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Abstract

Because of debt concerns, many cities face challenges in financing their infras-

tructure. Hong Kong’s transit operator designed a novel scheme to exploit

the positive externalities of public transport on real estate prices. We develop

a Stackelberg leader-follower game of timing under uncertainty to explore the

rationale of this scheme. Our main findings are that internalizing positive ex-

ternalities provides additional revenue sources for defraying the overall costs

of infrastructure investments, thereby accelerating the delivery of infrastruc-

ture; in a multi-player stopping game, the equilibrium investment times are

not typical first-hitting times. This study provides theoretical insight into

infrastructure planning and financing based on compound (growth) options.
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1. Introduction

Well-functioning infrastructure is an important driver of a city’s attractive-

ness and competitiveness in the present globalized economy. New infras-

tructure projects enhance connections among places of residence, work, and

leisure and generate growth options for the economy as a whole.

Infrastructure projects should be affordable to users, high-quality, and

self-sustainable. To ensure affordability, transit fares are often regulated and

set below the total costs of capital investments, operations, and maintenance;

this reduces the incentive to deliver high-quality and self-sustainable infras-

tructures and calls for subsidizing by a social planner. Yet, exacerbated by

sovereign debt concerns, public subsidizing for infrastructure projects con-

flicts with other social and economic objectives (e.g., welfare programs). Fi-

nancing is often a bottleneck in the provision of infrastructure. Innovative

funding approaches to infrastructure investments are needed.

Dixit and Pindyck [1994] stress three common characteristics among in-

vestment projects (including infrastructure): irreversibility, uncertainty, and

flexibility in timing.1 In addition to these features, infrastructure projects are

normally capital intensive, requiring substantial upfront costs as well as high

(fixed) operations and maintenance expenses. The huge capital investments

and periodic expenditures may make infrastructure investors reluctant to

launch new projects—especially if capital providers are short-sighted whereas

the benefits from a project are reaped over more than 30 years and/or if the

1First, start-up costs are (at least partially) irreversible in the sense that expenditures
will not be recovered if the project is reversed. Second, rewards from infrastructure in-
vestments are uncertain. Third, investors have some flexibility about the timing of their
infrastructure investments.
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Figure 1: R+P program: Interplay among the HK government, MTRC, and
private real-estate developers. Based on Cervero and Murakami [2009].

infrastructure investor does not internalize all the benefits to society. Be-

cause of these characteristics, an infrastrture provider is more prone to delay

a project launch until its value is sufficiently larger than its initial investment

costs (in the spirit of real options). To accelerate the delivery of infrastruc-

ture and to bolster the growth of the economy, the search for new revenue

sources becomes a top priority.

On the above matters, a great deal can be learned from Hong Kong’s

(HK’s) recent experience in public transportation. HK is among the few cities

in which rail transit operations are highly profitable without government

subsidizing. Its financial success rests on the “Rail Plus Property” (R+P)

financing model developed by the HK’s railway operator, the Mass Transit

Railway Corporation (“MTRC”). Under the R+P program, the government

grants MTRC exclusive property development rights of government-owned

land around rail transit stations at a “before-rail” market price. MTRC

then makes transit investments and captures the land appreciation created

by the R+P model through further granting development rights to private

developers at an “after-rail” market price, jointly developing the land and
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property, and sharing profits generated by property development in agreed

proportions. The land premiums (i.e., the difference between the before-rail

and the after-rail market prices) and the shared profits are used to recoup

the capital, operations, and maintenance costs of railway projects.

Incorporating positive externalities into the income stream of a transit

operator is an innovative approach to designing, planning, and financing

capital-intensive infrastructure. Public transport improvements are known

to boost the demand for housing nearby. However, under a traditional transit

operations model, the operator (e.g., MTRC) rarely benefits from greater

housing demand. If an infrastructure project is simply evaluated on the basis

of fare revenues, a project which is environmentally and socially favorable

but lacks financial profitability is likely to be rejected by private investors

straight away, especially if the government does not subsidize or guarantee

any minimum rewards. In that case, a springboard investment that would be

socially beneficial would not be undertaken until its project value is “deep in

the money.” In other words, unless the future rewards considerably exceed

the sunk costs, the financing issues will not be completely tackled.

It would be advised in the appraisal of an infrastructure investment

project to value the follow-on options derived from an early investment.

Infrastructure investments open up a series of valuable investment oppor-

tunities, also to external parties. The R+P development program presents

a new perspective on infrastructure investments because MTRC takes the

external economic benefits into consideration, internalizing the externality

by granting development rights to private developers as well as sharing the

profits with them provided by the subsequent property development in an
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agreed proportion. MTRC capitalizes on the commercial real estate options

derived from the first-stage transit investment opportunity and captures the

land value appreciation, viewing the value of property development as a part

of the overall value of an infrastructure investment.

Uncertainty is a key driver of infrastructure investments; yet, the MTRC’s

novel financing model adds an element of strategic uncertainty because of

the interactions and synergies with private property developers. This novel

design leads naturally to a sequential game situation in which the leader

and follower roles are predetermined. The follower is restrained from taking

action until the leader has already done so. In this paper, the problem

faced by MTRC is modelled as a Stackelberg leader-follower game of timing

under uncertainty. More specifically, we model the rationale behind this

innovative infrastructure financing scheme, using notions borrowed from real

options (in particular compound options) and game theory (in the context

of Stackelberg game of timing). We focus on continuous-time models of

irreversible infrastructure investment under uncertainty, stress the factors

that affect the timely delivery of infrastructure provisions, and derive the

equilibrium investment rules by using dynamic programming.

2. Literature review

Myers [1984] recalls the connection between (a) capital budgeting, which is

concerned with project assessment, typically based on the discounted cash

flows (DCF), and (b) strategic planning, whose primary objective is to deter-

mine the investment decisions that best achieve a long-term objective. Both

perspectives are embedded in Real Options Analysis (ROA). Real options are
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coined in analogy with financial options [Myers, 1977]: a real option gives

its holder an opportunity to acquire a real asset (e.g., to invest in a project)

at a prespecified cost if conditions turn favorably [Trigeorgis, 1996]. A key

benchmark model is the seminal optimal investment timing problem in Mc-

Donald and Siegel [1986]. In our model, we deal with a problem where an

early investment opens up a chain of further projects; this class of problems

is coined “growth options,” “options on options,” or “compound options” in

the literature (Kester [1984], Trigeorgis and Mason [1987]).

There have been some real options papers dealing with infrastructure in-

vestments. Smit and Trigeorgis [2009] illustrate practical application of the

option games approach in the airport industry context by developing discrete-

time models that involve two privatized European airports competing in the

times to expand their own lumpy infrastructure capacity. Ukkusuri and Patil

[2009] model the demand uncertainty as a scenario tree, analyzing the opti-

mal transportation network investments decision problem over multiple time

periods. Besides discrete-time cases, many papers model uncertainty in con-

tinuous time as a stochastic process (e.g., a geometric Brownian motion)

(see, e.g., Gao and Driouchi [2013], Li et al. [2015]). Most of them spec-

ify the value of the investment as a function of the target strategy chosen,

then determine the optimal transit investment timing given the investment

payoff function. The investment timing problem is thus converted into the

determination of the optimal investment trigger. Once a stochastic process

followed by an underlying asset or factor (e.g., the project value, demand,

and population) reaches a specified barrier selected by the investor ex ante,

the investment project is implemented as well as the investment timing is
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found. In such cases, the optimal investment timing is precisely the first-

hitting time as they address the optimal infrastructure investment issue in

a monopoly situation over one decision period. In a multi-player stopping

game, however, the equilibrium investment times are not typical first-hitting

times. Guo et al. [2018] consider decision makers’ time preferences and beliefs

by modeling authorities’ intertemporal choices on the basis that the planning

horizon in public transit investment, such as 20 or 30 years, is excessively

longer than the election cycles of government officers (e.g., 4-5 years). While

they analyze the impact of intertemporal decisions, they do not consider the

impact of positive externalities derived from strategic interactions and the

duopoly model of Stackelberg leader-follower game in an irreversible capital-

intensive infrastructure investment under uncertainty, which is a main focus

of our study.

