supply of conventional reserves are exhausted.
2In our model, as in the Schwartz model, the volatility of futures prices decreases with the term

to maturity, indicating the presence of short-run and long-run components in the price process. This

phenomenon is sometimes referred to as the Samuelson e�ect [12]. As we point out below, our model

will di�er from the Schwartz model in the exact speci�cation of the price dynamics. Other papers have

examined how inventory e�ects the level of mean reversion in exogenous supply shocks (Deaton and

Laroque[3], Routledge, Seppi and Spatt[11]). As will be clear later, adding inventory to our model is not

conceptually di�cult but would be computationally intensive. We suspect that if we were to add storage

to our model it would reduce the e�ects of mean reversion currently generated by our model.
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observation that discounted futures prices may be both above and below the current spot

price (i.e. futures curves can be in weak contango or backwardation)3. As will become

clear, these results are not simply due to the stochastic nature of the exogenous state

variables but arise endogenously from the assumed frictions associated with the supply

responses.

Our model generates insights about the evolution of natural resource prices that can

potentially have important implications on the valuation and hedging of long dated �-

nancial or real options. In particular, although the endogenous price process generated

by our model is qualitatively similar to the price process assumed by Schwartz [13], the

functional form of the drift is, in general, non-linear and generates equilibrium price paths

with less extreme realizations than would be generated by Schwartz's model. As a result,

options, whose payo�s are especially sensitive to these extreme realizations, are gener-

ally less valuable in our general equilibrium setting where the extreme realizations are

observed less frequently.

The format of the paper is as follows. In the next section, we specify the assumptions of

the model and de�ne the equilibrium. In Section 3 we present an example which is useful

for developing intuition regarding the economics underlying our full model. Implications

of the equilibrium model for futures prices, future price volatilities and production decision

are presented in Section 4. Finally Section 5, compares option prices from our model to

those of Schwartz [13].

3If futures prices are below the current spot price, the futures curve is said to be backwardated. Litzen-

berger and Rabinowitz [8] make the distinction between weak and strong backwardation. If discounted

futures prices are below the spot price, they say the futures curve is weakly backwardated. Contango is

the opposite of backwardation.
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2. Assumptions and Equilibrium

In this section we present the assumptions underlying the model and the de�nition of the

equilibrium. A brief summary of the overall setup will motivate the rationale behind the

detailed assumptions which follow.

The model examines a risk-neutral economy with a �nite reserve of a commodity that

is owned by each of a continuum of small, potentially heterogeneous producers. Producers

optimally extract the commodity in the face of uncertainty regarding the economy wide

demand. In addition, there is an alternative source of supply whose marginal extraction

cost is known and stochastic. If producers increase production rates beyond what they

have been producing in the recent past, they incur a cost that is proportional to the

di�erence between their new production rate and the lagged production rate. This cost

is meant to capture the costs associated with developing reserves.

2.1. Reserves. The economy is de�ned in continuous time with an in�nite horizon.

Instantaneous borrowing and lending is possible at a constant interest rate r. There is

a �nite reserve of a commodity, R0, owned by a continuum of price-taking producers

and an inexhaustible supply of a substitute good. The cost of extraction is assumed to

be constant across time, but may di�er by producer. In equilibrium low cost producers

extract their reserves �rst, so the unit cost of extraction may be of an arbitrary form,

C(Rt), but will increase monotonically as reserves are depleted.4

The dynamics of the reserve process, which de�nes how the reserves are depleted over

time, can be expressed as:

dRt = �qtdt (1)

4Pindyck[9] uses this speci�cation of reserves in his model.
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where qt is the production process and R(0) = R0. Note that there is no exogenous uncer-

tainty in this process. However, the reserves process is random whenever the production

process is stochastic.

The production process is de�ned only so long as reserves exist. Given a production

policy, the time to exhaustion of the reserves is de�ned by the following stopping time:

R0 =

Z �

0

qtdt: (2)

The planning horizon de�ned by this stopping time may or may not be �nite.

2.2. Uncertainty. The (inverse) demand function for the commodity is assumed to

be of the form, pt = f(qt; yt). The parameter yt characterizes inter-temporal demand

shocks that arrive according to the process:

dy

y
= �y(y)dt+ �y(y)dzy (3)

We will be focusing on the case where this process is mean-reverting with a constant

di�usion, so that �(y) = �y(�y � ln(y)) and �(y) = �y.

We assume that a substitute for the commodity exists with e�ectively in�nite reserves.

The substitute is not currently produced because of excessive marginal extraction costs,

St. However, technological innovations arrive stochastically and a�ect this cost:

ds

s
= �s(s)dt+ �s(s)dzs: (4)

We focus on the case where this process is a geometric brownian motion with constant

drift, �s(s) = �s.
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The substitute commodity essentially caps demand at its marginal cost. Thus, the

e�ective market demand function is of the form:

p(qt; yt; St) = min(st;
yt

qt
) (5)

where qt is the current amount produced from conventional reserves.

