
STRATEGIC MARKET ENTRY WITH PRODUCTION FLEXIBILITY IN OLIGOPOLY

Abstract. We model an oligopoly whereby several firms may enter a market in the future com-

peting with invested rivals in quantity. In this two-stage dynamic Cournot model, firms have pro-

duction flexibility to set output given stochastic demand while facing capacity constraints. Early

market entry decisions by rivals give rise to a coordination problem among would-be entrants. We

characterize the Markov Perfect Equilibrium and derive the value of the investment showing that

value is no longer monotone increasing and convex but exhibits “competitive waves.”

This work is still ”work in progress” and should not be cited or referred to without

explicit authorization from the authors.

1. Introduction

The analysis of oligopoly under uncertainty is important in today’s uncertain business environ-

ment. Typically duopoly models are used to generate prescriptions for strategic competition, but

in many industries more than two rivals compete. For example, the automotive sector is dominated

by Toyota, Volkswagen, Ford, BMW, Daimler and General Motors. Faced with disruptive tech-

nologies development (e.g., electric vehicles), firms in the sector need to reassess their strategy for

both entry (investment in R&D and production facilities) and subsequent operating (output and

pricing) decisions in light of future entrants. Such business initiatives should anticipate industry

developments, especially the number of rivals and competitive reactions.

In today’s turbulent markets, firms have trouble anticipating how markets will develop and how

rivals will behave. In the academic literature, these issues have typically been addressed separately.

The first issue regarding market developments is typically dealt with by assuming market variables

(such as demand) follow stochastic processes whose parameters are estimated using standard econo-

metric methods. Fluctuating market demand typically drives operational flexibility characterizing

flexible manufacturing systems in Operations Management (see e.g., Sethi and Sethi, 1990). Adapt-

ability to market fluctuations enables firms to limit the downside risk of their operations while fully

tapping into favorable development. Such initiatives often depend on firms’ operational hedging

capabilities (Van Mieghem, 2003). Demand uncertainty influences a firm’s operating strategy and

thus affects its valuation. Real options (RO) analysis allows to quantify a firm’s ability to adapt

to exogenous market changes and to properly assess the value of a flexible firm under uncertainty

(e.g., Dixit and Pindyck, 1994; Smith and Nau, 1995; Trigeorgis, 1996).1 Non-cooperative game

theory (e.g., Fudenberg and Tirole, 1991) provides a standard framework for addressing the second

1RO capitalizes on an analogy between cash flow claims generated in business situations and the contigent pay-
off structure of financial options. With strategic interactions having played a less significant role in determining
equilibrium outcomes in competitive capital markets, analysis of RO initially disregarded competitive interactions.

1
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Figure 1. Timing structure of market entry and flexible production decisions

challenge concerning strategic interactions among parties with conflicting objectives. The theory

on industrial organization (see, e.g., Tirole, 1988) provides additional prescriptive guidance into

how firms should behave when faced with competition. These two pillar approaches, industrial

organization and real options analysis, have recently been considered concurrently obtaining bet-

ter insights into industry dynamics via option games (e.g., Chevalier-Roignant et al., 2011). The

problems of market entry under competition and the optimal management of operational flexibility

under uncertainty are in fact intertwined.

We model an oligopoly situation whereby several firms (e.g., car manufacturers) can decide

whether to launch a new product (e.g., electric vehicles) or enter a new geographic market (e.g.,

China) at a certain future date. Once they do so, they compete in output quantity (a la Cournot)

in a market subject to fluctuating demand. This situation is modeled in two stages. Figure

1 illustrates the timing structure of the market entry and flexible production decisions. In the

first stage, rivals decide whether to enter the market (exercising their shared investment option)

given threat from rivals, i.e., they play against strategic rival uncertainty. A firm will decide to

enter the market at the specified time when disruptive technology appears or it forfeits the entry

opportunity. This situation is characteristic of industries where standards and technologies evolve

so rapidly that firms face a narrow time window to adopt the disruptive technology without missing

out on the opportunity. This is also sometimes the case when there are licensing requirements or

when markets provide a higher premium to innovators and early entrants. In the second stage,

firms face two sources of uncertainty: future demand remains imperfectly predictable, and rivals

compete a la Cournot in setting production output. We focus on the strategic interactions among

would-be entrants at the future entry date as well as the optimal operating policy. This market-

entry stage is analyzed analogous to a shared European-type call option on the value of firm assets,

with subsequent embedded operational flexibility.

To solve this two-stage dynamic marekt entry game, we proceed backwards. We first character-

ize output decisions and rival firm profits under general Cournot competition involving k active

(invested) firms. We adopt the assumption of a linear demand function with random intercept

(additive shock), in-line with Kulatilaka and Perotti (1998) and Van Mieghem and Dada (1999).

The demand level evolves over time following a geometric Brownian motion (GBM). Competing
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firms adjust their output quantity in view of realized demand given their capacity constraints.

Under the Cournot structure, firm profits are non-linear in output and so the optimal operating

policy involves a continuum from zero production at low demand to full capacity utilization at high

demand levels. This contrasts with work on operational flexibility where firms switch from one

operating mode to another (at a positive switching cost). We solve for equilibrium profit streams

and derive firm value with embedded production flexibility under demand uncertainty and strategic

competition. We then determine the demand levels at which firms invest in Markov Perfect Equi-

librium (MPE). A central issue addressed is the coordination problem the in market-entry game.

We finally determine the value of a firm’s shared investment option at the outset, generalizing the

Black-Scholes-Merton (BSM) option pricing formula (see Black and Scholes, 1973; Merton, 1973)

to allow for strategic interactions among would-be investors at option maturity.

We show that production costs, while being irrelevant in standard Cournot quantity competition,

they have a major influence on whether firms enter the market in the first place. Depending on the

magnitude of fixed entry costs, firms may end up investing even at very low demand and staying

put for a while if the prospects of future demand upsurge are substantial. Firm market entry

decisions and flexible production strategies are essentially decoupled. Market entry at low demand

may create valuable access to large future profit potential at higher demand levels. In low or

intermediate demand scenarios with the firm producing below full capacity, expectation of future

streams of profits might justify early market entry. Unlike in standard European call options, the

resulting shared investment option values are not convex or monotone increasing in demand but

exhibit “competitive waves”.

2. Literature review

The competitive situation at hand involves two types of risk: (i) strategic risk arising from

endogenous competitive interaction (strategic uncertainty) and (ii) operating risk due to demand

fluctuation (market uncertainty). Our research agenda lies at the intersection of the literature

on production flexibility (e.g., Kulatilaka and Perotti, 1998; Van Mieghem, 2003) and the option

games literature on investment under uncertainty involving strategic interactions (e.g., Smit and

Trigeorgis, 2004; Chevalier-Roignant et al., 2011). Our work explores a new territory involving the

interactions between strategic market entry and operational flexibility under general oligopolistic

competition.