We here focus on the parties’ investment decisions, allowing for two in-

come sources for the infrastructure investor. The issue of debt instruments

(e.g., straight debt vs project finance) is beyond the scope of this paper.

More specifically, this paper elaborates upon a real-world case in the infras-

tructural industry based on the Stackelberg leader-follower game of timing

under uncertainty, providing a compelling economic rationale for a success-

ful infrastructure financing model in HK. Our approach is rooted in the real

options analysis (ROA) and leverages on the dynamic programming in the

operations research literature as well as the optimal control theory in the

mathematics literature by solving variational inequalities [see Bensoussan

and Lions, 1982]. We further extend our discussion in depth on the leader’s

problem that involves more complex continuation/stopping sets based on the
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research study by Bensoussan et al. [2010]. This is a key novel contribution

versus the extant literature.

3. Traditional financing models

Before analyzing the novel R+P model, we set a couple of benchmarks by

examining the most common infrastructure financing models, namely “user

pays,” “government pays,” or a combination of these two. We have a greater

emphasis on the user-pays model which MTRC uses in conjonction to their

novel financing model.

3.1. “User-pays” model

Model setup. Under user-pays transit investments, fare revenues are the sole

income stream for the transit operator (e.g., MTRC). For simplicity, we as-

sume these revenues to be deterministic.2 Specifically, we model the (perpe-

tuity) value of transit operations at time t, Y y
t , as the solution to a first-order

ordinary differential equation (ODE), namely

Y y
0 = y, (1a)

dY y
t = ρY y

t dt, (1b)

where ρ is a constant drift parameter. Equation (1b) implies that the project

value grows compoundly at a constant rate of ρ per unit of time. At some fu-

2The assumption is reasonable because the demand for railways, metro, and buses
services is hardly elastic and less influenced by business and economic industry cycles.
In addition, transportation prices are highly regulated because transport is considered a
common good. The fare revenue growth derives primarily from population growth, which
is mostly predictable.
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ture time (to be determined) the operator pays the construction cost I1 to set

up a new metroline. Because the construction of a large-scale infrastructure

project generally requires substantial time from initiation until completion,

we consider a time-to-build feature: h1 > 0 is the lag in constructing a new

metroline and the operator receives a payoff of Y y
t+h1

if he/she invests at time

t. We let r stand for the constant discount rate.

The situation faced by an operator under the user-pays model is a com-

paratively simple (deterministic) problem of investment timing: the metro

operator must determine the time t ≥ 0 at which to incur a construction cost

I1 in return for a value Y y
t+h1

once construction is completed:

v(y) := sup
t≥0

e−rt
{
e−rh1Y y

t+h1
− I1

}
. (2)

We assume that the discount rate r > ρ to ensure that v(y) <∞.

Dynamic programming. The problem (2) can be analyzed using dynamic

programming.3 We let

ϕ(y) := e−rh1Y y
h1
− I1 = e−(r−ρ)h1y − I1 (3)

denote the terminal payout received when investing. Here, the rail opera-

tor must decide whether to initiate (“stop”) or delay the investment (“con-

tinue”). If the operator faces such an alternative, then its value—which

corresponds to the optimal choice—must be no less than the payoff from

3Alternatively, we can view it as a static optimization problem. Using dynamic pro-
gramming allows highlighting similarities when dealing with the stochastic game of timing
in a later section.
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either course of action. We now consider each alternative action in turn.

Given flexibility in timing, the rail operator cannot be worse off than invest-

ing straight away; it must be that v(y) ≥ ϕ(y) for all y ≥ 0. In addition, by

Bellman’s (1957) “principle of optimality,” the value must exceed the payoff:

v(y) ≥ e−rεv
(
yeρε

)
, ε > 0.

If v(·) ∈ C1(R+), we can let ε go to 0 in the above. At any given point y,

one weak inequality must be strict and the other is an equality; this heuristic

leads a “complementarity slackness” criterion. In short, the value function

v(y) must satisfy

min
{
rv(y)− ρyv′(y); v(y)− ϕ(y)

}
= 0, ∀y > 0. (4a)

The dynamic programming equation (4a) is called a variational inequality

(VI) following the terminology introduced in Bensoussan and Lions [1982].

Economic arguments also lead to two additional conditions. The condition

lim
y↓0

v(y) = 0 (4b)

asserts that the project is worthless if the users’ pool vanishes. We further

assume that

lim
y↑∞

v(y)

ϕ(y)
= 1, (4c)

which implies that when the real option is “very deep in the money,” the real

options value coincides with the net present value ϕ(y).
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We solve the problem (4a)–(4c) in Theorem 1 (see proofs in Appendix

A).

Theorem 1. The transit operator’s value function (2) takes the form

v(y) =


(
y
ȳ

)r/ρ(
e−(r−ρ)h1 ȳ − I1

)
, y < ȳ,

e−(r−ρ)h1y − I1, y ≥ ȳ,

where the investment threshold ȳ is given by

ȳ =
re(r−ρ)h1

r − ρ
I1 > I1.

Following Theorem 1, the (optimal) decision whether to invest relates to

the relative positions of the project value y and of the threshold ȳ. Alter-

natively, we can express the optimal stopping rule as t̂(y, ȳ) = 1
ρ

ln
(
y∨ȳ
y

)
.

This form hightlights a relationship between the optimal time t̂(y) and the

threshold ȳ. The firm should invest straight away [t̂(y, ȳ) = 0] if and only if

y ≥ ȳ. Besides, ȳ > e(r−ρ)h1I1, which is the “zero NPV” threshold. Conse-

quently, the transit operator will defer the investment until the fare revenues

are “deep in the money” (not “at the money”). The effect—coined hysteresis

in the literature—arises even though the transport operator is certain about

the growth of its future revenue stream.

Unfortunately, in most cities (Murakami [2012]), fares are often regulated

and small to keep transit affordable. It is thus difficult to recoup the invest-

ment costs, so that many infrastructure projects are postponed, which is not

socially desirable.
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3.2. “Government-pays” and mixed models

In the government-pays model, the sole revenue source of a private investor is

governmental transfer payment, i.e., ultimately sourced from the public bud-

get (through taxing or borrowing). Hereby, the public and private parties

reach an agreement in which the public party promises to acquire an infras-

tructure asset from the private party at some specific time and price. It is

analogous to a forward contract. Government pays delay public expenditures

that would appear on the liability side of the government’s “balance sheet.”

Practically, the government engages a private company to develop an infras-

tructure asset or render infrastructure services, yet the cost of infrastructure

is ultimately met from the public purse. Moreover, private funds are not a

source of revenues but a way of raising funds, similar to a loan committed

to repay the lender. They are still needed to be paid by public budgets in

the end. The financial burden on the government entity is likely to raise the

sovereign debt level and lead to greater fiscal pressure on households, not

necessarily living in the vicinity of the infrastructure.