2.3. De�nition of Equilibrium. Producers, who are assumed to be price-takers,

make production decisions that maximize the market value of their reserves, net of the

expected costs of extraction. Note that, since the market value of reserves is a function

of the equilibrium price, optimal production decisions and market clearing prices must be

determined simultaneously. In equilibrium, at each point in time and in each state, pro-

ducers correctly conjecture the future evolution of prices and incorporate this information

into their production decision.

In addition to marginal extraction costs that depend on the level of reserves, C(R),

we assume that producers incur a cost whenever production rates increase. Although the

study of more general setup costs is possible, we assume that this cost is proportional

to the magnitude of the increase of the optimal production over the existing production

rate:

f(qt; qt�) = 
(qt � qt�)
+ (6)

where 
 is a constant, qt and qt� are the chosen and the existing production rates respec-

tively. As mentioned at the beginning of this section, the form of this cost function is

meant to capture the cost of developing new reserves in a reduced form.

To solve for equilibrium prices we consider the dual problem of a Social Planner who

maximizes discounted expected consumer surplus in excess of producer surplus. More
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speci�cally, at a given point in time this social surplus, SS, is de�ned as:

SS(qt; yt; st; Rt; qt�) =

Z qt

0

p(q; y; s)dq � C(R)qt � f(qt; qt�) (7)

The social planner chooses production rates to maximize the discounted expected value

of the following expression:

V (Rt; yt; st; qt�) = max
qt

Et

Z
1

t

e
�r(s�t)

SS(qs; ys; ss; Rs; qs�)ds (8)

subject to

Z �

t

qsds = R a.s (9)

where � is a stopping time indicating the date at which reserves are fully depleted.

Under conditions outlined in Dixit and Pindyck [4], the solution to this problem will coin-

cide with production policies generated within a competitive equilibrium. The advantage

of casting the problem in terms of maximizing social welfare is that traditional dynamic

programming techniques can be applied to solve the problem numerically. Once optimal

production policies are determined, equilibrium prices are determined, state-by-state, by

the market clearing condition implied by the demand curve.

3. A Simple Example

This section considers a simpli�ed version of our model that can be solved analytically.

The intuition developed from this example is helpful for understanding the more general

model, which must be solved numerically.

We consider the following simpli�ed demand process, which makes closed form solu-



An Equilibrium Analysis of Exhaustible Resource Investments 9

tions possible:

pt(qt) =
y + �t

qt
(10)

where qt is the amount produced, y is a constant and the �t are positive IID shocks.

Clearly, demand shocks are temporary in this setting and we can interpret this sequence

of demands as being the limiting case for the class of mean-reverting shocks.

The timing of the information and decisions is as follows. At the beginning of each

decision epoch, t, the current level of reserves is known to be Rt. Producers observe a

shock to the demand curve �t and make their optimal production decisions. The resulting

market clearing price is given by pt = pt(qt). Immediately after the production decisions

have been made, the level of reserves drops to Rt+1 = Rt � qt.

We �rst provide, a closed-form solution for the case in which there are no extraction

costs, no costs associated with altering production rates and no substitute commodity.

We then characterize the solution in a more general setting that includes setup costs.

Although we cannot provide a closed form solution for the equilibrium in this latter case,

we describe the form of the optionality introduced by the setup costs and show how it

modi�es the optimal response to demand and supply shocks. Our results illustrate how,

in the absence of setup costs, a mean-reverting state variable generates prices that are

random walks. Hence, our results suggest that setup costs are a necessary feature of a

model where prices have temporary as well as permanent components.

3.1. The Equilibrium without Setup costs. In this section we solve for the equi-

librium in a simple case and analyze its properties. Recall that this simple case does not

consider extraction costs, costs for altering production rates or a substitute commodity.

We solve for the equilibrium by reformulating the dynamic optimization problem as the
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following static variational one:

max
qt

E

1X
t=0

SS (qt) (11)

subject to
1X
t=0

qt = R0 a.s. (12)

Proposition 1 characterizes the equilibrium price dynamics in this simpli�ed case.

Proposition 1. Discounted prices in a competitive equilibrium are martingales. Thus,

for s > t

e
�rt

pt = Et(e
�r(s�t)

ps): (13)

Moreover, the price of the commodity at an arbitrary time is a function of two random

state variables, �t and Rt:

pt =
ay + �t

Rt

(14)

where a = 1+r
r
.

Notice that the above implies that the discounted expected value of the future spot

price is the current spot price. Thus, at every point in time prices are expected to rise

at the riskless interest rate (i.e. pt = Et

�
e
�r(s�t)

ps

�
for s > t), which suggests that a

natural extension of the standard Hotelling [5] result holds in this example. This result

is also noted in Pindyck [9] as would be expected given that our example is a special case

of his model. (The simpli�cations allows us to examine the behavior of the volatility of

the price process.)
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Note also that as long as we are in a setting where reserves are never exhausted, which

is the case for this example, the forward curve will be de�ned by5:

ft;s � Et(ps) = e
r(s�t)

pt: (15)

This is consistent with a result in on the instantaneous drift of the resource price. Un-

certainty alone does not necessarily create the backwardation result in Litzenberger and

Rabinowitz [8].

