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Long-term profitability, mean-reversion in earnings and optimal capital structure 

Abstract 

We develop a dynamic trade-off model with mean-reversion in earnings and multiple stages 

of lumpy investments with infrequent leverage adjustments at investment points. We provide 

insights on the impact of earnings dynamics with respect to long-term profitability, mean 

reversion speed and volatility of earnings on firm value, the dynamics of leverage and credit 

spreads. We also provide managerial implications regarding the optimal timing of investment 

and default related to model parameters and in particular the characteristics of the earnings 

process. Our model shows that the relation between current profitability and leverage 

generally follows a U-shape and thus the empirically observed negative relation between 

profitability and leverage is plausible for a certain range of earnings. Our analysis highlights 

the importance of identifying the data generating process of earnings since it has important 

implications on understanding firms’ capital structure decisions such as financial 

conservatism and low leverage phenomena.   
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1. Introduction 

Dynamic models which consider adjustments in leverage and real investments provide a 

vehicle for understanding the debt conservatism puzzle and why financial flexibility and 

earnings and cash flow volatility are important for firms (see Graham and Harvey, 2001).1 

Strebulaev (2007)  concludes that a proper study of the evolution of capital structure requires 

a model that combines both dynamic capital structure decisions and real investment. While 

theoretical models combining capital structure and real investment decisions are well-

developed (e.g., Hennessy and Whited (2005), Titman and Tsyplakov (2003), and Hackbarth 

and Mauer (2012)), a better link between the nature of shocks (i.e. temporary or permanent) 

on firm’s cash flows and corporate financial decisions still appears a challenging task.   

 

In this paper we develop a model where earnings follow an arithmetic mean-reverting (AMR) 

process. The firm has multiple stages of investment options and makes infrequent leverage 

adjustments at investment points. The literature studying the effect of mean reversion on the 

investment and disinvestment decisions of firms has used mostly the geometric mean-

reverting (GMR) process (Sarkar, 2003; Tserkrekos, 2010; Metcalfe and Hassett, 1995). The 

same type of process is employed also in Sarkar and Zapatero (2003), where they reformulate 

Leland (1994) trade-off model incorporating mean reversion in the corporate earnings 

process and study debt financing without investment decisions. With GMR, however, cash 

flows can never be negative. Our model differs from these studies in that cash flows can be 

negative, consistent with the empirical evidence.2 We also incorporate multiple investment 

and financing stages and alternative priority rules for debt thus casting Hackbarth and Mauer 

(2012) model within a mean reversion framework.  

 

Allowing for negative earnings might increase the importance of financial flexibility. For 

example, for any given level of leverage, the expected advantage to debt is likely to be of 

lower value with more frequently lower cash flows. Also the difference between investment 

and default thresholds and the implied option values in equity and debt valuation with GMR 

and AMR are likely to have important implications especially for multi-staged projects, 

capital expansion and  valuation of debt-financed projects. Our focus on earnings dynamics is 

also motivated by empirical studies that show that not properly taking into account earnings 

 
1 DeAngelo et al. (2018) shows that firms retain financial flexibility by adjusting leverage. 
2 Gorbenko and Strebulaev (2010) show that between 1987 and 2005, approximately 17% to 25% of 
all quarterly cash flows for the full COMPUSTAT sample are negative. 
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or cash flow dynamics may lead to misleading findings.3 By focusing on this specific AMR 

process, we provide new results on the impact of the earnings dynamics and in particular 

long-term profitability, mean reversion speed and volatility on firm value, and the dynamics 

of leverage and credit spreads. We show also how to estimate the parameters of the process 

and show that this type of process characterizes a vast majority (about 60%) of the universe 

of non-financial, non-regulated firms in the COMPUSTAT database with 40 consecutive 

quarterly observations (that  allows for reasonable accuracy in estimation of model 

parameters).  

 

One of our theoretical contributions is that we challenge the traditional interpretation of the 

reasons between the negative relation between profitability and leverage which is often 

suggested to be against trade-off models and in favour of pecking order theory (see Shyam-

Sunder and Myers (1999) and follow on work). We show that for firms characterized with 

mean reverting earnings, the relation between earnings and profitability could be negative. 

Our framework thus extends this insight first discussed in Sarkar and Zapatero (2003) in the 

presence of  multiple investment stages and also allowing for negative earnings. However, 

compared to their results we show that more generally leverage has a U-shape relationship 

with profitability. The U-shape is driven by the alternative magnitudes of increase between 

equity and debt values where debt value incremental improvement (relative to equity) is 

higher when profitability is high. Strebulaev (2007) provides an alternative explanation for 

the negative relation between leverage and earnings, showing that this effect may also be well 

captured in a dynamic trade-off framework where firms make infrequent adjustments in 

leverage. Danis et al. (2014) show that this empirical regularity can be explained by a 

dynamic trade-off model where firms make infrequent capital structure adjustment (so called 

“inaction” models).4 In addition, our analysis predicts that leverage is decreasing in earnings 

volatility and growth options (i.e., the expansion factor of future revenues) and positively 

related to the mean reversion speed and long-term profitability. During times of “lumpy” 

 
3 One such example is leverage mean reversion (e.g. found in Fama and French, 2002 and Flannery and Rangan 
2006). Chen and Zhao (2007) and Chang and Dasgupta (2009) also discuss hazards of not properly employing 
earnings dynamics. 
4 While the leverage ratios is negative related to profitability in the inaction region, they show that at times when 
firms are at their optimal level of leverage, the cross-sectional correlation between profitability and leverage is 
positive. This implies that when firms actually take actions to adjust leverage then indeed higher profitability is 
positively related with leverage. Our analysis provides an alternative explanation that relates to the stochastic 
process dynamics of earnings within a multistage investment setting. This implies that further empirical 
investigation may be needed to distinguish among alternative explanations by considering earnings dynamics 
and firms’ investment decisions.  
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investment and adjustments in leverage, we show that leverage ratios increase relative to 

earlier levels for firms with higher volatility in earnings, and higher growth option expansion. 

Leverage decreases relative to previous levels   for firms with stronger mean reversion in 

earnings and larger long-term profitability levels and has a U-shape with respect to the level 

of initial earnings.  

 

Allowing for transitory shocks has been traditionally part of the analysis of optimal cash 

management policies (and not for analysing optimal capital structure). For example, Décamps 

et al. (2016) focus on liquidity and risk management policies for firms facing financing 

frictions and are subject to permanent and temporary cash flow shocks. More relatedly to our 

framework, Gorbenko and Strebulaev (2010) provide a contingent claim  trade-off model 

with both temporary and permanent shocks. The temporary component of the shocks is 

driven by Poisson jump shocks that arrive in discrete time and then fade in expectation over 

time so that earnings mean-revert to permanent cash low levels. These transitory shocks are 

characterized by their longevity (or speed of mean-reversion), their arrival intensity, and their 

magnitude. In their model equity holders benefit disproportionately from positive shocks, 

whereas debtholders bear higher costs due to negative shocks. Debtholders thus demand ex 

ante compensation, which reduces equity holders’ desire to rely on debt, resulting in “debt 

conservatism” which brings theoretical predictions closer to empirical evidence. In line with 

this prediction, in our model a lower speed of mean reversion-which implies that earnings 

shocks can be at distance from long-term profitability for longer periods of time-also results 

in lower leverage levels. We show however that the mechanisms which drive the positive 

relation between leverage and the speed of mean reversion differ depending on the level of 

long-term profitability. When long-term profitability is low, higher leverage is driven by 

increases in debt value and decreases in equity value. However, when long-term profitability 

is high both equity and debt increase, albeit the latter increases at a higher rate.  Furthermore, 

in our model “debt-conservatism” can be further exasperated when firms face moderate or 

low levels of long-term profitability.  

Our analysis is also more broadly related with work focusing on investment dynamics. 

Hennessy and Whited (2005) develop a dynamic trade-off model with endogenous choice of 

leverage, dividends and real gradual investments.  Instead, our model is focusing on lumpy 

investments. Dudley (2012) considers the interaction of investment and financing focusing on 

time-to-build and large investment outlays.  
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In addition to the empirical predictions, our framework provides a number of managerial 

implications regarding optimal investment timing and default decisions. In particular, we 

show that optimal investment is delayed for firms with earnings which are more volatile and 

have low levels of long-term profitability or firms with low levels of expansion (growth) 

options. The impact of mean reversion hinges upon the level of long-term profitability. When 

long-term profitability is high,  an elevated degree of mean reversion accelerates investment.  

On the other hand, investment is postponed when profits mean-revert faster to low long-term 

profitability levels. Optimal default is delayed for firms with higher earnings volatility, higher 

levels of growth options and long-term profitability. The optimal default threshold exhibits a 

U-shape with respect to mean reversion speed when long-term profitability is high and is 

decreasing with mean reversion speed when long-term profitability is low.  

 

Our paper is organized as follows. Section 2 describes the model, Section 3 presents the 

numerical sensitivity results and summarizes the model predictions. Section 4 shows the 

estimation of earnings process and applies it to US data, while Section 5 concludes. Appendix 

1 shows the notation of various variables of the theoretical model, Appendix 2 the derivation 

of the homogeneous differential equation solution, Appendix 3 the derivation of solution for 

the basic and general claims involving two boundaries within a mean-reverting framework, 

and Appendix 4 the proofs for security and firm values presented in the main text. Appendix 

5 shows the details of the estimation procedure for the parameters of the mean reverting 

process and the empirical test employed for stationarity.  

 
2. The model 

 

2.1. Model assumptions 

We model a firm with existing assets generating net cash flow or earnings 

(EBIT+depreciation) x. The earnings stream x follows an arithmetic mean-reverting process 

as follows:  

                                                     𝑑𝑥 = 𝑞(𝜃 − 𝑥)𝑑𝑡 + 𝜎𝑑𝑧                                                    (1) 

where q defines the mean reversion speed, θ defines the long-term mean to which earnings 

revert, σ the project earnings volatility and dz is the increment to a standard Brownian Motion 
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process. The firm has a growth opportunity to increase earnings to a level 𝑒 𝑥 at an optimal 

time. The firm selects an optimal level of perpetual debt 𝐷𝑏(𝑥) at time zero (stage 1) with a 

promised (coupon) payment 𝑅଴.and pays corporate taxes at a constant rate 𝜏 with a full-loss 

offset scheme.  

The bankruptcy trigger 𝑥௕ is endogenously and optimally chosen by equity holders by 

maximizing equity value.  When earnings 𝑥 drop to the low threshold level 𝑥௕ then the firm 

goes bankrupt and the original debt holders take over and obtain the firm’s unlevered assets 

𝑈𝑏(𝑥) net of proportional bankruptcy costs b, 0<b<1. On the other hand, if earnings rise to a 

high level 𝑥ூ then the firm makes a capital (growth) investment I and expands earnings by e > 

1, thus earnings after investment become 𝑣 = 𝑒 𝑥. The optimal timing for investment is 

chosen to maximize equity holders market value of equity (“second-best investment”). Using 

Ito’s lemma5, post investment earnings also follow a mean-reverting process of the following 

form: 

                                               𝑑𝑣 = 𝑞(𝑒𝜃 − 𝑣)𝑑𝑡 + 𝑒𝜎𝑑𝑧                                                      (2) 

Thus, after investment, earnings follows an AMR process with standard deviation 𝑒𝜎 and 

long term mean 𝑒𝜃. 

New investment can be financed by additional perpetual debt 𝐷𝑎(𝑥) with coupon 𝑅ଵ. Post 

investment, equity holders select the earnings level 𝑣௅ which triggers bankruptcy. In the 

event of bankruptcy priority rules define the amount of unlevered assets obtained by original 

and subsequent debt holders. Similarly to Hackbarth and Mauer (2012) we allow for 

commonly observed priority rules which include absolute priority of original debt, pari-passu 

(equal priority) and absolute priority for subsequent debt holders.  

