
Valuation of Irreversible Investments and Agency

Problems

J�ril M�land

February 24, 1999

Preliminary draft

Abstract

This article examines dynamic investment decisions when there is an agency
problem. A principal delegates the decision of an investment strategy of a
project to an agent. The agent has private information about the investment
cost, whereas the principal only knows the probability distribution of the cost.
The principal's problem is how to compensate the agent in order to optimize
the value of the principal's investment opportunity. Owing to asymmetric infor-
mation about the investment cost, it may be optimal for the principal to leave
the agent some \information rent". Optimal compensation function dependent
on the observable outcome from the investments are found.

1 Introduction

In the literature on real options, the option value resulting from the interac-
tion of uncertainty, exibility and (partly) irreversibility is recognized. The
uncertainty taken into account is mainly \symmetric" uncertainty, i.e., the un-
certainty in future income is common knowledge. However, in many situations
there is also asymmetric information. An example of such a situation is when
a manager (an agent) of an investment project has better information than the
owner of the investment possibility (the principal) about the investment costs,
and the manager also has diverging interests from those of the owner. The
situation is known from the principal-agent and the regulatory literature.

I sketch a model where a principal delegates the investment strategy of a
project to an agent. The agent has private information about the exact in-
vestment cost, whereas the principal only knows the probability distribution of
the cost. One reason for an owner of an investment possibility to delegate the
management of a project to an agent, may be that the management requires
expertise that the principal does not possess, or that is too costly for him to ob-
tain. In other cases it may be impossible for the principal to make the decisions
himself, but it may be possible for him to commit to a delegation contract. The
information asymmetry creates a situation where adverse selection may occur.
The agent is compensated according to a contract. The principal observes the
outcome from the investment project, and the contracted compensation is a
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function of this variable. The project may generate pro�t above capital cost.
Both the principal and the agent aim to maximize the value of the project. Ow-
ing to asymmetric information about the investment cost, it may be optimal
for the principal to leave the agent some \information rent".

The model applies to situations where the production from the project is
sold in perfect markets, whereas there are imperfections due to the costs of
projects.

An application of the model considered in this article, is the case where a
government owns some natural resources. Production of natural resources in-
volves large and (partly) irreversible investments, and uncertainty due to future
output prices. A feature of production of natural resources is that uncertainty
in output prices usually is common knowledge, whereas investment and produc-
tion costs may be private information for those investing in and operating such
projects. To exploit the resources, the government delegates the production of
the resources to companies. The companies may have incentives to signal higher
cost than the true cost in order to obtain a larger pro�t within the companies.
The model presented in this paper gives the government a method of how to
�nd the most e�cient contract between the government and the companies to
which it gives the right to invest in production of natural resources. The con-
tract can be in the form where the companies are paid a compensation for the
management of the resources, or it can be in the form of a taxation system.

Shareholders versus corporate management is another example where the
model may apply. The problem is then how to compensate the management
given their private information of the cost of the investment strategy. As in the
example above, the management may want to signal higher costs than the true
ones. An alternative interpretation is that the companies may have incentives to
maximize slack in the organization, thereby increasing the realized investment
cost compared to the necessary cost.

A standard approach for solving adverse selection problems is to use the
revelation principle, see e.g. Baron and Myerson [2] and La�ont and Tirole [9].
Under a revelation mechanism, the agent reports his private information to the
principal, and the decision in question is then made according to a decision rule
to which the principal has committed himself. Loosely speaking, the revelation
principle makes use of the fact that for every contract between the principal
and the agent that leads the agent to lie, there is another contract with the
same outcome, but with no incentive for lying. This reduces the principal's
optimization problem to optimizing over the set of truthful mechanisms.

In the model the investment decision is delegated to the agent. Conse-
quently, the revelation principle does not apply directly here: there is no de-
cision to be made by the principal, and therefore the agent does not have to
report his private information. However, Melumad and Reichelstein [10] have
found that under certain conditions, the performance of an optimal revelation
mechanism can be replicated by a delegation scheme which does not involve
communication.

We know that in situations where the revelation principle is valid (i.e., where
we have costless communication and unlimited information), the performance
under delegated mechanism will never dominate a centralized mechanism. But,
as Melumad and Reichelstein [10] and [11] point out, the self-selection con-
straints may be so restrictive that no admissible contract dominates the optimal
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no-communication contract, even if communication is costless. They show that
when both the principal and the agent are risk-neutral, and the agent either
has perfect information, or the uncertainty can be spanned, communication has
no value. If we in addition assume that the delegated decision is observable,
delegated schemes perform equally well as communication-based centralization
schemes. This situation is valid in the presented model. Melumad and Reichel-
stein [10] also point out that delegation schemes may even gain a comparative
advantage to centralized schemes in situations where communication is costly.

Bjerksund and Stensland [3] have formulated an adverse selection model,
somewhat similar to the model described in this paper, where an owner of
some resource may exploit the resource in two ways: (i) Sell the resource in a
competitive spot market at a constant price, or (ii) ship the resource to an agent
for processing and sell the processed resource in a competitive market where the
price of the processed resource is stochastic. Bjerksund and Stensland assume
that the processing may be switched on and o� at no cost (i.e. they formulate a
\switching option", similar to Brennan and Schwartz [5]). In alternative (ii), the
owner of the resource (\the regulator") must compensate the agent for the cost
of processing the resource. The cost of processing is perfect, private information
to the agent, whereas the regulator knows the probability distribution of the
costs. The stochastic income process used in Bjerksund and Stensland [3] is
more general than the di�usion process presented in the model in this article.

