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Abstract

This paper presents an entrepreneurial optimal business plan in which optimal

consumption and portfolio rules, and optimal exit strategy for an entrepreneur are

jointly determined in the presence of undiversifiable idiosyncratic risk. We find that

the entrepreneur is more likely to exit from her risky business as investment oppor-

tunity worsens or as her risk aversion coefficient increases or as the idiosyncratic

risk increases. When the entrepreneur decumulates wealth, she can achieve a partial

hedging effect of a risky portfolio against the business risk by optimally increasing

her risky portfolio as the idiosyncratic risk increases. Accordingly, stock market par-

ticipation is of importance to the entrepreneur for the purpose of risk diversification

and a smooth continuation of her risky business.
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1 Introduction

Modern economics and finance have greatly improved the understanding of household port-

folio choice. Among important determinants are undiversifiable risks stemming from labor

income and personal risky business. Portfolio theory contends that diversification and risk

sharing are fundamental principles. Empirical evidence indicates that households typically

invest in a single stock, and this strategy does not conform to the theoretical prediciton.

Furthermore, entrepreneurs typically hold large equity shares in their risky business and

hence bear substantial undiversifiable idiosyncratic risk. However, this behavior is coun-

terintuitive because portfolio theory (Merton, 1969) implies that the underdiversification

in entrepreneurs’ portfolio is risky. Importantly, notwithstanding unattractive returns to

entrepreneurial business,1 households actively engage in entrepreneurship.

Entrepreneurs should be well compensated by the risk-return trade-off against their

commitment in their own business to mitigate moral hazard and adverse selection. How-

ever, they are likely to be poorly compensated relative to investment in a public equity

that guarantees a positive risk premium (Moskowitz and Vissing-Jørgensen, 2002; Hall

and Woodward, 2007). The gap between (1) the theoretical prediction that entrepreneurs

1Following Cochrane (2005), the volatility of log returns to venture capital investments is up to 89%,

whereas one of the log S&P return is only 14.9%. Although venture capital puts entrepreneurs at a large

risk captured by the high volatility, the annual expected return of venture capital is only about 15%

(Cochrane, 2005). The expected returns to private equity are lower than the returns to public equity

(Moskowitz and Vissing-Jørgensen, 2002). Moreover, entrepreneurs’ median life-time profits are lower

than those of similarly skilled wage-earners (Hamilton, 2000).
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enhance the demand for risky portfolio to diversify away their business risk, and (2) empir-

ical observations for underdiversification in entrepreneurial portfolio choice is the so-called

private equity premium puzzle.

Numerous authors have attempted to solve the private equity premium puzzle. To

diversify the business risk entrepreneurs willingly choose a conservative portfolio compo-

sition (Heaton and Lucas, 2000). Entrepreneurs would have a significant safe portfolio

of financial assets because of their liquidity constraints to finance their own business in

its final steps (Faig and Shum, 2002). Puri and Robinson (2006) have concluded that

entrepreneurs behave in a more optimistic and risk-loving manner than do wage earners.

To hedge the business risk, entrepreneurs do appear to decrease their investment in other

risky assets (Fang and Nofsinger, 2009). Social status concerns significantly affect en-

trepreneurial business plans in the sense that entrepreneurs have concentrated risky asset

composition in equilibrium; these concerns provide a rational reason for the private eq-

uity premium puzzle (Roussanov, 2010). Credit constraints, heterogeneous risk attitudes,

and nonpecuniary benefits from self-employment could also contribute to give a partial

explanation for the private equity premium puzzle (Fossen, 2012).

Our paper generates important implications for an entrepreneurial business plan such

as optimal consumption and portfolio selection, and optimal exit strategy from a risky

business. We focus on how entrepreneurial undiversifiable idiosyncratic risk influences en-

trepreneurial investment behavior in their own business and their asset composition. For

our model design, we follow Miao and Wang (2007b) who have studied the effects of unin-

surable idiosyncratic risk on an entrepreneurial learning about the quality of risky business
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and the optimal exit strategy. However, they did not consider the role of a market portfolio

in entrepreneurial business. Importantly, financial assets including a market portfolio can

be used to hedge against bad outcomes of entrepreneurial business (Faig and Shum, 2002).

Many researchers have tried to investigate the relationship between entrepreneurship and

household portfolio composition (Heaton and Lucas, 2000, 2009; Faig and Shum, 2002;

Miao and Wang 2007a; Chen et al., 2010; Wang et al., 2012; Leippold and Stromberg,

2014), by considering all realistic ramifications of an entrepreneurial business.2

In this paper, we present an entrepreneur’s optimal business plan that jointly deter-

mines (1) optimal consumption and portfolio rules, and (2) optimal exit strategy, for an

entrepreneur in the presence of undiversifiable idiosyncratic risk. As far as we know, this is

the first study that clarifies the relationship between the idiosyncratic risk and optimal exit

strategy from a risky business as well as the role of a market portfolio on a business plan

under a constant relative risk aversion (CRRA) utility. Miao and Wang (2007a), and Chen

have et al. (2010) successfully solved the problem of nondiversifiable investment risk in

incomplete financial markets for a risk-averse entrepreneur. However, for tractability these

authors adopted a constant absolute risk aversion (CARA) utility to solve the incomplete

market problem, despite CARA’s shortcoming that it does not capture wealth effects.

The objective of this paper is to study an entrepreneur’s business plan to maximize her

CRRA lifetime utility by controlling per-period consumption, risky portfolio, and the time

2Portfolio allocations of entrepreneurs in aggregate account for about 30% of the stock market (Heaton

and Lucas, 2000). Further, the entrepreneur’s investment in the stock market can be used as a measure

of her risk tolerance (Fang and Nofsinger, 2009).
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to quit a business and accept a safe job in the presence of undiversifiable idiosyncratic risk.

The entrepreneur faces undiversifiable idiosyncratic risk from her risky business and thus,

receives future income at random rates.3 The entrepreneur is currently in the business and

obtains low-quality income. Due to the undiversifiable idiosyncratic risk, she has a small

probability of succeeding in the business (Miao and Wang, 2007b). If she succeeds in the

business, then she obtains high-quality income afterward. We assume that the entrepreneur

has an option to quit the business and accept a safe job, and that after she exercises the

option, she obtains constant income infinitely.

Our paper is distinct from the existing optimal stopping problems in complete financial

markets in that a market incompleteness is caused by undiversifiable idiosyncratic risk.

In the presence of undiversifiable idiosyncratic risk, an entrepreneur should consider not

only her consumption but also her wealth at the time of success in a business. Specifically,

the entrepreneur is willing to maximize her utility value after the business success as well

as her intermediate consumption before this success. The entrepreneurial business plan is

characterized by two regions: a continuation region in which the entrepreneur’s optimal

choice is to retain an option liquidates her risky business; and a stopping region in which

she should exercise this option, exit from the risky business, and accept a safe job. The

continuation and stopping regions are determined by the so-called critical wealth level

under which it is optimal for an entrepreneur to exit from her risky business and accept a

safe job.

3Heaton and Lucas (2000) find that the uncertainty of business income is a large source of undiversifiable

idiosyncratic risk.
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The main contribution of this paper is to show that undiversifiable idiosyncratic risk

significantly influences an entrepreneur’s optimal strategies which depend crucially on the

level of idiosyncratic risk, risk aversion, wealth, and investment opportunity. We establish

two main results by numerical analysis:

• The entrepreneur is more likely to exit from her risky business (1) as investment

opportunity worsens, or (2) as her risk aversion coefficient increases or (3) as the

idiosyncratic risk increases.

• When the entrepreneur has significant wealth, the amount that she willingly invests

in the stock market decreases as the idiosyncratic risk increases. However, when the

entrepreneur decumulates wealth, she can achieve a partial hedging effect of the risky

portfolio against the business risk by optimally increasing her risky portfolio as the

idiosyncratic risk increases.

We measure the entrepreneurial value of running a risky business and the hedging effect

of risky portfolio against undiversifiable idiosyncratic risk by using a concept of certainty

equivalent wealth (CEW). The CEW induced by running a risky business is an increasing

function of the entrepreneur’s initial wealth. Further, the relationship between the CEW

and wealth is highly nonlinear; this is consistent with the result of Hurst and Lusardi

(2004). Importantly, we find that the CEW shows different patterns according to different

degrees of idiosyncratic risk. The value of running the risky business significantly increases

as idiosyncratic risk decreases, but the undiversifiable idiosyncratic risk might lead to

non-trivial entrepreneurship; the probability that this happens depends crucially on the
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entrepreneur’s wealth.

The hedging effect of risky portfolio also increases as the idiosyncratic risk increases.

This result is consistent with results of Miao and Wang (2007a), Leippold and Stromberg

(2014); a private equity premium can be generated by an increase of idiosyncratic volatility.

In this paper, the positive and sizable hedging effect measured by the CEW can represent

a large source of the private equity premium. Accordingly, stock market participation is

of importance to the entrepreneur for the purpose of risk diversification and a smooth

continuation of her risky business.

The rest of this paper is organized as follows. In Section 2 we describe a financial

market in the presence of undiversifiable idiosyncratic risk and provide an entrepreneurial

business plan. In Section 3 we show the implications of our model through numerical

results. Specifically, we analyze the effects of idiosyncratic risk on the entrepreneurial

optimal strategies, the value of running a risky business, and the hedging effect of a risky

portfolio. In Section 4 we conclude the paper.

2 The Model

2.1 The Financial Market

An entrepreneur has the following CRRA lifetime utility:

E
[ ∫ τ∧τδ

0

e−βt
c1−γt

1− γ
dt+ e−β(τ∧τδ)

∫ ∞
τ∧τδ

e−β(t−τ∧τδ)
c1−γt

1− γ
dt
]
,
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where E is the expectation taken at time 0, β > 0 is the entrepreneur’s subjective discount

rate, γ > 0 is her coefficient of relative risk aversion, ct is per-period consumption, τ is the

first time (to be determined endogenously) when the entrepreneur goes into liquidation, τδ

is the first time (occurs exogenously) when the quality of the business is determined to be

sufficiently high.