The optimization of capital structure is performed by selecting the initial coupon 𝑅଴ and 

subsequent coupon level 𝑅ଵ jointly with optimally chosen investment and default levels.  𝑅଴ 

is chosen to maximize initial firm value (equity plus initial debt financing obtained) while 𝑅ଵ 

is chosen to maximize equity plus the proceeds from the new debt issue. This amounts to 

“second-best financing” as suggested in Hackbarth and Mauer (2012). We do not focus on 

agency considerations in this paper and thus do not consider a comparison with a “first-best” 

optimization for either the selection of investment timing and/or financing. “First-best” 

 
5 One could assume that e is stochastic and follows a Wiener process, that is de=sdz. In this case, (2) becomes a 
more involved expression.. 
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investment timing would be the one that caters for debt holders value by maximizing firm 

(instead of equity only) value and “first-best financing” allows that the choice of R1 caters for 

the dilution effects on initial debt (see Hackbarth and Mauer, 2012 for further details). 

2.2. Security and firm valuation after investment 

2.2.1. Equity and unlevered assets after investment 

Equity value after investment is equal to: 

                                    𝐸𝑎(𝑣) = 𝐸𝑎௣(𝑣) − 𝐸𝑎௣(𝑣௅) ቀ
௉భ(௩)

௉భ(௩ಽ)
ቁ                                                (3) 

where 𝑣 = 𝑒𝑥 are expanded cash flows following investment and 

                           𝐸𝑎௣(𝑣) = ቀ
ଵ

௤ା௥
𝑣 +

௤ఏ∗

௥(௤ା௥)
−

ோబାோభ

௥
ቁ (1 − 𝜏)                                              (4) 

with 𝜃∗ = 𝑒𝜃.                                                        

In equation (3) the term 𝑃ଵ(∙)  is defined in equation (5a) below. Equation (5b) also defines 

𝑃ଶ(∙)  that will be used in subsequent equations for the value of securities.         

                                      𝑃ଵ(𝑥) =  𝑒
భ

ర
൬

(ೣషഇ)ඥమ೜

഑
൰

మ

 𝐷ఔ ൬
(௫ିఏ)ඥଶ௤

ఙ
൰                                               (5a) 

                                      𝑃ଶ(𝑥) = 𝑒
భ

ర
൬

(ೣషഇ)ඥమ೜

഑
൰

మ

 𝐷ఔ ൬−
(௫ିఏ)ඥଶ௤

ఙ
൰.                                           (5b) 

where 𝐷ఔ(𝑧) =
ଵ

ଶ഍√గ
ቂcos(𝜉𝜋) Γ ቀ

ଵ

ଶ
− ξቁ 𝑦ଵ(𝑎, 𝑧) − √2 sin(𝜉𝜋) Γ(1 − ξ) 𝑦ଶ(𝑎, 𝑧)ቃ             (6) 

                                                                  𝑧 =
௫ିఏ

ఙഥ
, 𝜎ത = 𝜎/ඥ2𝑞                       

𝑎 = −𝜈 −
1

2
, 𝜈 = −

𝑟

𝑞
< 0 

𝜉 =
1

2
𝑎 +

1

4
 

                                               Γ(∙)= is the Gamma function  

                                      𝑦ଵ(𝑎, 𝑧) = 𝑒ି 
೥మ

ర   𝐹ଵଵ ቀ
ଵ

ଶ
𝑎 +

ଵ

ସ
;  

ଵ

ଶ
;  

௭మ

ଶ
ቁ                                                                                        

                                      𝑦ଶ(𝑎, 𝑧) = 𝑧 𝑒ି 
೥మ

ర   𝐹ଵଵ ቀ
ଵ

ଶ
𝑎 +

ଷ

ସ
;  

ଷ

ଶ
;  

௭మ

ଶ
ቁ                                  
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In the above 𝐹ଵଵ (𝛼; 𝛽; 𝑧) = 𝑀(𝛼; 𝛽; 𝑧) is the confluent hypergeometric function (see 

Abramowitz and Stegun, 1972). The Gamma function is defined as follows:  

𝛤(𝑛) = න 𝑥௡ିଵ𝑒ି௫𝑑𝑥
ஶ

଴

 

where the integral converges for n > 0. Note that 𝛤(𝑛 + 1) = 𝑛𝛤(𝑛), so for integer n this 

function coincides with the factorial function, that is, 𝛤(𝑛 + 1) = 𝑛!.  

Note that in equation (3) the term 𝑄(𝑣) =
௉భ(௩)

௉భ(௩ಽ)
 can be interpreted as the value of a basic 

claim which pays one dollar when 𝑣௅ is reached from above from 𝑣.  

The value of unlevered assets after investment is: 

                                      𝑈𝑎(𝑣) = ቂ
ଵ

௤ା௥
𝑣 +

௤ఏ∗

௥(௤ା௥)
ቃ (1 − 𝜏)                                              (7) 

In expression (7) the term 
ଵ

௤ା௥
𝑣  represents the transitory component and the constant 

௤ఏ∗

௥(௤ା௥)
 

is a permanent component. Note that when q = 0, then expression (7) simplifies to v(1-τ)/r, 

which is the value for an arithmetic process with zero drift. When the earnings level changes, 

the value 𝑈𝑎(𝑣) is affected only by the transitory part. Since the transitory part is a 

decreasing function of the speed of reversion q, if mean reversion becomes stronger (q 

increases), the transitory part becomes less important and if q goes to infinity, it disappears. 

To avoid negative liquidation values for initial debt holders at bankruptcy we ensure that 

𝑈𝑎(𝑣), as well as 𝑈𝑏(𝑥), do not drop below zero at the bankruptcy thresholds (see appendix 

equations A29 and A44).   

2.2.2. Debt and firm value after investment  

Debt value after investment for the initial debt issued at time zero 𝐷𝑎଴(𝑣) and the second 

debt issued at the investment trigger 𝐷𝑎ଵ(𝑣) are given by: 

                                   𝐷𝑎௜(𝑣) =
ோ೔

௥
+ ቀ𝐷𝑎௜(𝑣௅) −

ோ೔

௥
ቁ ቀ

௉భ(௩)

௉భ(௩ಽ)
ቁ                                     (8) 

where 𝐷𝑎௜(𝑣௅) depends on the priority structure.  In the case of equal priority of the two debt 

issuers, liquidation proceeds are shared depending on the scale of payments: 

                                    𝛽଴ =
ோబ

ோబାோభ
 ,       𝛽ଵ = 1 − 𝛽଴ =

ோభ

ோబାோభ
                              

Thus, with equal priority the boundary condition for debt becomes: 
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                                           𝐷𝑎௜(𝑣௅) = 𝛽௜ (1 − 𝑏) 𝑈𝑎(𝑣௅)                                              (9)  

In the case the first lender has secured priority to other creditors (“me-first” for initial debt) 

then the boundary conditions become: 

                         𝐷𝑎଴(𝑣௅) = 𝑚𝑖𝑛 ቔ(1 − 𝑏) 𝑈𝑎(𝑣௅),
ோబ

௥
ቕ                                   (10a) 

                        𝐷𝑎ଵ(𝑣௅) = (1 − 𝑏) 𝑈𝑎(𝑣௅) − 𝐷𝑎଴(𝑣௅)                                 (10b) 

 

In the case that second lender have secured priority to other creditors then the boundary 

conditions become: 

                            𝐷𝑎ଵ(𝑣௅) = 𝑚𝑖𝑛 ቔ(1 − 𝑏) 𝑈𝑎(𝑣௅),
ோభ

௥
ቕ                               (11a)  

                      𝐷𝑎଴(𝑣௅) = (1 − 𝑏) 𝑈𝑎(𝑣௅) − 𝐷𝑎ଵ(𝑣௅)                                  (11b)  

Firm value after investment is then given by the sum of equity plus debt values after 

investment: 

                                           𝐹𝑎(𝑣) = 𝐸𝑎(𝑣) + 𝐷𝑎଴(𝑣) + 𝐷𝑎ଵ(𝑣)                                 (12a) 

Replacing equation (3) and equations (8) for 𝐸𝑎(𝑣), 𝐷𝑎଴(𝑣) and 𝐷𝑎ଵ(𝑣) in equation (12a) 

above we obtain an alternative characterization of firm value as follows: 

                                   𝐹𝑎(𝑣) = 𝑈𝑎(𝑣) + 𝑇𝐵𝑎(𝑣) − 𝐵𝐶𝑎(𝑣)                                           (12b) 

where 𝑈𝑎(𝑣) is given in equation (7) and  𝑇𝐵𝑎(𝑣), 𝐵𝐶𝑎(𝑣)  are defined as follows: 

𝑇𝐵𝑎(𝑣) = ቀ
ோబାோభ

௥
ቁ 𝜏 − ቀ

ோబାோభ

௥
ቁ 𝜏 ቀ

௉భ(௩)

௉భ(௩ಽ)
ቁ  ,  𝐵𝐶𝑎(𝑣) = 𝑏𝑈𝑎(𝑣௅) ቀ

௉భ(௩)

௉భ(௩ಽ)
ቁ. We also define  

𝑁𝐵𝑎(𝑥) = 𝑇𝐵𝑎(𝑣) − 𝐵𝐶𝑎(𝑣) as a summary measure of the net benefits of debt after 
investment.  

 

2.3. Valuation before investment 

 

2.3.1. Equity and unlevered value before investment 

Equity value before investment 𝐸𝑏(𝑥) is given by: 

𝐸𝑏(𝑥) = ቀ𝐸𝑎(𝑒 𝑥ூ) − 𝐼 + 𝐷𝑎ଵ(𝑒 𝑥ூ) − 𝐸𝑏௣(𝑥ூ)ቁ 𝐽(𝑥) − 𝐸𝑏௣(𝑥௕) 𝐿(𝑥) + 𝐸𝑏௣(𝑥)          (13) 
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where 𝐸𝑏௣(𝑥) = ൬
ଵ

௤ା௥
𝑥 +

௤ఏ

௥(௤ା௥)
−

ோబ

௥
൰ (1 − 𝜏).  

𝐽(𝑥) in equation (13) defines the value of a basic claim that pays one dollar if x hits trigger 𝑥ூ 

and zero when it hits 𝑥௕. Similarly, we define a basic claim 𝐿(𝑥) that pays one dollar if x hits 

trigger 𝑥௕ and zero when it hits 𝑥ூ. The solutions to these basic claims are as follows (see 

Appendix 2): 

                             𝐽(𝑥) =
௉మ(௫್)

஽(௫಺,௫್)
𝑃ଵ(𝑥) −

௉భ(௫್)

஽(௫಺,௫್)
 𝑃ଶ(𝑥)                                       (14) 

                                        𝐿(𝑥) = −
௉మ(௫಺)

஽(௫಺,௫್)
𝑃ଵ(𝑥) +

௉భ(௫಺)

஽(௫಺,௫್)
 𝑃ଶ(𝑥)                                        

where 𝐷(𝑥ூ , 𝑥௕) =  𝑃ଵ(𝑥ூ)𝑃ଶ(𝑥௕) − 𝑃ଵ(𝑥௕)𝑃ଶ(𝑥ூ).  

The value of unlevered assets before investment is given by:  

                                   𝑈𝑏(𝑥) = ቂ
ଵ

௤ା௥
𝑥 +

௤ఏ

௥(௤ା௥)
ቃ (1 − 𝜏)                                                    (15) 

2.3.2. Debt and firm value before investment 

 

Initial (t = 0) debt value is given by: 

𝐷𝑏(𝑥) =
ோబ

௥
+ ቀ𝐷𝑎଴(𝑥ூ) −

ோబ

௥
ቁ 𝐽(𝑥) + ൬(1 − 𝑏) 𝑈𝑏(𝑥௕) −

ோబ

௥
൰ 𝐿(𝑥)                                 (16) 

where equation for 𝐷𝑎଴(𝑥) is given in equation (8) and  𝑈𝑏(𝑥) in equation (15).  