Another interesting consequence of the supply responses is that they turn temporary

demand shocks into permanent price shocks. We can see this using the fact that the spot

price and forward prices are related by Equation (15) and thus shocks to next period's

spot price are attenuated and transmitted to all forward prices. More precisely, since one

step ahead forward prices are directly proportional to next period's spot price, shocks to

the spot price are transmitted throughout the entire forward curve.

With this solution at hand, it is easy to characterize the variance of both spot and

forward prices. These results are recorded in Proposition 2.

Proposition 2. At any point in time the conditional variance of next period's spot price

is given by:

V art(pt+1) =
V art(�t+1)

R2
t+1

: (16)

and we can calculate the variance of the logarithm of the future spot price as:

V art (log pt+s) = A+ (s� t)�2� (17)

5In a setting where reserves may be depleted in �nite time the instantaneous change in discounted

prices will be a martingale until the reserves are depleted Routledge, Seppi and Spatt [11] carefully analyze

forward curves in a related setting where inventories may be exhausted. In this case there is no closed

form solution for the forward curve.
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where A and �� are constants.

Remember that Rt+1 = Rt� qt is in the information set at time t. Thus, the �rst part

of the proposition makes it clear that the e�ect of a demand shock is greatly attenuated

by supply responses. To see this, consider what would happen in the following period

were producers not to alter their production from the current level. In this case, the

variance of the next period price would be V ar(�t+1)=q
2
t which is clearly higher since

current production is much lower than the total remaining reserves.

In addition to their dampening e�ect, Proposition 2 illustrates a second implication

of the producer's supply responses. The variance of the log of the future spot price is

linear in the holding period. This fact has two empirical implications. First, variance

ratio tests should indicate that log prices follow a random walk. Second, the implied

volatilities of options on this commodity's forward prices should be constant. The latter

implication illustrates that the endogenous supply responses transform a mean reverting

state variable into a random walk. It is also interesting to note that at long horizons the

Black [1] model of option pricing should become exact, since at long horizons the spot

price is lognormally distributed.

3.2. The Behavior of Prices with In�nite Setup Costs. When setup costs are

in�nite, it can never be optimal to increase production.6 It is instructive to consider the

behavior of prices under a deterministic policy where the quantity produced decreases at

the rate of interest.

Proposition 3. Consider the following deterministic production policy:

qt = e
�rt

q0

6In order to focus on a non-trivial case, we assume that initial production can be chosen costlessly.



An Equilibrium Analysis of Exhaustible Resource Investments 13

where q0 is chosen so that R0 = q0

P
1

t=0 e
�rt

: Under this policy, the forward curve slopes

upward at the rate of interest:

E(pt) = e
rt y

q0

for all t > 0: Moreover, spot prices may be temporarily above or below Y
qt

implying that

forward curves may be in contango or backwardation. Finally, the term structure of

volatility is declining and constant.

The proof follows immediately from the de�nitions of forward prices and the term

structure of volatility. We will see in the next section that this case, which is the po-

lar opposite of the case considered in the previous subsection, provides an approximate

description of prices when setup costs are high.

3.3. The Equilibrium with Setup Costs. It is clear from the simple case discussed

above, that if equilibrium prices are to have any temporary components, frictions must be

introduced into the model. To induce temporary components, we add a cost associated

with increasing production rates. The modi�ed objective function, which includes a cost

proportional to the change in the production rate that is incurred is given below:

max
qt

E

"
1X
t=0

SS(qt)�

1X
t=0


(qt � qt�1)
+

#
(18)

subject to
1X
t=0

qt = R0 a.s

The additional cost greatly complicates the analysis of the problem making a closed form

solution impossible. We will focus here only on the form of the optimal production policy

and indicate why closed form solutions in this case are not possible.
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Proposition 4. At any time t.the optimal production policy, qt,must satisfy one of two

�rst order conditions

e
�rt y + "t

qt
+ e

�rt
Bt = kt (19)

e
�rt y + "t

qt
� 
 + e

�rt
Bt = kt (20)

here Bt is a binary option with a payo� 
e
�rif qt+1 > qt and kt is a constant. Moreover,

there is a range of demand shocks where there will be no supply response.

The �rst order conditions to this problem depend on whether or not producers increase

their production rates in the current period. First, if the current demand shock is low, so

that producers will want to decrease production, Equation (19) must be satis�ed. This

�rst-order condition is in e�ect if the current decision is to decrease the rate of production

in the current period. The value of this option is a function of the current production

choice and if the current production rate is decreased its value increases. Therefore a

decrease in production will cause an increase in the left hand side of the Equation.