The entrepreneur can trade securities in a financial market. Following the conventional

model, the financial market consists of two assets: a bond (or a risk-free asset) and a stock

(or a risky asset). The bond price Bt follows

dBt = rBtdt,

where r > 0 is the risk-free interest rate, and the stock price St is given by the following

geometric Brownian motion:

dSt = µStdt+ σStdWt,

where µ (µ > r) is the expected rate of the stock return, σ > 0 is the volatility of the

return on the stock, and Wt is a standard one-dimensional Brownian motion defined on

an appropriate probability space. The expected stock return µ and the stock volatility

σ summarize the investment opportunity provided by the stock. We assume that the

investment opportunity is constant, i.e., r, µ, and σ are constants.4

4The investigation of effects of stochastic investment opportunity on an entrepreneur’s business plan

would be an interesting extension. In this paper, we try to focus on how undiversifiable idiosyncratic risk

optimally affects the entrepreneur’s optimal strategies.
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2.2 Undiversifiable Idiosyncratic Risk

We consider an entrepreneur who runs a risky business and is exposed to undiversifiable

idiosyncratic risk from the business. The wealth process Xt of the entrepreneur with initial

wealth X0 = x follows

dXt = (rXt − ct + εt)dt+ πtσ(dWt + θdt), t ≥ 0, (1)

where π is the dollar amount invested in the stock, θ is the Sharpe ratio, (µ − r)/σ, and

εt is the rate of future income obtained from her business. The entrepreneur accumulates

wealth at the rates equal to (rXt − ct + εt). She consumes at the rate of ct and receives

interests at the proportional rate r to her current wealth by investing in the risk-free

bond. Note that the entrepreneur faces undiversifiable idiosyncratic risk from her risky

business and thus receives future income εt at random rates. The entrepreneur is currently

in the business and obtains low-quality income at the rate equal to εL > 0. Due to the

undiversifiable idiosyncratic risk, she has a small probability of succeeding in the business

(Miao and Wang, 2007b). If she succeeds in the business, then she obtains high-quality

income at the rate equal to εH (εH > εL) afterward. We assume that the entrepreneur

has an option to quit the business and accept a safe job, and that after she exercises the

option, she obtains constant income at the rate of y > 0 (εL < y < εH) infinitely. Then

the entrepreneur’s income streams, εt, follow

εt =



εL, if 0 ≤ t < τ ∧ τδ,

y, if t ≥ τ,

εH , if τδ ≤ t < τ.
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We also assume that the first time τδ when the quality of the business is determined to be

high is distributed according to an exponential distribution with a positive intensity δ, i.e.,

probability of {t ≤ τδ} = 1− e−δt.5

The reciprocal of the intensity is the expected time that the business succeeds.

The entrepreneur is allowed to participate in the stock market. She is exposed to the

market risk from her stock holdings, as a result, bears random fluctuations of her wealth.

The market risk is captured by the term involving the Brownian motion W in the wealth

process (1). More specifically, the wealth process randomly changes at the rate equal to

πσ, the product of the dollar amount π invested in the stock market and the stock volatility

σ representing the standard deviation of the return on the stock. In this sense, the stock

volatility represents the risk in the stock market. The entrepreneur is compensated by a

risk premium from the stock investment and hence her wealth accumulation is increased

by the rate equal to π(µ− r), the product of the stock investment π and the risk premium

µ− r, relative to the investment only in the risk-free bond.

We have two risk sources: the market risk (or the Brownian motion) and the failure in

the business (or the Poisson arrival of high-quality income stream). The market risk can

be diversified away by investing in the stock. We assume that there is no financial vehicle

(securities, financial contracts, or insurance contracts) to hedge against the business fail.

In this sense, the failure in the business is unhedgeable and subsequently, considered to

5In later numerical analysis, we set the value of the intensity δ to the annual probability that the

business succeeds. This parameter set-up is due to the approximate relationship that 1− e−δt ≈ δt.
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be undiversifiable idiosyncratic risk.6 Hence, the financial market consisting of securities

market and insurance market is essentially incomplete.

2.3 A Business Plan

We consider a business plan for an entrepreneur who is exposed to undiversifiable idiosyn-

cratic risk and participates in the stock market. We assume that the entrepreneur can

borrow money with her future income obtained from her business.7 The present value of

future income discounted at the risk-free interest rate r follows

E
[ ∫ τδ

0

e−rtεtdt
]

=
1

r + δ

(
εL + εH

δ

r

)
.

For the limiting case of δ = 0, the entrepreneur cannot succeed in the business, so that

she continuously receives the low-quality income εL. In this case, she can borrow money

up to the present value εL/r of the low-quality income discounted at the risk-free interest

rate. The entrepreneur has a small probability of succeeding in the business, i.e., δ > 0. In

this case, the amount of income increases from the low-quality income εL to the sum of εL

6For the technical simplicity, the Brownian motion and Poisson arrival event are assumed to be inde-

pendent. The independent assumption can be extended by imposing a correlation between the Brownian

motion and Poisson arrival event. Specifically, we can introduce a time-varying probability of success in

the business and allow an additional Brownian motion to have the correlation with the Brownian mo-

tion of the stock price. However, the correlation adds a technical difficulty such as solving a problem in

multi-dimensions. We leave this as an extension for future research.
7Various wealth constraints such as a non-negative wealth constraint can be imposed (Farhi and

Panageas, 2007; Dybvig and Liu, 2010). We abstract away the role of wealth constraints to focus on

the effects of undiversifiable idiosyncratic risk on an entrepreneur’s business plan.
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and the idiosyncratic risk-adjusted high-quality income εH × δ/r. Then the entrepreneur

can borrow money up to the level (εL + εH
δ
r
)/(r + δ), which is the present value of the

business income (εL + εH
δ
r
) discounted at the sum of the risk-free interest rate r and the

intensity δ of the timing for undiversifiable idiosyncratic risk.

For the other extreme case where δ = +∞, the entrepreneur always succeeds in the

business, as a result, receives the high-quality income εH infinitely. Therefore, in that

case the entrepreneur can borrow money up to the present value εH/r of the high-quality

income εH discounted at the risk-free interest rate. To sum up, the wealth constraint of

the entrepreneur while running the business is given by

Xt ≥ −
1

r + δ

(
εL + εH

δ

r

)
, 0 ≤ t ≤ τ. (2)

After exiting the business and entering a safe job, the entrepreneur borrows money with

insurable income y obtained from the safe job, i.e.,

Xt ≥ −
y

r
, t ≥ τ. (3)

The entrepreneurial business plan is to maximize her CRRA lifetime utility by control-

ling per-period consumption c, risky portfolio π, and the time τ to quit the business and

accept the safe job in the presence of undiversifiable idiosyncratic risk, or equivalently, to

find the following value function:

Φ(x) ≡ max
(c,π,τ)

E
[ ∫ τ∧τδ

0

e−βt
c1−γt

1− γ
dt+ e−β(τ∧τδ)

∫ ∞
τ∧τδ

e−β(t−τ∧τδ)
c1−γt

1− γ
dt
]
. (4)

We reformulate the value function (4) by the following lemma.
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Lemma 2.1 The value function (4) can be rewritten by

Φ(x) = max
(c,π,τ)

E
[ ∫ τ

0

e−(β+δ)t
{ c1−γt

1− γ
+ δŨ(Xt; εH)

}
dt+ e−(β+δ)τ Ũ(Xτ ; y)

]
, (5)

where

Ũ(x; a) = K
(x+ a/r)1−γ

1− γ
,

and

K =
( 1

A

)γ
, A =

{γ − 1

γ

(
r +

θ2

2γ

)
+
β

γ

}
.

Proof. See Appendix. Q.E.D.

The term Ũ(x; a) in Lemma 2.1 denotes the value function of an entrepreneur who has

initial wealth x and receives income at the rate of a infinitely. Equation (5) shows that

in the presence of undiversifiable idiosyncratic risk, an entrepreneur should consider not

only her consumption but also wealth at the time of success in a business. Specifically,

the second term δŨ(Xt; εH) captures the utility value of an entrepreneur after the business

success. The term is the product of the intensity δ of the timing for the idiosyncratic risk

and the maximized value of the entrepreneur’s utility after the business succeeds i.e., the

income rate obtained from the business is increased by εH . For the limiting case where

δ = 0, the entrepreneur cannot succeed in the business, so that she maximizes an objective

function which is a function of only intermediate consumption (Merton, 1969). For the

other extreme case of δ = +∞, the entrepreneurial business plan is trivial because the

business success is immediate and the income is provided by the rate equal to εH infinitely.

In this case, the business plan reduces to the Merton’s optimal consumption and portfolio

selection problem.
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2.4 Optimal Exit Time from Risky Business

In the previous subsection, we have formulated a problem for a business plan in which

an entrepreneurial optimal consumption, optimal stock investment, and optimal exit time

from the business are jointly determined. In fact, the problem is closely associated with

an optimal stopping problem.8 Specifically, we provide a lemma clarifying the relationship

between the entrepreneurial business plan and the optimal stopping problem.

Lemma 2.2 The value function formulated by (5) satisfies the following optimal stopping

problem given by the variational inequality:

(β + δ)φ(x)− (rx+ εL)φ′(x) +
1

2
θ2
φ′(x)2

φ′′(x)
− γ

1− γ
{φ′(x)}1−1/γ ≥ δŨ(x; εH),

φ(x) ≥ Ũ(x; y),[
(β + δ)φ(x)− (rx+ εL)φ′(x) +

1

2
θ2
φ′(x)2

φ′′(x)

− γ

1− γ
{φ′(x)}1−1/γ − δŨ(x; εH)

](
φ(x)− Ũ(x; y)

)
= 0.

(6)

Proof. See Appendix. Q.E.D.

The entrepreneurial business plan is characterized by two regions: a continuation re-

gion in which the entrepreneur’s optimal choice is to retain an option liquidates her risky

8When we deal with the standard optimal stopping problems (Farhi and Panageas, 2007; Dybvig and

Liu, 2010), we can solve the differential equation derived by the conventional dual approach (Karatzas

and Wang, 2000) up to explicit solutions. However, we cannot apply the dual approach to our problem

because a state price density (or a stochastic discount factor) is not uniquely determined because of the

market incompleteness induced by undiversifiable idiosyncratic risk. To address this issue, we can apply a

modified convex-duality approach (Bensoussan et al., 2016).
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business; and a stopping region in which she should exercise this option, exit from the

risky business, and accept a safe job. The first inequality in the variational inequality (6)

shows that the strict inequality holds in the stopping region and the equality holds in the

continuation region. In particular, the equality is the Hamilton-Jacobi-Bellman equation

obtained when we solve an optimal consumption and portfolio selection problem (Merton,

1969). Importantly, the strict inequality in the second inequality is the case where the

entrepreneurial value function with the liquidation option is strictly larger than the value

function after exiting from the risky business and jumping into the safe job. Therefore, in

that case the entrepreneur is in the continuation region and should hold the liquidation

option. When the entrepreneur’s value function is exactly same with the value function

after exercising the option (the equality in the second inequality), the entrepreneur is in

the stopping region and thus, optimally exits the business and accepts the safe job. The

third equality in (6) is necessary because the strict inequalities (the first inequality repre-

sents the stopping region and the second one denotes the continuation region) cannot hold

simultaneously.