Thus, firm value before investment is the sum of equity plus debt before investment: 

                     𝐹𝑏(𝑥) = 𝐸𝑏(𝑥) + 𝐷𝑏(𝑥)                                                                              (17a) 

Replacing equation (13) for 𝐸𝑏(𝑥) and equation (16) for 𝐷𝑏(𝑥) we obtain the following 

breakdown of firm value at t = 0: 

𝐹𝑏(𝑥) = 𝑈𝐵(𝑥) + 𝑈𝑎(𝑣ூ) 𝐽(𝑥) + 𝑇𝐵𝑏(𝑥) + 𝑇𝐵𝑎(𝑣ூ) 𝐽(𝑥) − 𝐵𝐶𝑏(𝑥) − 𝐵𝐶𝑎(𝑣ூ)𝐽(𝑥) −

𝐼 𝐽(𝑥)                                                                                                                                (17b) 

where  𝑈𝐵(𝑥) = 𝑈𝑏(𝑥) − 𝑈𝑏(𝑥ூ)𝐽(𝑥)  with 𝑈𝑏(∙) given in equation (15),   𝑇𝐵𝑏(𝑥) =
ఛோబ

௥
−

ఛோబ

௥
𝐽(𝑥)-

ఛோబ

௥
𝐿(𝑥) and 𝐵𝐶𝑏(𝑥) = 𝑏𝑈𝑏(𝑥௕)𝐿(𝑥). We also define the net benefits of debt at t = 

0 as  𝑁𝐵𝑏(𝑥) = 𝑇𝐵𝑏(𝑥) − 𝐵𝐶𝑏(𝑥).  

 

2.4.  Optimal investment, default and capital structure 
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In this section we describe smooth pasting (optimality) conditions. First, we demand that the 

derivative of equity after investment at 𝑣௅ should be zero to ensure that equity holders choose 

the bankruptcy trigger optimally following investment. This implies the condition: 

                                                  𝐸𝑎ᇱ(𝑣௅) = 0 .                                                                (18)  

Note that the optimality condition in equation (18) can be stated in terms of the underlying x 

with the condition 𝐸෨𝑎ᇱ(𝑥௅) = 0  where 𝐸෨𝑎(∙) is equation defined in equation (3) evaluated at 

𝑣 = 𝑒 𝑥. Similarly, we demand that the derivative of equity value before investment should 

be zero at bankruptcy trigger  𝑥௕: 

                                                  𝐸𝑏ᇱ(𝑥௕) = 0.                                                                        (19) 

We use  “second-best investment” optimization for the investment trigger 𝑥ூ which accounts 

for raising the optimal new level of debt financing, however, it does not account for the effect 

of investment on existing debt holders. This translates to: 

                                                𝐸𝑏ᇱ(𝑥ூ) = 𝐸෨𝑎ᇱ(𝑥ூ) + 𝐷෩𝑎ଵ′(𝑥ூ)                                            (20) 

Note that under “first-best investment” optimization (not used in our subsequent analysis) 

equity holders would take into account the best interest of debt issuers by optimizing firm 

value. This would imply the following condition 𝐹𝑏ᇱ(𝑥ூ) = 𝐹෨𝑎ᇱ(𝑥ூ) where 𝐹෨𝑎ᇱ(𝑥ூ) is 

equation (12) replacing 𝑣 = 𝑒 𝑥. “First-best investment” would be useful for analysing 

agency issues which is not the goal of this paper.  

The optimal capital structure is selected by performing a dense grid search for both the initial 

and subsequent coupon levels such that 𝑅଴ and 𝑅ଵ maximize firm value at t = 0 (see equation, 

17a) by applying optimally chosen investment and default levels (see equations 18, 19 and 

20). This optimization identifies the initial and subsequent debt levels in the firm’s capital 

structure. In our solution  𝑅଴ is chosen to maximize initial firm value (equity plus initial debt 

financing) while 𝑅ଵ (see equation 20) is chosen to maximize equity plus the new debt 

proceeds (“second-best financing”). We do not focus on “first-best” optimization for either 

the selection of investment timing and/or financing.   

 

3. Model predictions 

In this section we provide numerical sensitivity results with respect to the relevant model 

parameters. We provide implications relating the effect of the volatility of earnings (σ), mean 
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reversion speed (q), long-term profitability (θ), earnings level (x), growth option expansion 

factor (e) and investment cost (I). We explore the impact of these variables on firm value, 

leverage ratio levels and the change in leverage ratios, and the credit spreads. We also 

explore the effect of alternative priority rules for debt. In the last part of this section we focus 

on the development of testable empirical predictions relating to leverage ratios along the time 

and cross section dimensions.  

Our base case parameters are as follows. We use a normalized level of current earnings at the 

level x = 1. Following Hackbarth and Mauer (2012) we use a risk-free rate of r = 0.06, a tax 

rate τ = 0.15. For the growth option we also follow the same study and use e = 2  and an 

investment cost I = 10 (i.e., the cost of investment is ten times the current earnings level as 

used in Hackbarth and Mauer, 2012). We use proportional bankruptcy costs b = 0.5 as in 

Leland (1994). For the mean-reverting stochastic process parameters we follow Sarkar and 

Zapatero (2003) and use σ = 0.4,  mean reversion speed q = 0.1 and long-term mean θ = 1. 

For all subsequently reported results we report sensitivity until 𝑥 < 𝑥ூ remains valid and that 

the value of unlevered assets at default thresholds is never negative. For the latter we check 

that in reported simulations the conditions 𝑣௅ < 𝑣஺ and   𝑥஻ < 𝑥஺ are satisfied (see discussion 

following equations A29 and A44 in the Appendix). Where necessary to show a particular 

direction we provide more densely applied sensitivity results to a particular parameter.  

Table 1 provides sensitivity results with respect to the volatility of earnings σ. In Panel A, 

consistent with a real options explanation we observe that an increase in volatility results in a 

delay of the option to invest (𝑥ூ increases) and a delay in default decisions (𝑣௅ and 𝑥௕ 

thresholds decrease). In Panel B we observe that a higher earnings volatility has a (minor) U-

shape effect on firm value (Fb(x)), decreases the value of unlevered assets (Ub(x)), results in 

a lower leverage ratio at t = 0 (Levb), lower net benefits of debt (NBb(x)) and decreases the 

expected present value of investment costs (Invb). The latter effect implies that investment 

becomes less likely to occur.  As expected (see also Sarkar and Zapatero, 2003), leverage 

decreases with volatility. Despite the decrease in leverage, credit spreads increase with σ. 

Higher volatility also reduces leverage ratios and has a positive impact on credit spreads at 

the investment trigger. With respect to leverage dynamics, we find that there is an increase in 

leverage relative to prior levels. At higher volatility, investment is triggered at a higher 

revenue level  which enables the firm to move to higher levels of leverage. In short, firms 
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with higher volatility of earnings would delay investment but would exhibit larger increases 

in leverage when expansion and leverage adjustments take place.  

We have also explored whether the above sensitivity results change when long-term 

profitability is different (results not shown for brevity). We find that when long-term 

profitability is high an increase in volatility reduces firm value. This is intuitive since higher 

volatility increases the likelihood of moving away from highly valuable future prospects. The 

opposite result is obtained when long-term profitability is low in which case firm value 

becomes strictly increases with volatility. Despite these differences with our base case, all 

other results remain: the investment and default is delayed, leverage decreases, credit spreads 

increase and changes in leverage at the investment trigger relative to previous levels 

increase..   

[Insert Table 1 here] 

Table 2 provides sensitivity results with respect to mean reversion speed q. We observe that 

for the base case levels of long-term profitability an increase in mean reversion speed q 

decreases 𝑥ூ which accelerates investment (see Panel A) and increases firm value (see Panel 

B). The acceleration of investment (as also indicated by the higher Invb(x)) makes intuitive 

sense: using our base case the growth option is quite attractive6 implying that a higher speed 

makes it even more likely to remain profitable once investment is triggered--this further 

increases the moneyness of the option and leads to an acceleration of investment. This 

intuition is confirmed since when long-term profitability is low we observe the opposite 

result (see case θ = 0.5). Indeed, when long-term profitability is low (θ = 0.5) investment is 

delayed when mean reversion speed q increases and results in lower firm values. The results 

of the lower long-term profitability case also show  that an increase in the speed of mean 

reversion results in more conservative optimal coupon levels. In contrast,  for the base case 

(higher long term profitability) coupons increase with the speed of mean reversion. However, 

interestingly the leverage ratio is increasing in the persistence of shocks around long-term 

profitability (i.e., with higher q), irrespective of the long-term profitability level. Gorbenko 

and Strebulaev (2010) have also shown that more persistence shocks results in higher 

 
6 In order to get a sense of the growth option attractiveness (moneyness) for our the base case parameters one 
should  note from equation (25) that if earnings at the investment trigger were to remain around their t = 0 value 
of x =1 then Ua(v)=28.33>I=10. This implies that even looking at the value of unlevered assets alone (excluding 
the net benefits of debt) the growth option at the current level of earnings is attractive. We also explore a case 
where long-term profitability implied by growth options is less attractive and discuss some differences in the 
generated predictions. Importantly, our main cross-sectional and time-series predictions regarding leverage 
ratios remain unaffected by growth option moneyness, albeit for different reasons as explained in the main text.   
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leverage ratios, however our model highlights the different mechanisms driving this result 

between high vs low long-term profitability. In both the case of high and low long-term 

profitability debt values increase with the persistence of shocks (q) since a higher persistence 

of earnings results in lower overall uncertainty which benefits debt holders. However, it 

should be noted that at high long-term profitability equity values also increase with the speed 

of mean reversion, albeit at a lower rate compared to debt while with low long-term 

profitability equity values decrease. Also, with respect to leverage dynamics, for both cases 

of θ, we observe that an increase in the speed of mean reversion results in a decrease  in 

leverage at investment relative to previous levels.  

Credit spreads decrease as the speed of mean reversion increases for both the base case of 

long-term profitability θ and the case where θ is low, albeit for different reasons. For the case 

of low θ, this is driven by the more conservative coupon levels and delayed default, whereas 

in the case of high θ it is driven by the reduction in risk since a higher speed to high long-

term profitability provides assurance that the firm will more likely remain away from default.  

The observed slight U-shape effect of firm value for higher speed of mean reversion of the 

base case can be more clearly interpreted when contrasted with the case of low θ where firm 

values are strictly decreasing in the speed of mean reversion. For θ values higher than the 

base case (i.e., very positive long-term prospects), an increase in the speed of mean reversion 

would result in a strictly increasing effect on firm value with respect to the speed of mean 

reversion. Thus, our base case parameters which correspond to an “average” profitability 

result in two opposing effects creating a U-shape.  Similarly, in panel A, we also find that 𝑣௅ 

and 𝑥௕ have a U-shape relationship with mean reversion speed q for the base case. It is thus 

expected that with high θ the default threshold would be increasing in q. Our results 

regarding the default trigger can also be contrasted with Gorbenko and Strebulaev (2010).  

They find that an increase in the persistence of shocks results in an acceleration of default 

(see, p. 2604) explaining that  adverse shocks of longer duration imply that the firm continues 

to be in financial distress for longer. Similarly, in our model when long-term profitability is 

low and the speed of mean reversion is high, this implies that shocks stay persistently at low 

levels for  longer periods of time; for this case we also find that default is accelerated. 

Surprisingly, however, we find that initial default thresholds may be accelerated in our model 

even when speed of mean reversion is high towards a high long-term profitability, i.e., even 

when profitability is expected to stay at high levels. This occurs because the firm utilizes this 
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potential by taking much more debt initially (see high initial coupon levels in panel A for the 

base case θ and high speed of mean reversion q).  

