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Abstract:  

Investment decisions usually involve the assessment of more than one project. The most 

appropriate way to study the feasibility of a project is not to study the project on its own but 

as part of a portfolio, with correlations between the project inputs and outputs, so that the 

risks and gains are different from those that would be observed if the projects were studied in 

isolation. In light of this, the present study proposes a methodology for optimizing a portfolio 

of investment projects with real options based on the maximization of the Omega 

performance measure. Classical portfolio optimization methodologies, such as the Markowitz 

mean-variance formulation, normally use maximization of returns or minimization of risk as 

the objective function. The great advantage of using Omega as the objective function is that 

the best relationship between the weighted mean returns and weighted mean losses for the 

complete distribution of the net present values (NPVs) of the portfolio can be obtained, as the 

distribution is not restricted to its mean and variance as it is in the Markowitz formulation 

(1952). Furthermore, real options add value to the portfolio and can be included by extending 

the marketed asset disclaimer assumption (Copeland & Antikarov, 2003) for a project to all 

the projects in the portfolio. We give an example to illustrate the proposed methodology. We 

use Monte Carlo simulation as a tool because of its high level of flexibility in modeling 

uncertainties. The results show that the best risk-return relationship is obtained by optimizing 

Omega. 
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1. Introduction 

It is well known in the financial literature that investors always seek to maximize the return 

on their investments while minimizing the associated risk as much as possible. Markowitz 

(1952) developed the basis of investment portfolio optimization theory and proposed the 

mean-variance model. According to his theory, investors can identify all the optimal 

portfolios by constructing an efficient frontier, which is the geometric locus with the best 

possible combination of portfolio assets, corresponding to the lowest level of risk (variance) 

for a given level of return. Investors concentrate on selecting a portfolio along this frontier. 

Mean-variance theory assumes that an investor’s risk preference is a quadratic utility 

function. Hence, the only properties that matter in the distribution of returns are the two first 

moments: the expected return and the variance. The investor does not need to know other 

moments of the distribution of returns as the distribution is assumed to be normal. Although 

the Markowitz theory (1952) is easy to apply and effective in determining portfolio 

composition, it does not take into account the real characteristics of a distribution. Historically 

it can be seen that the distributions of the returns of most financial assets are generally not 

normal distributions. 

When a portfolio is made up of investment projects, evaluating it becomes more complex 

as, strictly speaking, there are no historical records of returns to allow the moments to be 

calculated.  In addition, future management decisions about investments, such as the best time 

to begin investing, expand, reduce operations or stop investing, can also be taken into 

consideration.  When there is the possibility of exercising these options, which are known as 

real options because they involve real assets, the modeling becomes more realistic and the 

attractiveness of projects can, therefore, be improved. 

While the most popular index for evaluating portfolio performance is the Sharpe index, 

which is derived from the Markowitz (1952) theory and assumes that the distribution of 

returns is normal, there are other measures of performance (risk vs return) that are more 

consistent with the distributions of returns observed in practice, i.e., non-normal distributions. 

Among these, the Omega measure, introduced by Keating & Shadwick (2002), is an 

interesting approach as it takes into account all the moments of the distribution of returns to 

evaluate the risk and return expected from an asset without assuming a normal distribution. 

We propose a methodology for evaluating a portfolio of investment projects that 

maximizes the Omega performance measure and allows real options to be included in the 
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projects. The methodology, therefore, has two main advantages: the use of the Omega 

measure as an objective function—ensuring that the distribution of returns is not 

misinterpreted—and the possibility of including and evaluating real options in projects, with 

correlated input and output variables. 

The article is organized as follows: In section 2 we present a review of the literature on 

portfolios of assets and real options and in section 3 we describe the main performance 

measures used to evaluate a portfolio and focus on the Omega measure. Section 4 introduces 

the proposed methodology for optimization of investment project portfolios with real options 

and section 5 illustrates the methodology with a numerical application. Finally, we conclude. 

 

2. Assets Portfolios with Real Options 

An asset portfolio is defined as a set of investments an investor holds in order to obtain the 

desired return within a given time for the use of his capital. When real assets, or investment 

projects, as they are also known, are involved, portfolio management and evaluation become 

more complex tasks than when the assets are financial, mainly because there are no historical 

records of yields for similar projects (each project has unique characteristics) to help predict 

the future behavior of the real asset. 

The Project Management Institute (PMI) is the main international association that sets 

standards for the management of investment projects. According to the PMI (2017), a 

portfolio is a set of projects, programs and sub-portfolios managed as a group to achieve 

certain strategic objectives. Projects are carried out according to a schedule, and it is the 

manager’s duty to control the allocation of the required resources while satisfying any 

deadlines and cost and quality requirements. The PMI suggests various qualitative and 

quantitative methods for selecting the projects to make up a portfolio. These include the use 

of weighted ranking based on selection criteria and traditional economic evaluation 

techniques such as net present value (NPV), internal rate of return (IRR), payback and cost-

benefit ratio. The PMI basically concentrates its efforts on establishing standards for the 

project implementation phase rather than carrying out in-depth studies on methods for 

selecting and prioritizing portfolio projects. 

In academia, however, a number of projects proposing a variety of methodologies for 

selecting portfolio projects have been undertaken. Heidenberger and Stummer (1999), Carazo 

et al. (2010) and Mansini, Ogryczak, and Speranza (2014) all summarized the main 
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methodologies currently available. These include methods that combine qualitative and 

quantitative criteria, such as comparative methods and methods based on scores or ranking, 

economic indicators, and group decision-making techniques. There are also more analytical 

methodologies, in which mathematical programming is used to select projects. The mean-

variance methodology proposed by Markowitz (1952) stands out as a pioneering effort. 

Although it was originally intended to be used to optimize a portfolio of financial assets such 

as stocks and fixed income securities, its principles can also be extended to a portfolio of 

investment projects. Many studies, such as Hassanzadeh, Nemati & Sun (2014), have also 

explored non-linear and multi-objective programming, and others have focused on research 

and development projects, such as Hassanzadeh, MoHassanzadeh et al. (2014), Modarres and 

Hassanzadeh (2009), Bhattacharyya, Chatterjee, and Kar (2010) and Medaglia, Graves, and 

Ringuest (2007). The last two even introduce random variables in the optimization program. 