Besides the (pure) user- and government-pays models, a mix of these two

is also widely used in practice. Here, user charges will ultimately be the

main revenue sources yet are supplemented by government transfers paid at

specific construction milestones. The government guarantee helps securitize

the future streams of revenue for the private investor when the prespeci-

fied downside events occur, providing strong support for the government to

channel more private funds in infrastructure. Further, if the project value

is assumed to be stochastic rather than deterministic, a guarantee approxi-

mates to a put option that protects the private investor from downside risks,
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at the expense of the public sector (and ultimately at the expense of house-

holds). If there is no expiry, such a payment mechanism for the private party

can be approximately modeled as the perpetual American put option written

on the value of transit operations. While the government guarantee protects

the private entity’s interests against unfavorable conditions and provides the

solid basis for attracting private funds, it implicitly increases the govern-

ments fiscal exposures in the form of contingent liabilities. Therefore, the

mixed model increases the risk of government bankruptcy particularly when

the government is facing high leverage ratios.

In summary, the three widely-used traditional financing models have var-

ious constraints to a varying degree. To accelerate infrastructure deliv-

ery, more effective financing mechanisms are required. We next formalize

MTRC’s innovative financing model.

4. MTRC’s R+P scheme

Besides fare revenues modeled by (1a)–(1b), MTRC derives an income from

the trading of the development rights to a property developer (or a consor-

tium of property developers). For simplicity, we assume that the private

developer does not invest in properties unless they are located near metro-

lines. The developer’s decision whether to acquire those rights depends on

an average after-rail property value Xx : Ω × [0,∞) → X := R+, which is

assumed to follow a geometric Brownian motion (GBM) of the form

Xx
0 = x > 0, P− a.s., (5a)

dXx
t = µXx

t dt+ σXx
t dZt, t > 0, (5b)
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Figure 2: Model timeline

where µ > 1
2
σ2 and σ > 0 are the constant drift and volatility parameters

respectively and Z is a standard Brownian motion.4

We model the MTRC’s novel R+P scheme as a Stackelberg game in

which the leader and follower roles are set ex ante. We depict the timeline

in Figure 2 and use the index i to denote a particular party. MTRC (i = 1)

starts the construction of the new metroline at a (stopping) time τ1, while

the property developer (i = 2) acquires the development rights and starts

building the properties around the station at a time τ2 ≥ τ1 for a cost I2.

MTRC agrees with the private developer on a fee K and a profit-sharing

rule according to which a proportion α ∈ (0, 1) of the net proceeds accrues to

4In HK, land values are strongly driven by rapid urban population expansion and
strong economic growth [Hong and Brubaker, 2010]. Besides population, property values
depend on various macroeconomic factors such as housing scarcity, change in housing
policies or regulations, the yield differential compared to other asset classes, and foreign-
exchange rates. Modeling the feedback effect of population growth on real-estate prices
is beyond the scope of this paper; for simplicity, we treat the parameters ρ in (1b) and µ
in (5b) independently of one another. For the sake of illustration, a certain dependency is
accounted for because we use estimates from real-world projects.
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MTRC.5 We further consider a time lag h2 > 0 for the planning, building, and

reselling of the properties; the property after completion is worth Xx
τ2+h2

. No

party can perfectly forecast the development of the property price and form

instead expectations (we use the operator E under the probability measure

P). Both parties are assumed to be risk-neutral for simplicity and discount

at a constant rate r > min{ρ, µ}.

We now specify the two parties’ objective functionals.

1. Follower: The property developer’s objective is

Jx2 (τ1, τ2) := E
[
e−rτ2

{
(1− α)

(
e−rh2Xx

τ2+h2
− I2

)
−K

}
1{τ2≥τ1}

]
, (6)

where the indicator 1{τ2≥τ1} accounts for the “Stackelberg constraint”

τ2 ≥ τ1.

2. Leader: MTRC has two income streams:

(i) Fare revenues from direct beneficiaries (i.e., metro passengers)

generate a net present value of ϕ(y) as introduced in (3).

(ii) MTRC internalizes a share of the positive externalities on indirect

beneficiaries. The net present value of this second income stream

is

ψ(x) := α
(
e−rh2Xx

h2
− I2

)
+K

= α
(
e−(r−µ)h2x− I2

)
+K. (7)

5The agreed proportion α may be thought of as the outcome (e.g., the Nash bargaining
solution) of a negotiation between the leader and follower taking place at time τ2. We
instead assume it as a parameter, an assumption which is reasonable if MTRC auctions
the development rights because, then, the terms are not negotiated.

15



MTRC’s objective is

Jx,y1 (τ1, τ2) := E
[
e−rτ1ϕ

(
Y y
τ1

)
+ e−rτ2ψ

(
Xx
τ2

)]
. (8)

We specify the solution concept for this Stackelberg game of timing. We

assume that players follow Markov strategies and use the superscripts x and

y to highlight this ansatz. The leader anticipates that the follower will react

optimally to its choice τx,y1 with a reaction T2

(
τx,y1

)
assumed to be the unique

solution to

Jx2

(
τx,y1 , T2

(
τx,y1

))
= sup

τx2≥τ
x,y
1

Jx2 (τx,y1 , τx2 ). (9)

Given the investment sequence, the leader faces a decision-theoretic problem:

V1(x, y) := Jx,y1

(
τ̂x,y1 , T2

(
τ̂x,y1

))
= sup

τx,y1

Jx,y1

(
τx,y1 , T2

(
τx,y1

))
. (10)

We call
(
τ̂x,y1 , T x2 (τ̂x,y1 )

)
the game’s Markov Stackelberg equilibrium. To solve

for this, we proceed in the reverse investment order, determining the fol-

lower’s reaction function in (9) first.

5. Property developer’s decision

After some computations (see Appendix B), one shows that the follower’s

reaction function in (9) can be written in the form

T x2 (τx,y1 ) = τx,y1 + θ2

(
Xx
τx,y1

)
; (11)

16



here, θ2(x) is the solution to a “myopic” problem that becomes relevant once

the leader starts construction works, namely the solution to6

V2(x) := E
[
e−rθ2(x)

{
(1− α)

(
e−(r−µ)h2Xx

θ2(x) − I2

)
−K

}]
= sup

τx2

E
[
e−rτ

x
2

{
(1− α)

(
e−(r−µ)h2Xx

τx2
− I2

)
−K

}]
.

(12)

We now solve for V2(x) in the myopic problem (12) by using an approach

similar to the one used to solve the deterministic problem (2). Given flexi-

bility in timing, the private investor cannot be worse off than investing im-

mediately: V2(x) ≥ (1−α)
(
e−(r−µ)h2x− I2

)
−K. Alternatively, the property

developer can stay put for a period of time ε > 0 and then pursues the op-

timal stopping strategy θ2(·); this eventually yields the necessary condition

L2V2(x) ≥ 0, where L2 is a second-order operator given by7

L2f := rf − µx∂f
∂x
− 1

2
σ2x2∂

2f

∂x2
. (13)

At a given point x, one weak inequality must be strict and the other is

an equality; this heuristic leads a “complementarity slackness” criterion. In

short, the value function V2 must solve the dynamic programming equation

given in Lemma 1.

6The term V2(x) in (12) should not be confused with Jx2
(
τ̂x,y1 , T x2 (τ̂x,y1 )

)
.