On the other hand, if the current demand shock is high then producers will want to

increase production which implies that Equation (20) must be satis�ed. In this case we

need to consider the e�ect of an increase in the production rate on the binary option

whose price is Bt. As current production increases, its value falls. In addition, production

increases cause the current spot price to fall. Thus, increasing production causes the left

hand side of the equation to decrease.

As shown in the Appendix, there is an intermediate range of demand shocks for which

there will be no supply response. This implication is illustrated in Figure 1 which plots

the above �rst-order conditions. In order to make the �gure easier to interpret, the
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dependence of kt on the level of the demand shock is ignored.7 The current production

rate is determined by the intersection of the equations for the �rst-order condition and

the current level of kt. As illustrated, in very high demand states the production rate

increases and in very low demand states the production falls.8 However, there is a range of

intermediate shocks for which production will remain unchanged. The size of this region

is proportional to 
, the proportional cost of increasing the production rate.

The form of the optimal production policy has important implications for the commod-

ity price process. Notably, if the cost of increasing production is suitably high, commodity

prices will inherit some of the temporary nature of the demand shocks. In addition, over

long horizons there will be some impact from the endogenous supply responses. Therefore,

in this setting we would expect to see both permanent and temporary components in the

commodity's price.

There is little more we can say about the optimal solution to the Social Planner's

problem in this setting without characterizing the solution to this problem numerically.

No analytic solution exists for either the Lagrange multiplier process or for the value of the

binary option that appears in the �rst-order conditions. In the next section we generalize

this example, solve the problem numerically and characterize the interesting aspects of

the price process.

4. The Numerical Solution to the General Model

We now move to the solution of the more general model introduced in Section 2. As

indicated above, in order to proceed with the analysis we must apply computational

techniques to solve the model numerically. This section begins with a brief discussion of

7It is possible to show that � is less sensitive to the demand shock than is the level of demand.
8i.e. �t intersects the \high demand" and \low demand" curves to the right and left, respectively, of

the lagged production level.
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the solution methodology and then moves on to study the behavior of the model under

various parameterizations.

4.1. The Computational Technique. The equilibrium is characterized by the solu-

tion to the constrained social planner's problem de�ned by equation (8). This problem is

conceptually straightforward to solve using the standard recursive techniques of dynamic

programming. For example, given an initial estimate for the value function in a given

state, V0(R; y; s; q�), one can apply value iteration techniques in order to converge to the

�xed point that describes the solution as well as the production policy associated with

the optimum (see, for example, Puterman [10]). Given the optimal production policy, it

is then possible to determine equilibrium prices as a function of the state variables, as

well as to describe the equilibrium price dynamics, by working with the transition density

of the resulting Markov chain.

The problem with solving for the equilibrium arises for practical reasons. Typically,

the �rst step in solving these types of dynamic problems numerically is to form a discrete

approximation to the continuous state space (see, for exapmle, Kushner and Dupuis [7]).

This gives rise to a problem known in the numerical methods literature as the \Curse of

Dimensionality": as the dimensionality of the state space increases, the number of points

in the discrete approximation to the state space increases geometrically. The problem

we are studying here has four state variables, (R; y; s; q�), and one continuous choice

variable, the production rate. Thus, the computational and storage requirements of the

problem are considerable. We deal with this issue by applying numerical algorithms that

can e�ciently exploit the structure of the problem.
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4.2. Two Benchmark Examples. In this subsection we examine the behavior of the

numeric solution to the general model under two extreme assumptions about the startup

costs. First, we set these costs to zero and analyze the model's output in light of the

results from Section 3. Second, we analyze the model when setup costs are very high,

in which case results should be similar to those described in Proposition 3. A detailed

analysis of these particular parameterizations will illustrate the basic forces underlying

the fully speci�ed general equilibrium.

Relevant characteristics of the equilibrium without startup costs are illustrated in

Figure 2. In the leftmost column the conditional behavior of future prices is examined.

The forward curve is the solid line in the top panel. Consistent with the analytic results

in Section 3, forward prices grow from the spot price at the rate of interest. This is true

for all levels of the state variables; thus, temporary demand shocks cause parallel shifts

in the entire forward curve. Two measures of the volatility of future prices are examined

in the bottom panels. The standard deviation of future log prices is proportional to

the square root of time and, therefore, the term-structure of volatility is 
at.9 Notice

that this occurs in the model despite the fact that demand shocks are temporary and is

a direct consequence of the costless supply responses. Also note that supply responses

considerably dampen demand shocks, resulting in price volatilities that are an order of

magnitude smaller than demand volatility.

Two characteristics of the optimal supply policy are apparent from the �gure and

are illustrated in the rightmost column. First, average production decreases with time,

consistent with the fact that prices are expected to increase. Second, quantities are about

9We de�ne the term-structure of volatility for a stochastic process, xt, as the relationship betweenq
var(xt)

t
and t:
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as volatile as demand shocks, indicating that all changes in demand are matched by

changes in the quantity supplied.