As far as portfolios of real options are concerned, of particular note are: Brosch (2001), 

who describes the interactions that can exist between options and their correlations, especially 

in projects being carried out in stages; Anand, Oriani & Vassolo (2007), who carry out a 

theoretical review of the concept of real options inside a portfolio and recognize that there are 

significant effects when there is interdependence between the options and correlation between 

the expected returns on the assets; Smith & Thompson (2008), who analyze a portfolio of 

sequential options in an exploration project using a mathematical approach to assess how the 

options affect the value of the portfolio; Van Bekkum, Pennings & Smit (2009), who 

investigate what the effect on R&D projects is of financing that is conditional on results when 

the manager is responsible for deciding whether to focus on projects that yielded good results 

or diversify into others; Magazzini, Pammolli & Riccaboni (2015), who assess the case of a 

portfolio of R&D projects in pharmaceutical companies; and Maier, Pflug & Polak (2019) 

analyze a large portfolio of options (deferment, staging, mothballing, abandonment) under 

conditions of exogenous and endogenous uncertainties, developing an algorithm based on 

simulation and stochastic dynamic programming. 

The methodology proposed here follows the spirit of the process of integrated risk analysis 

of a portfolio of projects and real options described in Mun (2010) using Monte Carlo 

simulation as the main tool to calculate the real options in the portfolio. Mun (2010) begins 

his analysis by selecting a potential set of projects that meet the strategic aims of the business. 

He then models the stochastic variables, quantifies the risks and uncertainties present and 

adds the real options. Finally, he performs stochastic optimization of the group of projects and 
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strategies (options). Optimization programs generally seek to maximize a measure of return or 

minimize a measure of risk, such as the mean of the returns or their variance. The main 

advantage of using Omega as the objective function is that it takes into account the complete 

distribution of returns rather than reducing the distribution to its mean and variance as in 

classical theory. 

The distribution of returns for the investment project is obtained using the marketed asset 

disclaimer (MAD) assumption described in Copeland & Antikarov (2003) (based on 

Samuelson, 1965), which considers the present value of the project cash flows without real 

options to be the best estimate of the market value of the project. Although the stochastic 

components that determine the cash flow, such as prices, costs, and market indexes, may 

follow various stochastic processes (mean reversion, jump processes, processes with two or 

more stochastic factors etc.), the resulting distribution of the market value of the project (PV) 

tends toward a lognormal distribution, allowing stochastic paths for the expected values of the 

distribution the PV of projects in the portfolio to be simulated in a correlated manner while 

including real options. This is the essence of the methodological approach described in this 

study. 

The optimization program proposed here was inspired by the programs described in 

Modarres & Hassanzadeh (2009) and Sefair and Medaglia (2005). The former uses a robust 

optimization process to deal with the uncertainty in a portfolio of staged projects (sequential 

options), while Sefair & Medaglia (2005) consider the possibility of a project being started 

within a time interval and take into account an important characteristic when building an 

investment project portfolio, which is that projects are chosen in a binary manner, i.e., a given 

project is either included in its entirety in the portfolio or not included at all (rather than only 

part of the project being included). In addition, the optimization program uses the 

performance measure Omega as its objective function, which it maximizes, and, with the aid 

of Monte Carlo simulation, models the future value of the projects and real options in a 

portfolio with correlated input and output variables. 

 

3. Analysis of Portfolio Performance (Risk vs Return) 

Risk is traditionally defined as the standard deviation of a series of historical returns and 

the expected return as the mean value of the series. Figure 1 highlights the pitfalls of this 

approach particularly well and shows the importance of considering higher-order moments. 
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Both distributions have the same mean (E[R] = 10) and variance (Var[R] = 152) but differ in 

symmetry, kurtosis and all higher moments. However, some traditional performance 

indicators, such as the Sharpe index, defined as the ratio of the mean to the standard 

deviation, would indicate that both distributions are equivalent. Omega is more 

comprehensive as it takes into account all the moments of the distribution of returns. 

 

Figure 1. Distributions with equal means and variances (E[R]=10; Var[R]=152) 

 

3.1 Sharpe Index 

Formulated by Sharpe (1966), this index has gained widespread acceptance among 

academics and those working in the financial markets. It is based on Markowitz’s modern 

portfolio theory (1952) and identifies points on the capital market line corresponding to 

optimal portfolios. The Sharpe Index (SI) is defined as 



  
-p f

p

E R r
SI      (1) 

where  PE R  and P
, respectively, represent the expected return and standard deviation 

(volatility) of portfolio P, and rf is the risk-free interest rate. 

Mean-variance theory identifies the portfolios with the maximum expected return for a 

given level of risk, which can then be plotted to form what is known as the efficient frontier. 

The portfolios with the highest SI are those along the efficient frontier if the distribution of 

returns is assumed to be normal. 
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3.2 Sortino Index 

Sortino & Price (1994) observed that standard deviation only measures the risk of not 

achieving a mean.  However, the most important thing is to capture the risk of not achieving a 

return above a target known as the minimum acceptable return ( MAR ). The Sortino index 

(ISor) therefore differs from the Sharp index (SI) in that it uses the downside risk ( DR ), 

defined in Eq. 2, to measure risk. 




    2

,

1

min(0; - )
n

DR P i MA

i

R R n     (2) 

ISor is defined as 




[ ] -P MA

DR

E R R
ISor      (3) 

TheDR  in Eq. 2 is the standard deviation of the distribution of returns (
,P iR ) of the 

portfolio P below 
MAR , and n is the total number of observations (i = 1,...,n). The way in 

which risk is measured is the main difference between the Sortino and Sharpe indexes. 