The interaction between options and diverging incentives between a principal
and an agent is also analyzed in Antle, Bogetoft and Stark [1]. They show how
timing and incentive e�ects interact to a�ect investment strategies in a two-
period model. At each of the two points in time where investment is possible,
the manager (the agent) knows the investment cost, whereas the owner (the
principal) does not. Before the time of an investment possibility, neither the
owner nor the manager know the investment cost. However, they both agree
on the distribution of future costs. Antle et al. �nd that incentive e�ects, as
timing e�ects, lower the target costs. Incentive problems also have the e�ect
of pushing investment towards periods of lower uncertainty, i.e., the target cost
at time zero (today) may be increased by incentive e�ects, so much that the
overall probability of investment can increase with incentive problems.

The article is organized as follows: In section 2 the problem is formulated,
and model assumptions are given. In section 3 future cash ows in the model are
evaluated using the market-based valuation approach (assuming dynamically
complete markets) and the classical theory of di�usions. Section 4 presents the
principal's and the agent's optimization problems, and the revelation principle.
The optimal investment strategies are given in sections 5 and 6 for the cases
where the information about the investment cost is symmetric and asymmetric,
respectively. In section 7 the optimal compensation function is found. The
results are illustrated in section 8, using the uniform distribution for the invest-
ment cost, and the geometric Brownian motion for the income process. Section
9 concludes the article.

2 Model assumptions

An investor (a principal) has an opportunity to invest in a project. The in-
vestment decision of the project is undertaken by an agent, and the principal
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compensates the agent based on the output from the project. The output is
observable by both parties, whereas the agent has private information about the
investment cost. In order to keep a larger part of the pro�t from the project,
the agent has incentives to base his investment strategy on signaling a higher
investment cost than the true cost. Thus, the problem for the principal is how
to compensate the agent to maximize the value of the principal's investment
opportunity.

The project may generate monopoly rents. The principal aims to obtain
the pro�t from the project, and only compensate the agent with the necessary
investment cost. However, because of the agent's private information about the
cost, it may be optimal for the principal to leave the agent some \information
rent".

The agent has perfect knowledge of the true investment cost � of the project,
whereas the principal knows only the probability density, f(~�), of an assessed
stochastic cost ~�. The cumulative distribution is denoted by F (~�), and upper
and lower levels of the investment cost are � and �, respectively.

It is assumed that the option to invest is perpetual, and that the value
of the income stream from the project follows a stochastic process where the
uncertainty is common knowledge. The value of the income stream at time t is
denoted St. The stochastic process is de�ned by a complete, �ltered probability
space (
; fFtgt�0;F ; P ) where the �ltration satis�es the usual conditions (see
e.g. Borodin and Salminen [4], ch. I.3). Under the equivalent martingale
measure Q (see e.g. Du�e [7], ch. 6.H) the stochastic income process is given
by

dSt = (rSt � �(St))dt+ �(St)dwt; S0 � s; (1)

where r is a constant risk free rate, �(St) reduces the drift in the stochastic
process because of the convenience yield, and wt is a standard Brownian motion
with respect to the equivalent martingale measure. It is assumed that �(St) and
�(St) are continuous, and that 0 is an unattainable lower boundary for St. The
expectation operator Et[�] denotes the expectation, conditioned on the time t
information, with respect to the equivalent martingale measure Q.

The transfer function from the principal to the agent must be based on some
observable variable. In the model, it is assumed that the value of the income, s,
is observable. Also, recall that the information with respect to the process St is
assumed to be symmetric. To avoid the agent from behaving opportunistically,
the value of the compensation must not be paid before the time of investment.

The principal's time zero value of the project is

W (s;G(S�K )) = supG(S�K )E~�

n
E0

h
e�r�K (S�K �G(S�K ))

+
io

= supG(S�K )

R �
�
E0

h
e�r�K (S�K �G(S�K ))

+
i
f(~�)d~�:

The expectation with respect to the cost level � is denoted E~�. It is assumed
that the uncertainty in the investment cost is the same under the P and the Q
measure. �K is a stopping time with respect to the �ltration Ft. The stopping
time is a function of K, where K is the "cost" upon which the agent bases his
investment strategy. The signaled cost, K � K(~�), is higher than or equal to �,
since the agent pro�ts on signaling a higher cost than the true one. The exer-
cise value of income is denoted S�K , and G(S�K ) is the agent's compensation,
transferred at the investment time.
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The agent's value function may be formulated as

V (s;K; �) = sup
�K

E0

h
e�r�K (G(S�K )� �)

+
i
:

The pricing of the principal's and the agent's value functions are based on
the market valuation approach, i.e., it is assumed that the parties are well
diversi�ed in the capital market.

3 Valuation of future cash ows

Because of the strong Markov property and the time homogeneity of the prob-
lem, we know that the optimal stopping time �K will be of the form

�K = infft � 0jSt � Ŝ(K)g:

The \trigger value of income" Ŝ(K) is independent of time. Thus, we can
rewrite the principal's and the agent's value functions as, respectively,

W (s;G(S�K )) = sup
G(S�K )

Z �

�

E0[e
�r�K ]

�
Ŝ(K)�G(S�K )

�+
f(~�)d~�;

and,
V (s;K; �) = sup

S�K

E0[e
�r�K ] (G(S�K )� �)

+
;

where the expected value of the discount factor is written independently of the
value of the income stream and the compensation function. This independence
simpli�es the problem of �nding the optimal investment strategy, since we will
be able to optimize with respect to a \deterministic" trigger level Ŝ(K), instead
of the stochastic trigger S�K .