Our setting shares basic similarity with Kulatilaka and Perotti (1998), who consider two firms

facing a decision to enter a market at a given future time.2 Our general approach, however,

differs in several respects. First, rather than a duopoly, we consider a general oligopoly with k

2If the two firms both enter, they compete over quantity in a one-shot game receiving Cournot duopoly profits. One
of the firms can invest early reducing variable cost c. The first-stage cost-reducing investment results in greater
“capability” (convexity) of second-stage Cournot profits, enabling the firm to take better advantage of the shared
investment option. Assuming a log-normal demand distribution, Kulatilaka and Perotti (1998) obtain a closed-form
expression for the shared investment option.
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active (invested) firms and n potential entrants (option holders). Second, once firms enter the

market they engage in repeated Cournot competition (in an infinitely repeated continuous-time

game rather than facing a one-shot game). Therefore, in our setting, the value upon entry is not

merely a discounted sum of expected Cournot profits but reflects firms’ flexibility to adapt their

production regime to realized demand subject to capacity constraints. Finally, we analyze the

coordination problem arising at the future market entry time among multiple firms. Thirdly, we

derive a more general closed-form expression for the shared investment option in oligopoly adopting

a more general demand distribution (see also discussion in Section 6).

Van Mieghem and Dada (1999) consider a two-stage model where a monopolist firm decides on

installed capacity, output and price. They consider different postponement strategies differing in

the timing of actions relative to demand realization. We use a similar notion of output postpone-

ment with hold-back to model production flexibility. We follow Kulatilaka and Perotti (1998) and

Van Mieghem and Dada (1999) assuming a linear demand function with an uncertain intercept.

Many models dealing with the timing of lumpy investment follow the early literature on tech-

nology adoption that focuses on preemption and rent-equalization (e.g., see Reinganum, 1981a,b;

Fudenberg and Tirole, 1985) extending the modeling to stochastic environments. A number of

articles address the problem of timing rivalry among two firms in a stochastic setting in line

with Fudenberg and Tirole’s (1985) model on preemption (e.g., Grenadier, 1996; Huisman, 2001;

Chevalier-Roignant and Trigeorgis, 2011). The standard assumption in these models is that firms

have an infinitely lived opportunity to enter, which is somewhat restrictive. Although this model-

ing assumption eases the derivation of trigger policies it disregards the possibility that the market

may suddenly disappear.

Aguerrevere (2003) considers two interlinked forms of flexibility. Oligopolistic firms decide at

each time on the quantity supplied to the market and on whether to invest in extra capacity. Firms

are assumed symmetric and their number is fixed and known at the outset, thus competition over

market entry is not considered. Firms can increase capacity by any amount at any time. While

we do also model flexible output decisions we do not allow capacity adjustments but a single

entry decision for each firm. We thus focus on the industry structure that arises endogenously for

different demand realizations, whereas Aguerrevere (2003) focuses on the dynamics and value of

industry capacity.

3. Model Setup and Solution Approach

We consider a setting where n firms may launch a new product or potentially enter a market at

a given future time, T . The industry structure is unknown at the outset but remains unchanged

once firms have entered the marketplace. At the time firms make their investment decisions, future

profits are stochastic influenced both by market demand realization and the future strategic firm

choices in the new industry. Process (Xt; t ≥ 0) describes the uncertainty about market demand
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which follows a geometric Brownian motion (GBM) of the form:

(3.1) dXt = µ Xt dt+ σXt dBt, X0 = x (> 0),

where µ = r − δ (> 0) is the risk-neutral drift or growth rate in demand, δ (> 0) is a “dividend”

yield, σ (> 0) is the constant volatility term, and B is a standard Brownian motion.3

We consider two stages (see Figure 1): (i) the market-entry game between n option holders

taking place at future time T , and (ii) the ensuing repeated Cournot competition game involving

flexible production decisions under demand uncertainty and capacity constraints. In the first stage,

each potential entrant (firm i = 1, . . . , n) decides whether to enter the market at future time T ,

with the entry decision noted as ei ∈ {0, 1}. If firm i enters (ei = 1), it incurs a one-time lump-

sum fixed cost Ii to install capacity thereafter facing a capacity constraint with upper production

bound q̄i. Ii also incorporates financing costs which can differ according to whether the potential

entrant has ready access to the capital markets and relatively affordable external financing sources.

When later the firm operates in the second stage, it additionally incurs diverse (fixed and variable)

production costs. Assuming a homogeneous production technology, variable production cost, c, is

the same for all firms. This situation is more applicable when products are fairly standardized and

differences in variable production costs are small or negligible. Depending on economies of scope,

firms may differ in their fixed production costs, fi, i = 1, . . . , n. For instance, conglomeration may

reduce project-specific fixed costs by spreading administrative costs over several businesses. In the

second stage, assuming firm i has entered, its decision variable is the quantity amount produced,

with rivals competing in a Cournot fashion. At time t (≥ T ), invested firm i selects individual

quantity qi(t), with all firms collectively supplying industry output Qt =
∑n

i=1 qi(t). Firm i’s

output decision, qi(t), is subject to capacity constraints:

(3.2) 0 ≤ qi(t) ≤ q̄iei, ∀t ∈ [T,∞), ∀i = 1, . . . , n.

Firm i’s strategy, noted γi with γi = {ei, qi(·)}, consists in choosing whether to enter (ei = 1) at

the future time T (e.g., when the market opens or is deregulated) and in selecting the appropriate

output qi(t) under capacity-constrained Cournot oligopolistic competition. Since future demand

3The process Xt is defined on probability space (Ω,F ,P). The augmented Brownian filtration (Ft; t ≥ 0) captures the
historical path of the process, Ft = σ(Bs, 0 ≤ s ≤ t) being the information set at time t and F∞ = F . As standard
in the real options literature, the firm can perform financial hedging to mitigate certain business risks; this allows
considering a stochastic process with a drift adjusted for the underlying riskiness and therefore discounting future risk-
adjusted cash-flows at the risk-free rate, r(> 0), under the risk-neutral probability measure, P. According to Birge
(2000), option-pricing theory offers a rigorous way to incorporate risk aversion in linear cash-flow expressions without
relying on (strictly concave) utility functions. Finally, δ may represent some form of convenience yield, anticipated
competitive erosion, opportunity cost or below-equilibrium growth or return shortfall (e.g., see McDonald and Siegel,
1986; Trigeorgis, 1991).
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is stochastic, the strategy must be non-anticipative and allow for flexibility in managerial decision

making.4

As in Kulatilaka and Perotti (1998) and Van Mieghem and Dada (1999), we assume an inverse

linear demand of the form

(3.3) p(Xt;Qt) = Xt − b Qt, b > 0.

