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Abstract 

The interaction between uncertainty and managerial discretion is a crucial relationship in a 

firm’s investment decision. Particularly, as a disruptive technology can precipitate the failure 

of a leading firm, a project under technological uncertainty can largely benefits from an 

investment strategy where the potential effects of a disruptive technology can be weighed in 

an incumbent technology project’s valuation. Hence, in this thesis, a price-taking firm that 

has managerial discretion over both investment timing and the size of a project under price 

and technological uncertainty is considered. By constructing an analytical framework, it is 

shown that in comparison to solely price uncertainty, a project under low price and 

technological uncertainty will have both a lower optimal investment threshold and 

corresponding optimal capacity, whereas, under conditions of high price and technological 

uncertainty, a project will have a higher optimal investment threshold and corresponding 

optimal capacity. Additionally, directly revoking standard real options intuition, it is 

established through numerical results that the firm’s optimal investment policy will be 

monotonically decreasing as a function of technological uncertainty. 
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1. Introduction 

Innovative, dynamic strategies for investments made under the blanket of 

technological uncertainty have become increasingly important in recent years with the rise of 

disruptive technology. As such technologies are conventionally preliminarily purchased by 

the lowest segment of the market as unproved, unpolished products, oftentimes their sale is 

associated with a lower price level and, consequently, a lower, expected revenue stream. In 

response, incumbent technology firms in the industry are often complacent to their inferior 

competitor’s market position. However, in successful cases, where successive refinements 

have improved a technology to the extent that it becomes possible to take a significant 

portion of market share, a disruptive technology can reshape and revolutionize an entire 

industry. Recent examples of such supplantations can be referenced through a widespread 

number of cases. For example, classified ads have been replaced by Craigslist; long distance 

phone calls are now made with Skype; record stores are going out of business due to iTunes; 

research libraries are now at the consumer’s fingertips with Google; Uber is redefining the 

entire taxi industry’s business model; and even the most serious of news stations use Twitter 

(The Economist, 2015).  

Hence, faced with the widespread effects of disruptive technologies, a growing 

number of incumbent firms must weigh the difficult choice between holding onto an existing 

market by following a repetitive business strategy and risking market share, or by aiming to 

capture new markets through embracing disruptive technologies and their risky adoption. 

Coined the innovator’s dilemma by Clayton Christensen, the creator of the theory of 

disruptive technology (Christensen, 2000), this thesis aims to confront the investment 

problem faced by the established firm in order to properly value projects in rapidly changing 

industries by examining both investment timing and managerial discretion over project scale. 

For capitally intensive projects, discretion over project capacity is particularly crucial, since 

the installation of a large project increases a firm’s exposure to downside risk in the case of a 

potential downturn in market settings, whereas the installation of a small project limits a 

firm’s upside potential if market conditions were suddenly to become favourable  

(Chronopoulos et al., 2015). As such, a comprehensive business strategy aimed to counteract 

both a potential downturn in market settings and a limitation in upside potential of an 

investment project is an important issue for the modern firm.  
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Moreover, historical, empirical evidence further highlights the importance of 

managerial discretion in capacity choice. For example, in regards to the case of Kodak, the 

rise and fall of this monolithic corporation showcases the vulnerability of even the largest of 

firms to negligent capacity investment behaviour. Starting from its monopoly-like 

characteristics in the 1970’s during which the firm had achieved an approximate 90% market 

share in film and an 85% market share in camera sales in the U.S. (Lucas and Goh, 2009), 

Kodak experienced large commercial success in both film and camera sales well into the 

1980’s. However, in the proceeding years, with the arrival of Sony’s first electronic camera, 

Kodak, rather than prepare for the replacement of film through digital photography, chose to 

continually invest in film. This investment strategy continued despite, in 1986, Kodak’s 

research labs developed the first mega-pixel camera, one of the milestones that Kodak’s head 

of marketing intelligence had forecasted as a tipping point in terms of the viability of 

standalone digital photography (Mui, 2012). As a result, in the proceedings years, the 

company went from enjoying monopoly-like characteristics to a reduction in labour force by 

roughly 80% through retirements, lay-offs, and, finally, filed for Chapter 11 bankruptcy 

protection in January of 2012. Exuberantly denoted by Clayton Christensen, for Kodak, the 

rise of digital photography was comparable to being hit with a tsunami; the very technology 

that Kodak had helped to develop had led to its demise (The Economist, 2012).  

Secondly, in the renewable energy industry, technological uncertainty plays a 

significant role in wind energy capacity installations as well as its respective valuation. Take 

into consideration in 2014, global wind energy capacity installations reached their highest 

point in newly installed wind energy capacity recorded to date at approximately 49 GW of 

additional global capacity (United Nations Environment Programme, 2015, Huang and 

McElroy, 2015). Based on this development, investment trends into wind energy have also 

experienced record-setting growth (United Nations Environment Programme, 2015).  

Therefore, as capacity installations and investment trends are augmenting, the development 

of wind turbine technology is of particular importance to consider within their respective 

power plant valuations. According to the McKinsey Global Institute, offshore wind turbine 

technology, as it is considerably less developed than onshore wind turbine technology, 

shows greater long term deployment potential despite significantly higher capital 

expenditure requirements. Similarly, as the offshore wind turbine technology matures, its 

costs are hypothesized to drop by more than 50% in capital expenditure requirements and 

operating expenses (Manyika et al., 2013). As this implicitly affects the onshore wind 
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turbine market due to technological uncertainty, an onshore wind farm runs a correlated risk 

that its level of installations will become economically obsolete due to technological change 

before capital costs can be fully recovered and the investment provides positive cumulative 

cash flows (Venetsanos et al., 2002). Hence, given these potential long-term, production-

shifting market characteristics and the intrinsic risk in a wind turbine investment, a firm 

currently considering investment into wind turbine technology must have the capability to 

incorporate a substantial change in onshore wind turbine market conditions as offshore wind 

turbine technology matures. Consequently, when considering optimal investment and 

capacity sizing from a firm’s perspective into wind turbine technology, a deterministic 

valuation at face value provides a significantly inaccurate investment valuation as well as its 

resulting decision support information.  

Hence, in the aforementioned cases, technological uncertainty plays a key role in the 

incumbent technology’s valuation and development strategy. Furthermore, the underlying 

effects of disruptive technology highlight the need for responsive and efficient decision 

support information in industries as far-reaching as photography to renewable energy that are 

forced to deal with the implications of technological change. With relevance to even the 

most monolithic of firms, this thesis will examine a firm’s choice in project scale under 

technological uncertainty in order to provide a model that can nondeterministically value the 

impact technological uncertainty has on project scale. Additionally, price uncertainty will 

also be regarded as it plays a direct role in the timing of the capacity investment decision. In 

order to construct an appropriate valuation, a real options, regime-switching model is 

proposed to effectively incorporate price and technological uncertainty in an irreversible 

investment decision. Under these circumstances, the question of how an investment decision 

in capacity sizing is affected by price and technological uncertainty is examined. 

Presented by Dixit and Pindyck (1994), the real options theory provides a framework 

for valuing real assets in uncertain futures. Furthermore, there are two important analytical 

dimensions the real options model showcases about an investment problem. First off, a 

dynamic representation of the timing of the investment decision is used, whereas, in the 

traditional sense, a static timeframe was considered and weighed when making a final 

investment decision. Secondly, underlying factors are represented as stochastic processes. As 

such, stochastic processes can produce a more accurate representation of movements that 

fluctuate randomly and unpredictably.  Accordingly, the  resulting investment strategy 

becomes more restrictive as the strategy takes into further consideration both the qualitative 
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and quantitative implications of the value of waiting for more information about uncertain 

future trends (Botterud and Korpås, 2007). 

 Moreover, regime-switching models often portray the tendency of financial markets 

to exhibit volatile behaviour with the phenomenon that the new behaviour often persists for 

several periods after a change has occurred. While the characteristics captured by regime-

switching models are oftentimes identified by econometric procedures, they can also 

correspond with different periods in regulation, policy, and technological change (Ang and 

Timmermann, 2012). As such, regime-switching models can effectively capture the 

underlying effects a disruptive technology can have on incumbent technology market 

conditions.  

Thus, the contributions of this paper are three-fold. First off, in order to derive the 

optimal investment threshold and the corresponding optimal capacity, an analytical 

framework combining both regime-switching and real options is proposed for investment 

opportunities under price and technological uncertainty. Second, in order to more closely 

scrutinize immediate investment policy, price and technological uncertainty are examined to 

see their interaction with optimal capacity sizing. Third, managerial insight is provided for 

capacity investment decisions through analytical and numerical results concerning both the 

qualitative and quantitative implications of the interactions between irreversible investment, 

disruptive technology, and managerial discretion over project scale. 

In addition, the delimitations of the model concentrate solely on basic American call 

option characteristics. By doing so, the model forgoes the option to abandon the incumbent 

technology project post-investment if a regime-switch has occurred in the incumbent 

technology market conditions. As the abandonment option gives the firm the opportunity to 

sell a project’s cash flows over the remainder of the project’s lifetime, the investment 

decision’s salvation value and, analogously, its American put option characteristics are 

ignored. Considering the project’s liquidation value could further affect the project’s optimal 

investment threshold and corresponding optimal capacity, it is important to note that the 

model serves solely as an approximation tool rather than one with complete precision.  

In Section 2, literature regarding the analytical framework will be further evaluated. In 

Section 3, evidence supporting regime-switching will be presented through the lens of 

Clayton Christensen’s theory of disruptive technology. Then, in Section 4, the mathematical 
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tools implemented in the model will be examined.  Subsequently, the regime-switching, real 

options model will be built in Section 5. First, investment excluding a regime-switch is 

analyzed in Section 5.2.1 where an analytical expression for optimal timing and capacity is 

derived. In Section 5.2.2, the penultimate investment decision under both price and 

technological uncertainty is examined, and a nonlinear solution requiring the numerical 

methods executed in Section 6 are implemented in order to gain managerial insight from the 

model. Within the same section, numerical results for the effects of regime-specific price 

uncertainty as well as technological uncertainty are regarded in order to illustrate their 

interaction with the optimal investment policy. Lastly, in Section 7, concluding remarks, 

limitations of the model, and suggestions for future research are offered.  
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2. Literature Review  

In this section, literature related to the theoretical background of this paper is 

presented. It is systematically reviewed in two steps. First, real options theory will be 

broadly examined to present its historical background and its evolution as a framework. 

Particular nuance applications will also be observed to arrive at the conclusion of dynamic 

programming as the application of choice in the real options framework. Secondly, as this 

thesis concentrates on optimal timing and capacity sizing under price and technological 

uncertainty, the recent literature surrounding these concepts will additionally be examined. 

By doing so, this section aims to highlight the existing gap in academic literature to support 

modelling a lumpy investment under price and technological uncertainty with a regime-

switching, real options model.  

Real options theory  complements the traditional discounted cash flow method, which 

originates from the classical work of Fisher (1930). In his valuation method, decision-

making criteria for an investment decision is constructed by discounting the cash flows of a 

project in order to find its net present value, which is then subsequently used to evaluate the 

project’s potential for investment. If the net present value of the project is positive, the 

investment is considered attractive; and in the case that the net present value is negative, the 

project is assumed to be unprofitable and abandoned. Conversely, using contingent claims 

analysis, Majd and Pindyck (1987) show how the traditional discounted cash flow method 

understates the value of an investment project by ignoring the inherent flexibility in the time 

to build and, as an outcome, showcase how adhering to the simple net present value rule can 

result in gross investment error.  Furthermore, the real options framework considered by 

Majd and Pindyck (1987) was further implemented by McDonald and Siegel (1986) to 

address the standard problem of optimal investment timing in a project of given capacity size 

with the perpetual option to invest. Further discrediting the net present value rule, their 

findings quantify that for reasonable parameter values, sub-optimal investment timing can 

affect a project’s value with a traditional net present value of zero by as much as 10-20%. 