The continuation and stopping regions are determined by the so-called critical wealth

level under which it is optimal for an entrepreneur to exit from her risky business and accept

a safe job.9 We can construct a problem with an optimal stopping boundary (or a free

9Actually, this type business plan resembles the optimal strategy for an investor with an American

put option in which the investor optimally exercises the put option whenever the underlying asset price

approaches the optimal exercise boundary from above. The difference between the entrepreneur’s liquida-

tion option and the investor’s American put option is attributable to the underlying asset on the option.
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boundary) to solve the optimal stopping problem formulated by the variational inequality

(6). That is, we would like to find a function φ(x) such that it is C1 and piecewise C2

and determine the free boundary x. Specifically, the function φ(x) satisfies the following

relationships:

(β + δ)φ(x)− (rx+ εL)φ′(x) +
1

2
θ2
φ′(x)2

φ′′(x)
− γ

1− γ
{φ′(x)}1−1/γ = δŨ(x; εH), x < x,

φ(x) = Ũ(x; y), − 1

r + δ

(
εL + εH

δ

r

)
< x ≤ x,

φ(x) = Ũ(x; y),

φ′(x) = Ũ ′(x; y),

(7)

where x is the critical wealth level.10 In the free boundary problem (7), the continuation and

stopping regions are explicitly characterized by {x < x} and {− 1
r+δ

(
εL + εH

δ
r

)
< x ≤ x},

respectively.

3 Numerical Implications

Parameter Values

Specifically, the underlying asset on the liquidation option is the entrepreneurial wealth controlled by her

optimal consumption and risky portfolio policies, and optimal exit strategy, whereas the underlying asset

on the put option is typically the stock price.
10The solution to the variational inequality (6) clearly satisfies the free boundary problem (7). The

converse statement that whether or not the solution to the free boundary problem (7) is the solution to

the variational inequality (6) should be verified. The verification can be done by modifying the idea of

Bensoussan et al. (2016) and is provided in Appendix. In Appendix, we provide the details of solving the

free boundary problem (7).
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We investigate various properties of optimal strategies for an entrepreneur in the pres-

ence of undiversifiable idiosyncratic risk by using numerical solutions. Default parameters

are set as follows: r = 3.71%, the annual rate of return from rolling-over of 1-month T-bills

during the time period of 1926-2009,11 µ = 11.23% and σ = 19.54%, the return and stan-

dard deviation of a portfolio consisting of the world’s large stocks during the same time

period.12 We assume that β = r and set γ = 2.

To set the parameter values for income streams, we follow Miao and Wang (2007b).

More specifically, the income rate y from the safe job dominates the low-quality income rate

εL. Moreover, the entrepreneur receives the higher income rate εH than y if she succeeds

in a business. Due to the presence of undiversifiable idiosyncratic risk, she can fail in the

business. However, a small possibility of succeeding in the business will be an incentive

for the entrepreneur to stay in the business. To reflect this set-up, we set the income rates

as follows: εL = 0.25, y = 1.5, and εH = 2.5. We also set δ = 0.10, which means that the

annual probability that the business succeeds is 10%.

Optimal Exit Strategy

In the previous subsection, we have shown that it is optimal for an entrepreneur to exit

from her risky business and accept a safe job as soon as her initial wealth approaches the

critical wealth level x from above. The entrepreneur’s borrowing limits (see the wealth con-

straint (2)) for three values of δ ∈ {0.20, 0.15, 0.10} are computed as −57.8958, −55.3598,

11Source: Bureau of Labor Statistics
12Source: pp.170 of Bodie et al. (2011)
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−50.9741, respectively. The results of sensitivity analysis of the critical wealth level x with

respect to changes in µ, σ, and γ (Table 1) demonstrate that the values of x are negative

and exceed the borrowing limits. The entrepreneur is more likely to exit from the business

as investment opportunity worsens; i.e., as the expected rate of stock return µ decreases or

the stock volatility σ increases, or as the risk aversion coefficient γ increases, or as undiver-

sifiable idiosyncratic risk increases, or equivalently, as the intensity δ decreases. The value

of the option to quit the business and accept a safe job is larger in a financial market with

a bad investment opportunity than in one with a good investment opportunity. Moreover,

a highly risk-averse entrepreneur is reluctant to take idiosyncratic risk from risky invest-

ment, and hence willingly exits from the business earlier than does an entrepreneur with

low risk aversion. As the idiosyncratic risk to which an entrepreneur is exposed increases,

the advantage of abandoning the business and accepting a safe job increases.

[Insert Table 1 here.]

Optimal Consumption and Risky Portfolio Strategies

Undiversifiable idiosyncratic risk has a wealth-dependent effect on optimal strategies.

The entrepreneur tends to formulate aggressive consumption and risky portfolio strategies

when she has small idiosyncratic risk (or a high δ) and has wealth that exceeds the critical

wealth level (Figure 1).

[Insert Figure 1 here.]

When she has significantly larger amount of wealth than the critical wealth level, she

willingly invests more in the stock as idiosyncratic risk decreases, i.e., as the intensity δ in-
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creases (Figure 1). However, this might not be a reasonable strategy while the entrepreneur

decumulates wealth. The entrepreneur optimally increases risky portfolio as idiosyncratic

risk increases (as the intensity δ decreases). Because a risky portfolio could be a good

substitute for the risky business, the entrepreneur willingly increases her risky portfolio to

absorb the idiosyncratic risk.

[Insert Figure 2 here.]

Given the undiversifiable idiosyncratic risk, δ = 0.10, the effects of changes in the

coefficient of relative risk aversion on optimal consumption are trivial if an entrepreneur

has significantly large wealth, which is near the zero wealth level in Figure 2; consumption

decreases as risk aversion increases. However, as the entrepreneur decumulates wealth, she

willingly takes more aggressive consumption strategy with respect to an increase of risk

aversion. A constant income stream obtained from quitting a risky business and jumping

into a safe job would induce the aggressive consumption behavior of the highly risk-averse

entrepreneur as her wealth approaches the critical wealth level x. Relative to an optimal

risky portfolio, a more risk-averse entrepreneur invests less in the stock than does a less

risk-averse one. This response follows the traditional investment rule that an investor

decreases her stockholdings as her risk aversion increases.

[Insert Table 2 here.]

The entrepreneurial optimal strategies are affected by changes in investment opportu-

nity (Table 2). Given the undiversifiable idiosyncratic risk, δ = 0.10, the entrepreneur
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optimally reduces her consumption and risky portfolio as the expected rate of stock return

µ decreases or as the stock volatility σ increases.

Value of Running Risky Business

Until now, we have investigated how undiversifiable idiosyncratic risk optimally influ-

ences components of an entrepreneurial business plan such as optimal exit strategy, optimal

consumption and risky portfolio policies. In this section, we try to determine how much

benefit an entrepreneur obtains from her own risky business by bearing the undiversifiable

idiosyncratic risk. To address this question, we will compute the value of running the risky

business by introducing a concept of certainty equivalent wealth (CEW). We define the

CEW induced by running a risky business as follows.

Definition 3.1 The certainty equivalent wealth ∆(x) induced by running a risky business

is defined as

U(x+ ∆(x); y) = Φ(x),

where U(·; y) is the value function after exiting business and accepting a safe job in which

an entrepreneur receives income y infinitely, and Φ(x) is the value function given by (5)

while staying in risky business.

[Insert Figure 3 here.]

[Insert Figure 4 here.]

The CEW induced by running a risky business is an increasing function of an en-

trepreneurial initial wealth x (Figure 3). Further, the relationship between the CEW and
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wealth is highly nonlinear; this observation is consistent with the result of Hurst and

Lusardi (2004). The value of running a risky business (or the CEW) sharply decreases as

the entrepreneurial wealth decumulates from above zero, the value also steadily decreases

as the wealth approaches the critical wealth level (Figure 3). When the value becomes

zero, the entrepreneur has no incentive to run the risky business, so she decides to exit

from it and accept a safe job. We also find that a highly risk-averse entrepreneur values a

risky business less than does the entrepreneur with low risk aversion; therefore the former

would exit the business sooner than would the latter (Figure 4).

Importantly, we find that the CEW patterns differ according to values of the intensity δ

(i.e., the annual probability that the business succeeds). Specifically, when the entrepreneur

is exposed to high idiosyncratic risk or has a low value of δ (δ = 0.10), the CEW and wealth

have a convex relation, which means that entrepreneurs appear to have more benefits from

their business as their wealth increases. The rationale behind this trend is that the effects

of idiosyncratic risk decrease as an entrepreneur’s wealth increases, so that her willingness

to stay in the risky business also increases. This result is compatible that of Puri and

Robinson (2006): that entrepreneurs are more optimistic and risk tolerant than normal

wage earners, especially in the upper percentile of the wealth distribution.

In contrast, when the entrepreneur is exposed to low idiosyncratic risk or has a high

value of δ (δ = 0.20), the value of running the risky business significantly increases as id-

iosyncratic risk decreases, but the undiversifiable idiosyncratic risk might lead to non-trivial

entrepreneurship depending crucially on the entrepreneurial wealth. More specifically, the

relation between the CEW and wealth shows both convex and concave patterns. En-
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trepreneurs with low wealth show the convex trend, whereas those with large wealth follow

the concave one. The former trend implies that entrepreneurs with relatively little wealth

seem to have more incentive to run their own business with respect to an increase of wealth;

the latter trend shows that wealthy entrepreneurs are not necessarily more beneficial as

wealth increases up to a point.

The results of the analysis of the effects of CEW can offer an intuition to resolve the

private equity premium puzzle. In the standard option pricing theory proposed by Black-

Scholes-Merton shows the positive convexity effect that the option value increases as mar-

ket volatility increases. According to the standard real options theory (Dixit and Pindyck,

1994), entrepreneurial option value for investment also increases as project volatility in-

creases. Contrary to these predictions under complete financial markets, we confirm that

the value for an option to quit a risky business and accept a safe job decreases when id-

iosyncratic risk is undiversifiable: this fact induces a negative relationship between option

value and idiosyncratic volatility and is consistent with the result of Chen et al. (2010).

Whereas Moskowitz and Vissing-Jørgensen (2002) have found that private equity premium

against idiosyncratic risk is low in the U.S., Mueller (2011) have showed the opposite. In

support of Mueller (2011), we predict that if entrepreneurs demand a substantial idiosyn-

cratic risk premium that mitigates the effect of a significant decrease in CEW (or the value

for running risky business) due to idiosyncratic risk, then they might obtain a high private

equity premium by committing in their own risky business.13

13Wang et al. (2012) obtain a quantitative result for a significant idiosyncratic risk premium, especially

for entrepreneurs with small wealth.
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Hedging Effect of Risky Portfolio against Undiversifiable Idiosyncratic Risk

An entrepreneur cannot fully eliminate idiosyncratic risk by diversifying her portfolio,

but she can achieve a partial hedging effect from her stock holdings against the riskiness

of a business. To quantify the hedging effect, we compute the certainty equivalent wealth

by comparing two value functions: one that is allowed to participate in the stock market

and one that is not.14

Definition 3.2 The hedging effect HE(x) of risky portfolio against undiversifiable idiosyn-

cratic risk is quantified as the following:

Ψ(x; δ) = Φ(x−HE(x); δ),

where Φ(x; δ) and Ψ(x; δ) are the value functions with and without the access to the stock

market, respectively. The average time to succeed in a risky business is given by 1/δ.