The future market price, p(Xt;Qt), is driven by future demand realizations Xt and the firms’

collective output choices captured by aggregate industry supply Qt. Given demand realization Xt,

firm i’s gross profit is

(3.4) πi(Xt;Qt) = πi (Xt; qi(t), Q−i(t)) = p(Xt;Qt) qi(t)− c qi(t),

where Q−i(t) is the quantity produced collectively by all other supplying firms except firm i at time

t, with Qt ≡ qi(t) + Q−i(t). Firm i discounts future (risk-adjusted) cash flows at the (risk-free)

rate r. At the outset, the value of firm i if it follows arbitrary strategy choice γi, with its rivals

pursuing strategies γ−i, is

Jxi (γi, γ−i) = Ex
[
e−rT

{ˆ ∞
T

e−rt [πi (Xt;Qt)− fiei] dt− Iiei
}]

,

subject to stochastic demand (3.1) and capacity constraints (3.2). Here, Ex[·] ≡ E[· | X0 = x] de-

notes the conditional expectation under the risk-neutral probability measure. Expression Jxi (γi, γ−i)

gives the expanded net present value of future cash flows for strategy profile (γi, γ−i). This differs

from the standard notion of net present value considered in corporate finance since here firm i’s

management has flexibility in deciding whether to enter at T and what production strategy qi(t)

to follow in each future period.

In the above dynamic game, we solve for a Markov Perfect Equilibrium (MPE), i.e., a profile of

optimal strategies
(
γ∗i , γ

∗
−i
)

in the class of Markov or feedback policies that yields a Markov Nash

equilibrium (MNE) in each demand state x.5 In MPE, firm i’s investment option is worth

(3.5) Ci(x) = max
γi

Jxi (γi, γ
∗
−i).

The solution approach proceeds backwards. First we obtain the MNE output decisions for

demand level Xt, obtain the equilibrium Cournot oligopoly profits and derive the value of flexible

firm i when it invests along with rivals. We then analyze the market entry game and identify

the Pareto-optimal entry MNE. Since the n rival firms face a single possible entry time when the

market opens, our initial investment assessment problem bears analogy with a European call option

4The entry decision, ei, is made based on the information set at time T (ei is FT -measurable), while the output
decisions (qi(t); t ≥ T ) are (Ft; t ≥ T )-measurable. The output strategy qi(·) is degenerate with qi(t) = 0 for t ≥ T
if ei = 0.
5See Fudenberg and Tirole (1991, Chapter 13) for a discussion on MPE. The perfectness of a MNE strategy profile
is easily shown.
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shared by the n firms. Leveraging on this analogy, we then derive a general expression for the value

of the shared investment option in the most likely MPE. For sake of exposition, we first assess the

value of a flexible firm and investigate the market entry game as if it was taking place at time 0,

with (initial) demand x. We later consider the initial option valuation problem, transposing the

market-entry decision from time 0 to time T , with future realized demand XT being random.

4. Operational Flexibility in Production Stage

In this section, we consider the problem of determining the equilibrium output of k firms in a

Cournot oligopoly facing capacity constraints and determine their Cournot profits. We then derive

the value for an oligopolist firm with production flexibility under demand uncertainty and capacity

constraints.

4.1. Cournot Competition in Production with Capacity Constraints. We wish to identify

a Markov Nash equilibrium, i.e., a profile of quantity choices such that no firm has an incentive to

unilaterally deviate from its equilibrium output decision. Suppose k firms have entered at future

time T and let (qCi , Q
C
−i) ≡ (qCi (Xt), Q

C
−i(Xt)) be the (k-tuple of) MNE output decisions in demand

state Xt.
6 Here, the fixed cost components Ii and fi play no role in the determination of the MNE

once the firm has invested. The equilibrium Cournot (gross) profit, πCi (Xt; k), of firm i = 1, . . . , k

satisfies

πCi (Xt; k) ≡ π(Xt; q
C
i , Q

C
−i) ≥ πi(Xt; qi(t), Q

C
−i)

for all output decisions qi(t) satisfying the capacity constraints, 0 ≤ qi(t) ≤ q̄i, i = 1, ..., k.

Suppose now firms are ranked and indexed by increasing capacity, namely

q̄0 < q̄1 ≤ · · · ≤ q̄m ≤ · · · ≤ q̄k < q̄k+1,

with q̄0 = 0 and q̄k+1 =∞. Proposition 1 below establishes the MNE for the static Cournot game

with capacity constraints.

Proposition 1. In MNE, each firm i will produce output qCi (Xt) in demand state Xt, with qCi (Xt)

given by

(4.1) qCi (Xt) =


0 if Xt ∈ (0, c), (no production)

Xt−Σm
b(k−m+2) if Xt ∈ [xCm−1, x

C
m), m = 1, . . . , i (unconstrained production)

q̄i if Xt ∈ [xCi ,∞) (constrained production)

where Σm ≡ c+ b
∑m−1

j=0 q̄j and xCm ≡ bq̄m (k −m+ 2) + Σm for m = 1, . . . , i.

Proof. See Appendix A. �

6Superscript C corresponds to Cournot-Nash equilibrium outcomes.
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Similar to the known unconstrained Cournot-Nash equilibrium, a firm will not produce at low

demand Xt ≤ c as it would not sell at a price lower than its marginal production cost c. For large

demand Xt ≥ xCi , firm i will produce at full capacity q̄i (becoming constrained). When no capacity

constraint is binding, c ≤ Xt < xC1 , firm i produces an unconstrained quantity

(4.2) qCi (Xt) =
Xt − c
b(k + 1)

, Xt ∈ [c, xC1 ).

The above solution resembles the equilibrium Cournot quantity in an unconstrained k-firm

oligopoly (see, e.g., Tirole, 1988). However, in the capacity-constrained case above, firms’ capacity

limits q̄m, m = 1, . . . , i, influence the quantity-setting behaviors for large demand. In demand

region [xCm−1, x
C
m), m = 1, . . . , k, firmm is the smallest firm that is not constrained by its production

capacity. In other words, for Xt ∈ [xCm−1, x
C
m), m − 1 firms are capacity-constrained, collectively

producing
∑m−1

j=0 q̄j , while k −m + 1 firms are not. Demand threshold xCm is exogenous through

the distribution of firm capacities, but endogenous through the quantity decisions of the largest

non-constrained firms. Unconstrained firms face a standard Cournot quantity game where excess

demand Xt is adjusted downwards to Xt− b
∑m−1

j=0 q̄j to account for the impact of the constrained

firms’ output decisions on the equilibrium price, as verified by employing k′ = k − m + 1 and

X ′t = Xt−b
∑m−1

j=0 q̄j . Effectively, constrained firms are absorbed as competitive fringe and become

non-strategic. The remaining strategic unconstrained firms internalize the collective actions of

constrained firms as an exogenous reduction in demand. We refer to the production pattern

followed by firm i at intermediate demand Xt ∈
[
xCm−1, x

C
m

)
as “production regime” m.

Having determined the optimal quantity we next derive the corresponding equilibrium profits.

Since the profit expression in (3.4) is quadratic in output choice qi, the equilibrium output choice

qCi (Xt) is linear in Xt at intermediate demand [c, xCi ). Therefore, optimal output is continuous in

the intermediary demand region. Proposition 2 below gives the Cournot profits earned by invested

firm i in MNE under capacity constraints.