Using results from the classical theory of di�usions, the expected value of
the discount factor can be formulated as a function of the trigger level Ŝ(K),
and the time 0 value of the income, s (Borodin and Salminen [4], ch. II.10 and
Ito and McKean [8], sect. 4.6),

E0[e
�r�K ] =

(
�(s)

�(Ŝ(K))
if s < Ŝ(K)

1 if s � Ŝ(K):
(2)

De�ning u(s) = E0[e
�r�K ], the function �(�) is the strictly positive and

increasing, unique solution to the ordinary di�erential equation,

1

2
(�(s))2uss(s) + (rs� �(s))us(s)� ru(s) = 0; (3)

with boundary lim
s"Ŝ(K) u(s) = 1.

Thus, the principal's and the agent's value functions can be reformulated to
(where K � K(~�))

W (s;G(Ŝ(K)))

= supG(�)

( R �
�

�(s)

�(Ŝ(K))

�
Ŝ(K)�G(Ŝ(K))

�
f(~�)d~� if s < Ŝ(K)

s�G(s) if s � Ŝ(K);

(4)
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and

V (s;K; �) = sup
Ŝ(K)

(
�(s)

�(Ŝ(K))

�
G(Ŝ(K))� �

�
if s < Ŝ(K)

G(s)� � if s � Ŝ(K);
(5)

respectively. Note that the value functions now are functions of the "deter-
ministic" trigger level Ŝ(�) and the time zero value of the income process s,
only.

4 The optimization problems

The principal's problem is to optimize the value function given by equation
(4). Restrictions on the optimization problem are the agent's participation
constraint,

V (s;K; �) � 0 8K; � 2 [�; �]; (6)

and the agent's incentive compatibility constraint,

@V (s;K;�)
@K

= 0 8K; � 2 [�; �]: (7)

The participation constraint ensures that the agent does not reject the con-
tract, by letting the agent earn at least his reservation utility. Here it is assumed
that the reservation utility equals 0, and therefore the participation contract
must be non-negative for all �. Thus, the binding constraint is the case where
the agent has the highest cost level �.

The contract between the principal and the agent is incentive compatible
when the agent has no incentives to signal a higher cost than his true cost. The
constraint 7 ensures that this condition is satis�ed.

The incentive compatibility constraint corresponds to the agent's optimiza-
tion problem, which is evaluated in the subsection below.

4.1 The agent's optimization problem

The agent optimizes his value of the investment opportunity given by equation
(5) with respect to investment strategy Ŝ(K), and the signaled cost K(�). The
�rst-order condition with respect to the investment strategy is

@V (s;K;�)

@Ŝ(K)
= G

Ŝ
(Ŝ(K))�

�
Ŝ
(Ŝ(K))

�(Ŝ(K))

�
G(Ŝ(K))� �

�
= 0

8K; � 2 [�; �];

(8)

where G
Ŝ
(Ŝ(K)) and �

Ŝ
(Ŝ(K)) denote the �rst-order partial derivatives of G

and � respectively, with respect to Ŝ(K).
The agent's �rst-order condition with respect to the signaled cost K,

@V (s;K;�)
@K

= Ŝ0(K)
n
G
Ŝ
(Ŝ(K))�

�
Ŝ
(Ŝ(K))

�(Ŝ(K))

�
G(Ŝ(K))� �

�o
= 0

8K; � 2 [�; �];

(9)
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is equivalent to the �rst-order condition with respect to the investment strategy
Ŝ(K) in equation 8. The second-order condition must be non-positive,

@2V (s;K; �)

@K2

= �(s)

�(Ŝ(K))

�
2
�
�
Ŝ
(Ŝ(K))

�(Ŝ)

�2
(Ŝ0(K))2(G(Ŝ(K)� �)

�
�
Ŝ
(Ŝ(K))

�(Ŝ)

�
Ŝ00(K)(G(Ŝ(K))� �) + 2(Ŝ(K))2G

Ŝ
(Ŝ(K))

�
�
�
ŜŜ

(Ŝ(K))

�(Ŝ(K))
(Ŝ0(K))2(G(Ŝ(K)� �) +G

ŜŜ
(Ŝ(K))(Ŝ0(K))2

+G
Ŝ
(Ŝ(K))Ŝ00(K)

o
� 0

8K; � 2 [�; �]:

To simplify the incentive compatibility constraint, the revelation principle is
used. The application of the revelation principle is shown in the next subsection.

4.2 The revelation principle

The incentive compatibility condition in equation (9) requires that the agent's
�rst-order condition is satis�ed for all K 2 [�; �]. The revelation principle
is used to reduce the principal's optimization problem to the set of truthful
mechanisms. Therefore, implementation of the revelation principle requires
that the agent's �rst-order condition in equation (7) is satis�ed at K(�) = �.

Using the envelope theorem, the �rst-order condition for optimization1 is,

dV (s;K(�);�)
d�

���
K(�)=�

= @V (s;K(�);�)
@�

= � �(s)

�(Ŝ(�))
8K(�); � 2 [�; �]: (10)

Incentive compatibility implies V (s; �; �) = V (s;K; �). In order to simplify
the notation, I de�ne V (s; �) � V (s; �; �).