Hence, through the acceptance of this criticism, the criteria governing a net present value 

calculation can be deemed insufficient, and highlights the necessity for an alternative 

investment valuation method.  



 7 

However, although the contingent claims approach aims to fill this gap in literature, its 

limitations in assumptions restrict its application to span all investment opportunities. The 

standard real options textbook by Dixit and Pindyck (1994) seeks to overcome this 

shortcoming by extending the work of Mcdonald and Siegel (see Chapter 5 of Dixit and 

Pindyck (1994)) by considering both the contingent claims approach and, a more broader 

method, dynamic programming, to the firm’s investment decision. By examining the 

relationship between these two approaches at the firm level, the authors highlight their 

specific merits for use in the context of irreversible investment and stochastic revenue 

streams.  First off, contingent claims analysis works to construct a riskless portfolio through 

an appropriate long and short position. This portfolio, consisting of both the risky project 

and investment assets, tracks the project’s uncertainty (Insley and Wirjanto, 2010). In 

equilibrium with no arbitrage opportunities, the portfolio must then earn the risk free rate of 

interest, which allows the value of the risky project to be determined. However, the 

limitations of contingent claims analysis dictate that any stochastic change in the project’s 

value must be spanned by existing assets in the economy and that capital markets are 

sufficiently complete so that a dynamic portfolio of assets can perfectly correlate with the 

value of the project. In comparison, dynamic programming provides an application that is 

considerably more flexible in market parameters and does not require diversification of risk. 

Notwithstanding the relaxation of market assumptions, the exogenous discount rate 

implemented in dynamic programming highlights its subjective shortcomings. Regardless, in 

order to model an incumbent technology market dealing with innovation rates such as that of 

a disruptive technology, dynamic programming provides the required flexibility to model a 

production capacity investment decision under price and technological uncertainty. 

As the breadth of disruptive technology effects are widespread, it is additionally 

important to note the numerous industries real options have analyzed and its extensions in 

application. Antecedents to the Mcdonald-Siegel investment model include seminal works 

by Myers (1977) who studied real option effects on corporate borrowing behaviour and 

Tourinho (1979) who pioneered real options application to an exhaustible, natural resource 

reserve. Furthermore, the field of real options spans the categories of real estate development 

(Titman, 1985, Capozza and Sick, 1994, Quigg, 1993), corporate strategy (Kester, 1984, 

Kulatilaka and Marks, 1988), research and development (Morris et al., 1991), and enterprise 

valuations (Chung and Charoenwong, 1991, Kellogg and Charnes, 2000), amongst others. 

Lastly, real options, petroleum literature is particularly well developed (Ekern, 1988, 
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Cortazar and Schwartz, 1998, Kemna, 1993) given its exceptional fit for oil price uncertainty 

and the high stakes nature of petroleum projects. Furthermore, strategic real options 

literature provides useful extensions where managerial insight is added in addition to solving 

an investment timing problem. Combining the competitive real options model and a Markov-

switching regime, Goto et al. (2012)  study the investment problem of two asymmetric firms 

in the context of boom and recessive market conditions and find the investment threshold 

differences of a firm as a leader and as a follower are regime-dependent. Moreover, 

Chronopoulos and Siddiqui (2015) study the conventional investment problem where a firm 

considers the optimal time to undertake an investment project under both price and 

technological uncertainty. Implementing three different investment strategies: compulsive, 

laggard, and leapfrog; they find that under a compulsive strategy, technological uncertainty 

has a non-monotonic impact on the optimal investment decision. Hence, extensions and 

applications of real options literature are far-reaching while continually providing additional 

managerial insight to basic real options applications.  

In the area of investment under technological uncertainty, optimal timing problems 

show various results with adoption rates of technologies. Early works include Balcer and 

Lippman (1984) who analyze the optimal timing of technology adoption using switching 

options. They find that the firm will adopt the current best technology practice after a certain 

threshold, and, in the case that technological uncertainty is increasing, new technology 

adoption will be delayed. Conversely, they also find that it may be profitable to purchase an 

incumbent technology that was considered unprofitable at its conception if after a certain 

period of time, no technological advances are made. Adopting the dynamic programming 

approach from Dixit and Pindyck’s (1994) real options framework, Farzin et al. (1998)  

extend the work of Balcer and Lippman (1984) by analyzing the optimal timing of 

technology adoption by a competitive firm when investment in  new, improved technology is 

an irreversible investment decision and technological progress evolves according to a 

Poisson process. Including the correction by Doraszelski (2001), they find that a firm will 

defer the adoption of a new technology when it takes the value of waiting into consideration. 

Introducing both game-theoretic considerations and uncertainty to the real options 

framework, Huisman and Kort (2004) study a duopoly model where two firms have the 

option to invest in an incumbent technology under the uncertainty that a superior technology 

with an unknown arrival rate will become available as an investment option. Modelling the 

arrival rate according to a Poisson process and assuming that switching is not an option after 
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investment in the incumbent technology has taken place, they find that investment is further 

delayed based on technological uncertainty, and the firm who invest second receives the 

highest payoff. Price uncertainty modeled by geometric Brownian motion also plays a 

substantial role as it induces a higher probability that the new technology will be adopted 

instead of the current technology.  

Interestingly, as the predominant source of real options literature deals solely with 

investment timing while considering capacity sizing fixed, the strategic consequences of 

such a choice undermine the effects of managerial discretion over capacity size, while 

predominantly establishing the standard result that uncertainty directly correlates with the 

value of waiting. Supporting this switch, in his review of Dixit and Pindyck’s textbook 

(1994), Hubbard (1994) states,  

“(…) the new view models… do not offer specific predictions about the level of 

investment. To go this extra step requires the specification of structural links between the 

marginal profitability of capital and the desired capital stock” (page 1828). 

As such, henceforth, the real options literature that deals with both optimal capacity sizing 

and timing will be reviewed. According to the survey by Huberts et al. (2015), three distinct 

areas of this type of literature prevail: continuous time models where investments have a 

lumpy structure, discrete time models, and  incremental investment models. As the latter two 

models go beyond the scope of this thesis’s application, lumpy investment models will be 

further regarded.  

In the area of lumpy investment strategies in continuous time models, the firm 

generally invests at a later point in time and at a larger corresponding capacity size 

contradicting how uncertainty conventionally affects the firm’s growth. Early examples 

include the work by Manne (1961), who was the first to determine that the firm invests in a 

larger capacity level when uncertainty increases by observing a stochastic capacity 

expansion problem. Continuing this work, Dangl (1999) sets up a model with both a concave 

investment cost function and a deterministic production cost function with price determined 

by both production quantity and a demand shift parameter assumed to undergo multiplicative 

geometric Brownian shocks. Under these conditions, he finds that increasing levels of 

demand uncertainty correlate with a delayed optimal investment strategy and increased 

project capacity. In the same year, Bar-Ilan and Strange (1999) examine capital stock as a 
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capacity sizing and timing problem while assuming both clearance over production 

flexibility and a deterministic, marginal production cost. In comparison to Dangl (1999), 

their output price follows solely a geometric Brownian motion. Furthermore, adopting a 

similar method as that established by Dangl (1999), Bøckman et al. (2008) analyze 

hydropower projects. Although consistent with the exponential form of the concave 

investment cost function as that of Dangl (1999), they choose to model a convex cost 

function to match the limitations renewable energy projects conventionally exhibit; as the 

chosen capacity approaches a finite maximum capacity, each new unit of capacity displays 

diseconomies of scale. The contribution margin, which is indicated as the difference between 

electricity price and the marginal production cost, is also modelled by geometric Brownian 

motion. Similar to Bar-Ilan and Strange (1999), Kort et al. (2011) model both flexible and 

inflexible production in a firm’s capacity investment decision. In order to do so, they assume 

clearance in the inflexible firm model, while varying utilization rates of installed capacity in 

the flexible firm model, and find that the flexible firm has a greater corresponding optimal 

capacity than that of the inflexible firm.  

Returning to the area of technological uncertainty and simultaneously regarding 

capacity sizing, Della Seta et al. (2012) study investment in learning-curve technologies 

under price uncertainty and find that the characterization of the learning-curve leads to two 

opposite investment strategies. Revoking standard real options intuition, they find that in the 

case that the learning process is slower, the firm has a higher optimal investment threshold 

and a larger optimal capacity, whereas, if the learning-curve is steep, the firm invests earlier 

and at a limited capacity.  In a similar vein, Hagspiel et al. (2013) study a price-setting firm 

facing a declining profit stream for its incumbent technology while weighing investment into 

an existing, disruptive technology. The firm has three available options to implement in its 

investment strategy: abandonment, call, and suspension. As in Dangl (1999), price is 

governed by an inverse demand function influenced by geometric Brownian shocks, and, in 

order to distinguish between booming- and recessive-like market conditions, regime-

switching is implemented in the growth parameter settings of the geometric Brownian 

motion. Lastly, contrary to standard real options intuition and given a firm’s optimal 

capacity choice, their findings conclude the investment threshold is monotonic as a function 

of uncertainty.   

Hence, these academic papers highlight the various forms models have taken in order 

to examine the effects of various managerial discretions and flexibilities on optimal capacity 
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sizing and timing. Particularly, the effect of technological uncertainty coupled with capacity 

sizing exhibits a field where common results both violate standard real options intuition and 

simultaneously do not provide ubiquitous results. In order to go further, Huberts et al. (2015) 

recommends that, 

“To add even more realism, future contributions could consider issues like… 

technological progress [and] innovation (…). As usual, researchers will face the trade-off 

between analyzing simple models that allow for full analytical solutions and designing more 

complex models that could only be solved using numerical methods.”  

As such, this thesis will contribute to the existing literature by adapting the real options 

approach to quantitatively analyse an incumbent technology, capacity investment under both 

price and technological uncertainty. In order to model technological uncertainty, as in 

Huisman and Kort (2004) and Farzin et al. (1998), the model uses a Poisson process to 

predict a regime-switch in incumbent technology market conditions. However, similar to 

Goto et al. (2012) and in comparison to Hagspiel et al. (2013), regime-specific market 

conditions denote both distinct boom- and recessive-like growth rates and volatilities to 

better model the effects of a disruptive technology. In order to model price uncertainty, the 

model uses geometric Brownian motion as is commonly implemented in the aforementioned 

capacity sizing literature. In order to have a conservative cost structure,  a deterministic 

production cost function is assumed as in Dangl (1999), and drawing from Bøckman et al. 

(2008), a convex investment cost function is assumed so as to show the model’s particular fit 

for the renewable energy industry as well as for projects exhibiting diseconomies of scale.  

Lastly, in order to more coherently study the effects of price and technological uncertainty 

on the investment decision, clearance, as in Bar-Ilan and Strange (1999) and Kort et al. 

(2011), is assumed.   