Proposition 2. In Cournot oligopoly with k firms facing homogeneous capacity constraints, the

(gross) profit of firm i at demand level Xt is given by

πCi (Xt; k) =


0, if Xt ∈ (0, c) , (no production)

(Xt−Σm)2

b(k−m+2)2 , if Xt ∈
[
xCm−1, x

C
m

)
,m = 1, . . . , i, (unconstrained production)

q̄i
(Xt−Σm)
b(k−m+2) , if Xt ∈

[
xCm−1, x

C
m

)
,m = i+ 1, . . . , k + 1, (constrained production)

where Σm ≡ c+b
∑m−1

j=0 q̄j, x
C
m ≡ bq̄m(k−m+2)+Σm and xCk+1 =∞ by convention. The Cournot

profit of firm i is monotone increasing in demand Xt and decreasing in variable cost c and in the

number of invested firms k.

Proof. The profit expressions obtain directly using the MNE quantities from Proposition 1 and the

demand function in (3.3). �
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For low demand Xt < c, the firm does not produce earning zero profit. For intermediary demand,

it is unconstrained as it produces below its capacity, with profits being quadratic (convex) in

demand, as in Kulatilaka and Perotti (1998). For large demand, Xt ≥ xCi , firm i’s capacity

constraint becomes binding, though this is not necessarily the case for its larger rivals; firm i’s

profit here increases in a linear fashion as the firm, faced with capacity constraints, is not in a

position to expand output to tap on increased demand.

4.2. Value of Production Flexibility in Constrained Cournot Oligopoly. We next turn

to determining the value of a firm with production flexibility. Assuming output decisions are

independent over time, firm value is the expected discounted sum of Cournot profits, πCi (Xt; k),

with firms following the MNE strategies as in Proposition 1:

Wi(x; k) ≡ max
qi(·)

Ex
[ˆ ∞

0
e−rtπi

(
Xt; qi(t), Q

C
−i(t)

)
dt

]
= Ex

[ˆ ∞
0

e−rtπCi (Xt; k) dt

]
,

where the demand process (Xt; t ≥ 0) follows the GBM of equation (3.1).

Proposition 4 below provides a closed-form expression for firm i’s shared investment opportunity

value, Wi(x; k), when k firms have invested.

Proposition 3. The value of flexible firm i, Wi(x; k), in a k firm Cournot oligopoly with capacity

constraints is:

(4.3) Wi(x; k) =


A0x

β1 if x ∈ (0, c),

NPV U
i (x; k,m) +Amx

β1 +Bmx
β2 if x ∈ [xCm−1, x

C
m), m = 1, . . . , i,

NPV C
i (x; k,m) +Amx

β1 +Bmx
β2 if x ∈ [xCm−1, xm), m = i+ 1, . . . , k + 1,

where

NPV U
i (x; k,m) ≡ 1

b(k −m+ 2)2

[
x2

2δ − r − σ2
− 2Σmx

r − µ
+

Σ2
m

r

]
, m = 1, . . . , i,

NPV C
i (x; k,m) ≡ q̄i

b(k −m+ 2)

[
x

r − µ
− Σm

r

]
, m = i+ 1, . . . , k + 1,

β1, β2 ≡ −
r − δ − σ2/2

σ2
±

√(
r − δ − σ2/2

σ2

)2

+
2r

σ2

with β2 < 0 < 2 < β1, Σm ≡ c+b
∑m−1

j=0 q̄j, and xCm ≡ bq̄m(k−m+2)+Σm. The Am and Bm terms

are uniquely defined and obtained recursively with x 7→Wi(x; k) being continuously differentiable.7

The above firm value is monotone increasing in demand x with Wi(0; k) = 0 and Wi(∞; k) = ∞.

x 7→Wi(x; k) decreases in the number of firms. Above assumes δ > [r + σ2]/2.

Proof. See Appendix C. �

7Superscripts U and C stand for “Unconstrained” and “Constrained,” respectively.
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The value of flexible firm i, Wi(x; k), depends on current demand x. Effectively, this information

incorporates current market predictions about future demand developments (e.g., large or low

expected demand). This value will adjust as revised or updated demand state x shows larger or

smaller future demand. For low current demand, x ∈ (0, c), production flexibility is not worthless; it

reflects option value A0x
β1(> 0) since demand may potentially grow sufficiently to justify activating

production at a later stage.

For intermediate demand, [xCm−1, x
C
m), with m = 1, . . . , i, unconstrained firm i produces quantity

(x− Σm)/[b(k −m+ 2)] (Proposition 1) and earns profit (x− Σm)2 /[b(k −m+ 2)2] (Proposition

3), which is quadratic or convex in demand x. If the unconstrained firm would produce at this

rate forever, its net present value from a committed investment now would be

NPV U
i (x; k,m) = Ex

[ˆ ∞
T

e−rt
(Xt − Σm)2

b(k −m+ 2)2
dt

]
, x ∈ [xCm−1, x

C
m), m = 1, . . . , i,

as given in Proposition 4.8 This is the first term appearing in the second line in the expression for

Wi(x; k) in Proposition 4. As demand fluctuates, however, a flexible firm will adjust production

in view of demand realizations and rivals’ actions given its capacity constraints. The second term,

Amx
β1 , on the second line for Wi(x; k) in Proposition 4 captures the option-value adjustment for

scenarios in which demand rises and the firm scales up production (up to its capacity limit q̄i). The

third term, Bmx
β2 , captures the option-value adjustment for scenarios in which demand declines

and the firm contracts production.

In the high demand region [xCm−1, xm) for m = i+ 1, . . . , k + 1, firm i is constrained producing

at full capacity q̄i (Proposition 1), earning only linear Cournot profit, q̄i (x− Σm) /(k − m + 2)

(Proposition 3). The committed net present value for a constrained firm is then

NPV C
i (x; k,m) = Ex

[ˆ ∞
T

q̄i (Xt − Σm)

k −m+ 2
dt

]
, XT = x ∈ [xCm−1, x

C
m), m = i+ 1, . . . , k + 1

as given in Proposition 4. Again, for a flexible firm that will not follow this committed stand, value

adjustments are needed. Amx
β1 corresponds to adjustments linked to flexible expansion strate-

gies in case of future demand increases, while Bmx
β2 captures the flexibility value of production

curtailments in face of low demand.