[Insert Figure 5 here.]

The hedging effect HE(x) of risky portfolio against undiversifiable idiosyncratic risk

that arises from running a risky business increases increases as the initial wealth of an

entrepreneur increases (Figure 5). An entrepreneur with large initial wealth may be more

willing to absorb idiosyncratic risk than does an entrepreneur with small wealth. Simulta-

neously, as wealth increases, the stock investment becomes increasingly attractive to the

14The value function of an entrepreneur who has limited access to the stock market is derived by

considering a consumption-saving model for the entrepreneur. For the details, see Appendix.
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wealthy entrepreneur due to the positive risk premium from the investment. Then the

wealthy entrepreneur can increase her hedging effect by trading the market portfolio.

The hedging effect also increases as the idiosyncratic risk increases, i.e., as δ decreases

(Figure 5). This result is consistent with results of Miao and Wang (2007a) and Leip-

pold and Stromberg (2014); a private equity premium can be generated by an increase

of idiosyncratic volatility. In this paper, the positive and sizable hedging effect measured

by the CEW can represent a large source of the private equity premium. Accordingly,

stock market participation is of importance to the entrepreneur for the purpose of risk

diversification and a smooth continuation of her risky business.

Our results for the hedging effect complement the existing literature regarding portfolio

allocations of entrepreneurs. Heaton and Lucas (2009) have investigated the relation be-

tween capital structure and portfolio selection in financial markets that consist of a stock

market and a bond market, and show that entrepreneurs optimally hold a sizable stock

investment relative to the investment in a risk-free bond. Although entrepreneurs willingly

hold a safe asset composition to diversify away their own business risk, they in aggregate

account for about 30% of the stock market (Heaton and Lucas, 2000). Faig and Shum

(2002) also stress that entrepreneurs’ portfolios of financial assets can be used as a hedging

tool against bad outcomes of their business.

[Insert Figure 6 here.]

[Insert Table 3 here.]

A more risk-averse entrepreneur is likely to obtain a larger hedging effect from her
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stock investment against the idiosyncratic risk than is a risk-tolerant entrepreneur (Figure

6). According to the results of the sensitivity analysis of the hedging effect HE(x) to the

changes in investment opportunity, an entrepreneur’s hedging effect increases as investment

opportunities increase in the market in which she participates (Table 3).

4 Conclusion

We have provided an entrepreneur’s optimal business plan in the presence of undiversifiable

idiosyncratic risk, and have investigated the relationship between the idiosyncratic risk

and optimal exit strategy for an entrepreneur as well as the role of a market portfolio on a

business plan under a CRRA utility. The entrepreneurial business plan is characterized by

two regions: a continuation region in which the entrepreneur’s optimal choice is to retain

an option liquidates her risky business; and a stopping region in which she should exercise

this option, exit from the business, and accept a safe job. The continuation and stopping

regions are determined by the so-called critical wealth level under which it is optimal for

an entrepreneur to exit from her risky business and accept a safe job.

By numerical analysis, we find that the entrepreneur is more likely to exit from her

risky business as (1) investment opportunity worsens, or (2) as her risk aversion coefficient

increases, or (3) as the idiosyncratic risk increases. When the entrepreneur has significant

wealth, the amount that she willingly invests in the stock market decreases as the idiosyn-

cratic risk increases. However, when the entrepreneur decumulates wealth, she can achieve

a partial hedging effect of the risky portfolio against the business risk by optimally increas-
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ing her risky portfolio as the idiosyncratic risk increases. We measure an entrepreneurial

value of running a risky business and hedging effect of risky portfolio against undiversi-

fiable idiosyncratic risk by using a concept of certainty equivalent wealth (CEW). The

CEW induced by running a risky business is an increasing function of an entrepreneurial

initial wealth. The hedging effect of risky portfolio also increases as the idiosyncratic risk

increases.

5 Appendix

5.1 Details of Deriving Optimal Strategies

Critical Wealth Level

We have shown that an entrepreneurial optimal business plan is characterized by her

critical wealth level. Specifically, the entrepreneur should hold a liquidation option to exit

from her risky business and accept a safe job as far as initial wealth of the entrepreneur

is larger than the critical wealth level. Such optimal policy is in a continuation region. If

the entrepreneurial initial wealth approaches the critical wealth level from above, then it

is optimal for the entrepreneur to exercise the liquidation option. In this case, the optimal

strategy is in a stopping region.

To determine the critical wealth level which takes a key role in an entrepreneurial

optimal business plan, we have to solve the highly non-linear differential equation described

as in (7). It seems to be hardly possible to obtain analytical results for the solution to the
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problem (7). Indeed, we cannot derive a closed form solution for the critical wealth level.

Instead, we can obtain lower and upper bounds for the critical wealth level.

We suggest a modified convex-duality approach to solve our problem. Actually, the

approach is developed by Bensoussan et al. (2016) for solving the retirement problem with

unemployment risks. We modify the idea of Bensoussan et al. (2016) and apply it to our

problem. We provide the following lemma reformulating the free boundary problem (7) by

using the convex-duality approach.

Lemma 5.1 The first relationship of the free boundary problem (7) is reformulated by

−1

2
θ2λ2G′′(λ)−λG′(λ)(θ2+β+δ−r)+rG(λ)+δK

(
G(λ)− εL

r
+
εH
r

)−γ
G′(λ) = λ−1/γ , 0 < λ < λ,

(8)

where G is a convex-dual function of the value function φ,15 λ is the marginal value of the

value function φ, and λ is a free boundary to be determined according to the value-matching

and smooth-pasting conditions.

Proof. See Appendix. Q.E.D.

We call the function G the convex-dual function. In the later section, we will verify that

the function G is monotonically-decreasing with respect to an increase in initial wealth x.

Furthermore, the function G has the implicit relationship with the marginal value of the

value function φ as follows: G(φ′(x)) = x + εL/r. In this sense, G is the dual function of

the value function φ satisfying increasing and concave properties. Note that the convexity

15The existence of such convex-dual function G satisfying the differential equation (8) is verified in

Appendix.
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of the dual function G can be verified numerically under the reasonable parameter values.

In Lemma 5.1, the free boundary λ takes an important role in determining the critical

wealth level x under which it is optimal for an entrepreneur to exit from her risky business

and accept a safe job. In fact, the free boundary λ has an inverse relationship with the

critical wealth level x as follows: λ = K(x+ y/r)−γ. To determine the free boundary λ we

use the value-matching and smooth-pasting conditions. Specifically, we use the boundary

conditions of φ and φ′ at x: φ(x) = Ũ(x; y) and φ′(x) = Ũ ′(x; y).

For the next, we present an important lemma that gives an analytic solution to the

non-linear differential equation (8).

Theorem 5.1 An analytic solution to the non-linear differential equation (8) follows

G(λ) =
γλ−1/γ

γA+ δ
+B∗(λ)λ−α

∗
δ

+
2δK

θ2(αδ − α∗δ)(1− γ)

[
(αδ − 1)λ−αδ

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ

+ (α∗δ − 1)λ−α
∗
δ

∫ λ

λ

µα
∗
δ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ
]
,

(9)

where αδ > 0 and α∗δ < 0 are the two roots of the following characteristic equation:

I(α; δ) ≡ −1

2
θ2α(α− 1) + α(β + δ − r) + r = 0 (10)

and B∗(λ) is a constant to be determined according to the smooth-pasting conditions.

Proof. See Appendix. Q.E.D.

For the next, we determine the free boundary λ and the constant B∗(λ). We use the

value-matching and smooth-pasting conditions (or equivalently, the boundary conditions)

of the value function φ at the free boundary λ. Note that when we reformulated the first
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relationship of the free boundary problem (7) as the non-linear differential equation (8),

we defined λ as the marginal value of the value function φ, introduced a dual variable λ of

the free boundary x, and employed a function G that is the so-called convex-dual function

(see Proof of Lemma 5.1). Recall such variables

λ(x) = φ′(x), λ = K(x+ y/r)−γ, and G(λ(x)) = x+
εL
r
.

Then the boundary condition φ′(x) = Ũ ′(x; y) in (8) is easily rewritten by the convex-dual

function G through its definition. More specifically,

G(λ) = K1/γλ
−1/γ − y

r
+
εL
r

(11)

and subsequently,

K1/γλ
−1/γ − y

r
+
εL
r

=
γλ
−1/γ

γA+ δ
+B∗(λ)λ

−α∗
δ

+
2δK(αδ − 1)λ

−αδ

θ2(αδ − α∗δ)(1− γ)

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ.

(12)

We give a lemma to rewrite the boundary condition φ(x) = Ũ(x; y) in (7) in terms of

the convex-dual function G.

Lemma 5.2 The boundary condition φ(x) = Ũ(x; y) given in (7) is rewritten by the

convex-dual function G as the following:

(β + δ)
K1/γλ

1−1/γ

1− γ
= rλ

(
K1/γλ

−1/γ − y

r
+
εL
r

)
− 1

2
θ2λ

2
G′(λ)

+
γ

1− γ
λ
1−1/γ

+
δK

1− γ

(
K1/γλ

−1/γ − y

r
+
εH
r

)1−γ
.

(13)

Proof. See Appendix. Q.E.D.
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We rearrange the relationship (12) as the following:

B∗(λ) =
[
K1/γλ

−1/γ − y

r
+
εL
r
− γλ

−1/γ

γA+ δ

− 2δK(αδ − 1)λ
−αδ

θ2(αδ − α∗δ)(1− γ)

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ
]
λ
α∗
δ .

(14)

If we determine the free boundary λ, then the constant B∗(λ) is also determined by the

relationship (14). We suggest a lemma in which λ can be determined numerically.

Lemma 5.3 The free boundary λ can be determined numerically by solving the following

equation:[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
λ
−1/γ

=
(

1 +
θ2

2r
α∗δ

)
(−y + εL) +

δK(αδ − 1)λ
−αδ

1− γ

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ.

(15)

Proof. See Appendix. Q.E.D.

A little rearrangement of (15) shows that

(
1 +

θ2

2r
α∗δ

)
(−y + εL) =

[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
λ
−1/γ

+
δK(αδ − 1)λ

−αδ

γ − 1

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ.

(16)

Let Mδ(λ) and Nδ be the right-hand and left-hand side of (16), respectively. We also set

M δ(λ) ≡
[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
λ
−1/γ

,

and

M δ(λ) ≡M δ(λ) +
δK

(γ − 1)λ

(
K1/γλ

−1/γ − y

r
+
εH
r

)1−γ
,
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which are lower and upper bounds of Mδ(λ) respectively. Then we can obtain lower and

upper bounds for the free boundary λ.

Lemma 5.4 Assume that

{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ
> 0.

The free boundary λ to be determined in (16) satisfies

λlδ ≤ λ ≤ λuδ ,

where λlδ and λuδ are obtained from

M δ(λ
l
δ) = Nδ, and M δ(λ

u
δ ) = Nδ.