7The “waiting” stance leads to the inequality V2(x) ≥ E
[
e−rεV2(Xx

ε )
]
. As ε→ 0, then

it obtains from (a generalized version of) Dynkin’s formula [see Bensoussan and Lions,
1982, Theorem 8.5, pp.185-186] the inequality L2V2(x) ≥ 0.
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Lemma 1. The value function V2 in (12) must satisfy the VI 8

min
{
L2V2(x);V2(x)− (1− α)

(
e−(r−µ)h2x− I2

)
+K

}
= 0, a.e. x ∈ X ,

(14a)

V2(·) ∈ C1(R+) and V ′′2 (·) ∈ L1
loc(R+), (14b)

lim
x→0

V2(x) = 0, (14c)

lim
x→∞

V2(x)

(1− α)
(
e−(r−µ)h2x− I2

)
−K

= 1. (14d)

We introduce the positive and negative roots, γA and γB respectively, of

the quadratic function

Q(γ) := r − µγ − 1

2
σ2γ(γ − 1) (15)

and provide an explicit functional representation of the value function V2

in Theorem 2.9

Theorem 2. We can express the value function V2 in (12) as

V2(x) =


(
x
x2

)γA[
(1− α)

(
e−(r−µ)h2x2 − I2

)
−K

]
, x < x2,

(1− α)
(
e−(r−µ)h2x− I2

)
−K, x ≥ x2,

(16)

8Compared to the regularity requirement V2(·) ∈ C1(R+), which we also had in the
deterministic case, we introduce another condition V ′′2 (·) ∈ L1loc(R+) in (14b) to ensure
that the second-order term in the VI has a mathematical meaning. Smooth fit is a natural
consequence of the assumption V2(·) ∈ C1(R+).

9We omit a verification theorem. It is known [see, e.g., Bensoussan and Lions, 1982]
that a value function of optimal stopping, e.g., (12), is the probabilistic representation of
the solution to a variational inequality, e.g., (14a)–(14d).

18



where

x2 :=
γA

γA − 1

(
I2 +

K

1− α

)
e(r−µ)h2 . (17)

To interpret Theorem 2, we recall that that one can associate to a first-

hitting time inf{t ≥ 0 : Xx
t ≥ ξ} a discount factor (over states) given by

E
[
e−r inf{t≥0:Xx

t ≥ξ}
]

=
(min{x; ξ}

ξ

)γA
. (18)

If the property value x is above x2, the (myopic) property developer acquires

the development rights, receiving the amount (1 − α)(e−(r−µ)h2x − I2) −K.

If the property value is below that threshold, then the firm delays receiving

the amount (1− α)(e−(r−µ)h2x2 − I2)−K until the (first-hitting) time

θ2(x) := inf
{
t ≥ 0 : Xx

t ≥ x2

}
; (19)

it discounts this amount using the factor (x/x2)γA .

In reality, the threshold x2 is not the threshold above which the private

developer develops the property. Indeed, the private investor wants to ensure

MTRC has invested in urban rail infrastructure. In other words, we do not

claim that the follower’s reaction T x2 (τx,y1 ) is the first-hitting time in (19),

but claim instead—because of the relation (11)—that it is of the form

T x2 (τx,y1 ) = inf
{
t ≥ τx,y1 : X

Xx
τ
x,y
1

t ≥ x2

}
. (20)

To be able to specify the follower’s equilibrium decision, we will need to

solve the leader’s problem (10) and determine the leader’s optimal investment

decision τ̂x,y1 .
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6. MTRC’s problem

Lemma 2 specifies a VI for the leader’s problem in (10). We interpret the

term G1(x, y) given by

G1(x, y) :=

 ϕ(y) +
(
x
x2

)γA
ψ
(
x2

)
, x < x2,

ϕ(y) + ψ(x), x ≥ x2,
(21)

as the NPV from investing straight away.10 If MTRC invests it receives net

fare revenues ϕ(y) as well as the (future) proceeds from a transaction with

the property developer. These proceeds are ψ(x) if the developer acquires the

development rights straight away or are worth the present value
(
x
x2

)γA
ψ
(
x2

)
if the transaction is delayed until the process reaches the level x2. Beside L2

in (13), we introduce the operator

L1f := L2f − ρy
∂f

∂y
. (22)

Lemma 2. The leader’s value function V1 in (10) satisfies the VI

min
{
L1V1(x, y);V1(x, y)−G1(x, y)

}
= 0, a.e. x ∈ X , (23a)

V1 ∈ C1(R2
+) and

∂2V1

∂x2
∈ L1

loc(R+). (23b)

We recall that if a solution to the VI exists (and the solution to the VI

coincides with the value function), then the continuation region is defined

implicitly as C1 :=
{

(x, y) ∈ R2
+ : V1(x, y) > G1(x, y)

}
, while the stopping

region is S1 := R2
+ \ C1.

10The function G1 is called the obstacle in line with the literature on optimal stopping.
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Figure 3: The dashed curve for x 7→ G1(x, y) depicts the “real” case with y0 = e(r−ρ)h1I1 =
36.9808. The gray (y = 10) and orange (y = 60) curves are introduced for comparative
statics. Cf. parameter values in Footnote 11.

We start by studying the obstacle G1 in (21). We depict this function

in Figure 3 using as parameter values those of the “SIL(E)” project in HK.11

We can conclude after some computations that:

Lemma 3. The obstacle x 7→ G1(x, y) is continuously differentiable on

(x,∞) except at x2. It is monotone increasing on (0,∞) from ϕ(y) to ∞. It

is convex on (0, x2), concave in the vicinity of x2, and linear on (x2,∞). We

11The South Island Line (East) (“SIL(E)”) project is a 7-km line costing I1 = 17.6
HKDbn and financed under the R+P model. The construction commenced in May 2011
and completed in December 2016. In December 2017, MTRC awarded the property devel-
opment package to a consortium for a land premium of K = 5.2 HKDbn. The development
project is due for completion by 2023. The metropolitan area’s population grew at 1.5%
p.a. between 2010 and 2025, while the HK property price grows at 12% p.a. [Suzuki et al.,
2015]. Other parameter values are I2 = 4.66 HKDbn, as α = 0.5, r = 0.15, µ = 0.12,
ρ = 0.015, σ = 0.15, h1 = 5.5, and h2 = 5.
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introduce the parameters y0 := e(r−ρ)h1I1 and y† := e(r−ρ)h1
[
I1−ψ(x2)

]+
and

define the curve x0(·) by

x0(y) :=



[
I1+αI2−K−ye−(r−ρ)h1

α

]
e(r−µ)h2 , y ∈ (0, y†),

x2

[
− ϕ(y)

ψ(x2)

] 1
γA , y ∈ (y†, y0),

0, y ∈ (y0,∞).

The function x 7→ G1(x, y) is negative on (0, x0(y)) and positive on (x0(y),∞).

Recall that G1(x, y) is the NPV from the infrastructure project. The pa-

rameter y0 corresponds to the break-even point above which the project is

worth undertaking based solely on the stream of fare revenues, while the level

x0(y) is the cut-off above which the proceeds from the trading of development

rights is sufficiently large to offset the shortfall in fare revenues and yield a

positive NPV for MTRC overall.

The function x 7→ G1(x, y) is not continuously differentiable at x2. As

we look for a solution to the VI (23a) that satisfies the regularity (23b), a

set of state values (x, y) where the obstacle x 7→ G1(x, y) is not continuously

differentiable cannot be in the stopping region (in which V1 = G1). Conse-

quently, because x 7→ G1(x, y) is not continuously differentiable at x2, the

set {(x, y) : (0, x1(y)
)
} with x1(y) < x2 cannot be the continuation region.

We focus first on the case with a threshold policy such that x1(y) ≥ x2.

If the conjecture x1(y) ≥ x2 holds, then MTRC and the private developer

effectively decide on their own investments at the same time; this is because

the fare revenues y are not sufficient to incentivize MTRC to develop the

infrastructure. If the conjecture x1(y) ≥ x2 does not hold, then MTRC will

22



adopt a more subtle investment policy.