This equilibrium production regime will adjust each time future demand Xt reaches a succes-

sively higher demand threshold xCm, since more rivals will face binding capacity constraints while

the remaining firms do not. The terms Amx
β1 in effect relate to a series of distinct perpetual Amer-

ican call (expansion) options, each corresponding to an industry-wide production regime change

arising because yet another previously-unconstrained firm now faces a binding capacity constraint

8For Xt ∈
[
xCm−1, x

C
m

)
, m = 1, . . . , i, the quadratic Cournot profit expression (see Proposition 3) has terms in X2

t ,

Xt and a constant, Σ2
m. The perpetuity value of the constant amount is Σ2

m/r. For terms that trend upwards, we
employ the (continuous-time) Gordon formula: the present value of receiving a cash flow starting at y and growing
in perpetuity at a rate g (< r) is y/(r− g). The growth rate for (Xt; t ≥ 0) is r− δ; it is 2δ− r− σ2 for (X2

t ; t ≥ 0).
This justifies the NPV Ui expression in Proposition 4.
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at new demand threshold xCm (> x). The terms Bmx
β2 are similarly linked to a series of perpet-

ual American put (contraction) options; each time a demand threshold xCm (< x) is “hit” from

above, the capacity constraint of yet another firm is relaxed, with rivals subsequently facing fiercer

competition in a less attractive marketplace, adapting their production regime accordingly.

In reality, different historical paths, resource accumulation policies or heterogeneous risk atti-

tudes may lead firms to have different capacities at the future market entry time. While asymmetry

among firms can be observed in a number of industries, it is difficult to explain it a priori. The

assumption of symmetric capacity, q̄i = q̄ for all i = 1, ..., k, hence seems mild as it avoids cherry

picking firms.9 In the symmetric capacity case, Propositions 1 to 3 reduce to simpler expressions

summarized in Proposition 4 below. In the remainder of the paper, we focus on this case where

invested firms have the same capacity.

Proposition 4. In Cournot oligopoly with k invested/ active firms with homogeneous capacity q̄,

a firm’s output qC(Xt; k) and profit πC(Xt; k) in MNE are given by

qC(Xt; k) =


0 if Xt ∈ (0, c)

Xt−c
b(k+1) if Xt ∈ [c, x̄k),

q̄ if Xt ∈ [x̄k,∞),

and πC(Xt; k) =


0 if Xt ∈ (0, c),

(Xt−c)2

b(k+1)2 if Xt ∈ [c, x̄k),

q̄ (Xt−c−bkq̄)
b(k+1) if Xt ∈ [x̄k,∞),

with x̄k = b(k+1)q̄+c.10 The (gross) value of flexible firm in a symmetric k-firm Cournot oligopoly

is

(4.4) W (x; k) =


A′0x

β1 if x ∈ (0, c),

NPV 2(x; k) +A′1 x
β1 +B′1 x

β2 if x ∈ [c, x̄k),

NPV 3(x; k) +B′2 x
β2 if x ∈ [x̄k,∞),

where

NPV 2(x; k) ≡ NPV U
i (x; k, 1) ≡ 1

b(k + 1)2

[
x2

2δ − r − σ2
− 2cx

r − µ
+
c2

r

]
,

NPV 3(x; k) ≡ NPV C
i (x; k, 1) ≡ q̄

b(k + 1)

[
x

r − µ
− c+ bkq̄

r

]
,

with A′0, A
′
1, B′1, and B′2 given in the Appendix. The value of a flexible firm is decreasing in the

number of firms k. Above assumes δ > [r + σ2]/2.

Proof. See Appendix D. �

9In Proposition 3, capacity asymmetry is a fait accompli at time T in obtaining the value of a flexible firm. The
original option valuation process takes the valuation perspective as of the outset. Pinning down the Markov Nash
entry equilibria at the future market entry time T is a formidable task in this asymmetric capacity case as entry
decisions depend on the number of incumbents, firm capacities, and their specific distribution among active firms.
10In Cournot oligopoly with symmetric capacity constraints demand thresholds xCk and x̄k are identical.
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The quantity qC and profit expressions πC in Proposition 4 obtain from those in Propositions 1

and 2, respectively, and are interpreted in a similar fashion. The economic interpretation of terms

A′0, A′1, A′2, B′0, B′1 andB′2, is a bit simpler. A′0x
β1 , A′1x

β1 and A′2 correspond to perpetual American

call (expansion) options. A′2 vanishes as for large demand levels the firm’s capacity constraint

becomes binding and it cannot adjust its production regime to accommodate increased output

(further expansion option becomes worthless in high demand regions). Suppose now x ∈ [c, x̄k).

At future time τA(x, x̄k) ≡ inf {t ≥ 0 | Xt ≥ x̄k} when demand Xt exceeds demand threshold x̄k for

the first time, a symmetric firm together with all (until then unconstrained) invested firms will stop

producing unconstrained output (Xt−c)/[b(k+1)], which yields Cournot profit (Xt−c)2/[b(k+1)2],

and will instead produce constrained output q̄ and earn q̄(Xt − c − bkq̄)/b. Term A′1x
β1 thus

reflects the future “value exchange” from switching from the industry-wide production regime

with unconstrained firms to a production regime where firms fully utilize their capacities. Since

this value exchange will take place in the future at stochastic time τA(x, x̄k), it is discounted to

present with use of a (stochastic) discount factor that accounts for the likelihood of the exchange

occuring sooner or later. Suppose now x ∈ (0, c), with the firm at first producing nothing. At

future time τA(x, x̄k), a similar exchange will take place, such that A′0x
β1 embeds this perpetual

American call option value. In addition, at an earlier future time τA(x, c), the firm will start

producing and earn (Xt − c)2/[b(k + 1)2]. Expression A′0x
β1 thus captures the present value of

producing in this additional production regime.

B′0, B′1x
β2 , and B′2x

β2 correspond to perpetual American put (contraction) options. B′0 vanishes

because, when demand is low and the firm does not produce, there is no room for a production

regime change on the downside. In case of intermediary demand x ∈ [c, x̄k), B
′
1x
β2 captures the

realization that firm i will stop production when demand falls below the marginal production cost c

at time τB(x, c) ≡ inf {t ≥ 0 | Xt ≤ c}. When firm i stops producing, it no longer earns profits but

it avoids further losses; this is discounted to present time with the appropriate discount factor. For

large demand x ∈ [x̄k,∞) with the firm producing at full capacity, expression B′2x
β2 captures the

value change occurring at time τB(x, c) as well as the change in production regime arising before

— at time τB(x, x̄k) — when demand falls in the intermediary demand region x ∈ [c, x̄k). We note

that B′1 = B1; indeed, in both the symmetric and asymmetric cases, all firms stop producing at

low demand Xt (< c).

Figure 2 depicts the value of a flexible firm in a symmetric constrained Cournot oligopoly with

k = 1, 2 and 3 firms.