The second-order condition for K must be satis�ed at K(�) = �, i.e., the
function V (s; �) must be more convex than V (K(�); �) and

@V (s;K(�); �)

@K(�)

����
K(�)=�

�
@V (s; �)

@�
: (11)

Di�erentiating the �rst-order condition in equation (9) whenK(�) = �, with
respect to � yields,

@2V (s; �)

@�2

= �(s)

�(Ŝ(�))

�
2
�
�
Ŝ
(Ŝ(�))

�(Ŝ)

�2
(Ŝ0(�))2(G(Ŝ(�) � �)

��S(Ŝ(�))

�(Ŝ)

�
Ŝ00(�)(G(Ŝ(�)) � �) + 2(Ŝ(�))2G

Ŝ
(Ŝ(�))� Ŝ0(�)

�
�
�
ŜŜ

(Ŝ(�))

�(Ŝ(�))
(Ŝ0(�))2(G(Ŝ(�)� �) +G

ŜŜ
(Ŝ(�))(Ŝ0(�))2

+G
Ŝ
(Ŝ(�))Ŝ00(�)

o
� 0:

(12)

1 dV (s;K(�);�)

d�

��
K(�)=�

= @V (s;K(�);�)

@K(�)

dK(�)

d�
+ @V (s;K(�);�)

@�
. The agent optimizes K(�), given his cost

level �. The �rst term on the right-hand side is zero when K(�) is optimal.

7



This leads to the second-order condition (using the restriction in (11)),

@V (s; �)

@�
�

@V (s;K(�); �)

@K(�)

����
K(�)=�

=
�(s)

�(Ŝ(�))

�
Ŝ
(Ŝ(�))

�(Ŝ(�))
Ŝ0(�) � 0:

Integrating the condition in (10) gives an equivalent condition on the reward
function (when s < Ŝ(�)):

V (s; �) =

Z �

�

�(s)

�(Ŝ(u))
du+ V (s; �): (13)

Equation 13 gives the agent's value of accepting the contract. The �rst
term on the right-hand side of equation (13) is the agent's value of private
information. The lower the agent's true cost level, the higher the agent's value
of information.

The last term on the right-hand side, V (s; �), is the value of the reservation
utility. From the participation constraint (6) we know that the agent at least
must earn his reservation utility in order to accept the contract. Also in the
case where the agent's true cost is at the highest possible cost level, �, the
agent must earn his reservation utility. In this model the reservation utility is
assumed to be zero, i.e., V (s; �) = 0. Thus equation (13) represents the agent's
value of accepting the contract that the principal o�ers.

5 Benchmark: Symmetric information

As a benchmark, we �rst study the case where the information about the in-
vestment cost � is symmetric. When the agent has no private information, there
is no need for the principal to compensate the agent with more than his true
cost. Thus, the agent is compensated for his capital cost only, i.e.,

G(s) =

�
0 if s < Ŝ(�)

� if s � Ŝ(�):
(14)

Inserting G(Ŝ(�)) = � into the agent's value function in equation (5), we �nd
Vsym(s; �) = 0, where the subscript sym indicates that this is the value under
symmetric information. The agent has no private information, and therefore

the term,
R �
�
�(s)=�(Ŝ(u))du, of equation (13) is zero.

Deterministic � and substitution of G(Ŝ(�)) with � into the principal's value
function in equation (4), leads to

Wsym(s; �) = sup
Ŝ(�)

(
�(s)

�(Ŝ(�))

�
Ŝ(�)� �

�
if s < Ŝ(�)

s� � if s � Ŝ(�):
(15)

Equation (15) shows that when we have no asymmetric information, we
have an optimization problem similar to the \standard" real option problem of
exercising an in�nite (American) option with exercise price �, and Ŝ(�) as the
critical level of exercising the option.
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The optimal trigger value of income is given by the �rst-order condition,

@Wsym(s; �)

@Ŝ(�)
= 1�

�
Ŝ
(Ŝ(�))

�(Ŝ(�))

�
Ŝ(�)� �

�
= 0: (16)

For the trigger value in equation (16) to be optimal, the second-order con-
dition has to be non-positive,

@2Wsym(s; �)

@Ŝ(�)2
= �

�(s)

�(Ŝ(�))

�
ŜŜ

(Ŝ(�))

�(Ŝ(�))

�
Ŝ(�))� �

�
� 0;

The �rst-order condition (16) can be written as

S�
sym(�)� � =

�(S�
sym(�))

�S�sym(S
�
sym(�))

; (17)

where S�
sym(�) is the optimal critical value for investment. The last term on

the right-hand side can be interpreted as the opportunity cost of exercising the
option with payo� S�

sym(�) � �. The fraction captures the wedge between the
critical value S�

sym and the investment cost �.
By (15) and (17) the value of the investment opportunity is

Wsym(s; �) =

(
�(s)

�(S�sym(�))

�
S�
sym(�)� �

�
if s < S�

sym(�)

s� � if s � S�
sym(�):

(18)

6 Asymmetric information: The optimal exer-

cise strategy

In this section we solve the principal's problem of �nding the optimal investment
strategy, given the agent's private information.

In order to simplify the problem of �nding an optimal strategy, we substitute
the unknown function G(�) in the principal's value function in equation (4), with
an expression of known functions of Ŝ(�). Using equations (5) and (13), the
value of the compensation function may be written as the sum of the value of
the true investment cost and the value of the agent's private information,

�(s)

�(Ŝ(�))
G(Ŝ(�)) = �(s)

�(Ŝ(�))
� + V (s; �)

= �(s)

�(Ŝ(�))
� +

R �
�

�(s)

�(Ŝ(u))
du:

(19)

The right-hand side of the equation gives an representation of the value of the
compensation, which contains known functions and �, only.