 

3.3 The Omega Performance Measure 

The Markowitz mean-variance theory (1952) makes two important simplifications: (1) the 

investor’s risk-return preferences are defined by a quadratic utility function and (2) the mean 

and variance are sufficient to describe a distribution of returns. These simplifications are valid 

if the distribution of returns is assumed to be normal. However, it is generally accepted as an 

empirical fact that investment returns do not have a normal distribution. Higher-order 

moments are therefore needed in addition to the mean and variance to describe the 

distribution better. The Omega measure proposed by Keating & Shadwick (2002) allows 

these higher moments to be taken into account and is given by 

            (4) 

 

where F(x) is the cumulative distribution function of the returns x; a and b, respectively, 

are the lower and upper limits of the distribution f(x) of returns; and L is the minimum return 

acceptable to the investor (defined exogenously). The numerator is thus the expected value of 

   
 

   
 

 

1- ( )  ( - ) ( ) max( - ; 0)
( )

max( - ; 0)( ) ( - ) ( )

b b

L L

L L

a a

F x dx x L f x dx E x L
L

E L xF x L x f x dx
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the excess return (x-L) for positive results, and the denominator the expected value of the 

shortfall (L-x) for negative results, as defined in Kazemi, Schneeweis, and Gupta (2003). 

By taking into account the complete distribution, Omega has a major advantage over the 

Sharp index, which is derived from mean-variance theory and limits the distribution to 

essentially its first two moments. Furthermore, Omega is also intuitively attractive and easy to 

compute. 

 

4.  A Methodology for Optimizing Investment Portfolios with Real Options 

This section describes a methodology for optimizing a portfolio of investment projects 

with real options. The methodology is divided into three stages: (1) information modeling; (2) 

optimization without real options; and (3) optimization with real options. 

 

4.1 Stage I: Information Modeling 

First Step: Identification of the Project Risk Variables 

Project variables whose behavior is uncertain are called risk variables. Uncertainty can be 

mainly of two kinds: economic uncertainty and technical uncertainty. The former is a result of 

general movements in the economy, over which there is almost no control (e.g., GDP, 

exchange rate and sale price of a commodity) and which are the source of the market risk 

associated with the project. Technical uncertainty depends on the steps taken by the company 

to reduce it and is the source of private risk associated with the project. Only economic 

uncertainty becomes apparent with the passing of time. As an example of technical 

uncertainty, the volume of oil reserves in an oil field will be directly proportional to the 

amount invested in exploration. 

Hence, the first step is to identify the most important project variables that have non-

deterministic behavior, are economically or technically uncertain and have a significant effect 

on cash flow. 

 

Second Step: Modeling the Risk Variables 

Once the most important risk variables have been identified, their future behavior must be 

modeled. One simple approach is to assume that a variable follows some standard function for 

a random variable, such as a normal, lognormal or triangular function. Another possibility is 
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econometric modeling, which is more sophisticated and uses mainly simple or multiple 

regression models. This type of modeling is recommended when there are seasonal cycles or 

when effects caused directly by past scenarios but with a time lag are identified. Another type 

of modeling is based on stochastic processes, the most widely used of these being geometric 

Brownian motion (GBM) and mean reversion (MR) (Dixit & Pindyck, 1994). This is the type 

of modeling considered in the present study.  

 

Third Step: Determining the Correlations between the Project Risk Variables  

To calculate the correlations between the variables, there are assumed to be J risk variables 

(RV1, RV2,..., RVJ) with their respective history of realizations over time. First, the variance of 

each asset j (Varj) is calculated, as shown in Eq. 5. 

  
  

2

- [ ]j j jVar E RV E RV     (5) 

Then the covariance between two RVs, j and j’, is calculated, as shown in Eq. 6. 

     
 ' ' '( , ) [ ] [ ]j j j j j jCov RV RV E RV E RV RV E RV   (6) 

The covariance quantifies the extent to which two RVs are related. The Pearson correlation 

coefficient (  'jj
) is a standardized covariance calculated as shown in Eq. 7. 

  ' ' '( , )jj j j j jCov RV RV Var Var    (7) 

ρjj' varies between -1 and 1. A value of -1 indicates a perfect negative correlation between 

the variables, 1 a perfect positive correlation and 0 that the variables do not depend linearly 

on each other. Once all the correlation coefficients between the pairs of variables have been 

calculated, the correlation matrix is built. This is a symmetrical matrix containing all the 

correlation coefficients. 

 

4.2 Stage II: Optimization of the Portfolio without Real Options 

First, the market value of each project (PV) is calculated based on the structure of the cash 

flow (CF) for that project. The cash-flow structure described in Brealey, Myers & Allen 

(2011) can be used as a reference. The risk variables are included in the CF and have 

realizations that depend on the model adopted and the correlations with the other variables. 
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Let the horizon of project j have τj periods, t = 0,1,..., τj, with one CF for each t. The PV is 

obtained by adding the CFs from each simulation duly discounted by the estimated cost of 

capital for the project (µj). Hence, the market value of project j in a given simulation i = 1,..., 

N expressed continuously is given by Eq. 8. 

 
 0 ( )

j
j t

ij ijPV e CF t dt     (8) 

where CFij(t) is the value of the cash flow of project j in simulation i in periods t = 0,1,...,τj. 

Once N simulations have been performed, a distribution of PVs can be obtained for each 

project j. The net present value (NPV) of project j for simulation i (NPVij) is calculated from 

the PV, as shown in Eq. 9. 

 -ij ij jNPV PV I      (9) 

where Ij is the initial investment in period t = 0. 

The proposed optimization model, which was introduced in Section 2, is based on the 

optimization models described by Modarres and Hassanzadeh (2009) and Sefair and Medaglia 

(2005). We change the objective function to the performance measure Omega, as in Favre-

Bulle & Pache (2003), who use this measure to optimize a hedge fund portfolio. 

Let P be the portfolio of projects, and L the minimum acceptable NPV for the investors to 

invest in P. The objective function is given by 

 
( )

max  ( )
( )

P

P
P

EC L
L

EL L
    (10) 

where 

 ( ) max( - ;0)P PEC L E NPV L is the expected chance for portfolio P, and 

 ( ) max( - ;0)P PEL L E L NPV is the expected loss for the portfolio. 

 

The PNPV  in a given simulation i ( ,P iNPV ) is the sum of the NPVs of the projects in the 

portfolio (J projects), as defined in Eq. 11.                        