5. Shared Investment Option with Coordination Problem

We now proceed to analyze the earlier market-entry game among n entry option holders. The

market entry decision depends in part on whether acquiring subsequent production flexibility is

worth paying a sunk entry cost and incurring fixed per-period production costs fi. Let Vi(x; k) be
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Figure 2. Value of a flexible firm in monopoly (k = 1), duopoly (k = 2)
and triopoly (k = 3) industry structures. We assume c = 10, q̄ = 2, b = 5, I =

10, fi =
√
i, σ = 0.1, r = δ = 0.04.

firm i’s (expanded) net present value of investing and operating in a k−firm oligopoly given initial

demand x. This value (net of entry cost Ei) equals

Vi(x; k) ≡W (x; k)− Ei,

where Ei ≡ Ii + fi/r is the present value of sunk market entry costs Ii plus all fixed production

costs when the firm commits to an investment plan at entry time T . As the firm incurs fixed

production cost fi per period in perpetuity, the value of such fixed production costs, fi/r, is added

besides the fixed entry cost. Even though, owing to the firm’s production flexibility, the (gross)

value of a flexible firm, W (x; k), is necessarily positive, the (expanded) net present value, Vi(x; k),

may be negative if the firm incurs high entry costs Ei. In the following, we consider without loss

of generality potential entrants to be weakly ranked in terms of increasing aggregate investment

costs, E1 ≤ E2 ≤ · · · ≤ En.

5.1. Market-Entry Game and Coordination Problem. We next examine the entry decision

of the n potential market entrants. Since firm i incurs fixed entry and operating costs, Ei, the

firm faces a negative net value at zero demand, i.e., Vi(0; k) < 0, independent of the arising

industry structure (k = 1, . . . , n). Firm i’s net present value strictly increases with demand x,

all other factors (including the number of invested rivals) remaining constant. Rivals’ market

entries represent negative externalities as the gross value of flexible firm i, W (x; k), decreases

with the number of active firms, k. In case of capacity symmetry firms are indifferent concerning

which of the n potential entrants will eventually operate in the marketplace at T . The number of

investing firms k at market entry time T is actually unknown ex ante but can be predicted as the

equilibrium outcome of strategic interactions when demand is realized and observed by all firms at

time T . A potential entrant can make an inference on the equilibrium number of market entrants

given realized demand. To pin-point this equilibrium outcome, we determine the net present value

obtained by firm i in each possible future strategic scenario.
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Using the symmetric duopoly (n = 2) as a simple example, we want to illustrate this situation.

Consider the symmetric strategic-form game (with E1 = E2 = E) of Figure 3. If demand x

is large and duopolist values are positive, V (x; 2) ≥ 0, each firm will invest regardless of the

rival action. The resulting MNE is (Invest, Invest) or (e?1, e
?
2) = (1, 1) with identical payoffs

(V (x; 2), V (x; 2)). If demand is so low that no firm (not even a monopolist) can turn a profit,

namely if V (x; 2) < V (x; 1) < 0, both firms will stay out and not enter this market. The resulting

MNE is (Stay out, Stay out) or (e?1, e
?
2) = (0, 0) with payoffs (0, 0). In the intermediate region, i.e.,

if demand is sufficiently large to accommodate one firm but not both, V (x; 2) < 0 < V (x; 1), the

situation is more involved. If one firm stays out, its rival should invest as the monopolist value is

positive, with V (x; 1) > 0. But if the rival enters, the firm should stay out as it cannot operate

profitably in a duopoly, with V (x; 2) < 0. Two pure-strategy MNEs result along the diagonal.

These are (Invest, Stay out) or (e?1, e
?
2) = (1, 0) and (Stay out, Invest) or (e?1, e

?
2) = (0, 1), with

payoffs (V (x; 1), 0) and (0, V (x; 1)), respectively. A third MNE in mixed strategies also exists.

Firm 1

Firm 2

Invest Stay out

Invest
V (x; 2),

V (x; 2)
0,

V (x; 1)

Stay out V (x; 1),
0

0,
0

Figure 3. Symmetric Duopoly Market Entry Game

Returning to the general, asymmetric n-firm case at entry time T , when a firm faces a take-

it-or-leave-it entry opportunity, the standard NPV rule applies: the firm invests if its (expanded)

NPV is positive. If demand x is sufficiently large such that Vi(x; k) ≥ 0, firm i can profitably enter

the market jointly with k− 1 other firms. Xk
i ≡ min {x ∈ R+ | Vi(x; k) ≥ 0} and xk ≡ Xk

k denotes

the lowest demand level at which the i-ranked firm (respectively the k-ranked firm) is profitable in

a k-firm asymmetric Cournot oligopoly. By convention, we set X0
n = −∞ and Xn+1

1 = ∞. Since

x 7→ Vi(x; k) is monotone increasing from Vi(0; k) < 0 to Vi(∞; k) > 0 for all i = 1, ..., n, we have

Xk
1 ≤ ... ≤ Xk

n. These demand thresholds are crucial in pinning down the Markov Nash equilibria.

If condition Vi(x; 1) > · · · > Vi(x;n) ≥ 0 or x ≥ Xn
i is satisfied, firm i has a dominant strategy to

invest regardless of its rivals’ decisions. Firm i is in this case always better off receiving positive

NPV because Vi(x;n) is the lowest net value achievable in the asymmetric n-firm oligopoly. If

Vi(x;n) < · · · < Vi(x; 1) < 0 or x < X1
i , firm i has a dominant strategy not to invest at demand

level x. In the intermediate demand region
[
X1
i , X

n
i

)
, firm i has no dominant strategy. If no rival

decides to enter the market, firm i’s optimal response is to enter the market since it obtains a

positive value as a monopolist, with Vi(x; 1) ≥ 0. However, if n − 1 other firms also decide to

enter the market, firm i’s best response is to stay out since it cannot operate profitably in a n-firm
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oligopoly, given Vi(x;n) < 0. Hence, firm i’s optimal response to demand realization x ∈
[
X1
i ;Xn

i

)
is in fact contingent on its rivals’ best-response actions.

To determine the resulting Nash equilibria, we first obtain the reaction functions of each firm.

The reaction function of firm i if k other firms enter in demand state x is Ri(x; k). Proposition

5 below derives the reaction function of potential market entrant i, providing guidance on the

nature of the industry structure obtained at future market entry time T . It posits that the

state space can be partitioned into (disjoint) regions in which the lower trigger boundaries obtain

from the observation whether or not the k-th ranked firm can operate profitably in a k-firm

oligopoly: xk = min {x ∈ R+ | Vk(x; k) ≥ 0} Intuitively, if the k-th ranked firm is profitable in

such an oligopoly with k − 1 other higher ranked firms, then at least k firms must be operating

profitably. The same applies for the k + 1-th firm in a k + 1-firm oligopoly, yielding the upper

boundary for this set.

Proposition 5. Given current demand x the reaction function for firm i in the market entry game

is given by:

Ri(x; k) =

“Stay out” if Vi(x; k + 1) < 0,

“Enter” if Vi(x; k + 1) ≥ 0.

Moreover, if x ∈ [xk, xk+1) such that Vk+1(x; k + 1) < 0 ≤ Vk(x; k), then exactly k firms will enter

the market.

Proof. See Appendix E. �

We next determine the number of Nash equilibria in each demand region. We denote by
(
n
k

)
=

n!/ [(n− k)!k!] , k ≤ n, the number of distinct possibilities for k firms to enter the market among

a “pool” of n potential entrants.