[Insert Table 2 here] 

Table 3 shows that an increase in long-term profitability (θ) accelerates investment as 

indicated by the lower 𝑥ூ (see panel A) and the higher expected investment costs (Invb(x)) 

(see panel B). A higher long-term profitability creates a U-shape with respect to default 

thresholds 𝑣௅ and 𝑥௕. As expected, higher long-term profitability increases firm value, 

increases the initial leverage ratio and reduces credit spreads. The positive relationship 

between  θ and the leverage ratio and the negative between θ and credit spreads holds also at 

the investment threshold. Interestingly, the results show that leverage decreases relative to 

previous levels when long-term profitability is higher. This is driven by the earlier threshold 

where investment takes place when long-term profitability is high thus not allowing for high 

leverage levels at the investment trigger compared to earlier levels.   

[Insert Table 3 here] 

As we have seen earlier (Table 3), long-term profitability had a positive effect on leverage 

ratios. This is not necessarily the case with respect to current profitability levels as we show 

below. Table 4 shows a negative relation between leverage and profitability levels x (see 

panel B) for the base case parameters exists for a wide range of x values. For high value of x 

the relation becomes positive at high x, i.e., there is an overall U-shape relation of leverage 

with x7.  

[Insert Table 4 here] 

The negative relation between current earnings levels and leverage observed for low x  values 

is driven by the higher positive impact of an improvement in profit levels on equity compared 

to debt value when earnings are low.8 Thus, while debt values and the net benefits of debt 

(NBb(x)) improve with x (see panel B), the positive effect on equity values outweighs the 

effect on debt values and leads to a reduction in leverage ratios. This latter result was 

discussed in Sarkar and Zapatero (2003) within a GMR setting and is shown to also hold in 

our dynamic multistage framework with an AMR process. However, we show that for high 

current profitability levels the result may be reversed and debt values may increase more 

 
7 We have conducted additional sensitivity analysis and the U-shape is robust to alternative parameterizations 
such as different long-term profitability or different mean-reversion speeds.  
8 Equity value is not reported but can be calculated as the difference between firm value and debt value.  
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rapidly compared to equity (hence resulting in an increase in the leverage ratio). This is 

intuitive since at high profitability levels x the significant reduction in risk benefits debt 

holders more compared with equity holders who have incrementally more to gain under a 

riskier environment due to more valuable options both on the upside due to investment 

options and on the downside protection due to limited liability.  

Panel A also shows that the investment trigger increases. However since the increase is not as 

significant compared to incremental increase in x investment is actually accelerated. The 

acceleration of investment can also be seen by the increase in the expected value of 

investment costs (Invb(x)) (see Panel B). In Panel A, we also find that 𝑥௕ increases with x    

while 𝑣௅ remains rather flat (only slightly increases at higher x levels).  

In Panel B we observe (as expected) that higher profitability increases firm and debt values, 

the net benefits of debt and the expected costs of the investment option (Invb). Interestingly, a 

higher revenue level x creates a similar to leverage slight U-shape for credit spreads at t = 0. 

At the investment trigger both leverage and credit spreads decrease, albeit slightly. We thus 

observe that the change in leverage at the investment trigger relative to the initial level 

follows a U-shape (similarly to the leverage ratio at t = 0).  

Table 5 shows the impact of the growth option expansion factor. As expected, a higher 

growth expansion factor accelerates investment, delays default and improves firm value. 

Despite the increase in the net benefits of debt, the leverage ratio at t = 0 decreases which is 

in agreement with the well-documented debt conservatism for firms with growth options (see 

Graham and Harvey, 2001).9 On the other hand, the leverage ratio increases at the investment 

trigger and there is a more notable increase in credit spreads. Finally, relating to the dynamics 

of leverage we find that leverage exhibits an increase relative to earlier levels when the 

expansion factor is higher.   

 [Insert Table 5 here] 

Opposite directional effects to the one discussed above for the expansion factor are observed 

with respect to capital investment cost level (I) and are thus not shown for brevity.  

Table 6 shows sensitivity results with respect to the priority rules of debt at default. We focus 

only on the case of “me-first” priority for initial debt (see equations 10a and 10b) and contrast 

 
9 It should be noted that coupon levels increase at t = 0 but since the improvement in equity value is more 
significant than that of debt the leverage ratio decreases. Credit spreads at t = 0 do not show any notable 
increase which also appears to support a debt “conservatism” argument.  
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it with the results of equal priority used in our earlier analysis. We show sensitivity with 

respect to volatility using “me-first” priority so these results can be contrasted with those of 

Table 1 where a similar sensitivity was conducted with equal priority for debt holders.10  

                                                        [Insert Table 6 here] 

Compared to the case of equal priority (see Table 1, panel B) we observe a slight increase in 

firm value under a “me-first” priority rule for initial debt. This is similar to the result of 

Hackbarth and Mauer (2012) where they find that differences in firm value under different 

priority rules is relatively small.11 When the initial debt holders have priority in default we 

observe a more significant conservatism of debt raised at t = 0. This can be seen both by the 

initial coupon R0 and initial debt level raised at t = 0 which are both smaller under the “me-

first” for initial debt compared to the case of equal priority. Instead, the firm under “me-first” 

for initial debt priority rule preserves more financial flexibility to issue more debt when the 

investment is exercised. Indeed, R1 at the investment trigger is higher under “me-first” 

compared to the case of equal priority. Despite the increase in the coupon of new debt, at the 

investment the total leverage and overall credit spreads remain rather similar between the two 

cases due to the counterbalancing effect caused by lower initial leverage under “me-first”. On 

the other hand, note that the initial conservatism in debt levels combined with higher 

protection for initial debt and more delayed default (see Panel A compared to the case of 

Table 1) substantially decreases initial (t = 0) credit spreads relative to the equal priority rule. 

With respect to other firm policies (see Panel A), we observe that under “me-first” for initial 

debt the firm delays investment more (see also the lower expected investment cost incurred in 

Panel B). We finally observe that the directional effects with respect to the sensitivity with 

respect to volatility remain the same as in the case of equal priority. We however note on the 

more pronounced increase in leverage at investment relative to initial leverage that exists 

under “me-first” compared to the equal priority case.  

Table 7 summarizes the predictions of the model concerning the parameters providing 

guidance for future empirical work in the area. In the next section we further facilitate this 

step by providing the framework for estimating the parameters of the continuous time 

process.  

 
10 We have conducted extensive sensitivity across all other parameters using “me-first” for initial debt. Similarly 
to Hackbarth and Mauer (2012) we find no significant differences in firm values or leverage decisions. 
Importantly, the predictions highlighted in the rest of the paper remain the same under “me-first” priority. 
11 They also point out that me-first is closer among all rules to the (ideal) optimal priority rule. 
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[Insert Table 7 here] 

 

4. Mean reversion process estimation  

We close this section by showing how to estimate the parameters of the continuous time 

process and investigate the prevalence of earnings mean reversion in the data. Appendix 5 

describes the process of estimating the mean reversion speed q, the long-term mean and the 

volatility of the earnings process, as well as, the test used to identify whether a firm’s 

earnings follows mean reverting process or a non-stationary process.  

Our initial sample is from the quarterly COMPUSTAT database between 1961 and 2019. We 

exclude financial firms (Standard Industrial Classification (SIC) codes 6000 to 6999) and  

regulated firms (SIC codes 4900 to 4999). We require that a firm is included in the analysis 

for testing for mean reversion if it has at least 40 consecutive quarterly observations (10 year 

of data).  

The total number of non-financial and non-regulated firms in the sample before and after the 

requirement of at least 40 consecutive observations is given shown in Table 8. The table also 

shows the number of firms classified as mean reverting using the full sample available for 

each firm.  

[Insert Table 8 here] 

Figure 1 illustratively shows a selection of two firms from our sample, one found to be mean-

reverting and one which is non-stationary. Clearly, firm 1 earnings revert to a long-term mean 

whereas firm 2 appears not to revert to a long-term mean level.  

[Insert Figure 1 here] 

Our analysis shows that 60% of the firms with available data are classified as mean reverting 

showing the importance and need for further empirical work to distinguish the impact of 

earnings dynamics on firm policies.  

 

5. Conclusions 

We have developed a dynamic trade-off model with mean-reversion in earnings and multiple 

investment stages dynamic leverage adjustments at investment points. Our results challenge 
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the traditional interpretation relating the empirical observation of a negative relation between 

profitability and leverage since for firms characterized with mean reverting earnings, the 

relation between earnings and profitability can be negative or even U-shape. We provide 

further insights on the impact of the earnings dynamics and in particular long-term 

profitability, mean reversion speed and volatility on firm value, leverage levels and dynamic 

changes in leverage and credit spreads.  We also provide managerial implications regarding 

the optimal timing of investment and default and optimal capital structure related to earnings 

dynamics. 
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Table 1. Sensitivity analysis with respect to earnings volatility (σ) 

Panel A: Optimal coupon and thresholds 

 

 

 

 

 

 

Panel B: Values at t = 0 and the investment trigger T 

 
Values at t = 0 Values at investment 

trigger T 
σ Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 

0.24 20.822 11.644 28.187 2.475 0.559 9.840 0.0018 0.616 0.057 0.0018 
0.3 20.580 9.711 27.373 2.080 0.472 8.873 0.0028 0.553 0.081 0.0028 
0.4 20.556 7.997 26.720 1.692 0.389 7.856 0.0050 0.485 0.096 0.0052 
0.5 20.815 6.778 26.551 1.532 0.326 7.268 0.0079 0.450 0.124 0.0082 

 

 Notes: In the above sensitivity the following was used: current earnings at the level x = 1, risk-free rate of r = 

0.06, tax rate τ = 0.15  and proportional bankruptcy costs b = 0.5. For modelling the growth option we use e = 2 

, investment cost I = 10. For the mean-reverting stochastic model parameters we vary σ and use a mean 

reversion speed q = 0.1 and long-term mean of earnings θ = 1.  ΔLev stands for change in leverage and is 

calculated as LevT - Levb. Base case parameters is highlighted in red.  