     



 

 , ' 0

1 ' -

J t

P i jt ij

j t t

NPV w NPV    (11) 
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The variable wjt’ is binary and is equal to 1 when project j starts at a given time t’ within 

the interval [t-, t+], where t- is the earliest period in which the project can be started, and t+ the 

last period the investment can be put off until. Both t- and t+ should be specified beforehand 

for each project. When the project does not start in period t’, wjt’ = 0. The following constraint 

therefore applies: 



 

 '

'

1
t

jt

t t

w      (12) 

In Eq. 11, 0ijNPV  is the NPV of project j in simulation i and period t=0 and is given by 

 '

0= fr t

ij ijNPV e NPV     (13) 

where ijNPV  is given by Eq. 9 and rf is the risk-free rate. Note that the ijNPV  is 

discounted t’ times at the risk-free rate (rf) to bring it to t=0. Between t=0 and t’ the project 

has not yet started and does not have the same level of risk (µj) as when it is underway. 

Another option would be to discount this waiting time by an opportunity cost the company 

would incur by not starting the project. Here we chose to use the risk-free rate, which is what 

the investor would earn by investing his money in a risk-free investment. 

After N simulations, the distribution of the NPV for each project j and the distribution of 

NPVP, the NPV of the portfolio, is obtained. The expected value of this distribution, 

 PE NPV , is the mean of the distribution of NPVP. The resulting covariances and correlations 

between the NPVs of the projects can be calculated as in Eqs. 6 and 7 except that instead of 

using the risk variables, the distributions of the NPVs of the projects are used. Doing this is 

particularly useful for determining the variance of the portfolio, as shown in Eq. 14. 

 

 ' ' ' '

1 ' 1

( , )
J J

P j j jt j t

j j

Var Cov NPV NPV w w    (14) 

When j ≠ j’ the equation gives the covariance between two assets, and when j = j’ it gives 

the variance of one asset. The Markowitz mean-variance methodology attempts to minimize 

VarP. 

In short, in this stage, the optimization program determines the values of the coefficients 

wjt’, which indicate the period in which each project should be started. 
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4.3 Stage III: Optimization of the Portfolio with Real Options 

 

First Step: Determining the Market Value of each Project and its Volatility 

Based on the MAD assumption (Copeland & Antikarov, 2003), Brandão, Dyer, and Hahn 

(2005b) estimate the expected market value of a project ( 'tPV ) according to Eq. 15. 













'

'
- '

'

[ ]

(1 )

t
t

t
t t

t t

E CF
PV     (15) 

where  tE CF  is the expected value of the cash flow in period t = t’,t’+1,...,t’+τ  

discounted by the risk-adjusted rate (µ), and t’ is the period when the project starts. Using Eq. 

15 and the distribution of PVt (assumed to be lognormal), Smith (2005) and Brandão, Dyer, 

and Hahn (2005a) estimate the volatility (σ) of the market value of the project as the standard 

deviation of the return between the initial period and the subsequent period. We suggest that 

this procedure be adopted. 

The mean initial value of the project, 'tPV  and its volatility, σ, are the parameters needed 

to model the path of the market value of the project as GBM. 

 

Second Step: Determining the Correlation between Projects 

With the distributions of the market values of the projects (Eq. 8), the correlations between 

the outputs of the projects within the context of the portfolio can be calculated as shown in 

Eq. 7 for the risk variables. However, instead of using historical data for the RVs, the 

correlation is calculated with the simulated PVs of the projects. 

 

Third Step: Determining the Market Value of the Projects with Real Options 

Once 'tPV  and σ have been calculated for each project, these can be modeled as 

negotiable (risk-neutral) assets obeying GBM, as shown in Eq. 16. 

       
 




2 2 (0,1)

', ' exp
j j jt tN

jtj t tPV PV    (16) 
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where , 'j t tPV  is the market value of project j simulated in period t’+∆t, φj = rf - δj is the 

drift or risk-neutral trend (rf is the risk-free rate and δj the dividend rate), σj is the volatility of 

project j and N(0,1) is an i.i.d. normal distribution. 

The simulations start at t = t’, the period when the project should be started, with the 

market value of the project in that period, 'jtPV , and a path of values is generated until t = 

t’+τj (τj is the projected lifetime of the project). The real options are inserted along the paths 

simulated by Eq. 16 and evaluated according to the type of option. 

Let 
'( )jtOp PV  be the function formed by the values in the set of real options each time that 

a path for the market value of project j started at t’ ( 'jtPV ) is simulated. Then its mean value is 

given by   ' '= ( )jt jtRO E Op PV . Hence, 


'jtPV , the market value of project j (started at t’) 

including the real options, can be calculated according to Eq. 17. 



 ' ' '  jt jt jtPV PV RO     (17) 

The minimum value of 


'jtPV  is 'jtPV , when the real options have no value. 

In this way, the market value of each project in the portfolio with options is calculated. The 

simulations are always done together using the matrix of correlations between projects. 

 

Fourth step: Determining the Net Present Value (NPV) 

Let 
0ijNPV   be the NPV of project j in simulation i (i=1,..., N) of the path of the project’s 

market value when the value of the real options is included. 
0ijNPV   is given by 

- '

0 0 '( )fr t

ij ij i jtNPV NPV e Op PV      (18) 

where 
0ijNPV  is defined in Eq. 13, and '( )i jtOp PV  is the value of the real options in 

simulation i of project j started at t’ discounted at the risk-free rate to period t=0. After N 

simulations, a distribution of 0jNPV 
 is obtained for each project, and the expected value is 

given by 

'
0 '0 ( )fr t

j jtj jE NPV NPV e PV I
 

         (19) 
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where the initial investment (Ij) is subtracted from 'jtPV


, which is defined according to 

Eq. 17, and the result is adjusted to period t=0 using rf. The expected value of the NPV of 

portfolio P with real options is the sum of the various 'jtPV


’s, as shown in Eq. 20. 