Referencing Hubert’s statement, although a full analytical solution is not provided 

due to the complexity of the model, numerical results show that, under technological 

uncertainty, if price uncertainty is low, firms invest earlier and in limited capacity, whereas,  

if price uncertainty is high, firms invest later and in extensive capacity. Additionally, directly 

revoking standard real options intuition, the numerical results establish that the firm’s 

optimal investment policy will be monotonically decreasing as a function of technological 

uncertainty. In contrast to Chronopoulos and Siddiqui (2015), this seemingly counter-

intuitive result occurs as a consequence of the assumption that investment will occur both 
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irrevocably and irrespective of the regime the firm is operating within. Intuitively, the 

additional dynamics provided by a compulsive investment strategy would then be expected 

to shift this result towards a non-monotonic impact on the optimal investment decision.  
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3. Disruptive Technology 

Disruptive technology represents a paradigm shift, and, once experienced, has the 

potential to create permanent change that can transform an entire industry. By experiencing 

such a shift, adopted technologies become embodied in both physical and human capital, and 

oftentimes allows for efficient economic value creation. Simultaneously, technology often 

disrupts, supplanting the status quo and rendering stagnant skill sets and organizational 

approaches irrelevant (Manyika et al., 2013). In order to effectively respond to these 

changes, grounded business action becomes paramount to a firm dealing with disruptive 

technological uncertainty. Take into consideration, IBM dealt with this dilemma by 

launching a new business unit to manufacture PCs, while continuing its core business 

development, mainframe computers. In a similar vein, Netflix took a more radical move, 

switching away from its previous business model, sending out rental DVDs by post, to 

streaming on-demand media to its customers (The Economist, 2015). Hence, grounded 

business action remains paramount in order to effectively respond to the ramifications 

disruptive technology has on both the firm and the market. Keeping this in consideration, it 

becomes important to incorporate the disruptive potential technologies display into the 

investment process. As such, this section concentrates on benchmarking and applying the 

effects of disruptive technology. In order to exemplify this, Christensen’s theory of 

disruptive technology will first be defined and expounded upon so that a conceptual basis for 

disruptive technologies can be established. Second, in order to assume the relevance of a 

disruptive technology to an incumbent technology valuation, the laws of disruptive 

technology will be further delineated and analyzed. By doing so, this section aims to 

establish the relevance of disruptive technology to an incumbent technology investment 

decision and legitimize the proposition of regime-switching to aid in finding a solution to the 

investment dilemma.  

3.1 The Theory of Disruptive Technology 

In order to properly describe the effects of disruptive technology, it is helpful to first 

establish a basis on which to view technological change.  Christensen’s theory of disruptive 

technology is a heavily cited proposition rigorously developed in his textbook, The 

Innovator’s Dilemma (Christensen, 2000), that aims to explain the phenomenon by which an 

innovation transforms an existing market or sector. Based on three crucial findings, the 



 14 

theory’s ramifications can aid in characterizing a disruptive technology and its trends, which 

further provide a conceptual basis for a paradigm shift in incumbent technology valuations.  

Initially, the first finding stipulates that the distinction between a sustaining 

technology and a disruptive one is an important strategic divergence. To clarify, whenever 

an innovation acts to upgrade a particular technology’s performance in the market place, it 

can be considered sustainable, whereas the emergence of a disruptive technology constitutes 

an innovation that generally underperforms relative to the established product lines in a 

specific industry’s market. However, over time, the disruptive technology can display 

characteristics of being cheaper, simpler, more compact, and, frequently, more pragmatic in 

comparison to the incumbent technology in the industry. Examples of this can be referenced 

through the hypothesized development trajectory of offshore wind turbine technology 

(Manyika et al., 2013); in order to operate within extreme weather conditions, innovative, 

costly materials such as carbon fibre are being introduced into offshore wind turbine blade 

technology to provide an elevated strength-to-weight ratio in blade characteristics 

(International Renewable Energy Agency, 2012, Douglas-Westwood, 2010). As this 

optimization, amongst others, acts to increase load capabilities and is predicted to drop in 

expenditure requirements over time, an offshore wind farm, in comparison to an onshore 

wind farm, can be expected to become simultaneously both more lucrative and efficient over 

time. Moreover, the success of a firm is contingent on the strategic classification of a 

disruptive technology versus a sustainable technology; a disruptive technology holds the 

potential of the failure of a leading firm, whereas a sustainable technology rarely precipitates 

such a consequence (Christensen, 2000). Therefore, it becomes crucial to have an innate 

understanding of both a sustainable and a disruptive technological change in a market to 

respond with grounded business action.    

Secondly, the rate at which an incumbent technology evolves can surpass market 

needs and unknowingly invokes a vulnerability of market share as illustrated in Figure 1. 

Indicated by the upper-most trend line, conventionally, an incumbent firm overshoots 

customer needs by developing a technology to an extent where the customer no longer 

desires improvements and, ultimately, no longer display a willingness to pay for it. 

Moreover, a portion of the market becomes vulnerable as the least profitable customer 

segment in the market no longer displays a willingness to support the price demanded by the 

sustainable innovations. Furthermore, indicated by the lower trend line, a disruptive 

technology is initially embraced by the least profitable customer segment in the market and 
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can ameliorate its own respective performance via sustainable innovations over a period of 

time. It follows then that they can compete to saturate fringe customer demands in the 

market and eventually take market share over time or create a new market as the disruptive 

technology becomes competitive in other key performance indicators. Hence, the trajectory 

of market needs compared to technological improvement plays a critical role in determining 

the vulnerability of a firm as well as the resulting incumbent technology market conditions.   

 

Figure 1: The Impact of Sustaining and Disruptive Technological Change 
(Christensen, 2000) 

Third, the highest performing companies have well developed systems for 

maintaining the status quo by eliminating initiatives that do not directly coincide with 

customer demand. Similarly, the investment process a firm practices also ignores 

innovations that could potentially disrupt the market in which the firm operates within. As a 

result, adequate consideration to disruptive technologies does not occur until prospective 

technologies have decreased the long term profitability of the market for the incumbent firm. 

Effectively, the firm that continues to invest in an incumbent technology without properly 

weighing the effects a disruptive technology could have on the market unknowingly leaves 

portions of its market share vulnerable to the companies implementing the disruptive 

technology. Consequently, the very decision-making and resource allocation processes 
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practiced by management, key to the success of well-established companies, are the very 

processes that act as the root cause of their demise in the face of technological uncertainty.  

Hence, these findings illustrate the unabating effects a disruptive technology has on 

both a firm and an incumbent technology market. By not preparing for the potential change 

in market conditions and lacking effective business action, a firm could lose its position in 

the market as a result of not having the ability to properly weigh the aforementioned 

elements and, consequently, risk failure. Hence, as good management practice drives the 

failure of successful firms faced with disruptive technological change, then the conventional 

responses to companies’ problems-planning better, working harder, becoming more 

customer-driven, and taking a longer-term perspective- all exacerbate the problem. As such, 

the solution to disruptive technologies lies within the laws of organizational nature which act 

to powerfully define what a firm can and cannot do (Christensen, 2000).  

3.2 Laws of Disruptive Technology 

It is proposed by Christensen that there are five organizational laws of disruptive 

technology that if properly harnessed lead to the success of a firm. In particular, the first and 

third law provide useful properties that a firm can effectively leverage in order to decide 

whether to invest in an incumbent technology given technological uncertainty or to divest 

into a disruptive technology. First off, the primary law indicates that a firm depends on its 

customers and investors for resources, whereas the third law stipulates that markets that do 

not exist cannot be analyzed. By critically examining these two laws, it provides not only 

grounded business action for a firm operating under technological uncertainty, but also gives 

a basis for implicitly defining an investment model using regime-switching.  

First, the theory of resource dependence governs a firm’s resource allocation.  This 

principle dictates that the firm does not control its own flow of resources, but, rather, 

investors and customers are the forces within an organization that govern resource 

allocation, and firms that choose to digress from satiating these needs ultimately fail. 

Conversely, those that best satiate these needs are successful. As investment patterns are 

designed to dismiss a disruptive technology at its outset, the only instance in which 

mainstream firms have successfully established a timely position in a disruptive technology 

were those in which the firm’s managers set up an autonomous organization charged with 

building an independent business around the disruptive technology (Christensen, 2000). 
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Therefore, the companies that can best succeed in these small, emerging markets are those 

that align their firms with forces of resource dependence by creating an independent 

organization. 

Secondly, the third law of disruptive technology stems from the innovator’s dilemma. 

As the strategies to manage a sustainable technology are generally predictable, the strategies 

are similarly competitively unimportant, whereas the leadership involved in fostering a 

disruptive innovation displays large, advantageous aspects. However, companies whose 

investment processes demand quantification of market sizes and financial returns before they 

can enter a market become paralyzed or make serious mistakes when faced with disruptive 

technologies (Christensen, 2000). As there are large first mover advantages in disruptive 

situations, leadership must take action before careful plans can be made. However, as this 

presents the innovator’s dilemma, it becomes necessary to recognize the unpredictability of a 

new market. In order to overcome this aspect of innovation, Christensen suggests discovery-

driven planning. Due to the fact that very little is known about disruptive markets, effective 

grounded business action is only applicable once a firm learns how best to implement a 

disruptive technology. Hence, in planning to learn, the mindset needed for the exploitation of 

a disruptive technology can be deduced after obtaining the necessary decision support 

information to resolve underlying technological uncertainty.  

In tying these two laws of disruptive technology together as well as the theory of 

disruptive technology, regime-switching is implemented into the model due to its ability to 

incorporate the hypothesized effects from a disruptive technology into incumbent technology 

market conditions, as well as by providing a basis for responsive business action. By 

incorporating regime-switching into the real options model, a change in incumbent 

technology market conditions can implicitly reflect the hypothesized effects from the 

successful penetration of a disruptive technology in the market. Additionally, grounded 

business action can effectively be recommended based on the first and third organizational 

laws of disruptive technology. In response to these laws, the firm no longer must base its 

investment decision on a disruptive technology market but rather, implicitly on an incumbent 

technology market, which gives the possibility to use market information from an observable 

market instead of attempting to quantify the market size and financial return of a disruptive 

market. Additionally, in the case that the option to invest is out of the money, the strategic 

recommendations of either discovery-driven planning or, in the case of a successful venture, 

the creation of a separate enterprise can be given. In conclusion, both the effects of 
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disruptive technology on incumbent technology market conditions and managerial insight 

can be provided through the use of regime-switching in the proposed real options model.  
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4. Mathematical Background 

4.1 Itô’s Lemma 

Suppose the state variable      follows a simple Brownian motion as indicated in Equation 

(1).        and        are known, non-random functions, and    is the standard increment 

of a Wiener process.   

                      (1) 

Also, consider a function         that is twice differentiable on      and to the first-order 

on the time variable  . Through conventional calculus, the total differential of the function 

        can be expressed as Equation (2). 

    
  

  
   

  

  
   (2) 

Introducing the higher-order terms of    by Taylor expansion, the differential    expands to 

Equation (3). 

    
  

  
   

 

  

  

  
   

 

  

   

   
    

 

  

   

   
      (3) 

In order to simplify Equation (3), the squared differential of the state variable     is first 

examined. Because the expected squared value of the Wiener increment is equal to the time 

derivative,          , taking the expansion of     simplifies substantially as indicated in 

(4). Empirically, it is observed that as    becomes infinitesimally small, the first and second 

term of the third line of (4) approach zero at a more rapid rate relative to   . Hence, the 

differentials of time with a power greater than one can be ignored. 