Substituting the expression for �(s)

�(Ŝ(�))
G(Ŝ(�)) in equation (19) into the prin-

cipal's optimization problem in equation (4) leads to

W (s; �) = sup
Ŝ(�)

Z �

�

(
�(s)

�(Ŝ(�))

�
Ŝ(�) � �

�
�

Z �

�

�(s)

�(Ŝ(u))
du

)
f(�)d�: (20)

From equation (20) we see that the substitution of G(Ŝ(�)) implies that the
principal's problem is reduced to �nding an optimal trigger income S�(�).
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A further simpli�cation of the optimization problem can be done by partial

integration of the term
R �
�

R �
�
�(s)=�(Ŝ(u))duf(�)d�. Integration leads to2

Z �

�

Z �

�

�(s)

�(Ŝ(u))
duf(�)d� =

Z �

�

�(s)

�(Ŝ(�))
F (�)d�: (21)

Inserting the right-hand side of (21) into the objective function (20), we �nd

W (s; �) = sup
Ŝ(�)

Z �

�

�(s)

�(Ŝ(�))

�
Ŝ(�) � � �

F (�)

f(�)

�
f(�)d�: (22)

From the last term in equation (22) we see that the principal's optimization
problem is now similar to the problem of optimally exercising an American call
option, with optimal exercise price � + F (�)=f(�). The term F (�)=f(�) can be
interpreted as the ine�ciency due to the agent's private information.

Pointwise di�erentiation gives the �rst- and second-order conditions for the
optimal \exercise value" S�(�),

@W

@Ŝ(�)
= 1�

�
Ŝ
(Ŝ(�))

�(Ŝ(�))

�
Ŝ(�) � � �

F (�)

f(�)

�
= 0; (23)

The conditions for the trigger value are satis�ed as long as the second-order
condition

@2W (s;G(�))

@Ŝ(�)2
= �

�(s)

�(Ŝ(�))

�
ŜŜ

(Ŝ(�)

�(Ŝ(�))

�
Ŝ(�)) � � �

F (�)

f(�)

�
f(�) � 0;

holds. Thus, the optimal trigger value for the principal is given by

S�(�)� � �
F (�)

f(�)
=

�(S�(�))

�S�(S�(�))
: (24)

Given the compensation function (to be evaluated in the next section), the
trigger value in equation (24) is also the optimal exercise strategy for the agent.
Equation (24) shows that the trigger value is based on the principal's total cost
of exercising the investment option, i.e., it is based on � + F (�)=f(�). As in
equation 17, the right-hand side represents the opportunity cost of exercising
the option. Compared to the optimal investment strategy under symmetric
information, equation (17), the critical value for investment has increased due to
the asymmetric information. This ine�ciency leads to underinvestment because
of the longer "waiting time" of investment.

2

Z �

�

 Z �

�

�(s)

�(Ŝ(u))
du

!
f(�)d� =

"Z �

�

�(s)

�(Ŝ(u))
duF (�)

#�
�

� (�)

Z �

�

�(s)

�(Ŝ(u))
F (�)d�:

By inserting the bounds � and � in the �rst term on the right-hand side, we see that this term is

zero: substituting � with � yields
R �
�
�(s; Ŝ(u))du = 0, and substituting � with � yields F (�) = 0.

Thus, we are left with the right-hand side term of equation (21).
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7 Implementation of the optimal compensation

function

We are now left with the problem of �nding an implementable compensation
function that leads to the optimal investment strategy. Considering equations
(19) and (24), the time zero value of the optimal compensation function when
s < S�(�) is given by

�(s)

�(S�(�))
G(S�(�))

= �(s)
�(S�(�))� +

R �
�

�(s)
�(S�(u))du

= �(s)
�(S�(�))� +

h
u �(s)
�(S�(u))

i�
�
�
R �
�
u
�
��(s)�S�(S

�(u))
(�(S�(u)))2

�
S�
udu:

(25)

The �rst right-hand side equality in (25) states that the compensation func-
tion must cover the agent's true cost (the �rst term), and the agent's value
of private information (the last term). Notice that the compensation function
in equation (25) is not written in a contractable form, as it is a function of
the unobservable variable � as well. The right-hand side of the equation must
therefore be found as a function of observable variables only. From Melumad
and Reichelstein [10] we know that a compensation function G(�; S�(�)) un-
der a communication-based centralized contract (by the revelation principle) is
compatible with the compensation function G(S�(�)) under a direct delegation
contract if for all � 2 [�; �], G(�; S�(�)) = G(S�(�)). This restriction is satis�ed
when the function S�(�) is one-to-one. Assuming that this is valid for S�(�),3

we denote � � #(S�(�)). This leads to

�(s)

�(S�(�))
G(S�(�))

= �(s)

�(S
�

(�))
� �

R �
�
#(S�(u))

�
��(s)�S�(S

�(u))
(�(S�(u)))2

�
S�
udu

= �(s)

�(S�(�))
� �

R S�(�)
S�(�)

#(S�(u))
�
��(s)�S�(S

�(u))
(�(S�(u)))2

�
dS�(u)

= #(S�(�)) �(s)
�(S�(�)) +

R S�(�)
S�(�)

#0(S�(u)) �(s)
�(S�(u))dS

�(u)

(26)

Thus, from equation (26), and the assumption that only the outcome of the
investment is observable, we �nd that the contracted, optimal compensation
function is given by

G(s) =

8>>>>><
>>>>>:

0 if s < S�(�)

#(s) +
R S�(�)
s

#0(S�(u)) �(s)
�(S�(u))dS

�(u) if S�(�) � s < S�(�)

� if s � S�(�)
(27)

The above expression represents an implementable compensation function
dependent upon the observable variables s and S�(�), only. When s � S�(�)

3S�(�) is a one-to-one function as long as it is continuous and strictly increasing in the interval
S�(�) 2 [S�(�); S�(�)].
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the compensation is zero, as the investment has not taken place in this range
of the value of s. As long as s < S�(�), the agent will wait with exercising the
option until the point in time where the time zero value of the income stream,
s, reaches S�(�). When S�(�) < s � S�(�) the compensation is dependent on s,
only. The compensation is increasing in s. However, note that the compensation
never can be higher than �. The reason is that the principal knows that the
investment cost is not higher than the upper level �.