Proposition 6. The number of Markov Nash equilibria (MNE) in pure strategies varies depending

on the demand region reached at entry time T as follows

(i)
(
n−i
k−1−i

)
equilbria for demand region x ∈

(
Xk
i , X

k
i+1

)
, i < k ≤ n;

(ii)
(
i
k

)
equilbria for demand region x ∈

(
Xk
i , X

k
i+1

)
, n− 1 ≥ i ≥ k;

(iii)
(
n
k

)
equilbria for demand region x ∈

(
Xk
n, X

k+1
1

)
, k ≤ n.

Proof. See Appendix E. �

The intuition is as follows. In case (i), firms 1 to i (≤ k − 1) can operate profitably in a k-

firm oligopoly but not firms i + 1, . . . , n. As the market can only accommodate k out of n firms

(see Proposition 5), firms i+ 1, . . . , n cannot preempt firms 1, . . . , i as the latter have a dominant

strategy to invest anyway, so firms i + 1, . . . , n would have to back off. Hence, in oligopoly, the i

first firms will enter. It remains to select the additional participants in the k-firm oligopoly, namely

to select k−i firms among the n−i remaining potential entrants. In case (ii), the oligopoly consists
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of k firms. Firms 1 to i can operate profitably in this marketplace. As i ≥ k, k firms need to be

selected among i potential entrants that would operate profitably. Finally, in case (iii), all n firms

could operate profitably in a k-firm oligopoly but none could risk competing alongside k rivals (in

a k + 1-firm oligopoly). As k ≤ n, k firms will enter among n firms.

5.2. Equilibrium Selection and Investment Triggers. As stated in Proposition 6, the unique-

ness of a Nash equilibrium cannot be assured in certain demand regions. Unless we refine our solu-

tion concept, there is no obvious way to overcome the corresponding equilibrium selection problem.

To this end, we employ the “focal-point argument” introduced by Schelling (1960) to select among

several pure-strategy equilibria. The idea is that some equilibria are more likely to occur owing to

some common sense or psychological reasons. Here we consider the Pareto-dominating MNE as be-

ing “focal” among all possible Markov Nash equilibria.11 Common sense suggests that advantaged

firms, in our case lower-cost firms, are more likely to invest first in case of a coordination problem.

If firm entry costs are strictly ranked, the Nash equilibrium where the most cost-advantaged firms

enter first strictly Pareto-dominates all other. Proposition 7 characterizes this equilibrium.

Proposition 7. If potential entrant firms are strictly ranked in terms of increasing entry and

fixed production costs, Ei, the Pareto-dominating Markov Nash equilibrium is unique. In such

Pareto-dominating MNE, firm i invests (enters the market) if demand x ≥ xi (≡ Xi
i ).

Proof. See Appendix G. �

The above result can be interpreted as follows. Firm i will invest if and only if Vi(x; i) ≥ 0 or if

x ≥ xi. Essentially, each entrant adopts a myopic stance when determining its investment/ entry

strategy in the Pareto-dominating Nash equilibrium, disregarding all rivals’ investment policies

since eventually they can affect only the overall value of its investment but not their own optimal

investment strategy. This rests on the resolution of the coordination problem in the intermediate

demand regions by use of the above focal-point argument.12

11Schelling (1960) introduced the notion of “focal point” to support the use of Nash equilibrium as a solution concept,
not so much to justify one specific Nash equilibrium among multiple Nash equilibria. Many notable researchers (e.g.,
Fudenberg and Tirole, 1985) have argued that the Pareto-dominating Nash equilibrium is more likely to occur among
a set of distinct Nash equilibria. We follow this reasoning.
12An alternative approach is to assume that oligopolists decide to leave their market-entry decision to chance using
mixed strategies in each demand state x. In the intermediate region, each firm would then invest with a positive prob-
ability (non-degenerate mixed Markov strategy). However, this approach does not solve the coordination problem. It
rather identifies yet another Nash equilibrium in an augmented strategy space. Since in certain demand regions there
is a unique Nash equilibrium with fully-mixed strategies, some authors suggest that this specific equilibrium will be
followed by other players. Mixed strategies seem problematic in the context of strategic investment decision-making
as real market-entry decisions are left to chance. Cachon and Netessine (2006) argue that such managerial decisions
should not be guided by chance. In our setting mixed strategies are furthermore less analytically tractable and
do not lead to value expressions in closed form. Pure strategies based on trigger policies provide clearer guidance
on whether a firm should invest at maturity. The existence of a trigger policy, with investment beyond a certain
demand point and inaction below, is unwarranted in cases where several Nash equilibria exist. The choice of the
Pareto-dominating Nash equilibrium strategy profile as a focal equilibrium allows an analysis based on these demand
levels.
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Given the value expression in Proposition 4, we can readily derive the investment trigger values

in the Pareto-dominating Markov Nash equilibrium from Proposition 7. As part of this equilibrium,

firm i invests if realized demand x exceeds a specific demand threshold xi, and does not invest

otherwise. The proposition below characterizes the investment threshold in the case studied in

Section 4.13

Proposition 8. In the Pareto-dominating Markov Nash equilibrium, firm i invests if its expanded

net present value W (x; k) is positive or if x ≥ xi, with xi being the threshold such that W (xi; i) =

Ei. Specifically,

(i) xi ∈ (0, c) if firm i’s fixed costs are low or Ei ∈ (0,W (c, i));

(ii) xi ∈ [c, x̄i) if fixed costs are moderate or Ei ∈ [W (c, i),W (x̄i, i));

(iii) xi ∈ [x̄i,∞) if fixed costs are large or Ei ∈ [W (x̄i, i),∞).

Firm i will produce

(i) nothing [production regime 1] if Ei ∈ (0,W (c, i)) and x ∈ (xi, c);

(ii) below capacity [production regime 2] if Ei ∈ (0,W (x̄i, i)) and x ∈ (xi, x̄i);

(iii) at full capacity [production regime 3] if x ≥ max {xi, x̄i}.

Proof. Since x 7→ Vk(x; k) is continuous and monotone increasing on R+with Vk(0; k) < 0 and

Vk(∞; k) > 0, there exists a unique root xk > 0 for x 7→ Vk(x; k). Other properties obtain from

Proposition 3. �

Following Proposition 8, the industry is made up of k?(x) = i active (invested) firms when

demand is in region (xi, xi+1) with xi and xi+1 obtained from Proposition 8. Firm i’s trigger

value, xi, in Proposition 8 increases in variable production cost c, in aggregate fixed cost Ei,

and decreases in “dividend yield” or opportunity cost δ. The market entry decision and flexible

production strategy are decoupled: The first decision is long-term and strategic in nature, while the

second relates to short-term production operations. Indeed, a firm might decide to enter the market

but initially not produce if current demand is low but future prospects are high. In the long run,

adaptability in the firm’s production strategy helps increases firm value upon entry and therefore

enhances the attractiveness of entering the market at a given demand level x. Figure 4 illustrates

these market-entry dynamics. Demand thresholds xi are obtained at the intersections of (gross)

firm value W (x; k) and aggregate fixed entry costs Ei (points 1, 2 and 3 on the graph). Firm gross

value W (x; k) decreases with the number of active firms k (i.e., W (x; 3) ≤ W (x; 2) ≤ W (x; 1)),

whereas entry thresholds increase in firm index i (i.e., x3 > x2 > x1). The market can accommodate

13In Section 5.1, we made no assumption on the smoothness of the net present value function x 7→ Vi(x; k) or on
the distribution of demand in R+. In other words, the previous analysis applies beyond the problem of production
flexibility discussed in Section 4. As we seek to value the option based on the equivalent martingale measure,
the triggers obtained do not necessarily match the ones in the physical world. Since these trigger expressions are
subsequently used to value the shared investment option, we here present the risk-neutral version. See Birge (2000)
for a related discussion.