With high startup costs the behavior of the model is very di�erent as is illustrated in

Figure 3. In contrast to the case just described, the forward curve may be in backwardation

or in contango (i.e. the forward prices do not increase at the rate of interest). High

realizations of demand are associated with steeply backwardated forward curves as a result

of producer's (optimal) reluctance to increase production. Evidence of such reluctance can

also be seen in panels (g) and (i) where we see that the volatility of the supply response

is low and the volatility of the spot price is high. Note also that the resulting equilibrium

spot price volatilities are very similar to those of the demand shock.

The dynamics of the forward curves in the two benchmark examples are compared in

Figure 4. First, we choose two distinct points in time, each with an associated forward

curve. The relationship between the shape of the curves in the two panels is of interest.

In panel (a) we see that the two forward curves are parallel. This illustrates the fact

that temporary shocks have a equal e�ect on all future prices when supply responses are

costless. On the other hand, when supply responses are costly, temporary shocks have

a larger impact on short-term prices than on long term prices; hence, pairs of forward

curves are not necessarily parallel (see panel (c)).

We can further clarify the dynamics of the forward curves if we compare the spot price

process to the 2-year forward price process. When startup costs are zero, the forward price

process looks very much like the spot price process. In contrast, when startup costs are

high the spot price process is considerably more volatile than the forward price process,

indicating that prices have a mean reverting tendency. Hence, we see that setup costs are

necessary to generate mean reversion in the exhaustible resource price process.
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4.3. The Base Case Parameterization. In this subsection we present the solution

to the general model under a parameterization that we refer to as the base case. Parameter

values are itemized in Table 1. The startup costs for this case are between those in the

two polar cases discussed above. Other inputs to the model are unchanged.

Under the base case parameterization, equilibrium price dynamics in our economy

are qualitatively similar to those described by the partial equilibrium model of Schwartz

and Smith [14]10. A brief description of their speci�cation will facilitate comparison to

our endogenous prices. They assume that the log of the spot price, Xt, is composed of

a short-run Ornstein-Uhlenbeck deviation process, �t, and a long-run Brownian motion

process, �t. More precisely:

Xt = �t + �t

d�t = ���tdt+ ��dz�

d�t = ��dt+ ��dz�

With this speci�cation, forward prices are given by the following equation:11

ln(Ft;t+s) = �t + e
��s

�t + ��s+
1

2

"
(1� e

�2�s)
�
2
�

2�
+ �

2
�s+ 2(1� e

��s)
�������

�

#

If �t is positive (negative) forward curves will be in weak backwardation (contango). This

e�ect diminishes exponentially with time and the long end of the forward curve slopes

upward at the rate �� .

10Schwartz and Smith show how their model is similar to those of Gibson and Schwartz and Schwartz.
11We will ignore the market prices of risk for the two factors as they do not a�ect the shape of the

forward curves. See Schwartz and Smith for the fully speci�ed forward prices.
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We will also be interested in their term structure of volatility which is given by:

var(ln(pt+s))

s
= �

2
� +

1� e
�2�s

s

�
2
�

2�
+ 2

1� e
��s

s

�������

�
(21)

Their term structure of volatility is independent of the level of the state variables and

declines over time to a constant level �2� .

Like the price processes described in Schwartz and Smith, the endogenous price process

generated by our model has both a short-run mean reverting component, and a long-

run growth component. Our forward curves may be in backwardation or in contango,

depending on the level of the demand shock. In addition, the term structure of volatility

is downward sloping.

Observation 1. [Forward Curves] The forward curves in the economy can be in back-

wardation or in contango (see Figure 5).

The forward curves are in weak backwardation (contango) depending on whether the

demand shock process is below (above) its long-run mean. This e�ect is a direct result of

the fact that supply responses are costly.

Observation 2. [Term Structure of Volatility] The term structure of volatility is

downward sloping (see Figure 5).

The reason for the increased short run volatility is that current supply responses are

constrained and hence exogenous shocks cause increased volatility at the short end of

the curve. However, the long end of the curve exhibits lower volatility since the e�ect of

exogenous shocks is dampened by producers supply responses.12

12It is well known that some markets may have an increasing or humped term structure of volatility.
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4.4. Comparative Static Analysis. In this subsection the sensitivity of the model's

output to variation in the input parameters is examined. In particular, changes in the

level of reserves, the interest rate and volatility of the two sources of uncertainty will be

discussed.

We begin by studying the e�ect of reserve levels.

Observation 3. [Reserve Levels] All forward prices rise as reserves are depleted but

the e�ect on the term structure of volatility is small (see Figure 6).

Intuitively, as reserves are depleted we would expect to see the level of prices increase.