6.1. Case A with a threshold policy such that x1(y) ≥ x2

We introduce the quadratic function

D(γ) := r − ρ− (µ− ρ)γ − 1

2
σ2γ(γ − 1), (24)

and denote by δA and δB its positive and negative roots, respectively. We

further introduce

y? := e(r−ρ)h1

{
−
[ γA
γA − 1

δA − 1

δA
α
(
I2 +

K

1− α

)]
+ I1 + αI2 −K

}
(25a)

x1(y) :=
δA

δA − 1

(I1 + αI2 −K)− e−(r−ρ)h1y

α
e(r−µ)h2 , y ∈ (0, y?) (25b)

α? :=
(a+ b+ c)−

√
(a+ b+ c)2 − 4ac

2a
∈ (0, 1) (25c)

where

a := I2(δA−γA) > 0, b := γAK(δA−1) > 0, and c := δA(γA−1)
(
I1−K

)
> 0.

(25d)

We are able to establish the following theorem in Case A:

Theorem 3. We make the assumptions

µ− ρ− 1

2
σ2 > 0, (26a)

I1 + αI2 > K > αI2, (26b)

0 < α < α?. (26c)
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Then, if

0 < y < y?, (26d)

the value function V1 in (10) is given by

V1(x, y) =


(

x
x1(y)

)δA[
ϕ(y) + ψ

(
x1(y)

)]
, x < x1(y),

ϕ(y) + ψ(x), x ≥ x1(y).

(26e)

According to Theorem 3, Case A arises when fare revenues y are limited—

as per (26d)—and only a small share the proceeds accrues to the operator—as

per (26c). Here, the operator would not invest in the metroline unless it as-

certains a willingness by the property developer to invest, for x ≥ x1(y).

Other restrictions apply.12 From Theorem 3, we characterize MTRC’s opti-

mal investment rule in Case A as the first-hitting time

τ̂x,y1 = inf
{
t ≥ 0 : Xx

t ≥ x1(y)
}
, if 0 < y < y?. (27)

In other words, MTRC should invest if the property value exceeds the

level x1(y) > x2. This case illustrated in Figure 4 yields interesting economic

insights. First, when MTRC invests, the property developer immediately

12According to (26a), the excess return µ−ρ from property investment must be sufficient
to compensate for the volatility σ in property prices. Further, from (26b), MTRC must
charge a price K to the property developer that is sufficient to cover the operator’s cost
of participating in the real-estate business (αI2), yet not too large to completely offset its
own (total) investment cost, I1 +αI2. Both conditions (26b) and (26c) impose a fair value
redistribution between the two parties. This also relates to the notion of co-opetition (cf.
Brandenburger and Stuart [2007], Trigeorgis and Reuer [2017]) because it mixes elements
of cooperation and competition.
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Figure 4: Graph of the MTRC’s value function x 7→ V1(x, y) for a given y = 10.

follows suit.13 Such a pattern is often observed in reality. A case in point

is the property development plan around Canary Wharf, a main financial

center in London, and the urban planning scheme following the Jubilee line’s

extension.14 Second, because of the difference between the thresholds x1(y)

and x2, the private developer will not invest when the real option is “deep

in the money” (i.e, x ≥ x2) as a myopic investor would, but when it is

even “deeper in the money” (i.e., x1(y) > x2). This delay is due to the

Stackelberg nature of this timing game, with the leader investing only when

its own compound real option is “deep in the money.”

13Indeed, according to (19), θ2
(
Xx
τx,y
1

)
= 0 if x ≥ x1(y) ≥ x2.

14An eastward extension of the Jubilee Line was proposed in the 1970s, yet not finalized
until the late 1990s when the developers of Canary Wharf agreed to pay GBP500m to
complete the extension.
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7. Policy implications

This section stresses social implications from the R+P program. Ideally,

fare revenues and/or government subsidies should cover the upfront capi-

tal investment and the recurrent operations and maintenance costs. Yet,

transit fares are usually regulated and rarely sufficient to cover all costs,

while government subsidies or guarantees lead to (contingent) liabilities for

the sovereign. Without “strong” income streams, private developers and fi-

nanciers will lack willingness to participate in, which would further delay

the delivery of infrastructure. A capital-intensive infrastructure investment

opportunity should not be viewed as a single option, but rather a series of

options on options (i.e., compound options) combined with other commercial

opportunities derived from infrastructure investments.

MTRC capitalizes on complimentary sources of revenues (i.e., fare rev-

enues, land premiums, and the profit sharing with private developers in real

estate sale and lease) to cover the overall costs of capital investment, op-

erations, and maintenance. This novel financing approach is based on the

“beneficiary pays” principle, which states that the beneficiaries of the infras-

tructure services or improvements that increase land values should partly

bear public investment costs or return their benefits to the public (Suzuki

et al. [2015]; Ardila-Gomez and Ortegon-Sanchez [2016]). In the R+P model,

charging indirect beneficiaries (i.e., the private developer) allows MTRC to

recoup the huge capital investments at the outset; charging the direct benefi-

ciaries (i.e., metro passengers) helps MTRC cover the operations and main-

tenance costs that are relatively small-scale and periodic or ongoing. By

blending the multiple financing instruments that respond to the time varia-
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tions of expenditures, MTRC operates without government subsidizing and

runs a highly profitable and efficient business with financial sustainability.

The comprehensive and sustainable urban transport financing scheme also

releases the HK government from the financial pressure to provide the public

support for the rail operator.

The newly constructed metrolines benefit not only the newly developed

corridors but the existing ones as well. A denser metro system has network

externalities because it makes the use of alternative transport modes less

relevant. A denser system also helps reduce traffic congestion and save pas-

sengers’ costs and time, thereby achieving sustainability goals (e.g., on CO2

emissions). By accelerating the delivery of infrastructure assets, the R+P

scheme generates these network benefits at an earlier stage.

There is an ongoing debate in HK over housing affordability. The HK is

one of the most densely populated metropoles in the world, thus land in such

a case is naturally a scarce resource. Some critics argue that the R+P scheme

contributes to an increase in property and rental prices. Private developers

involved in the R+P program charge the new properties at a “mark-up”

commensurate with the land premiums and benefits they pay to MTRC. In

reality, however, the HK government requires developers to provide affordable

housing and community facilities built close to metro stations in exchange for

the additional rights and benefits, such as increasing the current floor-area

ratio (FAR) or providing other regulatory incentives.15 Moreover, the high-

end development concept of R+P is not applied to all the metro stations

15The FAR measures the ratio of a building’s total floor area to the size of the land on
which it is built. In general, the higher the FAR, the higher the density.
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managed by MTRC; under the R+P scheme most property sites are not far

from the transit stations: a number of residential flats are within 500 meters

of metro stations (Suzuki et al. [2015]). Although housing affordability has

long been a public concern, the novel R+P scheme, instead of accumulating

the financial burden of public debt and charging general purpose taxes to

taxpayers or other charges or fees dedicated to infrastructure, enables the

HK government to finance a wide range of high-quality local infrastructure

and social welfare by transacting development rights around transit stations

with private developers under the limited local land supply.

Besides helping MTRC internalize the benefits of its own investments on

property prices, the R+P model leads to a fairer wealth redistribution com-

pared to a financing via public subsidies. Public subsidies ultimately stem

from taxpayers’ money without discrimination among those who benefit from

the insfrastructure or not (e.g., also borne by a herdsman in Tibet). Instead

of using taxpayers’ money, MTRC ultimately charges those who benefit from

the infrastructure assets, either via transit fares or via a markup on property

prices. Intermediation by tax authorities is not needed in this instance.