 

                                             

                                                    

                                
 
            

           

(4) 
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Applying this same logic to any expansion of    greater than the squared differential of    

in Equation (3) will generate an expression with each time differentials’ exponent greater 

than one and, hence, also cancel. Therefore, Equation (3) simplifies to Equation (5). 

    
  

  
   

  

  
                    

 

 

   

   
          (5) 

Collecting like terms, Itô’s Lemma gives the total differential of the function         

generally as in Equation (6). 

     
  

  
       

  

  
 
 

 
       

   

   
          

  

  
   (6) 

4.2 Markov-Modulated Geometric Brownian Motion 

A stochastic variable is modelled by geometric Brownian motion with drift if it is a 

specialized case of a continuous time stochastic process,   , which, indicated in Equation 

(7), can be found by adapting Equation (1) with            and           . This Itô 

process has four distinct components where    is an infinitesimally small increment of time, 

   is an increment of the standard Brownian motion, and     and     are the expected 

instantaneous drift rate and the instantaneous variance rate respectively (Dixit and Pindyck, 

1994). 

                 (7) 

As changes in the process    over any finite interval of time are normally distributed, it 

becomes necessary to transform the underlying function so that it can be used to suitably 

model price. To do so, the relationship between the state variable    and its logarithm is 

examined,               . Using Itô’s Lemma, its rate of change,     can be expanded 

resulting in Equation (8). 

    
 

  
    

 

    
   

 
 (8) 
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By inserting Equation (7) into Equation (8), the process followed by   becomes described as 

Equation (9). Hence, a change in a finite time interval   in   is normally distributed with a 

mean and variance,          
 

 
           

       
 

 
          (9) 

This result can be used to find both the expected value and variance of    with its current, 

observable state,   , as indicated in (10).  

              
                   

        
      (10) 

Similarly, as this allows both the mean and variance of    to be found, it enables the 

expected present discounted value of    to be calculated over a period of time by using the 

result from (10)  in Equation (11).  In the case of perpetuity and an exogenous discount rate 

   where the discount rate   exceeds the growth rate  , the expectation provides a useful 

outcome for the valuation of an investment project integrated under a perpetual time frame.  

       
     

 

 

  
  

   
 (11) 

Secondly, as both the instantaneous drift and variance rate of geometric Brownian 

motion fail to capture the effect disruptive technologies are hypothesized to have on 

incumbent technology market conditions, the regime-switching model is introduced into 

geometric Brownian motion parameters to capture these effects.  In itself, regime-switching 

often portrays the tendency financial markets have to exhibit volatile behaviour with the 

phenomenon that the new behaviour often persists for several periods after such a change has 

occurred. However, a key difference within this type of modelling occurs when looking at a 

regime-switch that can be classified as either irreversible or highly unlikely to reoccur. These 

changes, referred to as a change point process, were considered by Chib (1998) and further 

expounded upon through the examination of stock return dynamics by Pástor and Stambaugh 

(2001) and Pettenuzzo et al. (2014), amongst others. Within these processes, the 

characteristics captured by these specific regime-switching models aim to correspond with 

different periods in regulation, policy, and technological change (Ang and Timmermann, 

2012). Logically, it follows that to document the effect a disruptive technological change has 
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on incumbent technology market conditions, regime-switching should be implemented in its 

stochastic process.  

In regime-switching models, there is an unobservable random state variable      

        that follows a Markov chain in the price process’s time series, that indicates which 

regime,    is realized in the economy. In a change point process, the regimes are no longer 

revisited after a state change has occurred, and can theoretically be considered as sustainable 

increments in disruptive technological change; with each subsequent regime visited, the 

disruptive technology has implicitly made an incremental, but significant change that is 

reflected in the incumbent technology’s market conditions.  

Mathematically, this state change can be modelled by a modified transition 

probability matrix   where the probability of returning to a previous regime is zero. More 

specifically, the regime-switch in a change point process is governed by a     transition 

probability matrix   with the probabilities     of switching from a regime   at time   to a 

regime   at time     , as represented by the matrix in (12). 

    

         
   
      

  (12) 

Additionally, the sum of the probabilities of switching to a particular regime or staying 

within the realized regime sum to one for each respective regime as indicated in (13). 

      

 

   

               (13) 

Moreover, each regime is assumed to be an independent price process that is 

governed by the strong Markov property; the current regime   is dependent upon only the 

most recent realized regime  , which corresponds to the transition probability matrix by the 

probability      as indicated in (14). 

                     (14) 

Practically, this implies that the point in time in which the process is applied is dependent 

upon only current available information. Then, it follows that when applied to a current state, 

the transition probability matrix is flexible in the sense that it can be applied at each step of 
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the Markov chain regardless of the state of the disruptive technology or the incumbent 

technology market conditions. Hence, given these characteristics and the hypothesized 

switching probabilities, a regime-switching valuation can effectively capture technological 

uncertainty.  

In addition, the change point process requires the probabilities     , which can be 

modelled  using a Poisson jump process as denoted by    in (15). This diffusion process 

aims to model an economic variable as a process that makes infrequent but discrete jumps. 

Consequently, the referenced jumps can be thought of as a substantial disruptive 

technological breakthrough that causes the market conditions for the incumbent technology 

to shift. Statistically, the Poisson jump process is subject to jumps of fixed or random size, 

for which the arrival times follow a Poisson distribution (Dixit and Pindyck, 1994). The 

jumps,  , represent events that can cause a structural break in the stochastic process being 

modelled, and which can in itself also be a random variable. The rate of occurrence or 

intensity of the Poisson process is reflected by the proportionality constant λ, and during a 

time interval of infinitesimal length   , the probability that a jump will occur is given by 

   .  

 
   

 
                               

                      

  
(15) 

Finally, marrying these concepts together: geometric Brownian motion, regime-

switching, and a Poisson jump process; the state variable    following Markov-modulated 

geometric Brownian motion is described in Equation (16). 

                          (16) 

With the assumption that             a Poisson jump process is modelled in the transition 

probability matrix (17). 

    
        

  
  (17) 

Consequently, the growth rate and volatility are subject to the realized regime in the 

economy as indicated in (18). 
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  (18) 

By modelling the price process as such, Markov-modulated geometric Brownian motion can 

implicitly incorporate relevant information about a disruptive technology in incumbent 

technology market conditions to provide a more informed, capacity investment decision.  

4.3 Dynamic Programming  

Dynamic programming is a general tool used for dynamic optimization problems 

under uncertainty. It decomposes a sequence of decisions into two components: the 

immediate decision, and a valuation function that encapsulates the consequences of all 

subsequent decisions (Dixit and Pindyck, 1994). This decomposition can be formally 

described by Bellman’s Principle of Optimality,  

“An optimal policy has the property that, whatever the initial action, the remaining 

choices constitute an optimal policy with respect to the sub-problem starting at the state that 

results from the initial actions” (Bellman, 1954).  

In order to clarify these assertions, the components of a dynamic optimization 

problem will be further analyzed in this section.  

As indicated in Equation (19), during each period  , a maximization choice is 

represented by the control variable(s)  , which denotes the specific choices to be made by 

the firm. The firm’s current status as it affects its operations and expansion opportunities is 

delineated by a state variable  . Both of these variables at time   affect the firm’s immediate 

profit flow component, which can be denoted as             As the valuation function is 

evaluated from the perspective in period    the expectation of the continuation value is taken, 

           , and further discounted to adjust to time   by the discount factor 
 

   
.  

         
  

            
 

   
               (19) 

If there is no fixed finite time horizon for the decision problem, the dynamic optimization 

problem becomes simplified in the sense that the calendar date   ceases to have a direct 

impact on the valuation. In this setting, the objective function gets a recursive structure that 
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facilitates theoretical analysis as well as numerical computation (Dixit and Pindyck, 1994) as 

illustrated in Equation (20). In this situation,    denotes the evaluation of the state in the next 

period in relation to the current state    

         
 

        
 

   
              (20) 

For a dynamic optimization problem in continuous time, the Bellman Equation (20) is 

reworked to consider a time period of infinitesimal length    in Equation (21). 

           
 

            
 

     
                   (21) 

By multiplying by a factor of        , dividing by   , and taking the limit as    goes to 

zero, Equation (21) becomes adapted for continuous time as indicated in Equation (22). In 

real options terminology, this equation can be interpreted as the entitlement to the flow of 

profits from an asset. In regards to the term,        , the understanding behind this 

component is the required rate of return a decision maker would demand from holding this 

asset. The immediate profit flow component signifies the cash flow received upon 

investment, which can be further considered the immediate payout or dividend of the asset. 

Secondly, the continuation component can be interpreted as the expected rate of capital gain 

on the asset. 

            
 

          
 

  
        (22) 

To exemplify particular nuances of the solution of Equation (22), the optimization problem 

is simplified so that the option can be modelled excluding its immediate payout as in 

Equation (23). Additionally, for this purpose, it is assumed that the state variable   follows a 

geometric Brownian motion.  

               (23) 

Using Itô’s Lemma, the right hand side of Equation (23) can be expanded with respect to the 

underlying stochastic component of the asset,     and, after simplification and 

rearrangement, results in the differential equation (24). 
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         (24) 

Additionally, the general solution of Equation (24) must adhere to three boundary 

conditions as indicated in (25) (Dixit and Pindyck, 1994). The first condition stems from the 

absorbing barrier of the stochastic process followed by the state variable  . Intuitively, this 

indicates that if the price process reaches zero, the option to invest will be of no value. 

Secondly, the second branch of (25) is known as the value-matching condition, and indicates 

the net value of the asset by subtracting a project’s expected, discounted costs,    from its 

expected, discounted revenues at the optimal investment threshold,      . Lastly, the third 

branch of (25) is the smooth-pasting condition, which guarantees that the derivatives of the 

functions,       and      , meet tangentially at a certain threshold point.  

  
                           
             
                  

   (25) 

Furthermore, in order to satisfy the first branch of (25), it is assumed that the general 

solution takes the functional format         , which is then substituted into Equation 

(24). By doing so, Equation (24) reduces to the fundamental quadratic outlined in Equation 

(26). 

 
 

 
                (26) 

In order to find a solution to Equation (26), the quadratic formula is implemented to outline 

both the positive and negative roots of the solution,    and   , indicated in the first and 

second branch of (27) respectively. 

 
 
 

 
 

     
 

  
 
 

 
  

    
 
  

  
 

     

  
               

     
 

  
 
 

 
  

    
 
  

  
 

     

  
              

       (27) 

It then follows that as the second-order, Cauchy-Euler differential equation (24) is linear in 

its dependent variable      and its derivatives, it has a general solutions that can be 

expressed as a linear combination of any two independent solutions as in Equation (28) 
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(Dixit and Pindyck, 1994). The endogenous constants,    and   , remain undetermined, 

whereas     and    represent the aforementioned  positive and negative roots of the proposed 

form of the solution. Notice as       and the absorbing barrier       , the second term 

in Equation (28) goes to infinity as    . Hence, the second endogenous constant is set 

equal to zero,     , to mitigate this effect. 

 
        

      
   

    
   

(28) 

Consequently, from these three boundary conditions and the proposed form of the solution, 

one can find the optimal investment policy by deriving both the optimal investment 

threshold and the value of the option to invest. 
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5. Analytical Formulations 

5.1 Assumptions and Notations 

Consider a situation in which a price-taking firm faces an investment decision in 

production capacity. Prior to investment, the firm is assumed to be generating no cash flow. 