Proof. See Appendix. Q.E.D.

Now it remains to get lower and upper bounds for the critical wealth level x. Due to

the definition of the convex-dual function G given by G(λ(x)) = x+ εL/r, the lower bound

λl and the upper bound λu given in Lemma 5.4, the following theorem is easily followed.

Theorem 5.2 The lower and upper bounds for the critical wealth level x are given as the

following:

G(λuδ )−
εL
r
≤ x ≤ G(λlδ)−

εL
r
. (17)

An entrepreneur is exposed to undiversifiable idiosyncratic risk and hence, she should

manage the idiosyncratic risk by controlling optimal exit time from her risky business. It

is optimal for the entrepreneur to liquidate the risky business as soon as her initial wealth
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approaches the critical wealth level from above. Moreover, Theorem 5.2 suggests that the

lower and upper bounds given by (17) for the critical wealth level might give a hint for

another business planning. Even though utilizing the exit strategy at wealth levels between

the lower and upper bounds is a suboptimal policy for the business plan, the entrepreneur

could run her risky business a little bit longer or shorter than the optimal exit time, in

exchange for giving up the optimality.

Optimal Consumption and Risky Portfolio Strategies.

We state a theorem concerning the optimal consumption and risky portfolio strategies

in the presence of undiversifiable idiosyncratic risk.

Theorem 5.3 The entrepreneur’s optimal consumption c∗ and optimal portfolio π∗ prior

to exit from risky business follow

c∗t =
(
A+

δ

γ

)(
x+

εL
r

)
−
(
A+

δ

γ

)
B∗(λ)λ∗(x)−α

∗
δ

− 2δK(A+ δ/γ)

θ2(αδ − α∗δ)(1− γ)

[
(αδ − 1)λ∗(x)−αδ

∫ λ∗(x)

0
µαδ−2

(
G(µ)− εL

r
+
εH
r

)−γ+1
dµ

+ (α∗δ − 1)λ∗(x)−α
∗
δ

∫ λ

λ∗(x)
µα

∗
δ−2
(
G(µ)− εL

r
+
εH
r

)−γ+1
dµ
]
,

(18)

π∗t =
θ

γσ

(
x+

εL
r

)
+
(
α∗δ −

1

γ

) θ
σ
B∗(λ)λ∗(x)−α

∗
δ − 2δK

σθ(1− γ)

1

λ∗(x)

(
x+

εH
r

)−γ+1

+
2δK

σθ(αδ − α∗δ)(1− γ)

[(
αδ −

1

γ

)
(αδ − 1)λ∗(x)−αδ

∫ λ∗(x)

0
µαδ−2

(
G(µ)− εL

r
+
εH
r

)−γ+1
dµ

+
(
α∗δ −

1

γ

)
(α∗δ − 1)λ∗(x)−α

∗
δ

∫ λ

λ∗(x)
µα

∗
δ−2
(
G(µ)− εL

r
+
εH
r

)−γ+1
dµ
]
,

(19)
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where λ∗(x) is a decreasing function of initial wealth x, satisfying

x+
εL
r

=
γλ∗(x)−1/γ

γA+ δ
+B∗(λ)λ∗(x)−α

∗
δ

+
2δK

θ2(αδ − α∗δ)(1− γ)

[
(αδ − 1)λ∗(x)−αδ

∫ λ∗(x)

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)−γ+1

dµ

+ (α∗δ − 1)λ∗(x)−α
∗
δ

∫ λ

λ∗(x)

µα
∗
δ−2
(
G(µ)− εL

r
+
εH
r

)−γ+1

dµ
]
,

and

B∗(λ) =
[
K1/γλ

−1/γ − y

r
+
εL
r
− γλ

−1/γ

γA+ δ
− 2δK(αδ − 1)λ

−αδ

θ2(αδ − α∗δ)(1− γ)

∫ λ

0
µαδ−2

(
G(µ)− εL

r
+
εH
r

)1−γ
dµ
]
λ
α∗
δ .

Proof. See Appendix. Q.E.D.

An entrepreneurial optimal consumption and risky portfolio strategies are largely af-

fected by the option to quit the business and accept the safe job to avoid undiversifiable

idiosyncratic risk. The effects of the idiosyncratic risk are reflected in the last terms con-

sisting of two integral parts in (18) and (19).

5.2 Iterative Algorithm and Convergence

In this section, we propose a simple iterative algorithm to solve the implicit equation

suggested by (9) and determine the free boundary λ.

A Simple Iterative Algorithm

Step 0. Set δ = 0 in (9). Then we obtain G(λ) =
1

A
λ−1/γ. We use it as the initial guess

for G(λ) satisfying (9).

Step 1. Given the initial G(λ), we determine B∗(λ) and λ by (12) and (15), respectively.

32



Step 2. Use the relationship (9) to update G(λ). Then we set the updated G(λ) as the

new initial value.

Step 3. Repeat steps 1-2 until λ converges.

We successfully solve the equation (9) and determine λ by using the above iterative

procedure. Now we show that the function G(λ) obtained from the iterative procedure

converges by using the Banach fixed-point theorem.

Consider the domain of λ(·) as

X = [λ0, λ],

where λ0 is a value corresponding to a sufficiently large wealth x̂ by the relationship of

λ0 ≡ λ(x̂) = φ′(x̂). Denote R by the set of real numbers. We also consider the set of all

bounded functions y : X → R as

B(X,R).

Then B(X,R) is a complete metric space with the supremum norm

d(y, z) ≡ sup{|y(x)− z(x)| : x ∈ X},

due to the fact that R is complete. We let C(X,R) be the set of all continuous bounded

functions y : X → R. Then C(X,R) is a closed subspace of B(X,R). Therefore, C(X,R)

is also a complete metric space. Because we have shown that G(λ) has a monotonic

decreasing property, we obtain

G(λ) ≤ G(λ) ≤ G(λ0),
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accordingly G(λ) is in C(X,R).

Define

Y (G(λ)) ≡ γλ−1/γ

γA+ δ
+B∗(λ)λ−α

∗
δ

+
2δK

θ2(αδ − α∗δ)(1− γ)

[
(αδ − 1)λ−αδ

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ

+ (α∗δ − 1)λ−α
∗
δ

∫ λ

λ

µα
∗
δ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ
]
,

for any G(λ) ∈ C(X,R). Then Y (·) is continuous and is in C(X,R). This is because

|Y (G(λ))| ≤ 2δK

θ2(αδ − α∗δ)(γ − 1)λ
sup
µ
|G(µ)|.

Assume that

2δK

θ2(αδ − α∗δ)(γ − 1)λ
< 1.

Then the map Y : C(X,R)→ C(X,R) is a contraction mapping. Certainly, for any G1(λ),

G2(λ) ∈ C(X,R), Y satisfies

sup
λ
|Y (G1(λ))− Y (G2(λ))| = 2δK

θ2(αδ − α∗δ)(γ − 1)λ
sup
λ
|G1(λ)−G2(λ)|.

Let Gi(λ), B∗(λ)i, λ
i

be the values from the i-th iteration. If we apply the Banach fixed-

point theorem, then Gi(λ) converges uniformly to G(λ) on [λ0, λ]. Moreover, B∗(λ)i →

B∗(λ) and λ
i → λ as i→∞.

5.3 Various Properties of Convex-Dual Function G

5.3.1 Uniqueness of G

We show the uniqueness of G(λ) proposed by the implicit equation (9) under suitable

parameter conditions.
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Theorem 5.4 Suppose γ > 1. If we assume that

2δK

θ2(αδ − α∗δ)(γ − 1)λ
< 1,

then G(λ) given by (9) is unique.

Proof. See Appendix. Q.E.D.

5.3.2 Monotonic decreasing property of G

The function G(·) satisfying the implicit equation (9) is monotonically decreasing.

Theorem 5.5 Suppose γ > 1. If we assume that

λ
−1/γ δ

A

{ 1

γA+ δ
− 2

θ2(αδ − α∗δ)(1− γ)

}
− y

r
+
εL
r
< 0,

then any solution to (8) satisfies G′(λ) < 0.

Proof. See Appendix. Q.E.D.

5.3.3 Uniqueness of free boundary λ

Theorem 5.4 states that there exists a unique solution G(λ) to the implicit equation (9)

under appropriate parameter conditions. However, the conditions contain a free boundary

λ to be determined with G(λ) by two conditions (12), (15). Because it is of importance

to check whether or not the conditions hold, we provide more detail parameter conditions

in which not a free boundary λ is uniquely determined, just but corresponding G(λ) is

unique.
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Theorem 5.6 Suppose γ > 1. Assume that[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
×
( 2δK

θ2(αδ − α∗δ)(γ − 1)

)−1/γ
>
(

1 +
θ2

2r
α∗δ

)
(−y + εL),

[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
× A

δ

(y − εL
r

)/{ 1

rA+ δ
− 2

θ2(αδ − α∗δ)(1− γ)

}
>
(

1 +
θ2

2r
α∗δ

)
(−y + εL).

Then there exists a unique free boundary λ and a unique G(λ) satisfying (12), (15).

Proof. See Appendix. Q.E.D.

5.3.4 The equivalence between optimal stopping problem (5) and free bound-

ary problem (7)

We verify that the solution to the free boundary problem (7) is a solution to the variational

inequality (6).

Theorem 5.7 Suppose γ > 1. If we assume that[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
× A

δ

(y − εL
r

)/{ 1

rA+ δ
− 2

θ2(αδ − α∗δ)(1− γ)

}
>
(

1 +
θ2

2r
α∗δ

)
(−y + εL),

and[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
K−1/γ(y − εL)

/(
− β + δ

1− γ
+
θ2

2γ
+

γ

1− γ
K−1/γ + r

)
≥
(

1 +
θ2

2r
α∗δ

)
(−y + εL),

then the solution to the free boundary problem (7) is a solution to the variational inequality

(6).
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Proof. See Appendix. Q.E.D.

5.4 Proofs of Lemmas and Theorems

5.4.1 Proof of Lemma 2.1

We consider the following wealth process Xt with initial wealth X0 = x:

dXt = (rXt − ct + a) + πtσ(dWt + θdt), t ≥ 0, (20)

a > 0 is a constant. If we define the value function Ũ(x; a) as

Ũ(x; a) ≡ max
(c,π)

E
[ ∫ ∞

0

e−βt
c1−γt

1− γ

]
,

which is subject to the wealth process (20), then the value function Ũ(x; a) follows

Ũ(x; a) = K
(x+ a/r)1−γ

1− γ
,

where

K =
( 1

A

)γ
, A =

{γ − 1

γ

(
r +

θ2

2γ

)
+
β

γ

}
.