8. Conclusion

Our paper presents a new perspective on infrastructure investment under

uncertainty, viewing it as a springboard that can generate follow-on growth

opportunities in a multi-player stopping game. We examine the underlying

rationale behind the two stakeholders’ investment timing decisions in the

context of HK’s R+P program by using notions borrowed from compound

(growth) options and Stackelberg games. We model MTRC’s problem as
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a duopoly case of Stackelberg leader-follower game of timing in comparison

with traditional infrastructure financing models. Much can be learned from

the real-world novel financing model.

First, the infrastructure financing gap stems from insufficient sources of

revenue. Only if a project can demonstrate favorable and sufficient rev-

enue sources for both upfront capital investments and periodic operations

and maintenance expenditures can issues of financing and delivery be ad-

dressed successfully. In other words, unless the adequacy of revenue streams

is addressed, there remains a financing gap in infrastructure investments.

To accelerate the delivery of infrastructure, one should account for posi-

tive externalities that derive from the prior infrastructure investment and

turn these revenue streams into capital that can be used today to initiate a

capital-intensive project.

Second, in a multi-agent stopping game, the equilibrium investment times

are not typical first-hitting times. Most extant real options literature suggests

that the exercising times are precisely first-hitting times (from above or below

depending on the context); once the process reaches the critical threshold, the

decision maker takes action. However, in a sequential Stackelberg stopping

game, the follower’s reaction is contingent upon the leader’s action, and the

leader must consider the effect of follower’s anticipated entry. Therefore, the

equilibrium stopping times are not necessarily the first-hitting times.

Our article contributes to extant literature by analyzing a real option

game [see, e.g., Chevalier-Roignant and Trigeorgis, 2011] inspired by a prac-

tical example from the infrastructure industry. Embedding compound real

options and strategic interactions with multiple stakeholders, our proposed

29



model is not restricted to state leasehold system (e.g., as in Hong Kong) but

can be applied to other land holding systems (e.g., the market freehold system

in Tokyo).16 Our approach is novel, rigorous, general and can be extended

to other business settings where a investing party wants to internalize the

benefits of its own investment on other parties, such as in infrastructure. Fu-

ture research could further explore independencies among projects over time

by considering portfolios of real options in combination with game-theoretic

thinking or extend our lumpy entry investment decisions to incremental ca-

pacity expansion options in the context of the Stackelberg leader-follower

game of timing in dynamic and uncertain environments.

16Tokyo runs a transit business successfully with a market freehold system in which
the government and transit agency do not own land, yet can collaborate with private
developers via land use regulations [see, e.g., Suzuki et al., 2015].
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Appendices

Appendix A. Proof of Theorem 1

Dynamic programming equation. The function t 7→ Y y
t := yeρt solves (1a)

and (1b) and is thus a solution to the ODE (1a)–(1b). It is immediate that

v(y) ≥ ϕ(y) = ye−(r−ρ)h1 − I1, ∀y ≥ 0. (A.1)

Besides, by the “principle of optimality,”

v(y) ≥ e−rεv
(
yeρε

)
, ε > 0.

Noting that if v(·) ∈ C1(R+), we then have by the fundamental law of calculus

d

dε

(
e−rεv(yρε)

)∣∣∣
ε=0

:= lim
ε↓0

e−rεv
(
yeρε

)
− v(y)

ε
= −rv(y) + ρyv′(y).

We thus conclude that

rv(y)− ρyv′(y) ≥ 0, a.e. y ∈ R+.

Because the firm will either invest straight away or wait, then we conclude

that the value function (2) satisfies

0 = min
{
v(y)− ϕ(y); rv(y)− ρyv′(y)

}
(A.2)

provided the function v(·) ∈ C1(R+) and limy↓0 v(y) = 0.
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Boundary problem. We conjecture that if (A.2) admits a solution v(y), then

this solution solves the problem

rv(y)− ρyv′(y) = 0, y < ȳ, (A.3a)

v(y) = ϕ(y), y ≥ ȳ, (A.3b)

where the scalar ȳ is an unknown.

We conjecture that (A.3a) admits a solution of the form y 7→ yγ, which

holds true if γ = r/ρ. For limy↓0 v(y) = 0 we need to assume r > ρ. We have

v(y) =

c× y
r
ρ , y < ȳ,

ye−(r−ρ)h1 − I1, y ≥ ȳ.

Yet, we postulate that v(·) is C1(R+); it follows that

c =
(1

ȳ

) r
ρ
{
ȳe−(r−ρ)h1 − I1

}
and ȳ =

r

r − ρ
I1e

(r−ρ)h1 . (A.4)

We thus obtained the function in Theorem 1.

Verification of the DP equation. For a solution to (A.3a)–(A.3b) to solve (A.2)

it also needs to satisfy

v(y) ≥ ϕ(y), y < ȳ, (A.5a)

rv(y)− ρyv′(y) ≥ 0, y ≥ ȳ. (A.5b)
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From Theorem 1, the inequality (A.5a) is equivalent to

(y
ȳ

) r
ρ
{
ȳe−(r−ρ)h1 − I1

}
≥ ye−(r−ρ)h1 − I1, (A.6)

ȳ−
r
ρϕ(ȳ) ≥ y−

r
ρϕ(y), y < ȳ. (A.7)

which is satisfied if υ 7→ υ−
r
ρϕ(υ) is monotone increasing on (y, ȳ). We have

d

dυ

(
υ−

r
ρϕ(υ)

)
= υ−

r
ρ
−1
[
υϕ′(υ)− r

ρ
ϕ(υ)

]
= υ−

r
ρ
−1
[
− υe−(r−ρ)h1

r − ρ
ρ

+
r

ρ
I1

]
.

From (A.4),

d

dυ

(
υ−

r
ρϕ(υ)

)
= υ−

r
ρ
−1e−(r−ρ)h1

r − ρ
ρ

[
− υ + ȳ

]
.

It is then immediate that d
dυ

(
υ−

r
ρϕ(υ)

)
> 0 if υ ∈ (0, ȳ), which proves the

inequality (A.5a).

We now consider the inequality (A.5b), which from Theorem 1 is equiv-

alent to proving that
[
r− ρ

]
ye−(r−ρ)h1 ≥ rI1; this is immediate by definition

of ȳ in (A.4). This completes the proof of Theorem 1.

Appendix B. Proof of Theorem 2

We first want to establish the relation (11). Thanks to the law of iterated

expectations, we can rewrite (6) as

Jx2 (τx,y1 , τx2 ) = E
[
e−rτ2

{
(1− α)

(
e−rh2E

[
X
Xx
τ2

h2

]
− I2

)
−K

}
1{τ2≥τ1}

]
.
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Besides, Xx
t is lognormally distributed, so E

[
Xx
h2

]
= xeµh2 . We define the

function G2(·) by

G2(x) := (1− α)
(
e−(r−µ)h2x− I2

)
−K. (B.1)

It follows from the strong Markov property that

Jx2 (τx,y1 , τx2 ) = E
[
e−rτ2G2

(
Xx
τ2

)
1{τ2≥τ1}

]
,

where the function G2(·) is defined in (B.1). The relation (11) immediately

follows.

We now want to solve the VI (14a)–(14d). We conjecture that the con-

tinuation set C2 = {x > 0 : V2(x) > G2(x)} is of the form (0, x2). If this

conjecture holds, the solution to (14a) solves the FBP

L2V2(x) = 0, x < x2, (B.2a)

V2(x) = G2(x), x ≥ x2, (B.2b)

where x2 is a free boundary. Given the conjectured regularity (14b), we also

consider the smooth-fit conditions:

V2(x2) = (1− α)
(
e−(r−µ)h2x2 − I2

)
−K, (B.2c)

V ′2(x2) = (1− α)e−(r−µ)h2 . (B.2d)

The boundary conditions (14c) and (14d) are also supposed to be satisfied

by the solution to the FBP (B.2a)–(B.2d).
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We can easily show that x 7→ xγA and x 7→ xγB are independent solu-

tions to the ODE (B.2a). More generally, any linear combination of these

two functions are solutions to this ODE. Because of (14d), we focus on so-

lutions of the form V2(x) = A2x
γA on (0, x2). We re-write the smooth-fit

conditions (B.2c)–(B.2d) as:

A2x
γA
2 = (1− α)

(
e−(r−µ)h2x2 − I2

)
−K,

γAA2x
γA−1
2 = (1− α)e−(r−µ)h2 .