It can be interpreted that the firm is considering investment in incumbent technology 

capacity while simultaneously weighing the possibility that an existing disruptive technology 

will potentially shift incumbent technology market conditions. As such, the dynamics of 

demand shock are governed by a Markov regime-switching model. In this model, the 

incumbent technology market has an exogenous output price denoted by the variable    

where time,     , is considered to be continuous. Specifically, the exogenous output price 

follows a Markov-modulated geometric Brownian motion as described in (29). 

                                   (29) 

In this stochastic differential equation, the incumbent technology’s growth rate is denoted by 

       its volatility is represented by      , and     is the increment of the standard Brownian 

motion. Also, the firm implements a subjective discount rate,    which is considered 

constant, and, intuitively, it follows that          The demand shift parameter,      

       governs the switch between two regimes with both known growth rates and 

volatilities. As it is assumed that there are only two regimes in the economy, the state-

dependent growth rates and volatilities take the form: 

               
               
               

  

Within these two states, a specific incumbent technology market is represented. In the first 

regime, a booming incumbent technology market is assumed where the disruptive 

technology has not yet satiated or taken market demand. In the second regime, the resulting 

incumbent technology market models the demand shock a successful disruptive technology 

paradigm shift incurs. Consequently, the exogenous output price parameters in the 

incumbent technology market has both boom- and recession-like characteristics, which are 

reflected in regime one and regime two, respectively. Hence, as uncertainty is negatively 

related to economic conditions (Goto et al., 2012, Bloom, 2009), a larger growth rate is 



 29 

assumed in the first regime,      , and a larger volatility is assumed in the second 

regime       .  

In addition, the process      is assumed to follow a Poisson law such that      is a 

two-state Markov chain with the transition from regime one to regime two characterized by a 

jump with intensity     As such, the process       has the transition matrix between time   

and     : 

 
        

  
   

This indicates that during an infinitesimal time interval     there is a probability     that the 

booming incumbent technology market,          will shift to a recessive incumbent 

technology market,          Conversely, during the infinitesimal time interval   , there is a 

probability       that a regime-switch will not occur, and the incumbent technology 

market will continue in regime one.  

Additionally, project scale is denoted by the state variable       when the firm has 

discretion over investment timing. However, when a firm exercises investment in a now-or-

never investment opportunity, the capacity state variable is denoted by       . What is more, 

optimality is assumed by lower-case notation:       is the time at which the firm exercises 

the option to invest,        denotes the optimal investment threshold, and       (        is the 

corresponding optimal capacity. In terms of costs, the firm must consider both an operating 

and an investment cost in order to effectively evaluate the investment opportunity. Over the 

production facility’s lifetime, an operating cost component is assumed of the incumbent 

technology that is denoted by the deterministic variable,    Likewise, the fixed and 

irrecoverable investment cost   is considered linked to capacity as displayed in (30). 

                       
          (30) 

In Equation (30),   and   are regarded as constants whereas the parameter   implies that the 

project investment costs exhibit diseconomies of scale as capacity sizing increases. The 

fundamental basis of this assumption is commonly seen in both the renewable energy 

industry as well as in a monopsonistic buyer environment in which a firm contemplates 

investment facing increasing prices due to increasing demand (Chronopoulos et al., 2015, 

Bøckman et al., 2008).  
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Moreover, immediate investment into additional capacity is considered the 

opportunity cost of foregoing investment into a risk-free asset with a constant rate of return, 

    . Therefore, the net value of the investment project,        takes this into consideration 

by aggregating the net present value of immediate investment,      , the deterministic 

operating cost component,       , as well as the opportunity cost of investment,          . In 

the case that the firm chooses to delay investment into additional capacity, the firm then 

holds the perpetual option,      , to invest in an incumbent technology project. Moreover, it 

is assumed that once exercise of the option has occurred, production starts instantaneously at 

full capacity with no operational flexibility to respond to exogenous demand factors.  This 

assumption linked to production flexibility is referenced as the clearance assumption, and 

empirical evidence supporting this claim can be found in numerous pieces of literature 

(Chod and Rudi, 2005, Chronopoulos et al., 2015). For example, large integrated steel 

facilities exemplify this condition due to cost barriers to exit the steel industry. Pressure to 

cover fixed costs, the integrated steel industry’s continuous production technology, and the 

high cost of shutting down furnaces reinforce the producer’s resolve to continue production 

as normal. Hence, these obstacles induce integrated steelmakers to continue stable 

production in the face of diminishing returns (Madar, 2009).  

5.2 The Model 

In this section, an analytical framework for an incumbent technology, production 

capacity investment decision will be developed. In order to do so, the investment decision 

will be modelled through backward induction as an optimal stopping problem where the 

solution will be proposed through the usage of the Bellman equation, as well as the value-

matching and smooth-pasting conditions. Furthermore, analytical expressions governing the 

value of the option to invest, the optimal investment threshold and the corresponding optimal 

capacity under price and technological uncertainty will be derived. In order to account for 

technological uncertainty, regime-switching will be incorporated into the model.  

5.2.1 Regime 2 

First off, an expression governing the firm’s optimization objective is derived as 

indicated in (31). The inner maximization of (31) represents the net payout from immediate 

investment in the project. As the output price,     is fixed and known at the time of 
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investment, the analytical expression is maximized with respect to the capacity of the 

project,    . Furthermore, the left-hand side of the maximization represents the option to 

invest. According to the Bellman principle, an investment opportunity over an infinitesimal 

time interval,     is the equivalent of the expected rate of capital appreciation of an asset 

(Dixit and Pindyck, 1994), which is further interpreted according to the price process, 

    . By combining these two respective valuations together, the firm can then derive the 

optimal stopping policy analogous to the same mechanism in which a financial call option is 

exercised.  

                                
   

             (31) 

In order to provide an overarching view of the optimal stopping policy, the dynamics of the 

option to invest are outlined in Figure 2. At time,   , the firm exercises the option to invest at 

the corresponding output price,    , and receives the expected value of a project  with 

perpetual lifetime. Simultaneously, at the time of investment, managerial discretion over 

project scale is exercised, choosing capacity at   . Consequently, the resulting cash flows 

are determined by the project scale, which are, as will be determined, a function of the 

current output price.  

 

Figure 2: The Optimal Stopping Policy 

 

Now-or- Never Investment  

The immediate investment decision in regime two is characterized by the inner 

maximization of Equation (31).  In this scenario, the firm is assumed to ignore the possibility 

to delay investment into the project, and takes the view that the investment is a now-or-never 

proposition; if the firm does not undertake the investment immediately, the investment 

proposition will cease to exist. The net value of the investment project,      is derived by 
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combining the project’s stochastic revenue stream, and both the deterministic operating cost 

of the project as well as the opportunity cost of investment. The expectation operator,     

conditional on the initial output price,    of the price process allows an estimation to be 

made of the project’s net present value based on its Markov properties and independent 

increments. Secondly, in order to discount the cash flows to the current timeframe, a 

subjective discount rate chosen by the firm is implemented represented on the left-hand side 

of (32). Lastly, because the investment decision is taken during the time frame in which a 

regime-switch has already occurred, the expected value of the exogenous output price 

process can be solved by referencing the geometric Brownian motion property exemplified 

in Equation (11).  

                                       

 

 

  (32) 

As such, both the stochastic revenue stream and the aggregate costs of the project are 

effectively discounted at the firm’s subjective discount rate over the lifetime of the project, 

and the net present value for a now-or-never investment becomes a function of project scale 

and the exogenous output price as derived in (33). 

           
     

    
 
            

 
  (33) 

Subsequently, as the analytical expression in (33) is exclusively reliant on managerial 

discretion over capacity, the firm must then determine the corresponding optimal capacity, 

     to maximize the value of the now-or-never investment decision. Hence, in order to find 

the optimal investment size, the partial derivative of the net value function with respect to 

production capacity is taken as represented below in (34). As this occurs when the marginal 

value of an extra unit of production capacity equals its marginal costs, the partial derivative 

is set equal to zero to uphold this condition (Bøckman et al., 2008).  

 
            

    
  

 

    
 
           

   
 

 
   (34) 

Through algebraic rearrangements, the corresponding optimal capacity is then isolated, and 

the resulting analytical expression becomes a function of the current output price as 

summarized in (35). As the residual terms are assumed to be constant and known, the 
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derivation provides a useful, observable function that serves as the optimal investment rule, 

and can be implemented by the decision maker based solely on current observable 

information.  

Proposition 5.1 A firm’s now-or-never investment decision under price uncertainty has an 

optimal capacity defined as: 

    
   

                  
 

   
 

  

    
       

 
   

 (35) 

The Value of Waiting 

The option to invest in regime two is represented by the left-most term in the outer 

maximization of Equation (31).  In this scenario, the firm is assumed to have the option to 

defer investment in an incumbent technology project for the possibility of new information 

to arrive that might affect the desirability or timing of the expenditure. The firm’s 

optimization objective is then further partitioned according to the optimal investment 

threshold,      as indicated in Equation (36). On the first branch on the right-hand side of 

Equation (36), the option to invest is modelled by selecting a time interval,           on 

which the option continues to be held and decomposing the investment opportunity into two 

components: its immediate payout, and its continuation value (Dixit and Pindyck, 1994). 

Considering the investment opportunity generates no cash flow until exercise, the option 

value comprises solely of its continuation value. In accordance with the Bellman principle, 

the value of the option then captures the discounted expected value of the capital 

appreciation of the incumbent technology project. Hence, the expected continuation value of 

holding the option beyond the infinitesimal time interval    is discounted with the right-most 

term of the first branch,      . Furthermore, as the option is a function of the current 

exogenous output price  the fluctuations in output price,     may accurately denote the 

stochastic nature of the capital appreciation of the incumbent technology project. On the 

second branch on the right-hand side of Equation (36), the current output price surpasses the 

optimal investment threshold, and indicates that immediate investment is optimal as the 

value of the project is greater than the value of holding the option to invest. In accordance 

with the firm’s optimization objective, the corresponding optimal capacity as derived in 

Equation (35) is then chosen to maximize the expected net present value of the project.   
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  (36) 

In order to obtain a general solution to the first branch on the right-hand side of 

Equation (36), the expression,                  , can then be expanded and simplified 

using Itô’s Lemma and a Taylor series expansion at –       (see Appendix:         

Differential Equation). Consequently, the resulting Bellman equation governing the solution 

takes the form of a second-order, homogenous, Cauchy-Euler differential equation as 

indicated below in (37). 

 
 

 
  
   

    
   

     
   
  

       (37) 

By noting that Equation (37) is linear in its dependent variable,     and its derivatives, its 

general solution can then be expressed as a linear combination of any two independent 

solutions (Dixit and Pindyck, 1994) as in Equation (38). However, as the price process 

approaches zero and due to the negative root,   , the solution goes to infinity,         

Consequently, the corresponding independent solution’s endogenous constant must 

compensate for this condition,      Equation (38) then simplifies to solely to an 

independent solution with the positive root,   ,  and the corresponding endogenous constant 

 . 

 
                                       

      
(38) 

As such, through the substitution of the general solution derived in Equation (38) for the first 

branch on the right-hand side of Equation (36), the firm’s maximized net present value of its 

investment strategy can then be expressed as indicated in Equation (39).  