By the principle of dynamic programming, the value function Φ(x) formulated by (4)

becomes

Φ(x) = max
(c,π,τ)

E
[ ∫ τ∧τδ

0

e−βt
c1−γt

1− γ
dt+ e−β(τ∧τδ)Ũ(Xτ∧τδ ; a)

]
,
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where a ∈ {y, εH}. A straightforward calculation by using the conditional expectation of

τδ yields that

E
[ ∫ τ∧τδ

0

e−βt
c1−γt

1− γ
dt+ e−β(τ∧τδ)Ũ(Xτ∧τδ ; a)

]
= E

[
E
[ ∫ τ∧τδ

0

e−βt
c1−γt

1− γ
dt+ e−β(τ∧τδ)Ũ(Xτ∧τδ ; a)

]∣∣∣τδ]
= E

[ ∫ ∞
0

δe−δs
∫ τ∧s

0

e−βt
c1−γt

1− γ
dtds+

∫ ∞
0

δe−δse−β(τ∧s)Ũ(Xτ∧s; a)ds
]

= E
[ ∫ τ

0

δe−δs
∫ s

0

e−βt
c1−γt

1− γ
dtds+

∫ ∞
τ

δe−δs
∫ τ

0

e−βt
c1−γt

1− γ
dtds

+

∫ τ

0

δe−δse−βsŨ(Xs; εH)ds+

∫ ∞
τ

δe−δse−βτ Ũ(Xτ ; y)ds
]

= E
[ ∫ τ

0

e−βt
c1−γt

1− γ

∫ τ

t

δe−δsdsdt+

∫ τ

0

e−βt
c1−γt

1− γ

∫ ∞
τ

δe−δsdsdt

+

∫ τ

0

e−(β+δ)sδŨ(Xs; εH)ds+ e−(β+δ)τ Ũ(Xτ ; y)
]

= E
[ ∫ τ

0

e−βt
c1−γt

1− γ

∫ ∞
t

δe−δsdsdt+

∫ τ

0

e−(β+δ)sδŨ(Xs; εH)ds+ e−(β+δ)τ Ũ(Xτ ; y)
]

= E
[ ∫ τ

0

e−(β+δ)t
{ c1−γt

1− γ
+ δŨ(Xt; εH)

}
dt+ e−(β+δ)τ Ũ(Xτ ; y)

]
.

Therefore, we complete the proof of the Lemma 2.1.

5.4.2 Proof of Lemma 2.2

For a fixed stopping time τ , we define

Jτ (x) ≡ max
(c,π)

E
[ ∫ τ

0

e−(β+δ)t
{ c1−γt

1− γ
+ δŨ(Xt; εH)

}
dt+ e−(β+δ)τ Ũ(Xτ ; y)

]
.

Then an entrepreneur’s decision problem (5) is to solve the following optimal stopping

problem:

Φ(x) = max
τ

Jτ (x).
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We denote c∗t and π∗t by optimal consumption and optimal risky portfolio, respectively.

We introduce the following partial differential operator L:

L ≡ ∂

∂t
+
(
rx− c∗t + εL + π∗t σθ

) ∂
∂x

+
1

2
(π∗t )

2σ2 ∂
2

∂x2
.

We define domains G and D as follows

G =
{

(x, t) ∈ R×R;x ≥ − 1

r + δ

(
εL + εH

δ

r

)
, t ≥ 0

}
and

D = {(x, t) ∈ G; φ̃(x, t) > e−(β+δ)tŨ(x; y)}

for a function φ̃ : Ḡ→ R. Then we obtain

Lφ̃+ e−(β+δ)t
{(c∗t )

1−γ

1− γ
+ δŨ(x; εH)

}
=
∂φ̃

∂t
+
(
rx− c∗t + εL + π∗t σθ

)∂φ̃
∂x

+
1

2
(π∗t )

2σ2∂
2φ̃

∂x2
+ e−(β+δ)t

{(c∗t )
1−γ

1− γ
+ δŨ(x; εH)

}
.

The optimal stopping problem (5) is equivalent to the following variational inequality

(Bensoussan and Lions, 1982; Øksendal, 2007):

Lφ̃+ e−(β+δ)t
{(c∗t )

1−γ

1− γ
+ δŨ(x; εH)

}
= 0 on D,

Lφ̃+ e−(β+δ)t
{(c∗t )

1−γ

1− γ
+ δŨ(x; εH)

}
≤ 0 on G\D.

As a result, we get the following variational inequality:

Lφ̃+ e−(β+δ)t
{(c∗t )

1−γ

1− γ
+ δŨ(x; εH)

}
≤ 0,

φ̃(x, t) ≥ e−(β+δ)tŨ(x; y),[
Lφ̃+ e−(β+δ)t

{(c∗t )
1−γ

1− γ
+ δŨ(x; εH)

}](
φ̃(x, t)− e−(β+δ)tŨ(x; y)

)
= 0.

(21)
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We conjecture the form of φ̃ as the following:

φ̃(x, t) = e−(β+δ)tφ(x).

By substituting the conjectured φ̃ into the variational inequality (21), we obtain[
− (β + δ)φ(x) +

(
rx− c∗t + εL + π∗t σθ

)
φ′(x) +

1

2
(π∗t )

2σ2φ′′(x)

+
(c∗t )

1−γ

1− γ
+ δŨ(x; εH)

]
≤ 0,

φ(x) ≥ Ũ(x; y),[
− (β + δ)φ(x) +

(
rx− c∗t + εL + π∗t σθ

)
φ′(x) +

1

2
(π∗t )

2σ2φ′′(x)

+
(c∗t )

1−γ

1− γ
+ δŨ(x; εH)

](
φ(x)− Ũ(x; y)

)
= 0.

Note that optimality conditions for optimal consumption and risky portfolio are given by

c∗t = φ′(x)−1/γ and π∗t = − θ
σ

φ′(x)

φ′′(x)
.

Hence, we derive the variational inequality (6). Finally, if we apply the verification theo-

rem for an optimal stopping problem given by Øksendal (2007), then the solution to the

variational inequality (6) is the solution to our optimal stopping problem (5).

5.4.3 Proof of Lemma 5.1

We define λ as the marginal value of the value function φ and introduce a dual variable λ

of the free boundary x. Specifically,

λ(x) ≡ φ′(x), and λ ≡ K(x+ y/r)−γ.

Differentiating the first relationship in (7) with respect to x yields

(β+δ)λ(x)−rλ(x)−(rx+εL)λ′(x)+
1

2
θ2

2λ(x)λ′(x)2 − λ(x)2λ′′(x)

λ′(x)2
+λ(x)−1/γλ′(x) = δK(x+εH/r)

−γ .

(22)
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We employ a function G satisfying

G(λ(x)) ≡ x+
εL
r
.

Then the differential equation (22) is rewritten by

−1

2
θ2λ2G′′(λ)−λG′(λ)(θ2+β+δ−r)+rG(λ)+δK

(
G(λ)− εL

r
+
εH
r

)−γ
G′(λ) = λ−1/γ , 0 < λ < λ,

where λ is a free boundary to be determined according to the smooth-pasting conditions.

5.4.4 Proof of Theorem 5.1

We can always write the general solution of (8) as the following:

G(λ) =
γλ−1/γ

γA+ δ
+ η(λ)λ−αδ + η∗(λ)λ−α

∗
δ , (23)

subject to

η′(λ)λ−αδ + (η∗(λ))′λ−α
∗
δ = 0,

where αδ > 0 and α∗δ < 0 are the two roots of the characteristic equation (10). The first

and second derivatives of G follow

G′(λ) = −λ
−1/γ−1

γA+ δ
− αδη(λ)λ−αδ−1 − α∗δη∗(λ)λ−α

∗
δ−1

and

G′′(λ) =
(1

γ
+ 1
)λ−1/γ−2
γA+ δ

− αδη′(λ)λ−αδ−1 + αδ(αδ + 1)η(λ)λ−αδ−2

− α∗δ(η∗(λ))′λ−α
∗
δ−1 + α∗δ(α

∗
δ + 1)η∗(λ)λ−α

∗
δ−2,
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respectively. Using the general solution (23) of G and its first and second derivatives, we

obtain

− 1

2
θ2λ2G′′(λ)− λG′(λ)(θ2 + β + δ − r) + rG(λ)

= λ−1/γ +
θ2

2
(αδ − α∗δ)λ1−αδη′(λ)

= λ−1/γ − θ2

2
(αδ − α∗δ)λ1−α

∗
δ (η∗(λ))′.

Then the differential equation (8) reduces

θ2

2
(αδ − α∗δ)λ1−αδη′(λ) = −δK

(
G(λ)− εL

r
+
εH
r

)−γ
G′(λ)

and

θ2

2
(αδ − α∗δ)λ1−α

∗
δ (η∗(λ))′ = δK

(
G(λ)− εL

r
+
εH
r

)−γ
G′(λ),

for 0 < λ < λ. Thus we get the following relationships:

η(λ) = − 2δK

θ2(αδ − α∗δ)

∫ λ

0

µαδ−1
(
G(µ)− εL

r
+
εH
r

)−γ
G′(µ)dµ

and

η∗(λ) = η∗(λ)− 2δK

θ2(αδ − α∗δ)

∫ λ

λ

µα
∗
δ−1
(
G(µ)− εL

r
+
εH
r

)−γ
G′(µ)dµ.

Hence, the general solution (23) of G is rewritten as

G(λ) =
γλ−1/γ

γA+ δ
+ η∗(λ)λ−α

∗
δ − 2δK

θ2(αδ − α∗δ)

[
λ−αδ

∫ λ

0

µαδ−1
(
G(µ)− εL

r
+
εH
r

)−γ
G′(µ)dµ

+ λ−α
∗
δ

∫ λ

λ

µα
∗
δ−1
(
G(µ)− εL

r
+
εH
r

)−γ
G′(µ)dµ

]
.

Note that

(
G(µ)− εL

r
+
εH
r

)−γ
G′(µ) =

d

dµ

{ 1

1− γ

(
G(µ)− εL

r
+
εH
r

)1−γ}
.
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Then using the integration by parts we obtain

G(λ) =
γλ−1/γ

γA+ δ
+
{
η∗(λ) + λ

α∗
δ−1 1

1− γ

(
G(λ)− εL

r
+
εH
r

)1−γ}
λ−α

∗
δ

+
2δK

θ2(αδ − α∗δ)(1− γ)

[
(αδ − 1)λ−αδ

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ

+ (α∗δ − 1)λ−α
∗
δ

∫ λ

λ

µα
∗
δ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ
]
.

We define a constant B∗(λ) as the following:

B∗(λ) =
{
η∗(λ) + λ

α∗
δ−1 1

1− γ

(
G(λ)− εL

r
+
εH
r

)1−γ}
.

As a result, we derive the analytic solution given by (9) to the non-linear differential

equation (8).

5.4.5 Proof of Lemma 5.2

We rewrite the first relationship given in (7) by using the convex-dual function G as the

following:

(β + δ)φ(x) = rG(λ)λ− 1

2
θ2λ2G′(λ) +

γ

1− γ
λ1−1/γ +

δK

1− γ

(
G(λ)− y

r
+
εH
r

)1−γ
.