The value of the compensation functions in equations (26) and (27), inserted
into equation (5), implies that the agent's value from the investment project
can be written as

V (s; �) =

8>>>>>>>><
>>>>>>>>:

R S�(�)
S�(�)

#0(S�(u)) �(s)
�(S�(u))dS

�(u) if s < S�(�)

#(s)� �

+
R S�(�)
s

#0(S�(u)) �(s)
�(S�(u))dS

�(u) if S�(�) � s < S�(�)

� � � if s � S�(�)

(28)

In section 5 it was shown that the agent's value from the investment is zero
under symmetric information about the investment cost. Equation (28) states
that the agent's value from the investment when he has private information
about the cost, is positive as long as his investment cost is below �. The agent's
share of the total value of the investment, is larger the larger s is. However, the
agent's value from the project will never exceed � � �.

The principal's value of the investment option is represented by

W (s; �) =

8>>>>>>>>>><
>>>>>>>>>>:

�(s)
�(S�(�)) (S

�(�)� �)

�
R S�(�)
S�(�) #

0(S�(u)) �(s)
�(S�(u))dS

�(u) if s < S�(�)

s� #(s)

�
R S�(�)
s

#0(S�(u)) �(s)
�(S�(u))dS

�(u) if S�(�) � s < S�(�)

s� � if s � S�(�):

(29)

As is to be expected, the principal's time zero value is lower under asym-
metric information than under the symmetric information case (compare (29)
and (18)). The reason is that the investment occurs at a later time, and at
a higher cost (as the compensation is higher than the true investment cost),
thereby lowering the value of the investment. The principal's loss will, however,
never be higher than the loss in the interval s > S�(�), i.e., it will not exceed
Wsym(s; �)�W (s; �) = � � �.

Though the principal will have a loss under asymmetric information for all s,
(30) shows that the total dead-weight loss, L(s; �) �Wsym(s; �) + Vsym(s; �)�
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(W (s; �) + V (s; �)), will only be positive when s > S�(�):

L(s; �) =

8>>>>>>>>>><
>>>>>>>>>>:

�(s)
�(S�sym(�))

�
S�
sym(�)� �

�
� �(s)
�(S�(�)) (S

�(�)� �))

if s < S�
sym(�)

s� � � �(s)
�(S�(�)) (S

�(�) � �) if S�
sym(�) � s < S�(�)

0 if s � S�(�):

(30)

The total dead-weight loss is 0 when s � S�(�) because in this range the
agent's investment strategy leads to the same decision as in the full informa-
tion case, and the contracted compensation function only gives a sharing rule
between the principal and the agent. The agent's gain exactly equals the prin-
cipal's loss because of the asymmetric information.

8 Illustration of the results

The preceding sections used a general di�usion (equation (1)) for the income
process St, and an unspeci�ed probability density f(~�) for the assessed invest-
ment cost ~�. To illustrate the results the simple uniform distribution and the
geometric Brownian motion are assumed for the investment cost and the income
process, respectively.

A uniform distribution implies that F (�)=f(�) = � � �. The geometric
Brownian motion process of the value of the income is represented by

dSt = (r � �)Stdt+ �Stdwt; S0 = s; (31)

under the equivalent martingale measureQ. The strictly positive and increasing
solution �(�) to the ordinary di�erential equation (compare equations (2) and
(3)),

1

2
�2�2u��(�) + (r � �)�u�(�)� ru(�) = 0

is then found to equal �(�) = �� , where

� =
1

�2

2
41
2
�2 � (r � �) +

s�
(r � �)�

1

2
�2
�2

+ 2r�2

3
5 > 1:

Hence, the solution to the expectation E0[e
�r�K ] is (using equation (2)),

E0[e
�r�K ] =

(
�(s)

�(S�(�)) =
�

s
S�(�)

��
if s < S�(�)

1 if s � S�(�):
(32)

For the benchmark symmetric information case, the right-hand side of equa-
tion (17) becomes S�

sym=�, and hence the optimal critical value for investment
is S�

sym(�) = ��=(� � 1) > �, as � > 1. From equation (18), the corresponding

value of the investment opportunity isWsym(s; �) = (s=S�
sym)

�
�
S�
sym(�)� �

�
=

13



�=(� � 1)(s=S�
sym)

� for s < S�
sym(�). Recall that the agent obtains no pro�t

under symmetric information, i.e., Vsym(s; �) = 0.
For the asymmetric information case, however, the optimal \trigger income"

is found by equation (24), to be

S�(�) = (2� � �)
�

� � 1
; (33)

which (when � > �) is higher than the trigger under symmetric information,
S�
sym(�) = ��=(� � 1). The fraction �=(� � 1) > 1 causes a wedge between the

critical value for exercising the investment opportunity and the principal's cost
of the investment, even in the case of symmetric information. The di�erence
(� � �)�=(� � 1) is the increase in the trigger income caused by asymmetric
information.