These two conditions are sufficient to determine the two unknowns x̄2 and

A2. The free boundary x2 is given in Theorem 2, while

A2 =
( 1

x2

)γA[
(1− α)(e−(r−µ)h2x2 − I2)−K

]
.

It remains to check the inequalities

V2(x) ≥ G2(x), x < x2, (B.3a)

L2V2(x) ≥ 0, x ≥ x2 (B.3b)

to establish that the function V2(·) in Theorem 2 solves the VI (14a)–(14d).

We re-write (B.3a) as

x−γA2 G
(
x2

)
≥ x−γAG2(x), x < x2,

which holds true if x 7→ x−γAG2(x) is monotone increasing on (0, x2). We
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have

d

dx

(
x−γAG2(x)

)
= (1− α)x−γA−1

{
(1− γA)e−(r−µ)h2x+ γA

[
I2 +

K

1− α
]}
.

From Theorem 2, we have

γA

[
I2 +

K

1− α

]
= (γA − 1)x2e

−(r−µ)h2 .

Hence,

d

dx

(
x−γAG2(x)

)
= (1− α)xγA−1(γA − 1)e−(r−µ)h2

[
x2 − x

]
> 0 if x ∈ (0, x2).

The inequality (B.3b) is equivalent to

x ≥ r

r − µ
e(r−µ)h2

[
I2 +

K

1− α

]
, x ≥ x2.

For the above to hold, it suffices that

γA
γA − 1

≥
r
µ

r
µ
− 1

. (B.4)

From (15),

Q
( r
µ

)
= −1

2
σ2 r

µ

r

r − µ
< 0 ≤ Q(γA).

Besides,

Q′(γ) = −
(
µ− 1

2
σ2
)
− γσ2,

which is negative under the (sufficient) assumption that µ > 1
2
σ2. We thus
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conclude that r
µ
> γA. Because the function x 7→ x

x−1
is monotone decreasing,

we have established (B.4) and completed the proof of Theorem 2.

If we use the notations a∧ b := min{a; b} and a∨ b := max{a; b}, we can

re-write Theorem 2 as

V2(x) =
(x ∧ x2

x2

)γA
G2

(
x ∨ x2

)
. (B.5)

Appendix C. Proof of Lemma 2

By the law of iterated expectations, we can re-write (8) as

Jx,y1

(
τ1, τ2

)
= E

[
e−rτ1

{
e−rh1Y

Y yτ1
h1
−I1

}
+e−rτ2

{
α
(
e−rh2E

[
X
Xx
τ2

h2

]
−I2

)
+K

}]
.

Now given the semigroup nature of Y y
· and Xx

· , we can write

Jx,y1

(
τ1, τ2

)
= E

[
e−rτ1

{
e−(r−ρ)h1Y y

τ1
−I1

}
+e−rτ2

{
α
(
e−(r−µ)h2Xx

τ2
−I2

)
+K

}]
.

Given the reaction function (20), we obtain

Jx,y1

(
τx,y1 , T x2 (τx,y1 )

)
= E

[
e−rτ

x,y
1

{
e−(r−ρ)h1Y y

τx,y1
− I1

}
+
(Xx

τx,y1
∧ x2

x2

)γA{
α(e−(r−µ)h2(Xx

τx,y1
∨ x2)− I2) +K

}]
.
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It is immediate that the function G1 in (21) is a floor function for the value

function V1 in (10). Besides, by the principle of dynamic programming,

V1(x, y) ≥ E
[
e−rεV1

(
Xx
ε , Y

y
ε

)]
. (C.1)

If V1 is regular (in a sense that we shall specify next), then we can use

Dynkin’s formula (in a generalized form) to obtain

E
[
e−rεV1

(
Xx
ε , Y

y
ε

)]
= V1(x, y)− E

∫ ε

0

L1V1

(
Xx
s , Y

y
s

)
ds,

where the operators L1 are given respectively by (22).

From (C.1) we then obtain as ε ↓ 0 the inequality L1V1(x, y) ≥ 0 almost

every x ∈ X . We also have a complementary slackness condition. The VI in

this case reads (23a)–(23b).

Appendix D. Proof of Lemma 3

From the definition of the leader’s obstacle G1 in (21),

∂G1

∂x
(x, y) =

γA
(
x
x2

)γA ψ(x2)
x
, x < x2,

αe−(r−µ)h2 , x ≥ x2,

∂2G1

∂x2
(x, y) =

γA(γA − 1)
(
x
x2

)γA ψ(x2)
x2

, x < x2,

0, x ≥ x2.

It obtains after some computations from (7) and (17) that

ψ
(
x2

)
=

α

γA − 1

[
I2 +

K

α(1− α)
(γA + α− 1)

]
. (D.1)
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As α ∈ (0, 1), it is immediate that ψ(x2) > 0. Therefore, x 7→ G1(x, y) is

monotone increasing and strictly convex on (0, x2) from ϕ(y) to ϕ(y)+ψ(x2),

while is monotone increasing and affine on (x2,∞) from ϕ(y)+ψ(x2) to +∞.

Consequently, the function x 7→ G1(x, y) is continuous at x2.

We have from (17) and (D.1)

∂G1

∂x
(x2+, y)− ∂G1

∂x
(x2−, y) =

1

x2

[
αx2e

−(r−µ)h2 − γAψ(x2)
]

= −γA
x2

K

1− α

< 0.

It follows first that the obstacle x 7→ G1(x, y) is not differentiable at x2 and

concave in the vicinity of x2.

We study the sign of the obstacle x 7→ G1(x, y). If y < y0 := e(r−ρ)h1I1 ⇐⇒

ϕ(y) < 0, then by monotonicity and continuity of x 7→ G1(x, y), there exists

a unique point, say x0(y), such that

G1(x, y) < 0 if x < x0(y), G1(x0(y), y) = 0 and G1(x, y) > 0 if x > x0(y).

We asssume that y < y0 and note that

ϕ(y) +
( x
x2

)γA
ψ(x2) < 0 ⇐⇒ x < x2

[
− ϕ(y)

ψ(x2)

] 1
γA .
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Further,

[
− ϕ(y)

ψ(x2)

] 1
γA < 1 ⇐⇒ ϕ(y) + ψ(x2) > 0,

⇐⇒ y > y† := e(r−ρ)h1
[
I1 − ψ(x2)

]
.

It is immediate that y† < y0; we conclude that

x0(y) := x2

[
− ϕ(y)

ψ(x2)

] 1
γA if and only if y ∈ (y†, y0).

If y < y†, then x0(y) is the (unique) root of x 7→ ϕ(y) + ψ(x), which is

[I1 + αI2 −K − ye−(r−ρ)h1

α

]
e(r−µ)h2 .

We conclude with

x0(y) :=


[
I1+αI2−K−ye−(r−ρ)h1

α

]
e(r−µ)h2 , y ∈ (0, y†),

x2

[
− ϕ(y)

ψ(x2)

] 1
γA , y ∈ (y†, y0).

If y > y0, then the obstacle is strictly positive on (0,∞). This completes the

proof of the Lemma 3.