  

σ R0 R1 xI vL xb 

0.24 0.72 0.46 1.015 -0.658 -0.415 
0.3 0.61 0.5 1.135 -1.028 -0.772 
0.4 0.52 0.55 1.341 -1.501 -1.191 
0.5 0.46 0.64 1.541 -1.856 -1.563 
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Table 2. Sensitivity analysis with respect to mean reversion speed (q) 

Panel A: Optimal coupon and thresholds 

Base case (θ = 1) 

 

 

 

 

 

Case with lower long term profitability (θ = 0.5) 

 

 

 

 

Panel B: Values at t = 0 

Base case (θ = 1) 

 Values at t = 0 
Values at investment 

trigger T 
q Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 

0.1 20.556 7.997 26.720 1.692 0.389 7.856 0.0050 0.485 0.096 0.0052 
0.15 20.771 10.486 27.234 2.174 0.505 8.637 0.0020 0.545   0.040 0.0020 
0.2 21.166 12.787 27.683 2.707 0.604 9.224 0.0010 0.628 0.024 0.0010 

0.25 21.524 14.526 28.019 3.139 0.675 9.634 0.0006 0.698 0.023 0.0006 
0.3 21.814 15.898 28.253 3.469 0.729 9.908 0.0004 0.752 0.023 0.0004 

Case with lower long term profitability (θ = 0.5) 

 Values at t = 0 
Values at investment 

trigger T 
q Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 

0.1 12.154 3.633 16.091 0.890 0.299 4.827 0.0171 0.388 0.089 0.0158 
0.15 10.502 3.453 14.124 0.618 0.329 4.240 0.0095 0.345   0.016 0.0097 
0.2 9.679 3.562 12.678 0.596 0.368 3.595 0.0046 0.342 -0.026 0.0051 

0.25 9.251 4.005 11.486 0.664 0.433 2.899 0.0024 0.378 -0.055 0.0027 
0.3 9.011 4.405 10.490 0.737 0.489 2.216 0.0013 0.427 -0.062 0.0016 

Notes: In the above sensitivity the following was used: current earnings at the level x = 1, risk-free rate of r = 

0.06, tax rate τ = 0.15  and proportional bankruptcy costs b = 0.5. For modelling the growth option we use e = 2 

, investment cost I = 10. For the mean-reverting stochastic model parameters we use σ = 0.4, long-term mean θ 

= 1 and vary  mean reversion speed q. ΔLev stands for change in leverage and is calculated as LevT - Levb. Base 

case parameters highlighted in red.  

q R0 R1 xI vL xb 
0.1 0.52 0.55 1.341 -1.501 -1.191 

0.15 0.65 0.45 1.238 -1.795 -1.209 
0.2 0.78 0.45 1.149 -1.810 -1.134 

0.25 0.88 0.47 1.077 -1.738 -1.053 
0.3 0.96 0.49 1.021 -1.623 -0.958 

q R0 R1 xI vL xb 
0.1 0.28 0.53 1.644 -1.120 -0.903 

0.15 0.24 0.35 1.673 -1.531 -0.984 
0.2 0.23 0.28 1.703 -1.847 -1.068 

0.25 0.25 0.27 1.730 -2.003 -1.087 
0.3 0.27 0.29 1.755 -2.052 -1.105 
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Table 3. Sensitivity analysis with respect to long-term profitability (θ) 

Panel A: Optimal coupon and thresholds 

 

θ R0 R1 xI vL xb 
0.6 0.31 0.53 1.571 -1.217 -0.974 

0.75 0.36 0.54 1.473 -1.356 -1.094 
1 0.52 0.55 1.341 -1.501 -1.191 

1.25 0.73 0.58 1.237 -1.544 -1.234 
1.5 0.99 0.61 1.156 -1.504 -1.210 

1.75 1.29 0.63 1.093 -1.411 -1.132 
2 1.64 0.62 1.047 -1.282 -0.976 

2.25 2.03 0.57 1.017 -1.161 -0.764 
 

Panel B: Values at t = 0 

 Values at t = 0 
Values at investment 

trigger T 
θ Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 

0.6 13.635 4.246 18.243 0.970 0.311 5.578 0.0130 0.405 0.094 0.0126 
0.75 16.063 5.238 21.488 1.167 0.326 6.591 0.0087 0.430 0.104 0.0090 

1 20.556 7.997 26.720 1.692 0.389 7.856 0.0050 0.485 0.096 0.0052 
1.25 25.429 11.561 31.741 2.396 0.455 8.708 0.0031 0.548 0.093 0.0032 
1.5 30.532 15.923 36.579 3.214 0.522 9.261 0.0022 0.611 0.089 0.0022 

1.75 35.763 20.952 41.283 4.093 0.586 9.613 0.0016 0.667 0.081 0.0016 
2 41.063 26.787 45.883 5.004 0.652 9.824 0.0012 0.716 0.064 0.0012 

2.25 46.398 33.325 50.414 5.928 0.718 9.944 0.0009 0.754 0.036 0.0009 
 

Notes: In the above sensitivity the following was used: current earnings at the level x = 1, risk-free rate of r = 

0.06, tax rate τ = 0.15  and proportional bankruptcy costs b = 0.5. For modelling the growth option we use e = 2 

, investment cost I = 10. For the mean-reverting stochastic model parameters we use σ = 0.4,  mean reversion 

speed q = 0.1 and vary long-term mean of earnings θ.  ΔLev stands for change in leverage and is calculated as 

LevT - Levb. Base case parameters highlighted in red.  
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Table 4. Sensitivity analysis with respect to current profitability level (x) 

Panel A: Optimal coupon and thresholds 

 

x R0 R1 xI vL xb 
-0.4 0.30 0.8 1.323 -1.481 -1.660 

-0.25 0.32 0.8 1.324 -1.481 -1.616 
0 0.37 0.7 1.327 -1.481 -1.508 

0.25 0.41 0.7 1.330 -1.481 -1.422 
0.5 0.44 0.6 1.332 -1.481 -1.358 

0.75 0.48 0.6 1.336 -1.501 -1.274 
1 0.52 0.6 1.341 -1.501 -1.191 

1.25 0.59 0.5 1.352 -1.501 -1.049 
1.3 0.62 0.45 1.357 -1.501 -0.989 

1.35 0.68 0.4 1.369 -1.481 -0.873 
 

Panel B: Values at t = 0 

 

 Values at t = 0 
Values at investment 

trigger T 

x Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 
-0.4 10.391 4.583 13.440 1.176 0.441 4.225 0.0055 0.492 0.051 0.0054 

-0.25 11.372 4.912 14.596 1.225 0.432 4.449 0.0051 0.491 0.059 0.0054 
0 13.039 5.688 16.576 1.318 0.436 4.855 0.0051 0.491 0.055 0.0053 

0.25 14.762 6.310 18.716 1.407 0.427 5.361 0.0050 0.491 0.064 0.0054 
0.5 16.563 6.780 21.069 1.493 0.409 6.000 0.0049 0.490 0.081 0.0053 

0.75 18.476 7.393 23.688 1.589 0.400 6.801 0.0049 0.486 0.086 0.0052 
1 20.556 7.997 26.720 1.692 0.389 7.856 0.0050 0.485 0.096 0.0052 

1.25 22.882 9.050 30.322 1.807 0.396 9.247 0.0052 0.484 0.088 0.0052 
1.3 23.389 9.509 31.118 1.832 0.407 9.561 0.0052 0.483 0.077 0.0052 

1.35 23.915 10.418 31.908 1.856 0.436 9.848 0.0053 0.485 0.050 0.0052 
 

Notes: In the above sensitivity the following was used we vary the current earnings at the level x . Other 

parameters used are risk-free rate of r = 0.06, tax rate τ = 0.15  and proportional bankruptcy costs b = 0.5. For 

modeling the growth option we use e = 2 , investment cost I = 10. For the mean-reverting stochastic model 

parameters we use σ = 0.4,  mean reversion speed q = 0.1 and long-term mean of earnings θ = 1. ΔLev stands 

for change in leverage and is calculated as LevT - Levb. Base case parameters highlighted in red.  
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Table 5. Sensitivity analysis with respect to growth expansion factor (e) 

 

Panel A: Optimal coupon and thresholds 

e R0 R1 xI vL xb 

1.35 0.49 0.43 3.569 -0.625 -0.844 
1.5 0.48 0.48 2.399 -0.814 -0.897 

1.75 0.48 0.52 1.667 -1.185 -1.060 
2 0.52 0.55 1.341 -1.501 -1.191 

2.25 0.59 0.56 1.155 -1.799 -1.275 
2.5 0.74 0.5 1.038 -2.076 -1.212 

 

Panel B: Values at t = 0 

 
Values at t = 0 

Values at investment 
trigger T 

e Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 
1.35 15.026 7.510 14.327 0.863 0.500 0.164 0.0052 0.365 -0.135 0.0042 
1.5 15.390 7.350 16.694 1.035 0.478 2.339 0.0053 0.433 -0.045 0.0050 

1.75 17.506 7.377 21.995 1.405 0.421 5.894 0.0051 0.469 0.048 0.0051 
2 20.556 7.997 26.720 1.692 0.389 7.856 0.0050 0.485 0.096 0.0052 

2.25 23.977 9.058 31.066 1.928 0.378 9.018 0.0051 0.493 0.115 0.0053 
2.5 27.578 11.319 35.196 2.139 0.410 9.756 0.0054 0.498 0.088 0.0054 

 

Notes: In the above sensitivity the following was used: current earnings at the level x = 1, risk-free rate of r = 

0.06, tax rate τ = 0.15  and proportional bankruptcy costs b = 0.5. For modelling the growth option we vary e  

and use investment cost I = 10. For the mean-reverting stochastic model parameters we use  σ = 0.4 , use a  

mean reversion speed q = 0.1 and long-term mean of earnings θ = 1.  ΔLev stands for change in leverage and is 

calculated as LevT - Levb. Base case parameters highlighted in red.  
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Table 6. Sensitivity with respect to priority rule: “me-first” priority for initial debt with 
sensitivity with respect to volatility 

Panel A: Optimal coupon and thresholds 

 

 

 

 

 

 

Panel B: Values at t = 0 and the investment trigger T 

 Values at t = 0 
Values at investment 

trigger T 
σ Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 

0.23 20.888 11.166 28.273 2.551 0.535 9.935 0.0009 0.624 0.090 0.0016 
0.3 20.585 9.417 27.161 2.068 0.457 8.644 0.0016 0.552 0.095 0.0029 
0.4 20.562 7.924 26.469 1.679 0.385 7.586 0.0031 0.487 0.102 0.0052 
0.5 20.823 6.899 26.290 1.521 0.331 6.989 0.0052 0.451 0.119 0.0082 

 

Notes: In the above sensitivity the following was used: current earnings at the level x = 1, risk-free rate of r = 

0.06, tax rate τ = 0.15  and proportional bankruptcy costs b = 0.5. For modelling the growth option we use e = 

2, investment cost I = 10. For the mean-reverting stochastic model parameters we vary  σ , use a  mean reversion 

speed q = 0.1 and long-term mean of earnings θ = 1.  ΔLev stands for change in leverage and is calculated as 

LevT - Levb. Base case parameters highlighted in red. In this sensitivity results we use “me-first” priority for 

first debt (see equations 10a and 10b).  

  

σ R0 R1 xI vL xb 

0.23 0.68 0.51 1.006 -0.601 -0.471 
0.3 0.58 0.54 1.163 -1.007 -0.825 
0.4 0.5 0.59 1.386 -1.461 -1.218 
0.5 0.45 0.67 1.599 -1.818 -1.565 
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Table 7. Summary of directional effects on firm value, firm investment and default 
policies and leverage dynamics 

 

Parameter 
Fb(x) xI vL xb Levb LevT ΔLev 

Volatility (σ) 1 U + - - - - + 

Speed of mean 
reversion (q)2   

 
+ - - U + 

 
+ 

 
- 

Long-term 
profitability (θ) 

 
+ - U U + 

 
+ 

 
- 

Current earnings 
level (x) 

 
+ + - + U 

 
- 

 
U 

Growth expansion 
factor (e) 

 
+ - - - - 

 
+ 

 
+ 

Capital investment 
cost (I) 

 
- + + + + 

 
- 

 
- 

Me-first priority rule 
(compared with 
equal priority) 

+ 

- - - - 

No 
significant 

change 

+ 

Notes: The above summary sensitivity results are based on the base case parameters. The following notes 
concern changes in the observed results depending on long-term profitability levels: 1. Firm value is increasing 
when long-term profitability is low and decreasing when long-term profitability is high. All other results remain 
unchanged 2. When long-term profitability is low then firm value is decreasing in q, the investment trigger is 
increasing and default triggers are decreasing.  

 

Table 8. Number of non-financial and non-regulated firms that can be classified as 

mean reverting  

All firms including financial and regulated 38,205 

Financial firms  11,053 

Regulated    929 

Total non-financial and non-regulated firms 26,223 

Number of firms with N = 40 consecutive 

earnings (oibdpq) 

5,325 

N. of firms classified as mean reverting  3,200 
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Figure 1. Examples of classifications of earnings processes

 

Notes:  Plot 1 shows an example of a mean reverting process. It refers to firm “AM COMMUNICATIONS 

INC” with CUSIP number 001674100 with estimated mean reversion parameters  θ = 0, q = 1.97 and σ = 0.69. 