This is indeed the case as shown in Figure 6 where panels (a) and (b) show forward curves

at high and low reserve levels. Notice that prices at both the short and long end of the

forward curve are higher when reserves are low. It is interesting to note that the term

structure of volatility remains virtually unchanged as reserves decrease. This is again

consistent with the behavior of volatilities in the Schwartz and Smith model as re
ected

in Equation 21. As reserves approach exhaustion, however, the price process will be more

dependent on the cost process for the alternative technology and we would expect to see

the term structure of volatility change.

Observation 4. [Interest Rates] A decrease in the level of the interest rate increases

prices and decreases the slope of the forward curves in the long run (see Figure 7).

This observation extends the standard Hotelling result on the slope of the forward

curve. The reason for the increase in prices is clear if one considers a two period model.

These aberrations have traditionally been attributed to seasonality in the arrival of information. Alterna-

tively, Hong [6] has suggested that these violations of the Samuelson e�ect are a result of heterogeneity in

the informational endowments of agents in the economy. We conjecture that it would be straightforward

to allow for such violations in our model by specifying start up costs as a function of current production

levels. However, we retain our current speci�cation, as such violations are rare in the applications we

have in mind.
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In the last period, all reserves will be produced. Due to the fact that reserves are limited,

this will result in a \scarcity rent" for the resource owners. The present value of this

scarcity rent governs the �rst period production choice. Obviously, if interest rates fall,

the bene�t of holding reserves for another period rises. Thus, fewer producers extract the

resource in the �rst period, increasing the current price.

Observation 5. [Demand Shock Volatility] An increase in demand volatility has no

e�ect on forward prices and causes price volatilities to rise. (See Figure 8.)

In the simple example developed in Section 3 equation (14) shows that the spot price

of the resource does not depend on the volatility of the demand shock. This is also the

case in the more general setting. Comparison of panels (a) and (b) show that forward

prices are insensitive to a change in the demand volatility from 15% to 20% per year.

There is, however, a direct and intuitive e�ect on the term structure of volatility as is

illustrated in panels (c) and (d).

5. Implications for Option Pricing

As described in the previous section, the commodity price process generated by the model

has two components: a short-run mean reverting component, and a long-run growth

component. Schwartz [13] and Schwartz and Smith [14] examine the ability of an empirical

model with these characteristics to explain futures prices for several commodities. In a

separate paper, Schwartz and Miltersen [15] describe how to use such a two-factor model

to price options on commodities. In this section, we examine the ability of the Schwartz

and Smith two-factor model to price options on commodities whose prices are generated

by our model.

Schwartz [13] describes how to employ the Kalman Filter to estimate the parameters in
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his model using time-series data on a group of forward prices. Once the model parameters

are identi�ed it is then possible to price a broad range of �nancial instruments, including

European options on the underlying commodity. Although the commodity prices from

our model exhibit a two-factor behavior similar to that of Schwartz and Smith [14], the

functional form describing the behavior of the factors is di�erent. The endogenous supply

response imposes a non-linear drift on the short-run component; when large demand

shocks arrive, producers optimally increase (or decrease) production. However, because

adjusting production is costly, small demand shocks do not result in large supply responses.

Intuitively, the drift in the short-run component is \locally" linear but overall non-linear,

the result being that large temporary shocks are signi�cantly dampened. The important

e�ect from the point of view of pricing options is that the distribution of prices from

our model has truncated tails relative to those predicted by the Schwartz and Smith [14]

model that is calibrated to a time-series of data generated by our model. We demonstrate

this e�ect under the base-case parameterization described in Table 1.

We perform a straightforward experiment to analyze the ability of the Schwartz and

Smith two factor model to predict option prices in our setting. First, a time series of

forward curves are simulated. We assume that the sampling interval is weekly, that

the time series observations are available for the last year and that monthly contracts

extending out two years are observable. We then use this data to calibrate the two factor

model. Option prices implied by the calibrated Schwartz and Smith model are then

calculated and compared to those generated by our equilibrium model.

In general, the calibrated two factor model overvalues options with maturities ranging

from one to �ve years. Table 2 summarizes this result. The magnitude of the overpricing

is potentially signi�cant for large scale investment projects with a real-options component.
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Further research is required to determine a feasible and robust procedure to deal with this

bias.