       

                                          
   
    

 
          

 
      

  (39) 

In order to determine the endogenous constant,     and the optimal investment 

threshold,    , the firm’s maximization objective can then be used to derive the value-

matching and smooth-pasting conditions implemented in Equation (40) respectively.  
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Conceptually, the first branch of Equation (40) illustrates that the value of the option to 

invest must match the net value obtained by its exercise, and the second branch of Equation 

(40) indicates that the project’s present value must meet tangentially at the optimal 

investment threshold (Dixit and Pindyck, 1994).   

 

 
 
 

 
     

   
     

    
 
          

 

      
     

  
    

                     

  (40) 

Through algebraic rearrangements of the value-matching condition in Equation (40), the 

endogenous constant,    can then easily be derived as indicated in Equation (41).  

   
 

   
  
  
     

    
 
          

 
  (41) 

In order to derive the optimal investment threshold, the endogenous constant   is then 

substituted into the smooth-pasting condition of Equation (40) to garner the expression 

indicated in (42).  

    
 

   
  
  
     

    
 
          

 
     

     
  

    
 (42) 

Through numerous simplifications (see Appendix: Deriving the Optimal Investment 

Threshold), the optimal investment threshold can then be expressed as a function of project 

scale as indicated below. 

         
        

      

          

   
 (43) 

In order to complete the solution, the corresponding optimal capacity at any point in the 

price process is then found by leveraging the now-or-never investment condition previously 

derived in Equation (35). By inserting Equation (43) into Equation (35) as displayed in 

Equation (44), the corresponding optimal capacity to any current price level can be found.  

     
 

   
 

 

    
 
        

      

          

   
        

 
   

 (44) 
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Through simplifications of Equation (44) (see Appendix: Deriving the Corresponding 

Optimal Capacity), an analytical expression governing the corresponding optimal capacity is 

found in (45). 

      
    

  
 

 

          
 

 
   

              (45) 

Optimal Stopping  

In order to gain a deeper understanding of the dynamics of the option to invest, the 

problem is also formulated as an optimal stopping problem. Referencing the integration 

displayed in Figure 2, the expectation operator is taken over the set of stopping times   

generated by the Markov-modulated geometric Brownian motion augmented by the  -null 

sets as indicated in Equation (46).  

          
    

                         

 

  

  (46) 

In order to make the appropriate integration transformation, the integral’s bounds are 

then redefined according to the law of iterated expectations and the strong Markov property 

of geometric Brownian motion (Chronopoulos et al., 2015, Dias, 2004, Dixit and Pindyck, 

1994), which states the dependence of the exogenous output price’s movements rely solely 

on output price information available at the time of option exercise,    .  By doing so, the 

discount factor can then be factored out of the integration while simultaneously accounting 

for the stochastic nature of exercise. In doing so, the time at which the decision to exercise 

ceases to affect the integral’s bounds as they are accounted for in the left-most argument in 

Equation (47). Hence, by factoring the stochastic discount factor, the calendar date    no 

longer bounds the integral, and the integration can be redefined over the perpetual time 

frame      .  

          
    

     
                                 

 

 

  (47) 

To evaluate the expected value of the stochastic discount factor, the condition 

      is assumed as well as observations are made of its respective boundary conditions 

(for further clarifications, see Appendix: The Expected Value of the Stochastic Discount 



 37 

Factor). After application of the necessary conditions and assumptions, the stochastic 

discount factor equates to the leftmost term in (48), and the resulting integration becomes an 

unconstrained maximisation problem. 

          
     

 
 

   
 

  

  
     

    
 
          

 
  (48) 

Using this result, the endogenous constant,    can then be determined through superimposing 

both the form of the general solution in (38) and the maximized net value of the option to 

invest as indicated in (49).  

 

      
 

   
 

  

  
     

    
 
          

 
  

   
 

   
  
  
     

    
 
          

 
  

      (49) 

Secondly, in order to find an expression governing the optimal investment threshold, 

the maximization of the net value of the option       is taken with respect to the exogenous 

output price at the time of investment,    , while noting that the condition for optimal 

capacity choice is a function of the exogenous output price at the time of investment. Hence, 

in order to find the first-order necessary condition, the product differentiation rule and the 

chain rule are applied to Equation (48), and the resulting first order necessary condition is 

displayed below in Equation (50). 

 

   
            

           
 

   
  

 

   
 

  

 
     

    
 
          

 
                        

  
 

   
 

  

 
  

    
   

  
   

    
 
         

   

 
    

   

  (50) 

Noting that the right-most term of Equation (50) contains the previously derived condition 

for optimal capacity choice as in Equation (34), the right-most term cancels to simplify the 

first-order necessary condition to: 

     
 

   
  

 

   
 

  

 
     

   
 

 
          

 
   

 

   
 

  

 
  

   
 

     (51) 
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Through further algebraic simplifications, an analytical expression for the optimal 

investment threshold can then be derived akin to Equation (43), and the process to obtain the 

corresponding optimal capacity is replicated from Equation (44). 

5.2.2 Regime 1 

For the dynamics of investment in regime one, the real options approach must take 

into consideration not only the stochastic nature of the exogenous output price, but 

additionally, the likelihood that incumbent technology market conditions will be affected by 

the development of a disruptive technology. As such, the firm’s optimization objective, 

indicated in Equation (52), must weigh the effect both price and technological uncertainty 

have on the value of the expected net present value of the maximization. On the first and 

second branch on the right-hand side of Equation (52), the firm’s option to invest and the net 

present value of a now-or-never investment are modelled respectively.  

           
                                              

    
   

          
  (52) 

In order to provide a comprehensive view of the investment problem in regime one, the 

investment under price and technological uncertainty is illustrated as in Figure 3. As before, 

at time,   , a firm exercises the option to invest at the corresponding current output price, 

     and receives the expected value of a project with perpetual lifetime while simultaneously 

choosing capacity at   . However, the resulting cash flows must take into consideration the 

likelihood of a future regime-switch,  , indicated by the broken, one-way arrow.  

 

Figure 3: Investment under Price and Technological Uncertainty 
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Now-or-Never Investment  

The immediate investment decision in regime one is again characterized by the 

maximization of the production capacity in an incumbent technology project. However, in 

this scenario, in addition to ignoring the possibility to delay investment, the firm must also 

weigh the possibility that the incumbent technology market conditions will be affected by 

the development of a disruptive technology. As such, the net value of the investment project, 

     is derived by incorporating a simultaneous system of ordinary differential equations 

governing the effects of a regime-switch. In order to observe these dynamics, irrespective of 

which regime the firm is operating within, the net value of immediate investment is defined 

as in Equation (53). In this decomposition, at time  , the net value of immediate investment 

in the incumbent technology project can be expressed as the sum of the operating profits 

over the infinitesimal time interval          and the continuation value of the project 

beyond the point         Consequently, the operating profits received upon immediate 

investment can be expressed as the revenue stream,         , and the continuation value of 

the net present value of immediate investment can be expressed  as the discounted, expected 

value of immediate investment,                        

                                        (53) 

In order to derive the net present value of immediate investment in regime one, notice 

that within an infinitesimal time interval   , there will be a regime-switch with probability 

     or a continuation of operations in regime one with a probability of         Hence, it 

follows that the expectation of the continuation value must be decomposed into two 

components to effectively accommodate for these two possible future outcomes indicated in 

Equation (54). Accordingly, the argument,                         represents the 

expectation of the continuation value of the project’s revenue streams in regime two, 

whereas the right-most argument indicates the continuation value of the incumbent 

technology project in regime one.  

                                                           (54) 

Secondly, in order to find the net present value of immediate investment in regime 

two, Equation  (53) is referenced, and, as a result, by adapting its logic and noting that the 

optimal capacity in regime two has already been derived, an expression governing the form 

of the solution in regime two can be derived as in Equation (55). 
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                               (55) 

Expanding Equation (54) and Equation (55) using Itô’s Lemma (see Appendix: Deriving the 

Simultaneous System of Ordinary Differential Equations) yields the simultaneous system of 

ordinary differential equations indicated in (56). 

 
 

 
  
 

 
  

    
   

    
   
  

                   

  
 

 
  

    
   

    
   
  

                                    

   (56) 

Borrowing from the conjecture proposed by Goto et al. (2012), the functions that satisfy the 

simultaneous system of ordinary differential equations in (56) take a linear format as 

indicated in (57). Intuitively, as can be observed from Equation (33), the residual term in the 

revenue stream,         aims to define the factor by which the expected value of the revenue 

stream is discounted.   

  
           

           
  (57) 

By taking the first- and second-order derivatives of Equation (57) with respect to 

production capacity in each regime (see Appendix: Deriving the Discount Factor Function), 

the discount factor function in regime one,     is derived. Indicated in Equation (58),    can 

be interpreted as the effects of the development of a disruptive technology on the net present 

value of immediate investment in an incumbent technology. Interpretation by this format 

yields a function that effectively incorporates both the likelihood of a regime-switch,    and 

the respective growth conditions in each market,    and   .  

    
            

                
 (58) 

As such, a function governing the net value of the investment project,     can be proposed as 

indicated in (59). The first argument represents the project’s discounted stochastic revenue 

stream, whereas the second argument again represents both the discounted deterministic 

operating cost of the project as well as the opportunity cost of the investment.  
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(59) 

As in regime two, the maximization of the value of immediate investment in regime one 

occurs when the marginal benefit of an extra unit of production capacity equals its marginal 

cost (Bøckman et al., 2008). As this is reliant on managerial discretion over capacity, the 

firm must then choose the optimal capacity,      so as to uphold this condition. Consequently, 

the partial derivative of the net value function with respect to production capacity is taken 

and set equal to zero as represented in Equation (60). 

             

    
 

 

        
 
           

   
 

 
   (60) 

Through algebraic rearrangements of Equation (60), the optimal capacity is isolated, and the 

resulting analytical expression becomes a function of the current output price as summarized 

in (61). As the residual terms are assumed to be constant and known, the derivation provides 

a function that serves not only as the optimal investment rule under now-or-never investment 

conditions, but also, can further be used to investigate the impact technological uncertainty 

has on the now-or-never, optimal capacity.  

Proposition 5.2 A firm’s now-or-never investment decision under price and technological 

uncertainty has an optimal capacity defined as: 

    
   

                  
 

   
 

  

        
        

 
   

 (61) 

By differentiating the expression of the optimal capacity in Equation (61) with respect to the 

transition probability,  , the resulting derivative in Equation (62) exemplifies the 

relationship between optimal capacity and the transition probability of a regime-switch.   

 
    
  

  
   

   
  

  

        
      

  

 
   

         
  (62) 

More specifically, noting that the first argument is positive and the right-most argument in 

Equation (62) is negative, the impact technological uncertainty has on optimal capacity is 
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defined by the residual term, 
  

        
       In order to more closely scrutinize this 

relationship, Equation (63) constructs this relationship by separating the terms to model both 

the marginal deterministic cost component as well as the marginal, discounted revenue 

stream.  

 
 

        
 
    

 
 (63) 

As the marginal, discounted revenue stream must be greater than the marginal, deterministic 

cost component of the project for a firm to legitimize now-or-never investment, 
 

        
 

    

 
,  Proposition 5.3 indicates that the rate at which the now-or-never optimal capacity 

choice changes will be decreasing with increasing levels of technological uncertainty. 

Proposition 5.3  
    

  
  . 