Plot 2 shows an example of a firm  found to be non-stationary (“ABS INDUSTRIES INC” with CUSIP = 

000781104). Both plots shows their earnings (oibdpq) unadjusted for seasonality for the whole periods of 

consecutive available data for each firm.  
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Appendix 1: Notation  

𝐸𝑏(𝑥) = Equity before investment (equity in stage 1). 

𝐹𝑏(𝑥) = Firm value before investment. 

𝑈𝑏(𝑥) = Value of unlevered assets before investment. 

𝑇𝐵𝑏(𝑥) = Tax benefits before investment. 

𝐵𝐶𝑏(𝑥) = Bankruptcy costs before investment. 

𝐷𝑏(𝑥) = Debt before investment. 

𝑅଴= Coupon for 𝐷𝑏(𝑥). 

𝑥௕ = Bankruptcy threshold before investment. 

𝑥ூ = Investment trigger  

𝐸𝑎(𝑥) = Equity after investment  (equity in stage 2). 

𝐹𝑎(𝑥) = Firm value after investment. 

𝑈𝑎(𝑥) = Value of unlevered assets after Investment. 

𝑇𝐵𝑎(𝑥) = Tax Benefits after Investment. 

𝐵𝐶𝑎(𝑥) = Bankruptcy costs after Investment. 

𝐷𝑎଴(𝑥) = Debt value of debt obtained at time zero after investment. 

𝐷𝑎ଵ(𝑥) = Debt value of debt obtained at the investment trigger after investment. 

𝑅ଵ= Coupon for 𝐷𝑎ଵ(𝑥). 

𝑥௅ = Bankruptcy threshold following investment (in stage 2). 

𝜏 = Corporate tax rate 

𝑏 = Proportional to unlevered assets bankruptcy costs  

𝛽଴ = share of initial debt holders at bankruptcy in stage 2 under equal priority. 

𝛽ଵ =  share of second debt holders at bankruptcy in stage 2 under equal priority. 
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I =  Investment cost 

RT = R0+R1 

Levb = 𝐷𝑏(𝑥) / 𝐹𝑏(𝑥): Leverage ratio at t = 0 

Crb =  R0/ 𝐷𝑏(𝑥)-r : Credit spread of initial debt at t = 0 

Invb = I  ∙  J(x) = Expected present value of investment costs 

NBb(x) = 𝑇𝐵𝑏(𝑥)- 𝐵𝐶𝑏(𝑥) : Net benefits of debt 

At the investment trigger: 

LevT = (𝐷𝑎଴(𝑥)+𝐷𝑎ଵ(𝑥)) / 𝐹𝑎(𝑥): Total leverage ratio at the investment trigger  

ΔLev = LevT-Levb  : Change in leverage relative to initial stage 

Crb=R0/𝐷𝑎଴(𝑥)-r : Credit spread of initial debt at the investment trigger  

CrT=(R0 +R1)/(𝐷𝑎଴(𝑥) + 𝐷𝑎ଵ(𝑥))-r :   Credit spread of total debt at the investment trigger  

 

Appendix 2: Derivation of the homogeneous differential equation solution  

Following standard replication arguments (example, Dixit and Pindyck, 1994, p.180) any 

contingent claim 𝑃(𝑥) on underlying asset x that follows the mean reversion process defined 

in equation (1) should satisfy12:  

         𝑇(𝑃(𝑥)) =
ଵ

ଶ
𝜎ଶ𝑃ᇱᇱ(𝑥) − 𝑞(𝑥 − 𝜃)𝑃ᇱ(𝑥) − 𝑟𝑃(𝑥) = 0,     𝑥 ∈ ℜ                          (A1) 

To find the general solution of this homogeneous differential equation first set 𝜎ത = 𝜎/ඥ2𝑞 

and make the following change of variables: 

𝑧 =
𝑥 − 𝜃

𝜎ത
. 

Then 𝑃(𝑥) = 𝑢(𝑧),   𝑃ᇱ(𝑥) =  
ଵ

ఙഥ
 𝑢′(𝑧) and   𝑃ᇱᇱ(𝑥) =  

ଵ

ఙഥమതതതത  𝑢′′(𝑧). Thus equation (A1) is 

transformed to: 

 
12 To derive this general contingent claim differential equation we assume risk-neutral investors and hence that 
the total required return on holding an asset in equilibrium is r = a(x)+δ where a(x)=q(θ-x) is the capital (gains) 
of asset x and δ the convenience yield. Thus, the implied convenience yield of holding the underlying asset x is 
δ=r-a(x). A similar approach is followed in Sarkar and Zapatero (2003). A detailed proof is available upon 
request. 
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                                    𝑞 𝑢ᇱᇱ(𝑧) − 𝑞𝑧 𝑢ᇱ(𝑧) − 𝑟𝑢(𝑧) = 0,     𝑧 ∈ ℜ.                                 (A2) 

Setting also 𝑢(𝑧) = 𝑤(𝑧)𝑒
೥మ

ర , with 𝜈 = −
௥

௤
< 0, deduce that 𝑢ᇱ(𝑧) = 𝑒

೥మ

ర ቀ𝑤′(𝑧) + 𝑤(𝑧)
௭

ଶ
ቁ 

and 𝑢ᇱᇱ(𝑧) = 𝑒
೥మ

ర ቀ𝑤ᇱᇱ(𝑧) + 𝑧𝑤ᇱ(𝑧) + 𝑤(𝑧)
ଵ

ଶ
(1 +

௭మ

ଶ
)ቁ. A simple calculation then shows that 

equation (A2) can be rewritten into:  

                                   𝑤ᇱᇱ(𝑧) − ቂ
ଵ

ସ
𝑧ଶ − ቀ𝜈 +

ଵ

ଶ
ቁቃ 𝑤(𝑧) = 0,     𝑧 ∈ ℜ.                             (A3) 

Equation (A3) is the real version of Weber’s equation (Abramowitz and Stegun, 1972), that 

is: 

                              𝑤ᇱᇱ(𝑧) − ቂ
ଵ

ସ
𝑧ଶ + 𝑎ቃ 𝑤(𝑧) = 0,     𝑧 ∈ ℂ,                                             (A4) 

where 𝑎 = −𝜈 −
ଵ

ଶ
. The general solution of equation (A3)  is given by: 

                                    𝑤௚(𝑧) = 𝐶ଵ𝑈(𝑎, 𝑧) + 𝐶ଶ𝑈(𝑎, −𝑧).                                                (A5)   

With 𝐶ଵ and 𝐶ଶ general constants and where: 

𝑈(𝑎, 𝑧) =
1

2క√𝜋
൤cos(𝜉𝜋) Γ ൬

1

2
− ξ൰ 𝑦ଵ(𝑎, 𝑧) − √2 sin(𝜉𝜋) Γ(1 − ξ) 𝑦ଶ(𝑎, 𝑧)൨      (A6) 

with 

𝜉 =
1

2
𝑎 +

1

4
 , 

                                      𝑦ଵ(𝑎, 𝑧) = 𝑒ି 
೥మ

ర   𝐹ଵଵ ቀ
ଵ

ଶ
𝑎 +

ଵ

ସ
;  

ଵ

ଶ
;  

௭మ

ଶ
ቁ                                      (A7) 

and  

                                  𝑦ଶ(𝑎, 𝑧) = 𝑧 𝑒ି 
೥మ

ర   𝐹ଵଵ ቀ
ଵ

ଶ
𝑎 +

ଷ

ସ
;  

ଷ

ଶ
;  

௭మ

ଶ
ቁ                                       (A8) 

where 𝐹ଵଵ (𝛼; 𝛽; 𝑧) = 𝑀(𝛼; 𝛽; 𝑧) is the confluent hypergeometric function (see Buchholz, 

1969, Borodin and Salminen, 2002). 

As a result, the general solution is now written as: 

                                                        𝑤௚(𝑧) = 𝐶ଵ𝐷ఔ(𝑧) + 𝐶ଶ𝐷ఔ(−𝑧)                                 (A9) 
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Since in our case the variable z in equation (A3) is real, then the general solution of (A3) is 

expressed by: 

𝑤௚(𝑧) = 𝐶ଵ𝐷ఔ(𝑧) + 𝐶ଶ𝐷ఔ(−𝑧) ,       𝑧 ∈ ℜ.    

Two useful asymptotic properties of the two linear independent solutions of equation (A3) 

(Buchholz, 1969) are the following:   

                               lim
௭→ஶ

𝑒
೥మ

ర  𝐷ఔ(𝑧)  =  lim
௭→ஶ

   𝑧ఔ(1 + 𝑂(𝑧ିଶ) = 0,     𝑓𝑜𝑟  𝜈 < 0           (A10) 

and  

                                            lim
௭→ஶ

𝑒
೥మ

ర  𝐷ఔ(−𝑧) ~ 
√ଶగ

୻(ିఔ)
   lim

௭→ஶ
  𝑒

೥మ

మ   𝑧ିఔିଵ = ∞.               (A11) 

We can now get the general solution of equation (A2) to be: 

𝑢௛(𝑧) = 𝐶ଵ 𝑒
௭మ

ସ  𝐷ఔ(𝑧) + 𝐶ଶ 𝑒
௭మ

ସ  𝐷ఔ(−𝑧),       𝑧 ∈ ℜ.    

In addition, deduce that the solution of equation (A1) is given by: 

𝑃(𝑥) = 𝐶ଵ 𝑒
భ

ర
൬

(ೣషഇ)ඥమ೜

഑
൰

మ

 𝐷ఔ ൬
(௫ିఏ)ඥଶ௤

ఙ
൰ + 𝐶ଶ𝑒

భ

ర
൬

(ೣషഇ)ඥమ೜

഑
൰

మ

 𝐷ఔ ൬−
(௫ିఏ)ඥଶ௤

ఙ
൰ , 𝑥 ∈ ℜ.      (A12) 

For simplicity of presentation denote the general solution of (A1) as 

                                                     𝑃(𝑥) = 𝐶ଵ𝑃ଵ(𝑥) + 𝐶ଶ𝑃ଶ(𝑥),                                     (A13a) 

with  

𝑃ଵ(𝑥) =  𝑒
ଵ
ସቆ

(௫ିఏ)ඥଶ௤
ఙ ቇ

మ

 𝐷ఔ ቆ
(𝑥 − 𝜃)ඥ2𝑞

𝜎
ቇ, 

and 

𝑃ଶ(𝑥) = 𝑒
ଵ
ସቆ

(௫ିఏ)ඥଶ௤
ఙ ቇ

మ

 𝐷ఔ ቆ−
(𝑥 − 𝜃)ඥ2𝑞

𝜎
ቇ, 

with equations (A10) and (A11) giving that: 

lim
௫→ஶ

𝑃ଵ(𝑥) = 0     (A13b) 

lim
௫→ିஶ

𝑃ଵ(𝑥) = ∞    (A13c) 
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lim
௫→ஶ

𝑃ଶ(𝑥) = ∞    (A13d) 

lim
௫→ିஶ

𝑃ଶ(𝑥) = 0    (A13e) 

 

Appendix 3: Derivation of solution for basic and general claims involving two 

boundaries 

A3.1.Basic claim paying one dollar at 𝑣௅ after investment 

Consider the following differential equation problem: 

                                               𝑇∗൫𝑄(𝑣)൯ = 0,     𝑣 ∈ ℜ                                    (A14) 

lim
௩→ஶ

𝑄(𝑣) = 0 

𝑄(𝑣௅) = 1 

where 𝑇∗(𝜃∗, 𝜎∗) ≡ 𝑇(𝑒𝜃, 𝑒𝜎).  The solution for 𝑄(𝑣) is given by applying (A13a): 

𝑄(𝑣) = 𝐶ଵ𝑃ଵ(𝑣) + 𝐶ଶ𝑃ଶ(𝑣) 

Applying the first boundary condition in (A14) combined with equation (A13d) gives 𝐶ଶ = 0. 