0

1

J

jP

j

E NPV NPV






         (20) 

 

Fifth step: The Portfolio Optimization Model with Real Options 

Let P be the portfolio of projects and L the minimum acceptable NPV for the investors to 

invest in the portfolio. Let the objective function be defined as 

( )
max  ( )

( )
P

P
P

EC L
L

EL L
       (21) 

where 

( ) max( - ;0)P PEC L E NPV L     is the expected chance for the portfolio P with real options, 

( ) max( - ;0)P PEL L E L NPV      is the expected loss for the portfolio P with real options 

and 
PNPV   is the distribution function of the NPV of portfolio P with real options. This 

function consists of N results from the simulation of the paths of the market values of the J 

projects (Eq. 16) with the real options included. 

The 
PNPV   in a given simulation i (

,P iNPV  ) is the sum of the 
0ijNPV  ’s (Eq. 18) of the J 

projects in portfolio P, as shown in Eq. 22. 

, 0

1

J

P i ij j

j

NPV NPV v 



      (22) 

If vj=1 project j should be included; if vj=0, it should not. The binary constraint therefore 

becomes 

{0  1}jv ou , for i = 1,2,...,J    (23) 

The number of projects in the portfolio can be controlled by defining a minimum number 

(Nmin) and a maximum number (Nmax) that can be accepted. This constraint can be expressed as 
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min maxj

j P

N v N


  .    (24) 

The portfolio may include projects that are mandatory, mutually associated or mutually 

exclusive. A mandatory project is one that has to be implemented for strategic reasons. For 

each mandatory project j, a constraint of the type shown in Eq. 25 is added. 

   1jv  , for a mandatory project j  P    (25) 

When projects are associated with each other, all of them or none of them are carried out. 

Let P(a) be the set of mutually associated projects j and Na the number of such projects. Then 

the following constraint can be added to the model: 

( )

{0  }j a

j P a

v ou N


     (26) 

When projects are mutually exclusive, only one of them can be considered. Let P€ be the 

set of mutually exclusive projects j. Then the following constraint can be added to the model: 

( )

{0  1}j

j P e

v ou


     (27) 

Depending on the portfolio being evaluated, other constraints may exist. These must be 

modeled so as to comply with the characteristics of the portfolio. 

 

5. Numerical Application 

Consider an oil company with three oil fields, F1, F2 and F3, and three refineries. Basic 

information on the projects is provided in Tables 1 and 2. 

 

Table 1. Basic information on the oil field projects 

Description Unit F1 F2 F3 

Oil reserves MM bbls 90 120 50 

Initial Production Rate % of the reserves 10% 15.0% 12% 

Production Rate of Reduction (Year 2 to 10) % per year 15% 13% 17% 

Variable Operating Cost (VOC) at t = 0 US$ / bbl 10 11 9 

Oil Sale Price (OP) at t = 0 US$ / bbl 25 24 26 

Fixed Costs US$ MM /year 5 7 5 

Profit Participation % per year 25% 25% 25% 

Investment US$MM 250 500 135 

Maximum Time to Start the Project years 2 2 2 

Project Lifetime (τ) year 10 10 10 
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Table 2. Basic information on the refinery projects 

Description Unit R1 R2 R3 

Installed Capacity (IC) MM bbls 15 17 10 

Initial Operation Rate % of the IC 75% 70% 70% 

Production Increase Rate (Year 2 to 5) % per year 6% 5% 5% 

Production Rate of Reduction (Year 9 to 12) % per year 15% 15% 12% 

Price of Brent Oil (PB) Price at t = 0 US$ / bbl 24 24 24 

Variable Operating Cost % of PB 115% 116% 113% 

Mean Sale Price of the Petroleum Product (PP) at t = 0 US$ / bbl 28 29 28 

Fixed Costs US$ MM/year 3 4 2 

Profit Participation % per year 25% 25% 25% 

Investment US$MM 150 160 80 

Maximum Time to Start the Project years 2 2 2 

Project lifetime (τ) years 12 12 12 

 

Stage I: Information Modeling 

First Step: Identification of the Project Risk Variables 

There are two risk variables (RV) in the oil field projects: the variable operating cost 

(VOC) and the oil sale price (OP). The risk variables for the refinery projects are the price of 

Brent oil (PB) (the internationally negotiated price that is the basis for calculating the variable 

operating cost of the refineries) and the mean sale price of the petroleum product (PP). 

Second Step: Modeling the Risk Variables 

The risk variables (RV) follow GBM, the parameters of which are specified in Table 3. 

 

Table 3. Parameters used to model the GBM of the risk variables (RV) 

RV Oil Fields Parameters F1 F2 F3 RV Refineries Parameters R1 R2 R3 

Variable 
Operating 
Cost (VOC) 

Drift (αc) 1.98% 1.98% 1.98% Price of Brent Oil 
(PB) 

Drift (αb) 2.76% 2.76% 2.76% 

Volatility (σc) 10.00% 10.00% 10.00% Volatility (σb) 14.00% 14.00% 14.00% 

Oil Sale Price 
(OP) 

Drift (αop) 2.96% 3.73% 3.25% Mean Sale Price 
of the Petroleum 
Product (PP) 

Drift (αpp) 3.92% 4.02% 4.11% 

Volatility (σop) 15.00% 12.00% 13.00% Volatility (σpp) 19.00% 19.00% 20.00% 

 

Third Step: Determining the Correlations between the Project Risk Variables 

Using Eq. 7, we calculate the correlation coefficients shown in Table 4. OP-Fi (i=1,2,3) 

denotes the oil sale price at the oil field (F) “i”, and PP-Ri (i=1,2,3) denotes the mean sale 

price of the petroleum product at the refinery (R) “i”. 