The Value of Waiting 

The option to invest in regime one is represented by the first branch on the right 

hand-side of the outer maximization in Equation (52).  In this scenario, the firm is assumed 

to have the option to defer investment into an incumbent technology project for the 

possibility of new information to arrive in regards to both price and technological 

uncertainty. The firm’s optimization objective is then further partitioned according to the 

optimal investment threshold,      as indicated in Equation (64). The value of the option, 

        reflects these implications and can be modelled by selecting a time interval,      

     on which the option continues to be held and decomposing it according to the project’s 

discounted, expected capital appreciation. For the dynamics of the value of the option to 

invest, notice that within an infinitesimal time interval   , there will be a regime-switch with 

probability    , or a continuation of the current regime with probability 1 –    . In the 

former case, the firm will hold the option to invest in regime one,        and, in the latter 

case, the firm will receive the option to invest in regime two,      . On the second branch 

on the right-hand side of Equation (64), the current output price surpasses the optimal 

investment threshold, and indicates that immediate investment becomes optimal at the 

derived optimal capacity as in Proposition 5.2.   
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  (64) 

Noting that       has already been determined in the previous section, the differential 

equation in (64) is expanded using both Itô’s Lemma and a Taylor series expansion at 

–       (see Appendix:         Differential Equation), which results in (65). 

Consequently, the resulting Bellman equation governing the solution takes the form of a 

second-order, non-homogenous, Cauchy-Euler differential equation. 

 
  
 

 
  

    
   

    
   
  

              
                 

 (65) 

By noting that the differential equation in (65) must be solved for both its 

homogenous and non-homogenous components, a general and a particular solution is 

conjectured in Equation (66). From the fundamental quadratic equation, it is known that the 

linear combination of independent solutions has both a positive and negative root, indicated 

by              , respectively. Hence, as aforementioned, the solution becomes 

undefined as the exogenous output price approaches zero with regards to the independent 

solution with the negative root. As a result, the endogenous component    is set equal to zero 

to circumvent this limitation, and, consequently, the term,        drops out of the form of the 

solution. Hence, the remaining linear, independent solution with a positive root,     , where 

  is an endogenous coefficient, constitutes the homogenous component of the solution in 

(66). Additionally, the non-homogenous component of the solution stems from the transition 

probability of a regime-switch as indicated by the term,       As the value of the option to 

invest in regime two takes the analogous form of a call option,              , it is proposed 

using the method of undetermined coefficients that the  non-homogenous component of the 

solution takes the form      .  

 
                        

            
(66) 

Through the conjectured solution in (66), Equation (65) is manipulated to find an analytical 

expression for the endogenous constant    as indicated in Equation (67) (see Appendix: 

Deriving the Endogenous Constant ). 
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 (67) 

As such, through the substitution of the solution derived in Equation (66) for the first branch 

on the right-hand side of Equation (64), the firm’s maximized net present value of its 

investment strategy can then be expressed as indicated in Equation (68). 

        

                                                             
               

              
 
          

 
      

  (68) 

Due to the mathematical limitations on nonlinear equations, the value-matching and 

smooth-pasting conditions cannot be used to solve for an analytical solution. Instead, the 

endogenous constant    the optimal investment threshold      and its corresponding optimal 

capacity     are determined through iterative, numeric methods using Matlab in the 

following section. 

 However, theoretically, an encompassing investment strategy can be advised to the 

firm facing an investment decision under price and technological uncertainty. First off, when 

the current output price for an incumbent technology is below the optimal investment 

threshold, the firm continues to hold the option as the value of the option surpasses the value 

of immediate exercise. Simultaneously, holding the option to invest in an incumbent 

technology is a precursor of discovery-driven planning as it implicitly warns the firm of the 

incumbent technology’s potential demise. Hence, according to the first and third 

organizational laws of disruptive technology, a firm contemplating investment into an 

incumbent technology while holding the option to invest should weigh the strategic 

implications of discovery-driven planning. 

Remark 5.1 As long as the option to invest in an incumbent technology is held under 

technological uncertainty, a firm should implement discovery-driven planning in disruptive 

technology.  
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6. Numerical Examples 

For the numerical examples, the base case scenario assumes that the growth rates in 

regime one and two are        and        with their respective uncertainty in price 

indicated by       and        Additionally, the firm’s subjective discount rate is     , 

and the risk-free rate of return is      . Moreover, the cost parameters are        

         and    . Lastly, technological uncertainty is set at        Under these price- 

and cost-related parameters, Figure 4 illustrates both the scenario in which the firm values 

the option to invest under the given price uncertainty as well as under more volatile market 

conditions,       . Under the base case scenario, the smooth-pasting condition is 

graphically represented by the tangential point between the graphs of the option value and 

the project value with the optimal investment threshold             and corresponding 

optimal capacity           . Under more volatile market conditions, the optimal 

investment threshold increases substantially,           , in addition to its corresponding 

optimal capacity,           . 

 

Figure 4: Option and project value in regime two:        and             

Interestingly, by including technological uncertainty in regime one, Figure 5 

indicates both a lower optimal investment threshold,            , and corresponding 
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optimal capacity,           , under base case scenario conditions. Further supporting 

this trend under more volatile market conditions, the firm’s optimal policy depicts a lower 

optimal investment threshold             with a corresponding optimal capacity 

         . Consequently, as the optimal investment threshold is significantly greater 

under solely price uncertainty,        , and the corresponding optimal capacity is 

significantly less under price and technological uncertainty,      , these results revoke the 

standard real options intuition that in a more uncertain economic environment, uncertainty 

causes a firm to invest later and in larger capacity. Conversely, these results indicate that 

under price and technological uncertainty, the firm invests both earlier and in limited 

capacity.   

 

Figure 5: Option and project value in regime one:        and             

Furthermore, in order to examine the robustness of these results, the impact of price 

uncertainty on both the optimal investment threshold and the corresponding optimal capacity 

are examined in each regime under base case scenario conditions. In regime two under 

volatilities of            , the effect of price uncertainty on both the optimal investment 

threshold and the corresponding optimal capacity is illustrated in Figure 6. In line with 

standard real options intuition, the optimal investment threshold increases exponentially with 
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higher levels of price uncertainty, 
    

   
  , and likewise, the corresponding optimal capacity 

also increases with higher levels of price uncertainty, 
   

   
  .  

 

Figure 6: Capacity sizing and the optimal investment threshold in regime 
two with              

Similarly, under identical values of price uncertainty in regime one,            , the 

effect of price and technological uncertainty on the optimal investment threshold and the 

corresponding optimal capacity is illustrated in Figure 7. In this setting, the relationships 

between price uncertainty and the respective optimal policies indicate a positive trend as 

previously derived in regime two. However, in comparison to regime two, as can be 

discerned graphically at both the minimal and maximal values of the tested domain of   , the 

optimal policies indicate that the start- and end-points are both lower and higher 

respectively. Additionally, further supporting a synergistic relationship among price and 

technological uncertainty, in the graphical representation of the optimal investment threshold 

and the corresponding optimal capacity, there is a sharper incline in which the exponential 

relationship between price uncertainty and the respective optimal policies are increasing.  
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Figure 7: Capacity sizing and the optimal investment threshold in regime 
one with              

Indeed, contradictory to standard real options intuition and in line with the previously 

derived numerical results, the graphical values displayed in Table 1 confirm the unique 

effect of multiple uncertainties in an irreversible, capacity investment decision. In the left-

hand column, holding all other parameters fixed, the minimum and maximum values of the 

simulated price uncertainties from Figure 6 and Figure 7 are displayed, and following, the 

optimal investment thresholds and corresponding optimal capacities are noted in each 

subsequent column. As denoted in Corollary 6.1, although on average both the optimal 

investment threshold and capacity size are increasing, the effect of technological uncertainty 

interacts implicitly with varying levels of price uncertainty in a way such that the respective 

optimal policies increase with greater levels of price uncertainty and decrease with lower 

levels of price uncertainty relative to a context of solely price uncertainty.  

Table 1: The effect of price uncertainty on the optimal investment policy 

                    

   39.2255 44.4757 32.9565 35.7852 

   159.4488 117.4418 74.4234 63.1112 

 

Corollary 6.1 The impact of technological uncertainty on capacity sizing acts 

synergistically with price uncertainty to increase project scale at higher levels of price 
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uncertainty and to decrease project scale at lower levels of price uncertainty. Moreover, 

optimal investment timing is affected in a similar format by which the delay in investment 

timing is subjugated by the level of price uncertainty.  

In order to further elucidate the interaction between technological uncertainty and 

capacity sizing, the optimal policy of the firm in regime one is illustrated in Figure 8 under 

varying transition probabilities with real number solutions,             . By noting that the 

optimal policy of the firm is monotonically decreasing as a function of technological 

uncertainty, the numerical results directly revoke the standard real options intuition that in a 

more uncertain economic environment, the firm has less incentive to invest and in a larger 

project. Conversely, indicated by Proposition 6.1, increasing levels of technological 

uncertainty decrease both the optimal capacity of the project and the optimal investment 

threshold. This is in contrast to Chronopoulos and Siddiqui (2015) who find that 

technological uncertainty has a non-monotonic impact on the optimal policy of a firm. The 

discrepancy in findings can be motivated by the investment strategy under which the optimal 

policy of the firm was evaluated under. Hence, modeling uncertainty under a lumpy 

investment strategy thereby suggests paradoxically that in a more uncertain economic 

environment, a firm both has both greater incentive to invest and in a smaller project.  

 

Figure 8: The impact of technological uncertainty on capacity sizing and the 
optimal investment threshold in regime one with              

Proposition 6.1 
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7. Conclusion 

This thesis set out to examine a firm’s choice in project scale under both price and 

technological uncertainty, and, in order to address the potential disastrous effects of 

disruptive technology on a firm operating within an incumbent technology industry, 

established an analytical framework combining both regime-switching and real options. In 

the context of a continuous time model where investments have a lumpy structure, 

managerial insight was provided through the observation of the interactions between price 

and technological uncertainty as well as the optimal investment threshold and corresponding 

optimal capacity choice for a firm. Under these circumstances, the question of how an 

investment decision in capacity sizing is affected by price and technological uncertainty was 

scrutinized with the formulation of four propositions, one remark, a corollary, and numerical 

results to provide a comprehensive answer.  

In further regards to the analytical results, conclusive derivations highlighting insight 

on the immediate investment decision were provided by both separately and simultaneously 

comparing technological and price uncertainty. Although results were confined by a 

nonlinear equation in regime one, the immediate investment decision in both scenarios was 

aided by deriving a guiding function where optimal capacity choice could be determined by 

the current output price of an incumbent technology. Furthermore, although expected, 

managerial insight was quantitatively reinforced by the conclusion that capital investment in 

an incumbent technology should decrease with increasing levels of technological 

uncertainty. Lastly, leveraging Christensen’s theory of disruptive technology, further 

managerial insight was provided to the firm by advising discovery-driven planning when 

holding the option to invest under technological uncertainty.  

In regards to the numerical results, the synergy between the two uncertainties was 

examined as well as their effect on the optimal investment threshold and the corresponding 

optimal capacity. Interestingly, although in standard capacity sizing literature it is generally 

concluded that uncertainty leads to delayed investment and larger optimal capacity sizing, 

this relationship was revoked when capacity sizing was examined under price and 

technological uncertainty. Indeed, under solely price uncertainty and managerial discretion 

over capacity sizing and timing, the conventional result was confirmed and graphically 

proven. However, by taking into consideration technological uncertainty and lower levels of 
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price uncertainty, the optimal investment strategy, numerically derived, showed that a firm 

will generally invest earlier and limit capacity investment, whereas at higher levels of price 

uncertainty, a firm will invest even later and in larger capacity. Furthermore, revoking 

standard real options intuition and in contrast with Chronopoulos and Siddiqui (2015), it was 

shown that increasing levels of technological uncertainty directly correlate with a greater 

incentive to invest and in limited project scale. Hence, by revoking standard real options 

intuition and highlighted by the discrepancy in findings with Chronopoulos and Siddiqui 

(2015), this study emphasizes that the relationship between technological uncertainty and 

project scale requires further investigation.  