6. Conclusion

In this paper, we have developed a general equilibrium model of exhaustible resource

prices and extend the existing literature in a number of directions. Using a simple example

we show that uncertainty alone cannot explain the backwardation observed in resource

markets. In fact, for resources with 
exible production processes forward prices will

rise at the rate of interest and temporary demand shocks will be uniformly transmitted

throughout the forward curve. In addition, we show that in this context the term structure

of volatility will will be low and constant. In light of these results we conclude that, in

the absence of frictions, the equilibrium price process will not exhibit the rich behaviour

observed for commodities such as oil and gas. Therefore, we incorporate an extra cost

associated with developing new reserves. Although introducing this extra cost signi�cantly

complicates the analysis and necessitates a numerical solution, we are able to generate

endogenous price processes that can exhibit both backwardation of the forward curve and

mean reversion in the spot price. We examine the implications of our model for real

investment decisions. The equilibrium price process has truncated tails relative to the

price distribution implied by the Schwartz and Smith [14] model. As a result we conclude

that options whose payo�s are sensitive to extreme realizations are less valuable in our

equilibrium setting where the extreme realizations occur less frequently than their model

would predict.
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A. Appendix: Proofs

Proof of Proposition 1: For the simpli�ed demand process pt =
y+"t
qt

where "t > �y,

"t � iid and E("t = 0): Consider the objective function equivalent to Equation 11:

max
qt

E

1X
t=0

e
�rt

ptqt

subject to
1X
t=0

qt = R0 a.s.

or equivalently,

max
qt

X
!

X
t

e
�rt

pt (!) qt (!)� (!)� � (!)

"X
t

qt (!)�R0

#

where � (!) is the Lagrange multiplier process and � (!) is the probability of a path. This

optimization problem implies two �rst order conditions:

e
�rt

pt (!)� (!) = � (!) (A.1a)

1X
t=0

qt (!) = R0 8 t; ! (A.1b)

Now along any path !, de�ne b� (!) � �(!)

�(!)
and thus:

b� (!) = e
�rt

pt (!)
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Substitute in qt =
y+"t
pt

= y+"tb�(!)ert into Equation A.1b and obtain

b� (!) = P
1

t=0(y + "t)e
�rt

R0

8 !

Let S be the set of ! such that such that Rt = R; "t = " and pt = p and use Equation

A.1a to sum over S: X
!"S

e
�rt

pt (!)� (!) =
X
!"S

� (!)

which implies,

e
�rt

pt =

P
!"S

� (!)P
!"S

� (!)

=

P
!"S

� (!) b� (!)P
!"S

� (!)

=
X
!"S

b� (!) �� � (!)P
! " S

� (!)

�
= Et

hb�j R; "; P i

However, recall that b� (!) = e
�rt

pt (!). Thus discounted prices are martingales. To

obtain the second part of the proposition note that:

E0

�b�� = E0

 
1X
t=0

e
�rt y + "t

R0

!

= "0

 
1X
t=0

e
�rt y

R0

!

=
ay + "0

R0
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and similarly for any time t;

Et

�b�� = e
�rt

�
ay + "t

Rt

�

and hence,

pt =
ay + "t

Rt

Q:E:D:

Proof of Proposition 2: Given the expression for price pt =
ay+"t
Rt

,we clarify the

form of the reserves process, Rt :

R1 = R0 � q0

= R0 �
y + "0

p0

= R0 �
y + "0
ay+"0
R0

= R0

�
1�

y + "0

ay + "0

�
=

(a� 1) yR0

ay + "0

Extending this logic by a simple induction argument, it is apparent that Rt = R0

tQ
i=1

�t,

where the �t are IID shocks. Substituting for Rt in the expression for prices we obtain:

pt =
ay + "t

Rt

=
ay + "t

R0

tQ
i=1

�t
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Hence, the term structure of volatility is easily obtained from:

var (logPt+s) = var

 
log (ay + "t)�

sX
i=t

log �i � logR0

!
= A+ (s� t)�2�

Q:E:D:

Proof of Proposition4 : Consider the objective function equivalent to Equation :

max
qt

E

1X
t=0

e
�rt

ptqt � 
(qt � qt�1)
+

subject to
1X
t=0

qt = R0 a.s.

or equivalently,

max
qt

X
!

X
t

e
�rt
�
pt (!) qt (!)� 
(qt � qt�1)

+
�
� (!)� � (!)

"X
t

qt (!)�R0

#

where � (!) is the Lagrange multiplier process and � (!) is the probability of a path.

However, for some path ! and any time t, the equilibrium solution can be obtained from

a consideration of the following simpli�ed equation where we suppress the ! dependence

for clarity:

e
�rt
�
ptqt � 
(qt � qt�1)

+
�
� (!) + e

�r(t+1)
�
pt+1qt+1 � 
(qt+1 � qt)

+
�
� (!)� � (!) qt
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The setup costs complicate the problem resulting in the following �rst order conditions:

h
e
�rt

pt � 
e
�rt1(qt >qt�1) + 
e

�r(t+1)1(qt+1>qt)

i
� (!) = � (!) (A.3)

1X
t=0

qt (!) = R0 8 t; ! (24)

Where, 1(qt >qt�1) is the indicator function on the set de�ned in the subscript. Now as

before de�ne S as the set of ! such that such that Rt = R; "t = " and pt = p and use

Equation A.3a to sum over S:

X
!"S

h
e
�rt

pt � 
e
�rt1(qt >qt�1) + 
e

�r(t+1)1(qt+1>qt)

i
� (!) =

X
!"S

� (!)