 17 

Table 4. Correlation matrix for the risk variables (RV) 

 VOC OP-F1 OP-F2 OP-F3 PB PP-R1 PP-R2 PP-R3 

VOC 1 0.5 0.5 0.5 0.45 0.1 0.1 0.1 

OP-F1 0.5 1 0.8 0.9 0.9 0.3 0.2 0.3 

OP-F2 0.5 0.8 1 0.7 0.85 0.2 0.15 0.25 

OP-F3 0.5 0.9 0.7 1 0.9 0.3 0.2 0.25 

PB 0.45 0.9 0.85 0.9 1 0.3 0.3 0.3 

PP-R1 0.1 0.3 0.2 0.3 0.3 1 0.7 0.6 

PP-R2 0.1 0.2 0.15 0.2 0.3 0.7 1 0.8 

PP-R3 0.1 0.3 0.25 0.25 0.3 0.6 0.8 1 

 

Stage II: Optimization of the Portfolio without Real Options 

For the oil field projects, the cost of capital, µ, is assumed to be 10% pa, and for the 

refinery projects, 9% pa. The risk-free rate (rf) is 5% pa. Using the data from Stage I, the 

expected cash flow for the project is set up and the risk variables are simulated using GBM 

(with their correlations). This gives the E[PV] and E[NPV] for each project for a given start 

year (no later than year 2, as shown in Tables 1 and 2). 

By way of illustration, Table 5 shows the cash flows for F1 starting at t=0. 

 

Table 5. Expected Cash Flows for Project F1 (in million USD) 

Period (year) t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 

(a) Remaining Reserves (MM bbls)  90.00 81.00 73.35 66.85 61.32 56.62 52.63 49.23 46.35 43.90 

(b) Production Level (MM bbls) *  9.00 7.65 6.50 5.53 4.70 3.99 3.39 2.89 2.45 2.08 

(c) Variable Operating Cost (US $ / bbl) 10.00 10.20 10.40 10.61 10.82 11.04 11.26 11.49 11.72 11.95 12.19 

(d) Oil Price (US $ / bbl) 25.00 25.75 26.52 27.32 28.14 28.98 29.85 30.75 31.67 32.62 33.60 

(e) Revenue: (b) x (d)   231.75 202.90 177.64 155.52 136.16 119.21 104.37 91.37 80.00 70.04 

(f) Production Cost: (b)x(c) + 5 (Fixed Cost)   96.80 84.59 74.01 64.83 56.87 49.97 43.99 38.80 34.31 30.41 

(g) Operating Cash Flow: (e) - (f)   134.95 118.31 103.63 90.69 79.29 69.24 60.38 52.57 45.69 39.63 

(h) Profit Participation (25%)   33.74 29.58 25.91 22.67 19.82 17.31 15.09 13.14 11.42 9.91 

(i) Net Cash Flow (E[CF]): (g) - (h)   101.21 88.73 77.72 68.02 59.47 51.93 45.28 39.43 34.27 29.72 

(j) Present Value (E[PV]) CFt to CFt = 10 404.05 444.45 377.57 317.72 264.00 215.57 171.72 131.77 95.14 61.28 29.72 

(k) Rate E[CF] / E[PV]: (i) / (j)   0.23 0.24 0.24 0.26 0.28 0.30 0.34 0.41 0.56 1.00 

(l) Investments 250.00                     

E[NPV] = E[PV] - I 154.05           

* Production Levelt=1 = Initial Production Rate (10%) × Reservest=1. Between t=-2 and t=10, Production Levelt = 
Reservest-1 × [1-Rate of Reduction (15%)]. 
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Table 6 shows the E[PV] and E[NPV] of the projects. The nomenclature Fk(t’) and Rk(t’) 

is used to show that project Fk or Rk (k = 1,2,3) starts in period t’ (t’ = 0,1,2). So that the 

different E[PVt’]’s and E[NPVt’]’s can be compared, these must all be in the same baseline 

period. These values are therefore discounted to period zero using the risk-free rate rf. So, 

E[PV0] = (1+rf)
-t’E[PVt’] and E[NPV0] = (1+rf)

-t’E[NPVt’]. 

 

Table 6. Market Values (PV) and Net Present Values (NPV) of the Projects (in million USD) 

Project I E[PVt’] E[NPVt’] E[PV0] E[NPV0] Project I E[PVt’] E[NPVt’] E[PV0] E[NPV0] 

F1(0) 250.00 404.05 154.05 404.05 154.05 R1(0) 150.00 161.88 11.88 161.88 11.88 

F1(1) 262.50 419.54 157.04 399.56 149.56 R1(1) 157.50 194.95 37.45 185.66 35.66 

F1(2) 275.63 435.56 159.93 395.06 145.06 R1(2) 165.38 230.06 64.68 208.67 58.67 

F2(0) 500.00 808.65 308.65 808.65 308.65 R2(0) 160.00 224.69 64.69 224.69 64.69 

F2(1) 525.00 851.94 326.94 811.37 311.37 R2(1) 168.00 262.71 94.71 250.20 90.20 

F2(2) 551.25 897.09 345.84 813.69 313.69 R2(2) 176.40 303.08 126.68 274.90 114.90 

F3(0) 135.00 282.76 147.76 282.76 147.76 R3(0) 80.00 139.32 59.32 139.32 59.32 

F3(1) 141.75 294.82 153.07 280.78 145.78 R3(1) 84.00 164.01 80.01 156.20 76.20 

F3(2) 148.84 307.31 158.47 278.74 143.74 R3(2) 88.20 190.25 102.05 172.56 92.56 

*The largest E[PV0] and E[NPV0] for a given t for each project are in bold. 

 

If the choice of the start time for a project were based exclusively on the largest E[NPV0] 

for each t’= 0,1 and 2, there would be no need to optimize. However, analysis using the 

Omega measure is not based on the mean but on the complete distribution of the NPV0’s of 

all the projects in portfolio P. The objective function in Eq. 10 is then optimized subject to the 

constraint in Eq. 12 and the stipulation that L=0, i.e., the investor does not want to make a 

loss by investing in this portfolio. 