The variable #(S�(�)) � �, equals by equation (33),

#(S�(�)) =
1

2

�
S�(�)

� � 1

�
+ �

�

. In order to �nd the expression for the compensation function G(s), we �rst
insert the above variables into the integration in the second equality in (27).
This leads to

Z S�(�)

s

1

2

�

� � 1

�
s

S�(u)

��
dS�(u) =

1

2

"
s

�
�

�
s

S�(�)

��
�

S�(�)

#

. In addition, observe that #(s) in (27) equals #(s) = 1=2(s(��1)=�+ �). This
gives

G(s) =

8>>>><
>>>>:

0 if s < S�(�)
1
2 [s+ �

�
�

s

S�(�)

�� �
S�(�)� (2� � �)

��
if S�(�) � s < S�(�)

� if s � S�(�);

(34)

Further, we �nd that the time zero value of the agent's and the principal's
value functions (equations (28) and (29)), are

V (s; �) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�
s

S�(�))

��
1
2 [S

�(�)� (2� � �)

�
�
S�(�)

S�(�)

�� �
S�(�)� (2� � �)

��
if s < S�(�)

1
2 [s� (2� � �)

�
�

s

S�(�)

�� �
S�(�)� (2� � �)

��
if S�(�) � s < S�(�)

� � � if s � S�(�);

(35)
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and

W (s; �) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�
s

S�(�)

��
1
2 [S

�(�) � �

+
�
S�(�)

S�(�)

�� �
S�(�)� (2� � �)

��
if s < S�(�)

1
2 [s� �

+
�

s

S�(�)

�� �
S�(�)� (2� � �)

��
if S�(�) � s < S�(�)

s� � if s � S�(�);

(36)

respectively.
Observe that the total combined value for the principal and the agent is

W (s; �) + V (s; �) =

( �
s

S�(�)

��
(S�(�)� �) if s � S�(�)

s� � if s > S�(�)
(37)

in the case of asymmetric information. Similar expressions held for the sym-
metric information case as well, but with S�(�) replaced by S�

sym < S�(�).
These relations are consistent with (30), which in the case the assumptions of
a geometric Brownian motion and a uniform density, equals

L(s; �) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�
s

S�sym(�)

�� �
S�
sym(�)� �

�
�
�

s
S�(�)

��
(S�(�)� �))

if s < S�
sym(�)

s� � �
�

s
S�(�)

��
(S�(�) � �) if S�

sym(�) � s < S�(�)

0 if s � S�(�):

(38)

The results are illustrated graphically. In the base case the investment cost
� is set to 1, the lower level cost � = 0:5, and the upper level cost � = 2.
For the parameters in the income process we set the risk-free rate r = 0:04,
the convenience yield � = 0:03, and the volatility � = 0:1. With a uniformly
distributed investment cost, and an income process that follows a geometric
Brownian motion, these parameters lead to � = 2:37, S�

sym(�) = 1:73, S�(�) =

2:59, and S�(�) = 6:05.
In �gure 1 the compensation is plotted as a function of s. The compensation

is zero when s is lower than the critical value of investment, S�(�) = 2:59, as the
compensation is not paid prior to the investment time. Therefore, at S�(�) the
function jumps to the amount paid when s � S�(�), and it is increasing from
this point until s = S�(�) = 6:05. For s � 6:05 the compensation is constant at
its maximum level � = 2.

Both within regulation and corporate �nance we often �nd that compen-
sation functions are linear in the observable output from a project. In the
numerical example given here the compensation function is concave. The rea-
son is that the upper level for the cost has a signi�cant e�ect. If the upper level
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Figure 1: The compensation G as a function of s.
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Figure 2: Wsym, W + V , W and V as functions of s.
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the cost had been very high, the compensation function would have approached
a linear function of s.

In �gure 2 the principal's and the agent's value functions are shown as
functions of s. The principal's value function under symmetric information is
convex when s < S�(�) = 2:59, and it is linear in the interval where the optimal
decision is to invest immediately. This corresponds to the value of a "standard"
real option as a function of the output price. Under asymmetric information,
it is also the case that the principal and the agent have convex value functions
in the interval where it is ex ante pro�table to postpone the investment. This
is for the same reason as under symmetric information: a volatility higher than
zero implies a possibility of higher pro�tability in the future.

In the interval S�(�) � s < S�(�) the agent's value is concave for the same
reason as for the concavity in the compensation function: the upside potential
for future pro�t is limited. For s � S�(�) the principal alone bene�ts from
higher s, and the agent's value of the contract is constant at � � � = 1.

Since the agent's value of information leaves less pro�t to the principal,
and the agent's value function is concave in the interval [S�(�); S�(�)), the
principal's value is convex in the same interval. When s � S�(�), the principal's
value under asymmetric information increases linearly, as the agent's value of
information is zero in this interval.

Figure 2 also shows the sum of the principal's and the agent's value functions
under asymmetric information, W (s; �) + V (s; �). As long as s is higher than
or equal to S�(�) = 2:59, this curve is identical with the principal's value
under symmetric information, Wsym(s; �). The reason is that in this interval
the contract between the principal and the agent gives a sharing rule without
having any e�ect on the investment strategy compared to the situation of full
information. In the interval (0, S(�)),W (s; �)+V (s; �) is lower thanWsym(s; �)
due to an ine�cient investment strategy. This fact is also illustrated in �gure
3, where the relative dead-weight loss as a function of s is plotted in the lower
curve. The relative dead-weight loss is de�ned as (Wsym �W � V )=Wsym).

4

The �gure shows that dead-weight loss is positive when s < S�(�) = 2:59.
In �gure 3 the principal's relative loss, (Wsym�W )=Wsym, is plotted in the

upper curve. Both the principal's relative loss, and the relative dead-weight loss
is constant as long as the best decision under both asymmetric and symmetric
information is to postpone the investment, i.e., when s < S�

sym(�) = 1:73.
The losses are decreasing in the interval [S�

sym(�); S
�(�)), since the inef-

�ciency in the second-best investment strategy is decreasing as s approaches
S�(�) = 2:59. For all s higher than this point the investment strategy is the
same for the symmetric and the asymmetric information case, i.e., there is no
dead-weight loss.