Consider �rst the set of !, such that qt < qt�1which implies:

e
�rt

pt

X
!"S

� (!) +
X
!"S

� (!) 
e�r(t+1)1(qt+1>qt) =
X
!"S

� (!)

e
�rt

pt +
e
�rt
P

!"S
� (!) 
e�r1(qt+1>qt)P
!"S

� (!)
=

P
!"S

� (!) b� (!)P
!"S

� (!)

e
�rt

pt + e
�rt
X
!"S


e
�r1(qt+1>qt) �

�
� (!)P

! " S
� (!)

�
=

X
!"S

b� (!) �� � (!)P
! " S

� (!)

�
e
�rt

pt + e
�rt

Bt = Et

hb�j R; "; P i
e
�rt

pt + e
�rt

Bt = kt

Where Bt = Et

�

e
�r1(qt+1>qt)j R; "; P

�
, kt is a random variable.and 1(:) is the indicator

function. Note that Bt in this case can be interpreted as a binary option which pays

o� 
e
�r in those states ! when qt+1 (!) > qt (!) : Similarly for the set of !, such that
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qt > qt�1the following condition holds:

e
�rt

pt � 
 + e
�rt

Bt = kt

Recall that pt =
y+"t
qt

and hence the two conditions can be expresses as:

e
�rt y + "t

qt
+ e

�rt
Bt = kt (A.3a)

e
�rt y + "t

qt
� 
 + e

�rt
Bt = kt (A.3b)

Intuitively, these �rst order conditions illustrate that at time t the production, qt, is chosen

to satisfy the R.H.S.which is �xed. Note however that the choice of qt also in
uences the

value of the binary option Bt. However, increases in qt serve to decrease the L.H.S of

Equation A.3a. Thus, producers will optimally incur the added expense 
 and increase

production only when "t is su�ciently large. On the other hand, when "t is small producers

will decrease production in accordance with Equation A.3b. However, for intermediate

demand shocks, producers may not �nd it optimal to decrease production and yet the

demand shock may not be su�cient to incur the expense of increasing production. Thus

neither �rst order condition is satis�ed and production remains unchanged. This proves

the proposition
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Parameter Name Symbol Value

Risk-free interest rate r 0.05

Long-run average demand �y 3.69

Rate of mean reversion of demand �y 1.00

Volatility of demand �y 0.15

Drift of cap �S 0.00

Volatility of cap �S 0.05

Cost of increasing production 
 0.50

Extraction Cost C 0.00

Table 1: Parameter values for the base case.
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Option Price (in dollars) Overpricing

Time to Maturity (years) Equilibrium Calibration (in percent)

1 0.0498 0.0522 5

2 0.0476 0.0581 22

3 0.0594 0.0619 4

4 0.0698 0.0653 -6

5 0.0589 0.0685 16

Table 2: Comparison of option prices. This table compares the model's actual option

prices to the option prices generated by a calibration of the Schwartz and Smith [14]

model. The option prices from the calibrated model are, in general, higher than the

actual option prices.
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Figure 1: The �rst order conditions from the model with startup costs. The

presence of startup costs introduces a region in which production rates will not be changed.
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Figure 2: Summary output from the model with no startup costs. In the leftmost

column, conditional means and variances of the model's equilibrium prices are presented.

The middle and right columns give analogous results for the demand shock and optimal

supply response.
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Figure 3: Summary output from the model with high startup costs. In the

leftmost column, conditional means and variances of the model's equilibrium prices are

presented. The middle and right columns give analogous results for the demand shock

and optimal supply response.
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Figure 4: Dynamics of forward prices. On the left, forward curves from the model

with zero and high startup costs are presented. Panel (a) shows that without startup

costs forward curves at all dates are parallel. This is not the case when startup costs are

high as shown in panel (c). Simulated spot and 2-year forward prices are displayed on

the right. Panel (b) shows that without startup costs, spot prices and forward prices are

equally variable. With high startup costs the spot price is much more volatile than the

forward prices as shown in panel (d).
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Figure 5: Forward prices and the term structure of volatility: the base case.

The top panel presents two forward curves from the model under the base case parameter-

ization. Forward curves may be backwardated or in contango. The lower panel displays

the term structure of volatility for the base case. The magnitude of the volatility is low

and declines with time.
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Figure 6: Analysis of a change in the level of reserves. Panels (a) and (b) show that

when reserves drop forward prices rise. Panels (c) and (d) show that the term structure

of volatility is insensitive to the amount of reserves.
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Figure 7: Analysis of a change in the rate of interest. Panels (a) and (b) show that

when the interest rate decreases forward prices rise.
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Figure 8: Analysis of a change in the volatility of the demand shock. Panels (a)

and (b) show that forward prices do not change when the volatility of the demand shock

increases. Panels (c) and (d) show that higher demand shock volatilities result in higher

price volatilities.