For comparison purposes, the portfolio was also optimized using the Markowitz mean-

variance theory. In this case, the optimization program minimizes the variance of the portfolio 

(Eq. 14), and it is assumed that the NPV0 of each project has a normal distribution. The results 

for both optimization models are summarized in Table 7. 
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Table 7. Results of optimization using the mean-variance and Omega methodologies with L=0 

Project 
Start 

period 
Mean-

Variance 
Omega 
(L=0) 

Project 
Start 

period 
Mean-

Variance 
Omega 
(L=0) 

F1 

w10 0 1 

R1 

w40 1 1 

w11 0 0 w41 0 0 

w12 1 0 w42 0 0 

F2 

w20 0 0 

R2 

w50 1 1 

w21 0 0 w51 0 0 

w22 1 1 w52 0 0 

F3 

w30 0 1 

R3 

w60 1 1 

w31 0 0 w61 0 0 

w32 1 0 w62 0 0 

Mean-variance optimization: 
E[NPVP] =  E[NPVF1(2),0]+ E[NPVF2(2),0]+ E[NPVF3(2),0]+ E[NPVR1(0),0]+ E[NPVR2(0),0]+ E[NPVR3(0),0] =  
US$MM 738.4 

PVariance  = US$MM 1,926.29 

Omega index (L=0) = EC/EL = 2.96 

Omega optimization (L=0): 
E[NPVP] =  E[NPVF1(0),0]+ E[NPVF2(2),0]+ E[NPVF3(0),0]+ E[NPVR1(0),0]+ E[NPVR2(0),0]+ E[NPVR3(0),0] =  
US$MM 751,4 

PVariance = US$ 1,934.21 

Omega index (L=0) = EC/EL = 3.00 

 

When wjt’ = 1, project j should start in period t’. Using the mean-variance methodology, F1 

would be started in period t’=2 (w12=1), while with the Omega measure it would start in 

period t=0. 

The distribution of the net present value of the portfolio, NPVP, (Eq. 11) is made up of the 

sum of the distributions of the NPV0’s of the projects. Hence, the mean of the distribution of 

the NPVP of the portfolio (E[NPVP]) is the sum of the means of the NPV0’s of the projects, as 

shown in the calculations at the end of Table 7. The mean-variance methodology finds the 

portfolio with the smallest variance, but its Omega index (EC/EL) is lower than that obtained 

when optimizing using Omega (L=0) (2.96 vs 3.00). The ratio of weighted returns (EC) to 

weighted shortfalls (EL) is always greater when optimization is performed with Omega. Only 

when the distributions are normal do the methodologies coincide. 

 

Stage III: Optimization of the Portfolio with Real Options  

First Step: Determining the Market Values of the Projects and their Volatility 
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The market values of the projects (E[PVt’]) were already calculated in the first stage of the 

methodology and are shown in Table 6. 

The volatilities of the projects for their respective start times, i.e., F1(0), F2(2), F3(0), 

R1(0), R2(0) and R3(0), are shown in Table 8. These were obtained by simulating the cash 

flows of all the projects together to capture the effect of the correlation between the risk 

variables and applying the method described by Brandão et al. (2005a) (BDH method). 

 

Table 8. Volatility of the projects, BDH method 

Project F1(0) F2(2) F3(0) R1(0) R2(0) R3(0) 

Volatilities 23.76% 18.98% 19.17% 149.52% 130.17% 131.98% 

 

Second Step: Determining the Correlation between Projects 

Applying Eq. 12 gives the market value PVij for each project j in a given simulation i. A 

large number of simulations must be carried out to obtain a distribution of PVj. The values 

obtained in the simulations are used to calculate the correlations between the projects (Table 

9). 

 

Table 9. Coefficients of correlation between the PVj’s of the projects 

 PVF1(0) PVF2(2) PVF3(0) PVR1(0) PVR2(0) PVR3(0) 

PVF1(0) 1.0000 0.7241 0.8644 -0.2252 -0.3250 -0.2006 

PVF2(2) 0.7241 1.0000 0.5942 -0.3006 -0.3421 -0.2257 

PVF3(0) 0.8644 0.5942 1.0000 -0.1942 -0.2956 -0.2344 

PVR1(0) -0.2252 -0.3006 -0.1942 1.0000 0.6778 0.5590 

PVR2(0) -0.3250 -0.3421 -0.2956 0.6778 1.0000 0.7678 

PVR3(0) -0.2006 -0.2257 -0.2344 0.5590 0.7678 1.0000 

Note: the number between the parentheses indicates the period when the project was started. 

 

Third Step: Determining the Market Value of the Projects with Options 

Table 10 summarizes the market values of the projects and the initial investment, which, 

together with the volatilities in Table 8 and the correlations in Table 9, allow 'tPV  to be 

modeled using GBM (Eq. 16). The risk-free rate (rf) is 5% pa. 

 



 21 

Table 10. Mean market value of the projects and initial investment (in million USD) 

Project (star period) F1(t’=0) F2(t’=2) F3(t’=0) R1(t’=0) R2(t’=0) R3(t’=0) 

'tPV  404.05 897.09 282.76 161.88 224.69 139.32 

It’ 250.00 551.25 135.00 150.00 160.00 80.00 

 

We assume that in year 5 the company considers the possibility of exercising various 

options that could increase the value of the projects. These are shown in Table 11. 

 

Table 11. Real options to be included in the projects in year 5 

  
Projects 

Real Options Parameters F1(t’=0) F2(t’=2) F3(t’=0) R1(t’=0) R2(t’=0) R3(t’=0) 

Option to expand 
Expansion factor 1.33 1.33 1.5 1.7 1.33 1.2 

Cost to expand (US$MM) 40 110 40 50 30 30 

Option to contract 
Contraction factor 0.75 0.75 0.75 0.8 0.75 0.5 

Recovered value (US$MM) 50 140 45 100 70 70 

Option to abandon Salvage value (US$MM) 100 350 110 120 90 80 

 

These options are mutually exclusive, i.e., in year 5 the option that maximizes the value of 

the project that year will be exercised (or not). Risk-neutral simulations of the mean market 

value ( 'tPV ) are performed for each project to allow the options to be modeled. Table 12 

shows how the options in the projects were evaluated using project F1 as an example, in a 

given simulation (in total there were 10,000 simulations using the software @Risk®). 