Appendix E. Proof of Theorem 3

Study of a free-boundary problem. We conjecture that C1 is {(x, y) : (0, x1(y))}

with x1(y) ≥ x2. If this ansatz holds, then the solution to (23a) also solves
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the FBP:

L1V1(x, y) = 0, x < x1(y), (E.1a)

V1(x, y) = ϕ(y) + ψ(x), x ≥ x1(y). (E.1b)

We conjecture that the ODE (E.1a) has a solution of the form f(x, y) =

xγy1−γ. We have then L1f(x, y) = D(γ)xγy1−γ, where D(·) is given in (24).

We study the function D(·). We have D(−∞) = D(+∞) = −∞ and

D′(γ) = −
[
µ− ρ− 1

2
σ2
]
− γσ2 Q 0 ⇐⇒ γ R γ? := −

µ− ρ− 1
2
σ2

σ2
.

The function D(·) is increasing on (−∞, γ?) from −∞ to D(γ?) and decreas-

ing on (γ?,∞) from D(γ?) to −∞. After some calculations it obtains

D(γ?) = r − ρ+

[
µ− ρ− 1

2
σ2
]2

2σ2
> 0.

If the assumption (26a) is satisfied, then γ? < 0. So the function D(·)

admits two roots, one positive noted δA and one negative noted δB. Further,

D(1) = r − µ > 0 so that 1 ∈
(
δB, δA

)
. We have D(γA) = (γA − 1)ρ > 0 so

γA ∈ (1, δA). So we have:

δB < 0 < 1 < γA < δA.
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We can now write the solution to the FBP (E.1a)–(E.1b) as

V1(x, y) =

Ax
δAy1−δA +BxδBy1−δB , x < x1(y),

ϕ(y) + ψ(x), x ≥ x1(y).

There remains to find three unknowns A, B, and x1(y). For V1(x, y) to be

finite as x ↓ 0, we set B = 0. We want to find a function V1 that is regular

in the sense of (23b). The smooth-fit conditions (in x) read

Ax1(y)δAy1−δA = e−(r−ρ)h1y + αe−(r−µ)h2x1(y)− (I1 + αI2 −K),

(E.2a)

δAAx1(y)δA−1y1−δA = αe−(r−µ)h2 . (E.2b)

The expression for x1(y) in (25b) follows from (E.2a)–(E.2b) after some com-

putations; it also follows that

A =
ϕ(y) + ψ(x1(y))

x1(y)δAy1−δA
. (E.3)

It is immediate that the function x1(·) given in (25b) is monotone decreasing

on (0,∞) from

x1(0) =
δA

δA − 1

I1 + αI2 −K
α

e(r−µ)h2 , (E.4)

to −∞. We now assume that

I1 + αI2 −K > 0; (E.5)
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so x1(0) > 0. It obtains after some (tedious) calculations that

x1(0)− x2 =
e(r−µ)h2

(δA − 1)(γA − 1)

f(α)

α(1− α)
,

where

f(α) :=aα2 −
(
a+ b+ c

)
α + c, α ∈ [0, 1].

where a, b, and c are defined by (25d) and positive.

Because sgn{x1(0)− x2} = sgn{f(α)}, it follows x2 < x1(0) iff f(α) < 0.

We study the function f(·). Because f ′′(α) = 2a > 0, f(·) is decreasing on

(−∞, a+b+c
2a

) from f(−∞) = +∞ to f
(
a+b+c

2a

)
and increasing on (a+b+c

2a
,+∞)

from f
(
a+b+c

2a

)
to f(+∞) = +∞. We have f(0) = c > 0 and f(1) = −b < 0.

So necessarily the function f(·) admits a unique root in (0, 1), α? defined

in (25c). Further, f(α) Q 0 iff α R α?. It follows that x1(0) > x2 if

α ∈ (0, α?).

We recall that x1(·) is monotone decreasing on R+ and note from (17)

and (25b) that

x1(y) > x2 ⇐⇒ 0 < y < y?,

with y? defined in (25a). We can now conclude the function V1 in (26e)

solves the FBP (E.1a)–(E.1b) with the regularity (23b) if the conditions in

Theorem 3 are satisfied.

Verification of the VI. We now want to prove that V1 in (26e) solves the

VI (23a). We drop the dependence of x1(·) on y for conciseness. It remains
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to check that

x−δA1

[
ϕ(y) + ψ(x1)

]
≥ x−δA

[
ϕ(y) +

( x
x2

)γAψ(x2)
]
, 0 < x < x2, (E.6a)

x−δA1

[
ϕ(y) + ψ(x1)

]
≥ x−δA

[
ϕ(y) + ψ(x)

]
, x2 ≤ x < x1, (E.6b)

L1

[
ϕ(y) + ψ(x)

]
≥ 0, x ≥ x1. (E.6c)

We start by proving the inequality (E.6c), which is equivalent to proving

that

L1

[
ϕ(y)+ψ(x)

]
= (r−ρ)e−(r−ρ)h1y+(r−µ)αe−(r−µ)h2x−r(I1+αI2−K) ≥ 0, x ≥ x1(y),

or that

x ≥
[

r

r − µ
(I1 + αI2 −K)− r − ρ

r − µ
e−(r−ρ)h1y

]
e(r−µ)h2

α
, x ≥ x1(y).

By definition of x1(y) in (25b), it appears that the above inequality is satisfied

because δA
δA−1

> r
r−µ .

To verify (E.6b), we study the function Λ given by

Λ(x, y) := x−δA
[
ϕ(y) + ψ(x)

]
. (E.7)

We have

dΛ

dx

(
x, y
)

=− x−δAαe−(r−µ)h2(δA − 1)

+ δAx
−δA−1

[
(I1 + αI2 −K)− e−(r−ρ)h1y

]
=(δA − 1)x−δA−1αe−(r−µ)h2

[
x1(y)− x

]
,
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where the second line comes from (25b). The derivative is positive if x ∈

(0, x1). It follows that Λ(·, y) is monotone increasing on (0, x1) for y ∈ (0, y?),

which proves (E.6b) directly.

We now consider the inequality (E.6a). We have

d

dx

[
x−γAψ(x)

]
= −γAx−γA−1ψ(x) + x−γAψ′(x)

= x−γA−1
{
αe−(r−µ)h2x(1− γA)− γA(K − αI2)

}
= x−γA−1αe−(r−µ)h2(1− γA)

[
x+

γA
γA − 1

K − αI2

α
e(r−µ)h2

]
.

If

K > αI2, (E.8)

then d
dx

[
x−γAψ(x)

]
< 0. Therefore, if x < x2, then x−γAψ(x) > x−γA2 ψ(x2)

by monotonicity. By definition of Λ in (E.7), it follows then that

Λ(x, y) > x−δA
[
ϕ(y) +

( x
x2

)γAψ(x2)
]
. (E.9)

Finally, because we know that Λ(·, y) is monotone increasing on (x, x1), we

have Λ(x1, y) > Λ(x, y) for x ∈ (0, x1), which proves (E.6a).

The assumption (26b) combines both the parameter restrictions (E.8)

and (E.5). To prove Theorem 3, it would remain to prove a verification

theorem [for standard proofs see, e.g., Bensoussan and Lions, 1982].
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Appendix F. Parameter values

Symbols Values

Cost parameters I1 17.6

I2 4.66

K 5.2

α 0.5

Growth and risk r 0.15

µ 0.12

ρ 0.015

σ 0.15

Time lags h1 5.5

h2 5

Static NPV threshold y0 36.9808

Case A y 10

y? 13.5696

Roots γA 1.22426

δA 1.25192

δB -9.58526

Thresholds x2 95.5191

x0(y) 34.9454

x1(y) 115.137
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