Then the second boundary condition gives 𝐶ଵ =
ଵ

௉భ(௩ಽ)
  . Thus, the solution for this basic 

claim paying one dollar at  𝑣௅ after investment is:                 

                                            𝑄(𝑣) =
௉భ(௩)

௉భ(௩ಽ)
                                                                         (A15) 

A3.2. Basic claims for homogeneous equations before investment 

𝐽(𝑥) and 𝐿(𝑥) are basic claims where 𝐽(𝑥) pays one dollar at 𝑥ூ and zero when 𝑥௕ is reached 

and 𝐿(𝑥) pays one dollar at  𝑥௕ and zero when  𝑥ூ is reached.  

A. Derivation of 𝐽(𝑥) 

Consider the following differential equation problem: 

 

                                               𝑇൫𝐽(𝑥)൯ = 0,     𝑥 ∈ ℜ                                            (A16) 

𝐽(𝑥ூ) = 1 

𝐽(𝑥௕) = 0 

The solution 𝐽(𝑥) satisfies (A13) hence: 
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𝐽(𝑥) = 𝐶ଵ𝑃ଵ(𝑥) + 𝐶ଶ𝑃ଶ(𝑥) 

Applying the boundary conditions in (A16) results in:  

𝐶ଵ =
𝑃ଶ(𝑥௕)

𝐷(𝑥ூ , 𝑥௕)
 ,          𝐶ଶ = −

𝑃ଵ(𝑥௕)

𝐷(𝑥ூ , 𝑥௕)
  , 

where 

𝐷(𝑥ூ , 𝑥௕) =  𝑃ଵ(𝑥ூ)𝑃ଶ(𝑥௕) − 𝑃ଵ(𝑥௕)𝑃ଶ(𝑥ூ). 

 

Thus, the solution for J(x) is: 

                                  𝐽(𝑥) =
௉మ(௫್)

஽(௫಺,௫್)
𝑃ଵ(𝑥) −

௉భ(௫್)

஽(௫಺,௫್)
 𝑃ଶ(𝑥).                     (A17) 

 

B. Derivation of 𝐿(𝑥) 

Consider now the corresponding problem for 𝐿(𝑥) which is given by: 

                                                  𝑇൫𝐿(𝑥)൯ = 0,     𝑥 ∈ ℜ                            (A18) 

𝐿(𝑥ூ) = 0 

𝐿(𝑥௕) = 1 

Applying the boundary conditions results in the following solutions for the constants:  

𝐶ଵ = −
𝑃ଶ(𝑥ூ)

𝐷(𝑥ூ , 𝑥௕)
 ,          𝐶ଶ =

𝑃ଵ(𝑥ூ)

𝐷(𝑥ூ , 𝑥௕)
  .  

Thus the solution for 𝐿(𝑥) is: 

                          𝐿(𝑥) = −
௉మ(௫಺)

஽(௫಺,௫್)
𝑃ଵ(𝑥) +

௉భ(௫಺)

஽(௫಺,௫್)
 𝑃ଶ(𝑥)                       (A19) 

 

A3.3. Basic claims for linear homogeneous equations 

Consider now the following problem regarding a contingent claim 𝑁(𝑥): 

                                              𝑇൫𝑁(𝑥)൯ = 0,     𝑥 ∈ ℜ                                 (A20) 

𝑁(𝑥ூ) = 𝐴 

𝑁(𝑥௕) = 𝐵 
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It can be easily shown that the solution of problem (A20) can be written in terms of the basic 

claims 𝐽(𝑥) and 𝐿(𝑥) in the following way: 

                                               𝑁(𝑥) = 𝐴  𝐽(𝑥) + 𝐵  𝐿(𝑥).                          (A21) 

A3.4. Basic claims for non-homogeneous equations 

Consider now a more general contingent claim 𝑀(𝑥) which may pay 𝑔(𝑥) expressed by: 

                                           𝑇൫𝑀(𝑥)൯ + 𝑔(𝑥) = 0,     𝑥 ∈ ℜ                        (A22) 

𝑀(𝑥ூ) = 𝐴 

𝑀(𝑥௕) = 𝐵 

Since 𝑇(∙) is a linear differential operator then the general solution is given by the expression:  

                                                      𝑀(𝑥) = 𝑀௛(𝑥) + 𝑀௣(𝑥),                                    (A23) 

where 𝑀௛(𝑥) is a solution of a corresponding homogeneous problem  

𝑇൫𝑀௛(𝑥)൯ = 0 

(that is 𝑔(𝑥) = 0) and 𝑀௣(𝑥) is one solution of problem (A20). To find which boundary 

conditions 𝑀௛(𝑥) should satisfy notice that: 

𝑀௛(𝑥ூ) = 𝑀(𝑥ூ) − 𝑀௣(𝑥ூ) = 𝐴 − 𝑀௣(𝑥ூ) 

𝑀௛(𝑥௕) = 𝑀(𝑥௕) − 𝑀௣(𝑥௕) = 𝐵 − 𝑀௣(𝑥௕) 

The problem for 𝑀௛(𝑥) is in the form of problem (A20) and its solution is given by equation 

(A21) . Thus, we obtain the solution:  

𝑀௛(𝑥) = ቀ𝐴 − 𝑀௣(𝑥ூ)ቁ 𝐽(𝑥) + ቀ𝐵 − 𝑀௣(𝑥௕)ቁ 𝐿(𝑥). 

As a result the solution for the value of 𝑀(𝑥) is: 

                     𝑀(𝑥) = ቀ𝐴 − 𝑀௣(𝑥ூ)ቁ 𝐽(𝑥) + ቀ𝐵 − 𝑀௣(𝑥௕)ቁ 𝐿(𝑥) + 𝑀௣(𝑥).       (A24) 

Equation (A24) is general enough to value securities (equity, debt) and firm value prior to 

investment depending on the payment 𝑔(𝑥) (which define 𝑀௣(𝑥) for the particular claim) 

and the boundary values A and B. Note that for debt holders g(∙) is not a function of x.  
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Appendix 4: Detailed proofs of security and firm valuation solutions 

A4.1. General solution of the problem 

Consider the differential equation of the form: 

                                                𝑇൫𝑦(𝑥)൯ + 𝑎𝑥 + 𝑏 = 0,     𝑥 ∈ ℜ.                                  (A25) 

The general solution of this problem is given by  𝑦௚(𝑥) = 𝑦௛(𝑥) + 𝑦௣(𝑥), where 𝑦௛(𝑥) is a 

solution of  𝑇൫𝑦(𝑥)൯ = 0 and 𝑦௣(𝑥) (particular solution) is one solution of equation  (A25). 

From equation (A13a) we have that 𝑦௛(𝑥) = 𝐶ଵ𝑃ଵ(𝑥) + 𝐶ଶ𝑃ଶ(𝑥). For the particular solution 

consider that  𝑦௣(𝑥) = 𝑘ଵ𝑥 + 𝑘ଶ. Then   𝑦௣
ᇱ (𝑥) = 𝑘ଵ  and 𝑦௣

ᇱᇱ(𝑥) = 0. Plugging in equation 

(A25) where 𝑇(∙) is given by equation (A1) we get: 

−𝑞(𝑥 − 𝜃)𝑘ଵ − 𝑟(𝑘ଵ𝑥 + 𝑘ଶ) + 𝑎𝑥 + 𝑏 = 0. 

Rearranging the terms one gets: 

(−(𝑞 + 𝑟)𝑘ଵ + 𝑎)𝑥 + 𝑞𝜃𝑘ଵ − 𝑟𝑘ଶ + 𝑏 = 0. 

This gives that: 

𝑘ଵ =
𝑎

𝑞 + 𝑟
 

and 

𝑘ଶ =
1

𝑟
൬

𝑞𝜗𝑎

𝑞 + 𝑟
+ 𝑏൰ 

Thus, the general solution of equation (A25) is given by:  

𝑦௚(𝑥) = 𝐶ଵ𝑃ଵ(𝑥) + 𝐶ଶ𝑃ଶ(𝑥) +
𝑎

𝑞 + 𝑟
𝑥 +

1

𝑟
൬

𝑞𝜗𝑎

𝑞 + 𝑟
+ 𝑏൰ 

(A26) 

A4.2. Values after investment 

A4.2.1. Value of unlevered assets 

The value of unlevered assets after investment satisfies the following differential equation: 

                                                𝑇∗൫𝑈𝑎(𝑣)൯ + 𝑣(1 − 𝜏) = 0,     𝑣 ∈ ℜ.                          (A27) 
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The general solution of equation A27 is given by equation (A26) with 𝑎 = 1 − 𝜏 and = 0 : 

                                              𝑈𝑎(𝑣) = 𝐶ଵ𝑃ଵ(𝑣) + 𝐶ଶ𝑃ଶ(𝑣) +  ቂ
ଵ

௤ା௥
𝑣 +

௤ఏ∗

௥(௤ା௥)
ቃ (1 − 𝜏)                        

(A28) 

The value of unlevered assets must also satisfy the following boundary conditions: 

                                                        lim
௩→±ஶ

𝑈𝑎(𝑣) = 𝑈𝑎௣(𝑣)                                         (A28) 

Equation (A13b) then suggests that 𝐶ଶ = 0 and equation (A13c) suggests that 𝐶ଵ = 0. Thus  

                                            𝑈𝑎(𝑣) = ቂ
ଵ

௤ା௥
𝑣 +

௤ఏ∗

௥(௤ା௥)
ቃ (1 − 𝜏)                                     (A29) 

𝑈𝑎(𝑣) can turn negative for sufficiently negative 𝑣. The value of 𝑣஺ at which the value of 

unlevered assets is zero is the solution of 𝑈𝑎(𝑣஺) = 0 which suggests that 𝑣஺ = −
௤ఏ∗

௥
 .  Since 

the value of unlevered assets is obtained (net of bankruptcy costs) by debt holders when the 

firm goes bankrupt at optimally determined 𝑣௅ we need to ensure that if 𝑣௅ < 𝑣஺ debt holders 

do not obtain a negative value and thus if 𝑣௅ < 𝑣஺,  𝑈𝑎(𝑣௅) is set to zero.  

A4.2.2. Equity value  

Equity value after investment satisfies the following differential equation: 

                                 𝑇∗൫𝐸𝑎(𝑣)൯ + (𝑣 − 𝑅଴−𝑅ଵ)(1 − 𝜏) = 0,     𝑣 ∈ ℜ                     (A30) 

The general solution of equation A30 is given by equation (A26) with 𝑎 = 1 − 𝜏 and 𝑏 =

−(1 − 𝜏 )(𝑅଴+𝑅ଵ) : 

𝐸𝑎(𝑣) = 𝐶ଵ𝑃ଵ(𝑣) + 𝐶ଶ𝑃ଶ(𝑣) +  ൬
1

𝑞 + 𝑟
𝑣 +

𝑞𝜃∗

𝑟(𝑞 + 𝑟)
−

𝑅଴+𝑅ଵ

𝑟
൰ (1 − 𝜏).  