 

Table 12. Simulation of market value paths with options built-in for project F1 (in million USD) 

Project F1(t’=0)  Year t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t= 10 

0PV  404.05  Dividend (δi) 0 % 22.8% 23.5% 24.5% 25.8% 27.6% 30.2% 34.4% 41.4% 55.9% 100% 

rf 5.00%  PVt 404.05 413.59 326.94 256.02 197.95 173.19 128.37 91.67 61.59 36.92 16.66 

1F  
23.09%  E[PVt] 404.05 424.76 344.85 277.34 220.23 171.87 130.84 95.96 66.21 40.76 18.89 

I 250.00  E[CFt] 0.00 96.73 81.04 67.85 56.74 47.41 39.57 32.97 27.44 22.79 18.89 

0NPV = 154.05  
      

146.73 PV5 of Expand 
  

 

         
173.19 

PV5 of Contract (in this simulation this 
option got better, and so, it was the PV in 
this year) 

Option Value RO  22.86   5 5exp(-5 ) -fRO r PV E PV


     141.49 PV5 of Abandon   

0 0PV PV RO


    426.91   150.42 PV5 of No option (E[PV5]= 171.87)  

0 0NPV PV I
 

   176.91      * 5PV


 201.22 
 

 

* this is the mean value of the project in year 5 ( 5PV

) considering the possibility of choosing between three real 

options or not, after 10,000 simulations (risk-neutral simulation). Without options, this mean value is E[PV5] = 
171.87 
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Fourth step: Determining the Net Present Value (NPV) 

Table 13 summarizes the results for the six projects. As expected, the NPV of the portfolio 

without any options in year zero (751.39) is less than the NPV of the portfolio with options 

(1,114.24). 

 

Table 13.  PV  and NPV  of the projects with and without real options (in million USD) 

 Projects (start period) F1(t’=0) F2(t’=2) F3(t’=0) R1(t’=0) R2(t’=0) R3(t’=0) Portfolio 

W
IT

H
 

O
P

T
IO

N
S

 'tPV  404.05 897.09 282.76 161.88 224.69 139.32   

It’ 250.00 551.25 135.00 150.00 160.00 80.00   

'tNPV  154.05 345.84 147.76 11.88 64.69 59.32   

0NPV  154.05 313.69 147.76 11.88 64.69 59.32 751.39 

W
IT

H
O

U
T

 

O
P

T
IO

N
S

 Options value: 'tRO  23.10 66.83 32.90 121.49 73.52 51.33   

' ' 't t tPV PV RO


   427.15 963.92 315.67 283.38 298.21 190.65   

'tNPV


 177.15 412.67 180.67 133.38 138.21 110.65   

0NPV


 177.15 374.31 180.67 133.38 138.21 110.65 1,114.36 

 

The presence of real options always adds value to the projects and even changes initial 

expectations about them. For example, the smallest 0NPV  of the oil field projects without the 

real options corresponds to project F3 (147.76), but when the real options are taken into 

account the figure for F3 increases to 180.67, which is larger than the  0NPV


 for F1. With the 

refinery projects the situation is similar: project R1 has the lowest 0NPV  (11.88), but when the 

real options are included the lowest 0NPV


 corresponds to R3 (110.65). 

 

Fifth step: Optimization of the Portfolio with Real Options 

The distribution of the NPV of the portfolio P with real options (
PNPV  ) is the sum of the 

distributions of the 0NPV


’s of the projects. The distribution of the 
PNPV   is then used to 

calculate the measures EL and EC so that the portfolio can be optimized with the Omega 

measure. In the particular example considered here, all the projects are included in the 

portfolio and optimization is not required (objective function, Eq. 21) as there are no 

constraints that require a project to be excluded from the project. The binary variable vj is 

therefore equal to 1 for every project j (the constraint shown in Eq. 23).  



 23 

Figure 2 shows the distribution of the NPV of the portfolio with and without real options 

and the distribution of the real options. 

 

Figure 2. Distributions of the NPV of the portfolio without and with real options (in millions of USD)  

 

Note that in Figure 2 the distribution of real options consists exclusively of positive values, 

increasing the mean of the distribution of the NPV from 751.39 to 1,114.36. 

Figure 3 shows the expected loss (EL) and the log of the Omega measure against L, the 

minimum acceptable NPV, which divides the distribution into two areas corresponding to 

shortfalls and returns. The log of the Omega measure is used to make the vertical axis more 

manageable. As the value of L increases, so the risk measure EL increases, since the area on 

the distribution of NPV corresponding to shortfalls increases and Omega therefore decreases. 

 

  

Figure 3. EL and ln(Omega) for the portfolio with and without real options. 
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According to Figure 3, for a given value of L, the portfolio with real options always has a 

lower risk (EL) and, therefore, a higher Omega. This clearly makes sense, as the distribution 

of the values of the real options for the portfolio contains only positive numbers, which, when 

added to the distribution of the NPVP, reduce shortfalls in the negative scenarios and increase 

returns in the positive scenarios. 

 

6. Conclusions 

Correct analysis of the risk, returns, and performance of a portfolio of investment projects, 

or a portfolio of real assets, is of crucial importance in decision making. The more flexible the 

evaluation techniques and models used, the greater the company’s ability to react to favorable 

or unfavorable circumstances.  

The main aim of this study was to propose a methodology for optimizing a portfolio of 

investment projects using real options and the Omega risk measure. Notable among the main 

contributions of the proposed methodology are: (1) optimization by maximizing the Omega 

performance measure, which takes into account all the moments of the distribution of the 

NPV of the projects rather than just the mean and variance and (2) extension of the MAD 

model (Copeland & Antikarov, 2003) to a portfolio of various correlated projects.  

The methodology was illustrated with a numerical application to the case of an oil 

company and European-type real options were included to increase or decrease the value of 

the project. The results show that the best ratio of expected returns to expected shortfalls was 

achieved with the optimization methodology proposed here. Other types of real options could 

also be analyzed, such as sequential options, simultaneous options and a switch in supplies. 

The more complex the real options for the projects in the portfolio, the greater the 

computational effort required.  

The proposed methodology is flexible because it allows non-deterministic risk variables to 

be modeled while at the same time incorporating optimal exercising of available real options 

and is more robust because the Omega performance measure evaluates all the moments of the 

distribution of returns of the portfolio. 
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