As such, it is interesting to note the limitations of the model. Undeniably, although it 

is helpful to base managerial insight on an analytical framework with quantitative results, the 

complexity of the model poses severe restrictions on its overall applicability and utility. As 

the model can only support transition probabilities of              as well as a real solution 

set under specific parameter settings, it becomes exceedingly difficult to adapt the model for 

case-specific applications where a tailored-made solution can be provided for the firm. As 

this further limits the model’s micro-level utility, managerial insight can only be broadly 

provided to the firm through implicit recommendations based on the aforementioned 

numerical results. To circumvent these shortcomings would require the respective 

uncertainties to be studied in a more deterministic sense or the firm would have to be willing 

to accept a solution with a complex numerical format. However, the consequences of such 

actions would severely constrict the managerial implications and insight that the model could 

realistically provide. Accordingly, as no simple solution exists, either a simpler model would 

need to be constructed to provide a full analytical solution or the trade-off between model 

complexity and design would have to be revisited with the firm to realistically decide an 

acceptable level of quantitative insight.   

Nonetheless, in order to extend these results and to further examine the effect of 

technological uncertainty on project scale, there are many different avenues one could 

pursue based on this study. In the area of managerial flexibilities, one could additional see 

how allowing a firm the flexiblity to choose among differing investment strategies such as in 

Chronopoulos and Siddiqui (2015) could change the resulting optimal policy. Additionally, 

in order to examine the robustness of these results and further  scrutinize flexbility, 

loosening of the clearnace assumption via discretion over the production decision as in Kort 
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et al. (2011) could provide invalauble intuition to the firm’s investment decision. Operational 

flexibility could also be examined as in Hagspiel et al. (2013) through the introduction of an 

abandonment option or, similarly, with the simultaneous relaxation of the clearance 

assumption, a suspension and resumption option could be introduced. Moreover, in a flexible 

context, game-theoretic considerations could also be considered as in Goto et al. (2012) to 

see how competitive analysis affects the firm’s optimal policy. In terms of model 

parameters, although it would be expected to produce similar results in the majority of cases, 

modeling the output price akin to the inverse demand function used by Dangl (1999) would 

provide further interesting insight to capital intensive projects. Likewise, varying the type of 

stochastic process implemented in the model such as mean reversion or arithmetic Brownian 

motion could provide a means in which to further results as well as to provide the proper 

standpoint specific to the subjective, managerial view of output price. Lastly, in the area of 

uncertainty, as the model has a particular fit for the renewable energy industry given its 

convex investment cost function, environmental policy uncertainty would also be interesting 

to study, which could furthermore be extended by switching to a concave cost function to 

cover government policy uncertainty based on welfare analysis.  
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Appendix  

        Differential Equation 

The option to invest in regime two is as expressed in (A- 1). 

                        (A- 1) 

In order to obtain an expression for        (A- 1) can be expanded using Itô’s Lemma and a 

Taylor expansion at –         To do so, remark that a Taylor expansion at –       will 

obtain the expression in (A- 2).  

               
       

  
 
       

  
   (A- 2) 

Considering that higher order terms of    reach the limit of zero at a more rapid pace than 

  , the expected value of       can then be further simplified and factored out of the 

expression in (A- 1) as indicated in (A- 3). In order to denote the collection of higher order 

terms of   ,        is included in the expression. 

                                (A- 3) 

Distributing the expectation in (A- 3),       can then be further partitioned as indicated in 

(A- 4). 

                                   (A- 4) 

Using Itô’s Lemma, (A- 4) expands and simplifies to (A- 5). 

            
 

 
  
   

    
   

      
   
  

                  (A- 5) 

Simplification of (A- 5), division by     and proceeding to the limit as        a second-

order, homogenous, Cauchy-Euler differential equation is found as indicated in (A- 6). 

  
 

 
  
   

    
   

    
   
  

        (A- 6) 
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Deriving the Optimal Investment Threshold 

The smooth-pasting condition including the substitution of the endogenous constant   is 

indicated in (A- 7). 

   
 

   
  
  
     

    
 
          

 
     

     
  

    
 (A- 7) 

In order to isolate the optimal investment threshold, (A- 7) is rearranged through the 

distribution of    and multiplication of     as indicated in (A- 8).  

       

    
 
              

 
 

     

    
 (A- 8) 

Grouping together like terms, (A- 8) further simplifies to (A- 9). 

      
     

    
 
              

 
 (A- 9) 

An analytical expression for the optimal investment threshold is then found through algebra 

as indicated in (A- 10). 

    
        

      

          

   
 (A- 10) 

Deriving the Corresponding Optimal Capacity 

The now-or-never investment condition including the substitution of the optimal investment 

threshold     is indicated in (A- 11). 

    
 

   
 

 

    
 
        

      

          

   
        

 
   

 (A- 11) 

Through the immediate simplification of (A- 11), the resulting analytical expression is 

expressed as in (A- 12). 
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 (A- 12) 

In order to isolate the term,   , grouping together like terms, (A- 12) further simplifies to (A- 

13). 

      
   

 
  

      
    

   
   

  
      

                (A- 13) 

Through multiplication by the term,     , and the distribution of   , the expression 

becomes as indicated in (A- 14). 

                
   

                        (A- 14) 

Through the cancellation of like-terms and algebraic manipulation, an analytical expression 

governing the corresponding optimal capacity is found as indicated in (A- 15). 

     
    

  
 

 

          
 

 
   

 (A- 15) 

The Expected Value of the Stochastic Discount Factor 

The expected value of the stochastic discount factor is indicated in (A- 16). 

         
      (A- 16) 

Assuming that price,    follows a geometric Brownian motion and    is the date at which the 

time process reaches the fixed output price,    ,    can be chosen at an infinitesimally small 

level such that the probability that   reaches the fixed output price     is an unlikely event 

(Dixit and Pindyck, 1994). Hence, it can be assumed that      . It then follows that the 

change in the price process,     can be modelled in a recursive-like fashion from a new 

level,       as indicated in (A- 17). 

                      (A- 17) 
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Through a Taylor expansion on       at –        using Itô’s Lemma, and noting that 

higher order terms of    reach the limit of zero at a more rapid pace than   , the expression 

     can be re-written as in (A- 18).   

                   
 

 
  

   
   

   
      

  

  
                (A- 18) 

Through algebraic simplifications, division by   , and proceeding to the limit as       the 

equation then takes the form of a Cauchy-Euler, second-order, homogenous differential 

equation as in (A- 19). 

 

 
  

   
   

   
    

  

  
         (A- 19) 

As such, the general solution of      can be expressed as a linear combination of two 

independent solutions as indicated in (A- 20), where     is the positive root and    is the 

negative root of the fundamental quadratic equation. 

        
      

   (A- 20) 

Furthermore, the endogenous constants    and    can be found by leveraging the model’s 

boundary conditions. Logically, when the distance between   and     is large,    is 

exceptionally large, which implies that       approaches zero as indicated in (A- 21). 

       (A- 21) 

Secondly, as   approaches    , it is reasonable to assume that    is small, and consequently 

      approaches one as indicated in (A- 22).  

         (A- 22) 

 

Furthermore, as the term    
   is undefined when    , it further implies that        

Consolidating these findings implies that      
    . Hence, (A- 20) can be re-written as (A- 

23) and simplified to find the expected value of the stochastic discount factor.  
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(A- 23) 

Deriving the Simultaneous System of Ordinary Differential Equations 

The differential equations of the net value of immediate investment in each respective 

regime are indicated in (A- 24). 

 
                                                          

                                                                                                      
  (A- 24) 

In order to expand the branches of (A- 24), Itô’s Lemma and a Taylor expansion at –     

  are applied in a similar fashion as in (A- 18), resulting in (A- 25). 

 
 
 
 

 
 
                           

 

 
  
  

    
   

      
   
  

   

                                    
 

 
  
   

    
   

      
   
  

   

                    
 

 
  
  

    
   

      
   
  

              

  (A- 25) 

Working backwards, because          is in the expectation operator of both branches of 

(A- 24), its differential equation is first simplified as indicated in (A- 26). 

                   
 

 
  
  

    
   

      
   
  

                

           
 

 
  
  

    
   

      
   
  

          

                  
 

 
  
  

    
   

    
   
  

     

(A- 26) 

Using the second branch of (A- 26), the net value of immediate investment in regime one is 

then further simplified as indicated in (A- 27). 

                      
 

 
  
  

    
   

      
   
  

          
(A- 27) 
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Deriving the Discount Factor Function 

Regime One 

Regime one is governed by the second-order, non-homogenous differential equation 

indicated in (A- 28).  

  
 

 
  

    
   

    
   
  

                    (A- 28) 

By substitution from (57), (A- 28) becomes as indicated in (A- 29). 

  
 

 
                                              (A- 29) 

Through simplification, (A- 29) reduces to (A- 30).  

                               (A- 30) 

By algebraic manipulation of (A- 30), an analytical expression for    is derived in (A- 31). 

   
        
          

 (A- 31) 

 

Regime Two 

Regime two is governed by the second-order, non-homogenous differential equation 

indicated in (A- 32). 
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           (A- 32) 

By substitution, from Equation (57), (A- 32) becomes as indicated in (A- 33). 

  
 

 
                               (A- 33) 

Through simplification, (A- 33) reduces to (A- 34). 

             (A- 34) 

By algebraic manipulation of (A- 34), an analytical expression for    is derived in (A- 35). 

   
 

    
 (A- 35) 

By inserting (A- 35) into (A- 31) and through further algebraic manipulations, the discount 

factor function is derived in (A- 36). 

   
            

                
 (A- 36) 

        Differential Equation 

The option to invest in regime one is as expressed in (A- 37). 

                                                    (A- 37) 

In order to expand (A- 37), Itô’s Lemma and a Taylor expansion at –       are applied in 

a similar fashion as in (A- 18), resulting in (A- 38). 

                            
 

 
  
  

    
   

      
   
  

          

                                    
 

 
  
   

    
   

      
   
  

    

(A- 38) 

Further simplifications of (A- 38) yield (A- 39). 
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(A- 39) 

By combining like-terms, division by     and proceeding to the limit as        a second-

order, non-homogenous, Cauchy-Euler differential equation is found as indicated in (A- 40). 

  
 

 
  

    
   

    
   
  

              
                 

 (A- 40) 

Deriving the Endogenous Constant    

The form of the particular solution is indicated in (A- 41). 

            (A- 41) 

Noting that             insertion of (A- 41) into (A- 40) yields the expression (A- 42).  

  
 

 
                             

                            
                 

 (A- 42) 

By simplification and grouping together like-terms, (A- 42) becomes (A- 43). 

   
  
 

 
                               (A- 43) 

Through algebraic manipulations of (A- 43), an analytical expression for the endogenous 

constant    is then derived in (A- 44). 

   
     

  
 

                        

 (A- 44) 
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