In the interval [S�(�),S�(�)), the principal's relative loss �rst increases and
then decreases. The reason is that two e�ects pull in opposite directions: higher
s leads to higher di�erence between the principal's values under symmetric and
asymmetric information, which increases the relative loss, whereas an upper
limit for the investment cost tends to decrease the agent's value of information
as s gets closer to S�(�).

Figure 4 plots the parties' functions of � when s = 3. In the "standard" real
option problem of valuing an investment possibility, corresponding to the value

4In the �gures, the notation Vsym is not included as Vsym = 0.
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Figure 3: Principal's loss and dead-weight loss as functions of s.
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Figure 5: Principal's loss and dead-weight loss as a function of �, s = 1.
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Figure 6: Wsym, W , and V as functions of �, s = 1.
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Figure 7: Principal's loss and dead-weight loss as a function of �, s = 1.
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of Wsym(s; �), the value is increasing with respect to � in the interval where
the best decision is to postpone the investment. The reason is that as long as
the option is not exercised, higher volatility increases the possibility of a higher
future pro�t.

The principal's value function under asymmetric information depends on �
also in the interval where the optimal decision is to invest immediately, i.e., the
interval s � S�(�), corresponding to � � 0:14. The reason is connected to the
agent's value of information: as � increases, the agent's value of information
decreases, and therefore the share of the pro�t left to the principal is increasing.
The agent's value is decreasing in � because of the upper limit on the agent's
compensation.

For s < S�(�), corresponding to � > 0:14, there is an additional e�ect on
the principal's value under asymmetric information, which tends to depress the
principal's value: the loss in value because of an ine�cient investment strategy.
This e�ect is dominating when � is between 0.14 and 0.18.

The same e�ects are reected in �gure 5. At the � corresponding to S�(�) =
3 the relative dead-weight loss gets positive, because then it reaches the interval
s < S�(�), in which we know that the loss is positive. Both the relative dead-
weight loss and the relative principal's loss increase in this interval as long as
the e�ect of a second-best investment strategy dominates the e�ect that the
agent's value of information decreases with an increasing volatility.

The principal's loss when s � S�(�) decreases because of the agent's de-
creasing value of information as � increases.

Figure 6 plots the principal's and the agent's values as functions of the

20



investment cost, �. Both the principal's and the agent's value functions are
nonincreasing with respect to �, as a higher cost lowers the value of the invest-
ment for both. For � � 1:1, corresponding to s � S�(�), the principal's value
is independent of the agent's investment cost. The reason is that the com-
pensation paid to the agent cannot be a function of the unobservable variable
�.

Figure 7 shows that the relative dead-weight loss is increasing in �. This is
because higher costs lead to higher critical values for exercising the option, and
thereby larger ine�ciency in the investment decision.

The principal's relative loss is decreasing in � for � lower than or equal to
1.1, corresponding to s � S�(�). Once again the reason is connected to the fact
that when s � S�(�), W is independent of �, and therefore an increase in �
results in a corresponding increase in the principal's loss. For � corresponding
to s < S�(�), the dominating e�ect is the same as in the dead-weight loss as
long as � is lower than 1.6. For �s higher than 1.6, the dominating e�ect is the
agent's value of information getting lower the closer to the upper level cost the
true investment cost is. This tends to decrease the loss.

At � = � the principal's loss and the dead-weight loss coincide, as the value
of the agent's information is zero at this point.

9 Conclusion

In this article, we study e�ects of asymmetric information on dynamic invest-
ment decisions. A principal owns an investment opportunity and delegates the
investment strategy of the project to an agent. The agent has private infor-
mation about the investment cost, whereas the stochastic output is common
knowledge.

This setting applies to a number of situations, both within regulation (the
principal is a regulator, and the agent is a company) and corporate �nance
(shareholders represent the principal, and managers represent the agent).

The agent's private information about the cost implies that it is optimal
for the principal to compensate the agent according to his value of private
information. Thus, the compensation will be higher than the true investment
cost in most cases, thereby increasing the principal's cost of his investment
opportunity. A higher cost leads to a higher critical value for investment. Thus,
it is found that the agent's private information about the investment cost may
lead to underinvestment.

The agent's value of private information will, however, not always lead to
an ine�cient investment strategy. Ine�cient decisions will occur only in the
interval where the critical value of investment, given asymmetric information,
is higher than the time zero value of the output from the investment. If the
time zero value of the output is higher than the critical value of investment,
the compensation function only gives a rule for sharing the pro�t between the
principal and the agent, without having any ine�ciency e�ects.

In the same way as asymmetric information about investment may depress
activity, an agent's private information about the costs of shutting down an
activity, may lead to higher activity than when there is no private information.

More generally, in an model where one can switch between options, pri-
vate information about switching costs lead to higher costs and therefore fewer
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switches. For instance, in Dixit [6] entry and exit decisions of production are
discussed. In this model Dixit �nds that entering and exiting an activity leads
to a "hysteresis band" due to the uncertainty of future outcome and to the
irreversible entry and exit costs. If an agent has private information about the
costs of switching between activity and no activity, the hysteresis band will be
even larger than in Dixit's model. Thus, the costs of switching between the two
options may lead to both too much and too little activity. Thus, on a macroeco-
nomic level, even though the level of activity when there is private information
should happen to be not far from the aggregate level when we have no private
information, the activity may not necessarily take place in the activities where
the pro�t is highest.

A switching option model can also be applied for �nancial investments.
An example is the holder of a fund who delegates the trading strategy of the
�nancial portfolio to an agent, and where there are some transaction costs.
If the agent has private information about some �xed transaction costs, the
investor can use a variant of the method described in this article to design
the compensation to the agent in such a way as to optimize the agent's risk
management.
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