We define a function H by

H(λ) ≡ 1

(β + δ)

[
rG(λ)λ− 1

2
θ2λ2G′(λ) +

γ

1− γ
λ1−1/γ +

δK

1− γ

(
G(λ)− y

r
+
εH
r

)1−γ]
. (24)

Then we get the relationship

φ(x) = H(λ(x)).

From the equations (8) and (24), the following equality holds:

H ′(λ) = λG′(λ).
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Therefore, we obtain that

φ′(x) = H ′(λ(x))λ′(x) =
H ′(λ(x))

G′(λ(x))
= λ(x).

As a result, φ(x) is a solution to the differential equation (8). Using the boundary condition

of φ(x) at x that φ(x) = Ũ(x; y), we obtain the value of H at λ

H(λ) =
K1/γλ

1−1/γ

1− γ
,

which is equivalent to the equality (28).

5.4.6 Proof of Lemma 5.3

A straightforward calculation of the first derivative of G yields that

G′(λ) = −λ
−1/γ−1

γA+ δ
− α∗δB∗(λ)λ−α

∗
δ−1 +

2δK

θ2λ2

(
G(λ)− εL

r
+
εH
r

)1−γ
− 2δK

θ2(αδ − α∗δ)(1− γ)

[
αδ(αδ − 1)λ−αδ−1

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ

+ α∗δ(α
∗
δ − 1)λ−α

∗
δ−1
∫ λ

λ

µα
∗
δ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ
]
.

Then the value of G′ at λ follows

G′(λ) = −λ
−1/γ−1

γA+ δ
− α∗δB∗(λ)λ

−α∗
δ−1 +

2δK

θ2λ
2

(
G(λ)− εL

r
+
εH
r

)1−γ
− 2δKαδ(αδ − 1)λ

−αδ−1

θ2(αδ − α∗δ)(1− γ)

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ.

By substituting G(λ) and B∗(λ) given in (11) and (29) into the above, we get

G′(λ) = −
(1− α∗δγ
γA+ δ

+ α∗δK
1/γ
)
λ
−1/γ−1

+ α∗δ

(y
r
− εL

r

)
λ
−1

+
2δK

θ2λ

(
K1/γλ

−1/γ − y

r
+
εH
r

)1−γ
− 2δK(αδ − 1)λ

−αδ−1

θ2(1− γ)

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ.

(25)
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Putting (25) into the relationship (28) in Lemma 5.2 and rearranging give the equation

(15).

5.4.7 Proof of Theorem 5.4

Because M δ(λ) and M δ(λ) are lower and upper bounds of Mδ(λ). Moreover, they are

monotonically-decreasing and continuous functions with

M δ(0) = M δ(0) = +∞, and

M δ(+∞) = M δ(+∞) = 0.

Therefore, λlδ and λuδ satisfying

M δ(λ
l
δ) = Nδ, and M δ(λ

u
δ ) = Nδ

become lower and upper bounds for λ, respectively.

5.4.8 Proof of Theorem 5.4

Let G1 and G2 be the two solution satisfying (9). Then

G1(λ)−G2(λ) =
2δK

θ2(αδ − α∗δ)(1− γ)

[
(αδ − 1)λ−αδ

∫ λ

0

µαδ−2
{(
G1(µ)− εL

r
+
εH
r

)1−γ
−
(
G2(µ)− εL

r
+
εH
r

)1−γ}
dµ+ (α∗δ − 1)λ−α

∗
δ

∫ λ

λ

µα
∗
δ−2
{(
G1(µ)− εL

r
+
εH
r

)1−γ
−
(
G2(µ)− εL

r
+
εH
r

)1−γ}
dµ
]
.

Since γ > 1,

∣∣∣(G1(µ)− εL
r

+
εH
r

)1−γ
−
(
G2(µ)− εL

r
+
εH
r

)1−γ∣∣∣ ≤ |G1(µ)−G2(µ)|.
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Hence,

|G1(λ)−G2(λ)| ≤ 2δK

θ2(αδ − α∗δ)(γ − 1)λ
sup
µ
|G1(µ)−G2(µ)|,

which completes the proof.

5.4.9 Proof of Theorem 5.5

Any solution to (8) satisfies the implicit equation (9). Using the condition (12) and the

assumption in Theorem 5.5 yields that

B∗(λ) =
[
K1/γλ

−1/γ − y

r
+
εL
r
− γλ

−1/γ

γA+ δ

− 2δK(αδ − 1)λ
−αδ

θ2(αδ − α∗δ)(1− γ)

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ
]
λ
α∗
δ

≤
[
λ
−1/γ δ

A

{ 1

γA+ δ
− 2

θ2(αδ − α∗δ)(1− γ)

}
− y

r
+
εL
r

]
λα

∗
δ < 0.

Calculating the derivative of G(λ) gives that

G′(λ) = −λ
−1−1/γ

γA+ δ
− α∗δB∗(λ)λ−1−α

∗
δ +

2δK

θ2(1− γ)

1

λ2

(
G(λ)− εL

r
+
εH
r

)1−γ
− 2δK

θ2(αδ − α∗δ)(1− γ)

[
αδ(αδ − 1)λ−1−αδ

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ

+ α∗δ(α
∗
δ − 1)λ−1−α

∗
δ

∫ λ

λ

µα
∗
δ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ
]

≤ − λ−1−1/γ

−γA+ δ
− α∗δB∗(λ)λ−1−α

∗
δ +

2δK

θ2(1− γ)λ2

[(
G(λ)− εL

r
+
εH
r

)1−γ
− αδλ

2
+ (λ2 − λ2)α∗δ

(αδ − α∗δ)λ
2

(
G(λ)− εL

r
+
εH
r

)1−γ]
,

where the last inequality is derived by using the fact that γ > 1, accordingly

(
G(λ)− εL

r
+
εH
r

)1−γ
≤
(
G(λ)− εL

r
+
εH
r

)1−γ
.
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Define

P (λ) =
(
G(λ)− εL

r
+
εH
r

)1−γ
− αδλ

2
+ (λ2 − λ2)α∗δ

(αδ − α∗δ)λ
2

(
G(λ)− εL

r
+
εH
r

)1−γ
.

Then

P (λ) ≥
(
G(λ)− εL

r
+
εH
r

)1−γ( −λ2α∗δ
(αδ − α∗δ)λ

2

)
> 0.

Therefore, G′(λ) < 0.

5.4.10 Proof of Theorem 5.6

Recall the following relationships:

Mδ(λ) =
[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
+
δK(αδ − 1)λ

−αδ

γ − 1

∫ λ

0

µαδ−2
(
G(µ)− εL

r
+
εH
r

)1−γ
dµ,

Nδ =
(

1 +
θ2

2r
α∗δ

)
(−y + εL),

M δ(λ) =
[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
λ
−1/γ

,

and

M δ(λ) = M δ(λ) +
δK

(γ − 1)λ

(
K1/γλ

−1/γ − y

r
+
εH
r

)1−γ
.

There exists at least one solution λ such that

Mδ(λ) = Nδ,

becauseMδ(λ) ≥M δ(λ), Mδ(λ) ≤M δ(λ), M δ(0) = M δ(0) = +∞, M δ(+∞) = M δ(+∞) =

0, and Mδ(λ) is continuous. Furthermore, for λlδ ≤ λ ≤ λuδ the following inequalities

2δK

θ2(αδ − α∗δ)(γ − 1)λlδ
< 1, (26)
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(λlδ)
−1/γ δ

A

{ 1

rA+ δ
− 2

θ2(αδ − α∗δ)(1− γ)

}
− y

r
+
εL
r
< 0, (27)

give the assumptions in Theorem 5.4 and Theorem 5.5, respectively. The inequalities (26),

(27) can be rewritten as

M δ

( 2δK

θ2(αδ − α∗δ)(γ − 1)

)
> Nδ,

M δ

([( δ
A

)γ{ 1

γA+ δ
− 2

θ2(αδ − α∗δ)(1− γ)

}/(y − εL
r

)]γ)
> Nδ,

respectively. Then we obtain the following parameter conditions[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
×
( 2δK

θ2(αδ − α∗δ)(γ − 1)

)−1/γ
>
(

1 +
θ2

2r
α∗δ

)
(−y + εL),

[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
× A

δ

(y − εL
r

)/{ 1

rA+ δ
− 2

θ2(αδ − α∗δ)(1− γ)

}
>
(

1 +
θ2

2r
α∗δ

)
(−y + εL).

Hence, under the above conditions we can say that there exists a unique free boundary λ

and a unique G(λ) satisfying (12), (15).

5.4.11 Proof of Theorem 5.7

Define

Q(x) ≡ φ(x)− Ũ(x; y).

Then Q(x) = 0 because φ(x) = Ũ(x; y). Firstly, we show that Q′(x) ≥ 0 for x ≥ x. Then

we can conclude that the second inequality in (6) holds. It is enough to verify that

G(λ) ≥ K1/γλ−1/γ +
εL − y
r

,
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for 0 < λ ≤ λ. If we assume that[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
× A

δ

(y − εL
r

)/{ 1

rA+ δ
− 2

θ2(αδ − α∗δ)(1− γ)

}
>
(

1 +
θ2

2r
α∗δ

)
(−y + εL),

then by the proof of Theorem 5.6, G(λ) is monotonically decreasing. Since G(λ) =

K1/γλ−1/γ +
εL − y
r

, accordingly

G(λ) ≥ K1/γλ−1/γ +
εL − y
r

,

for 0 < λ ≤ λ.

Secondly, we show that the first inequality in (6) holds. For x < x, the free boundary

problem (7) gives that the equality of the first relationship in (6) holds. Hence, it remains

to verify whether or not the solution to (7) satisfies the first inequality in (6) for 0 < x ≤ x.

In fact, we obtain

(β + δ)φ(x)− (rx+ εL)φ′(x) +
1

2
θ2
φ′(x)2

φ′′(x)
− γ

1− γ
{φ′(x)}1−1/γ − δŨ(x; εH)

= K
(
x+

y

r

)1−γ[β + δ

1− γ
− rx+ εL/r

x+ y/r
− θ2

2γ
− γ

1− γ
K−1/γ − δ 1

1− γ

(x+ εH/r

x+ y/r

)1−γ]
.

Define

R(x) ≡ β + δ

1− γ
− rx+ εL/r

x+ y/r
− θ2

2γ
− γ

1− γ
K−1/γ − δ 1

1− γ

(x+ εH/r

x+ y/r

)1−γ
.

Since R′(x) < 0, R(x) is monotonically decreasing. The following parameter conditions

λlδ ≥ K
[(
− β + δ

1− γ
+
θ2

2γ
+

γ

1− γ
K−1/γ + r

)/
(y − εL)

]γ
(28)

for λlδ ≤ λ yield

R(x) ≥ 0.
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We have shown that R(x) is monotonically decreasing, hence under the condition (28)

R(x) ≥ 0,

for 0 < x ≤ x. Finally, the condition (28) is equivalent to

M δ

(
λlδ ≥ K

[(
− β + δ

1− γ
+
θ2

2γ
+

γ

1− γ
K−1/γ + r

)/
(y − εL)

]γ)
≥ Nδ, (29)

where

M δ(λ) =
[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
λ
−1/γ

,

and

Nδ =
(

1 +
θ2

2r
α∗δ

)
(−y + εL).