(A31) 

Equity must also satisfy 

                                                     lim
௩→ஶ

𝐸𝑎(𝑣) = 𝐸𝑎௣(𝑣)                                        (A32) 

and 

                                                    𝐸𝑎(𝑣௅) = 0                                                         (Α33) 

Equation (Α13d) suggests that 𝐶ଶ = 0 and by (A33) we obtain that  
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𝐶ଵ = −
𝐸𝑎௣(𝑣௅)

𝑃ଵ(𝑣௅)
 

Thus, we obtain that: 

                                                         𝐸𝑎(𝑣) = 𝐸𝑎௣(𝑣) − 𝐸𝑎௣(𝑣௅)
௉భ(௩)

௉భ(௩ಽ)
                  (A34) 

Setting 𝑣 = 𝑒𝑥 define 

                               𝐸෨𝑎(𝑥) = 𝐸𝑎(𝑒𝑥) = 𝐸𝑎௣(𝑒𝑥) − 𝐸𝑎௣(𝑣௅)
௉భ(௘௫)

௉భ(௩ಽ)
                        (A35) 

A4.2.3. Debt values 

Debt value after investment for the initial debt issued at time zero 𝐷𝑎଴(𝑣) and the second 

debt issued at the investment trigger 𝐷𝑎ଵ(𝑣) satisfy the following: 

                              𝑇∗൫𝐷𝑎௜(𝑣)൯ + 𝑅௜ = 0,        𝑖 = 0,1       𝑣 ∈ ℜ                            (A36) 

The general solution of equation (A36) is given by equation (A26) with 𝑎 = 0 and 𝑏 = 𝑅௜: 

𝐷𝑎௜(𝑣) = 𝐶ଵ𝑃ଵ(𝑣) + 𝐶ଶ𝑃ଶ(𝑣) +  
𝑅௜

𝑟
  

(A37) 

Debt must also satisfy two boundary conditions. The first one is given by: 

                                            lim
௩→ஶ

𝐷𝑎௜(𝑣) =
ோ೔

௥
                                                                    (A38) 

The second boundary depends on the priority structure. Under equal priority:   

                                                 𝐷𝑎௜(𝑣௅) = 𝛽௜ (1 − 𝑏) 𝑈𝑎(𝑣௅)                                         (A39) 

In the case the first creditors have secured priority to other creditors then the boundary 

conditions become: 

                 𝐷𝑎଴(𝑣௅) = 𝑚𝑖𝑛 ቔ(1 − 𝑏) 𝑈𝑎(𝑣௅),
ோబ

௥
ቕ                                              (A40) 

                𝐷𝑎ଵ(𝑣௅) = (1 − 𝑏) 𝑈𝑎(𝑣௅) − 𝐷𝑎଴(𝑣௅)) 

 

In the case that second debt holders have secured priority to other creditors then the boundary 

conditions become: 
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                        𝐷𝑎ଵ(𝑣௅) = 𝑚𝑖𝑛 ቔ(1 − 𝑏) 𝑈𝑎(𝑣௅),
ோభ

௥
ቕ                                        (A41) 

                       𝐷𝑎଴(𝑣௅) = (1 − 𝑏) 𝑈𝑎(𝑣௅) − 𝐷𝑎ଵ(𝑣௅)     

Equation (A36) combined with (A13d) suggests that 𝐶ଶ = 0. Thus 𝐷𝑎௜(𝑣) = 𝐶ଵ𝑃ଵ(𝑣) +
ோ೔

௥
. 

Depending on priority structure, applying boundary conditions (A39), (A40) or (A41) deduce 

that: 

𝐶ଵ =
𝐷𝑎௜(𝑣௅) −

𝑅௜
𝑟

𝑃ଵ(𝑣௅)
 

and thus  

                                   𝐷𝑎௜(𝑣) =
ோ೔

௥
+ ቀ𝐷𝑎௜(𝑣௅) −

ோ೔

௥
ቁ ቀ

௉భ(௩)

௉భ(௩ಽ)
ቁ                                    (A42) 

Setting 𝑣 = 𝑒𝑥 define 

                         𝐷෩𝑎௜(𝑥) = 𝐷𝑎௜(𝑒𝑥) =
ோ೔

௥
+ ቀ𝐷𝑎௜(𝑒𝑥௅) −

ோ೔

௥
ቁ ቀ

௉భ(௘௫)

௉భ(௘௫ಽ)
ቁ                     (A43) 

 

A4.3. Values before investment 

 

A4.3.1 Value Unlevered before investment 

 

Following similar arguments as the ones used to derive the value of unlevered assets after 

investment one can show that the value of unlevered assets before investment 𝑈𝑏(𝑥) is given 

by: 

                                 𝑈𝑏(𝑥) = ቂ
ଵ

௤ା௥
𝑥 +

௤ఏ

௥(௤ା௥)
ቃ (1 − 𝜏)                                                  (A44) 

To avoid negative liquidation values for initial debt holders at bankruptcy if 𝑥஻ < 𝑥஺  then  

𝑈𝑏(𝑥஻) = 0 where  𝑥஺ = −
௤ఏ

௥
 is the threshold where 𝑈𝑏(𝑥) becomes zero.  

 

A4.3.2. Debt value before investment 

Debt 𝐷𝑏(𝑥) satisfies the following differential equation: 
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                                                 𝑇൫𝐷𝑏(𝑥)൯ + 𝑅଴ = 0,               𝑥 ∈ ℜ                              (A45) 

The general solution of equation (A43) is given by equation (A26) with 𝑎 = 0 and 𝑏 = 𝑅଴: 

                                               𝐷𝑏(𝑥) = 𝐷𝑏௛(𝑥) +  
ோబ

௥
                                        (A46) 

Debt before investment must also satisfy the following boundary conditions: 

                                                  𝐷𝑏(𝑥ூ) = 𝐷𝑎଴(𝑥ூ)         

𝐷𝑏(𝑥௕) = (1 − 𝑏) 𝑈𝑏(𝑥௕).        

Equation (A24) then suggests that the solution of the problem is given by: 

𝐷𝑏(𝑥) = ቀ𝐷𝑎଴(𝑥ூ) −
ோబ

௥
ቁ 𝐽(𝑥) + ൬(1 − 𝑏) 𝑈𝑏(𝑥௕) −

ோబ

௥
൰ 𝐿(𝑥) +

ோబ

௥
                     (A47) 

A4.3.3 Equity and firm value before investment 

The equity function before investment satisfies the following differential equation: 

                              𝑇൫𝐸𝑏(𝑥)൯ + (𝑥 − 𝑅଴)(1 − 𝜏) = 0,     𝑥 ∈ ℜ                           (A48) 

The general solution is given by equation (A26) with 𝑎 = 1 − 𝜏 and 𝑏 = −(1 − 𝜏 )𝑅଴ : 

 

𝐸𝑏(𝑥) = 𝐸𝑏௛(𝑥)   +  𝐸𝑏௣(𝑥) = 𝐶ଵ𝑃ଵ(𝑥) + 𝐶ଶ𝑃ଶ(𝑥) +  ൬
1

𝑞 + 𝑟
𝑥 +

𝑞𝜃

𝑟(𝑞 + 𝑟)
−

𝑅଴

𝑟
൰ (1 − 𝜏)  

Equity should also satisfy the following boundary conditions: 

𝐸𝑏(𝑥ூ) = 𝐸𝑎(𝑣ூ) − 𝐼 + 𝐷𝑎ଵ(𝑣ூ) 

𝐸𝑏(𝑥௕) = 0    

Equation (A24) then implies that solution of the problem is:  

𝐸𝑏(𝑥) = ቀ𝐸𝑎(𝑣ூ) − 𝐼 + 𝐷𝑎ଵ(𝑣ூ) − 𝐸𝑏௣(𝑥ூ)ቁ 𝐽(𝑥) − 𝐸𝑏௣(𝑥௕) 𝐿(𝑥) + 𝐸𝑏௣(𝑥)     (A49) 

Note that with 𝑣ூ = 𝑒𝑥ூ this becomes:  

𝐸𝑏(𝑥) = ቀ𝐸𝑎(𝑒 𝑥ூ) − 𝐼 + 𝐷𝑎ଵ(𝑒 𝑥ூ) − 𝐸𝑏௣(𝑥ூ)ቁ 𝐽(𝑥) − 𝐸𝑏௣(𝑥௕) 𝐿(𝑥) + 𝐸𝑏௣(𝑥) 

Firm value before investment is then given by the sum of equity plus debt after investment: 
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                                      𝐹𝑏(𝑥) = 𝐸𝑏(𝑥) + 𝐷𝑏(𝑥)                                                       (A50) 

 

Appendix 5: Estimation procedure for the parameters of the continuous time process 

The continuous time model dynamics for the earnings in equation (1) need to be translated in 

a suitable discrete time approximation for estimation. To do that we first note that the 

solution of the stochastic differential equation (SDE) in equation (1) is of the following form 

(see Lo and Wang, 1995): 

                                          𝑥௧ = 𝑥଴𝑒ି௤௧ + 𝜃(1 − 𝑒ି௤௧) + 𝜎 ∫ 𝑒௤(௦ି௧)𝑑𝑧௦
௧

଴
                        (A50) 

The (conditional) expected value and variance of 𝑥௧ can be obtained by solving the 

Kolmogorov forward equation (as in Dixit and Pindyck, 1994, p.90). These moments have 

also been derived in Lo and Wang, (1995). The conditional expected value of earnings is: 

                                  𝐸(𝑥௧) = 𝑥଴𝑒ି௤௧ + 𝜃(1 − 𝑒ି௤௧) = 𝜃 + (𝑥଴ − 𝜃)𝑒ି௤௧                     (A51) 

Note that for 𝑞 > 0 as 𝑡 → ∞, 𝐸(𝑥௧) → 𝜃 which confirms the mean-reverting nature of the 

process. The variance of the variable x  is also obtained as follows: 

                                                  𝑉𝑎𝑟(𝑥௧) =
ఙమ

ଶ௤
(1 − 𝑒ିଶ௤௧)                                                (A52) 

Note that as the mean reversion speed q increases the variance of x decreases.  

The solution of the SDE implies the following discrete version of solution can be used to 

generate the dynamics of x (see Dixit and Pindyck, 1994, p.76, eq.19): 

                ∆𝑥௧ = 𝜃(1 − 𝑒ି௤) + (𝑒ି௤ − 1)𝑥௧ିଵ + 𝜎ට
ଵି௘షమ೜

ଶ௤
𝑍௧                                       (A53) 

where 𝑍௧~𝑁(0,1). The above specification implies that the error volatility per unit of interval 

is: 

                                                                          𝜎ఌ = 𝜎ට
ଵି௘షమ೜

ଶ௤
                                          (A54)                           

Equation (A53) can also be used to simulate the stochastic dynamics of the continuous 

process (see below). To estimate the mean reversion speed (q), long-term mean (θ) and 

volatility (σ) in equation (A53) we estimate the following AR(1) model in discrete time (see 

Dixit and Pindyck, 1994, p.76): 
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                                                                  ∆𝑥௧ = 𝑎 + 𝑏𝑥௧ିଵ + 𝜀௧                                      (A55)                                  

We then associate the estimated constant, slope and error term volatility of (A55) with the 

continuous time model approximation analogue in equation (A53) which results in the 

following solution for the parameters: 

                                                                   𝑞 = −ln (1 + 𝑏෠)                                              (A56)                             

                                                                               𝜃 = −
௔ො

௕෠
                                                (A57)                                    

                                                                           𝜎 = 𝜎ఌට
ିଶ୪୬ (ଵା௕෠)

൫ଵା௕෠൯
మ

ିଵ
                                    (A59)                         

For the dynamics above to be meaningful we need that −1 < 𝑏෠ < 0 so that we obtain a 

positive mean reversion speed. Note that the smaller the coefficient 𝑏෠  the larger the speed of 

mean reversion q while as 𝑏෠ → 0 we have 𝑞 → 0.  To avoid 𝑏෠ = 0 and ensure that earnings 

dynamics in (A55) remains stationary we employ an Augmented Dickey-Fuller and thus in 

the final estimated version we include a time-trend and lags of the change of earnings as 

follows: 

                                               ∆𝑥௧ = 𝑎଴ + 𝑎ଵ𝑡 + 𝑏𝑥௧ିଵ + ∑ 𝛽௜∆𝑥௧ି௜
௛
௜ୀଵ + 𝜀௧                    (A60)     

For the Augmented Dickey-Fuller test we estimate (A60) for the de-seasonalized series and 

test the null of non-stationary series 𝑏෠ = 0 versus the alternative of stationary series 𝑏෠ < 0. 

We have used h = 4 lags in all specifications.  