Rewriting the condition (29) gives that[{β + δ

1− γ
− r − 1

2
θ2α∗δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗δ)

1

γA+ δ

]
× A

δ

(y − εL
r

)/{ 1

rA+ δ
− 2

θ2(αδ − α∗δ)(1− γ)

}
>
(

1 +
θ2

2r
α∗δ

)
(−y + εL).

Therefore, if we take the above parameter conditions, then the solution to the free boundary

problem (7) satisfies the first inequality in (6) for 0 < x ≤ x.

5.5 A Consumption-Saving Model

We have quantified a hedging effect of a market portfolio against undiversifiable idiosyn-

cratic risk by using an economic concept of the certainty equivalent wealth. We have com-

pared two value functions where one is allowed to participate in the stock market and the

other is not. In this section, we construct a consumption-saving model for an entrepreneur
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who has limited access to the stock market. The wealth process for the entrepreneur with

initial wealth x (x > − 1
r+δ

(εL + εH
δ
r
)) follows

dXt = (rXt − ct + εt)dt, t ≥ 0.

The entrepreneurial business plan is to maximize her CRRA lifetime utility by control-

ling per-period consumption c and the time τ to exit from her risky business and accept a

safe job in the presence of undiversifiable idiosyncratic risk. That is, she would like to find

the following value function:

Ψ(x) ≡ max
(c,τ)

E
[ ∫ τ∧τδ

0

e−βt
c1−γt

1− γ
dt+ e−β(τ∧τδ)

∫ ∞
τ∧τδ

e−β(t−τ∧τδ)
c1−γt

1− γ
dt
]
. (30)

Firstly, we consider the following maximization problem:

U(x; a) ≡ max
c
E
[ ∫ ∞

0

e−βt
c1−γt

1− γ
dt
]
,

provided that the entrepreneur receives incomes at the rate equal to a infinitely. Then we

obtain the closed form solution given by

U(x; a) = F
(x+ a/r)1−γ

1− γ
, F =

(γ − 1

γ
r +

β

γ

)−γ
,

solving the associated Hamilton-Jacobi-Bellman equation.

By using the conditional expectation of τδ and the principle of dynamic programming,

the value function (30) is reformulated as the following:

Ψ(x) = max
(c,τ)

E
[ ∫ τ

0

e−(β+δ)t
{ c1−γt

1− γ
+ δU(Xt; εH)

}
dt+ e−(β+δ)τU(Xτ ; y)

]
.
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Then the value function satisfies the following optimal stopping problem:

(β + δ)ψ(x)− (rx+ εL)ψ′(x)− γ

1− γ
{ψ′(x)}1−1/γ = δU(x; εH), x∗ < x,

ψ(x) = U(x; y), < x ≤ x∗,

ψ(x∗) = U(x∗; y),

ψ′(x∗) = U ′(x∗; y),

(31)

derived similarly as in the optimal stopping problem (7). Here, x∗ is the critical wealth

level under which it is optimal for the entrepreneur who has limited access to the stock

market to quit her risky business and accept a safe job. To solve the optimal stopping

problem (31), we employ the modified convex-duality approach developed by Bensoussan

et al. (2016). More specifically, we introduce a dual variable ρ defined by the marginal

value of the value function ψ. It follows that

ρ(x) ≡ ψ′(x), and ρ̄ ≡ F (x∗ + y/r)−γ.

By differentiating the first equality in (31) with respect to x, we obtain

(β + δ)ρ(x)− rρ(x)− (rx+ εL)ρ′(x) + {ρ(x)}−1/γρ′(x) = δF (x+ εH/r)
−γ.

We also introduce a function H satisfying

H
(
ρ(x)

)
≡ x+

εL
r
.

Then the first relationship in (31) is rewritten in terms of newly defined variables ρ, H as

the following:

(β + δ − r)H ′(ρ)ρ− rH(ρ) + ρ−1/γ = δF
(
H(ρ)− εL

r
+
εH
r

)−γ
H ′(ρ), 0 < ρ < ρ̄, (32)
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where ρ̄ is a free boundary to be determined according to the value-matching and smooth-

pasting conditions.

We can always write a general solution to the non-linear differential equation (32) as

the following:

H(ρ) = C(ρ)ρr/(β+δ−r) +
1

{r + (β + δ − r)/γ}
ρ−1/γ,

where C(ρ) is an arbitrary function of ρ. By substituting the general solution H(ρ) into

the equation (32), we get

H(ρ) =D(ρ)ρr/(β+δ−r) +
δF

(β + δ − r)(1− γ)
ρ−1
(
H(ρ)− εL

r
+
εH
r

)1−γ
+

1

{r + (β + δ − r)/γ}
ρ−1/γ

− δF (β + δ)

(1− γ)(β + δ − r)2
ρr/(β+δ−r)

∫ ρ

ρ
ξ−r/(β+δ−r)−2

(
H(ξ)− εL

r
+
εH
r

)1−γ
dξ,

where D(ρ) is a constant to be determined and satisfies

D(ρ) =C(ρ)− δF

(β + δ − r)(1− γ)
ρ−r/(β+δ−r)−1

(
H(ρ)− εL

r
+
εH
r

)1−γ
.

Using the smooth-pasting condition of ψ′(x∗) = U ′(x∗; y), we obtain

F 1/γρ−1/γ − y

r
+
εL
r

= D(ρ)ρr/(β+δ−r) +
δF

(β + δ − r)(1− γ)
ρ−1
(
F 1/γρ−1/γ − y

r
+
εH
r

)1−γ
+

1

{r + (β + δ − r)/γ}
ρ−1/γ.

(33)

Furthermore, using the value-matching condition of ψ(x∗) = U(x∗; y) we get

[(β + δ − r)F 1/γ − γ
1− γ

]
ρ1−1/γ + (y − εL)ρ =

δF (F 1/γρ−1/γ − y/r + εH/r)
1−γ

1− γ
. (34)

The free boundary ρ is easily determined from (34) numerically, accordingly, the relation-

ship (33) yields the constant D(ρ).
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µ σ γ

δ 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054 1.5 2 2.5

0.20 −33.1610 −33.3528 −33.5374 −33.4288 −33.3528 −33.2831 −36.0946 −33.3528 −30.4592

0.15 −29.9395 −30.2410 −30.5190 −30.3569 −30.2410 −30.1331 −34.0770 −30.2410 −26.2180

0.10 −20.9649 −21.5240 −22.0136 −21.7307 −21.5240 −21.3276 −28.2844 −21.5240 −14.5062

Table 1: Critical wealth level x for various parameter values of µ, σ, and γ.

Default parameter values: β = 0.0371, r = 0.0371, εL = 0.25, y = 1.5, and εH = 2.5. The

borrowing limits for three value of δ ∈ {0.20, 0.15, 0.10} are computed as the following:

−57.8958, −55.3598, −50.9741, respectively. Note that the values of x are negative and

above the borrowing limits.
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µ σ

x 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054

x 0.9931 1.0515 1.1210 1.0784 1.0515 1.0288

x+ 5 1.2152 1.2971 1.3933 1.3344 1.2971 1.2654

x+ 10 1.4593 1.5649 1.6880 1.6128 1.5649 1.5242

x+ 15 1.7191 1.8481 1.9978 1.9063 1.8481 1.7985

x+ 20 1.9891 2.1410 2.3168 2.2094 2.1410 2.0826

µ σ

x 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054

x 20.2924 22.3104 24.2082 24.3378 22.3104 20.5369

x+ 5 22.1575 24.7621 27.2861 27.1852 24.7621 22.6599

x+ 10 24.6234 27.8606 31.0440 30.7298 27.8606 25.3837

x+ 15 27.6163 31.5061 35.3581 34.8562 31.5061 28.6223

x+ 20 31.0442 35.5901 40.1062 39.4434 35.5901 32.2777

Table 2: The sensitivity of optimal consumption (top panel) and risky port-

folio (bottom panel) strategies to changes in investment opportunity. Default

parameter values: δ = 0.10, β = 0.0371, r = 0.0371, γ = 2, εL = 0.25, y = 1.5, and

εH = 2.5.
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µ σ

x 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054

x∗ + 5 8.9447 11.0834 12.9441 11.8534 11.0834 10.2833

x∗ + 10 9.9501 12.3184 14.5741 13.2528 12.3184 11.4517

x∗ + 15 10.8978 13.5411 16.1320 14.6036 13.5411 12.5744

x∗ + 20 11.8029 14.7287 17.6173 15.9104 14.7287 13.6564

Table 3: The sensitivity of hedging effect HE(x) to changes in investment op-

portunity. Default parameter values: δ = 0.10, β = 0.0371, r = 0.0371, γ = 2, εL = 0.25,

y = 1.5, and εH = 2.5.
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Figure 1: Optimal consumption and risky portfolio strategies which are functions

of initial wealth x. Default parameter values: β = 0.0371, r = 0.0371, µ = 0.1123,

σ = 0.1954, γ = 2, εL = 0.25, y = 1.5, and εH = 2.5.
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Figure 2: Optimal consumption and risky portfolio strategies which are functions

of initial wealth x. Default parameter values: δ = 0.10, β = 0.0371, r = 0.0371,

µ = 0.1123, σ = 0.1954, εL = 0.25, y = 1.5, and εH = 2.5.
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Figure 3: Certainty equivalent wealth induced by running a risky business as

a function of initial wealth x for various values of δ. Default parameter values:

β = 0.0371, r = 0.0371, µ = 0.1123, σ = 0.1954, γ = 2, εL = 0.25, y = 1.5, and εH = 2.5..
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Figure 4: Certainty equivalent wealth induced by running a risky business as

a function of initial wealth x for various values of γ. Default parameter values:

δ = 0.10, β = 0.0371, r = 0.0371, µ = 0.1123, σ = 0.1954, εL = 0.25, y = 1.5, and

εH = 2.5.
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Figure 5: The hedging effect HE(x) of risky portfolio against undiversifiable

idiosyncratic risk as a function of initial wealth x for various values of δ. Default

parameter values: β = 0.0371, r = 0.0371, µ = 0.1123, σ = 0.1954, γ = 2, εL = 0.25,

y = 1.5, and εH = 2.5.
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Figure 6: The hedging effect HE(x) of risky portfolio against undiversifiable

idiosyncratic risk as a function of initial wealth x for various values of γ. Default

parameter values: δ = 0.10, β = 0.0371, r = 0.0371, µ = 0.1123, σ = 0.1954, εL = 0.25,

y = 1.5, and εH = 2.5.
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