STRATEGIC MARKET ENTRY WITH PRODUCTION FLEXIBILITY IN OLIGOPOLY 18

0 5 10 15 20 25 30
x0

20

40

60

80

100

120

Value of flexible firm, WHx;kL
Aggregate fixed cost, Ei

E1

E2

E3

x1 x2 x3

1

2
3

Figure 4. Firm values and entry costs. We assume c = 10, q̄ = 2, b = 5, I =
10, fi =

√
i, σ = 0.1, r = δ = 0.04.

at least i firms for demand levels larger than demand threshold xi. For W (x; 1) < E1 no firm

invests.

6. Shared Investment Option Value in Constrained Oligopoly

In earlier sections, we obtained the value of a firm with production flexibility in oligopoly with

capacity constraints and derived the investment triggers in the Pareto-dominating MPE. We next

seek to obtain a closed-form expression for the shared investment option, value Ci(x), of equation

(3.5).14 Once we determine the industry structure arising in the various demand regions and assess

the value of production flexibility in a k-firm Cournot oligopoly, we are in a position to obtain a

closed-form expression for the shared option value of would-be entrant firm i.

Let (e?i (x), e?−i(x)) be the (n-tuple of) MNE market-entry decisions in given demand state x.

Define k?(x) =
∑n

i=1 e
?
i (x) as the total number of market entrants in industry equilibrium when

realized demand is x. In demand region (xk, xk+1), the industry will be made up of exactly

k?(x) = k operating firms (see Proposition 5) with thresholds xk as defined in Proposition 6.

Compared to the problems analyzed in Sections 4 and 5, here entry decisions are delayed until

future time T at which firms decide based on demand XT , which is random from the time-0

perspective. By the law of iterated expectation

(6.1) Ci (x) = Ex
[
e−rT (W (XT ; k?(XT ))− Ei)+] ,

with a+ ≡ max {0, a} for a ∈ R and W (x; k) in the symmetric case given in (4.4). The above

expression resembles the standard BSM formulation for the value of a European call option with

strike price Ei. Similar to a European-type call option, firm i’s payoff at maturity T depends

14The notion of optimality is more meaningful in monopolistic settings, as even if there exist several optimal policies
each yields the same value. In multiplayer game-theoretic settings, however, this notion is not well-defined and so
modelers employ an alternative notion of solution concepts. If the employed solution concept is not stringent enough
and yields several equilibrium solutions, then the option may admit several distinct values, each corresponding to
a specific equilibrium. If such a situation arises, one might want to refine the solution concept to narrow down the
equilibrium set to a single strategy profile to obtain a unique option value. This is what we basically do by selecting
the Pareto-dominating MPE.
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on the realization of random variable XT . However, here the realization of random demand may

also trigger rivals’ exercise strategies and thus indirectly affect firm i’s payoff. That is, the MPE

entry decisions, aggregated in k?(XT ), are jointly driven by the realization of the same random

variable, namely market demand x. Another marked difference from standard European call

option valuation is that, in our competitive oligopolistic setting, the payoff function x 7→ W (x; k)

is quadratic in the intermediate demand region (xk, xk+1) ⊆ (c, x̄), while it is affine or linear in

(xk, xk+1) ⊆ (x̄,∞). The standard option value is linear in the profits over the entire exercise

region (Ei,∞). The additional second-order terms motivate the presence of terms noted dk2 in the

shared option value expression. We will proceed in steps to obtain a closed-form expression for the

current value of the shared market-entry option with subsequent production flexibility. Proofs are

presented in Appendix H.

6.1. Cases with analytical option value expressions. The present value of receiving a (non-

contingent) payoff Xβ
T at future time T , given that the current process value at time 0 is x, is

(6.2) Ex
[
e−rTXβ

T

]
= xβe−Q(β)T , β ∈ R,

where Q is given by

(6.3) Q(β) = r − (r − δ − σ2/2)β − 1

2
σ2β2.

Since the firm will not necessarily invest at time T but only contingent on future demand XT

being in a certain demand region, the present value of a contingent claim must also reflect the

probability of this occurrence. This conditional probability given current demand x is noted Px.

The conditional probability that future demand XT will exceed a specific level E at time T given

current (time-0) demand x is Px [{XT ≥ E}] = N(dE0 ), where

(6.4) dE0 ≡
ln(x/E) + (r − δ − σ2/2)T

σ
√
T

,

with N(·) being the standard normal distribution. The conditional expected option value of receiv-

ing a contigent payoff Xβ
T at future time T only if demand XT is larger than E and zero otherwise

is

(6.5) Ex
[
e−rTXβ

T | XT ≥ E
]

= xβe−Q(β)T N(dEβ ),

where dEβ ≡ dE0 +βσ
√
T for β ∈ R+. We let d0

β =∞ and d∞β = −∞ by convention noting dxkβ = dkβ

for k = 1, . . . , n. The value expression in (6.2) is multiplied by N(dEβ ) ∈ (0, 1) to account for the

probability that the option is exercised in a certain region (E,∞) of the entire state space R+.

Based on expression (6.5) with β = 1 or β = 0, we readily obtain the Black-Scholes-Merton formula
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giving the price of a European call option with exercise price E on an underlying asset (Xt; t ≥ 0)

that pays a dividend at a rate δ.15

Similarly, using expression (6.5), we confirm the results obtained by Kulatilaka and Perotti

(1998) in the special case of a Cournot duopoly (k=2) without capacity constraints.16 This obtains

as a special case of our symmetric unconstrained profit expression (second line) in Proposition

2, πCi (x; k) = (x − c)2/[b(k + 1)2] with inverse demand slope b = 1 and k = 2 (duopoly). In

this case, the duopolists compete in the marketplace only once. This contrasts with our more

general setting where k invested firms have repeated non-cooperative strategic interactions (in an

infinitely repeated Cournot game). Upon market entry at time T each firm receives an infinite

stream of Cournot oligopoly profits while enjoying production flexibility. Demand at maturity

(T = 1) follows a log-normal distribution as if assuming no time discounting with r = δ = 0 in

the GBM of equation (3.1). The quadratic function in (6.3) then becomes Q(β) = −1
2β(β − 1)σ2.

Expression (6.5) then yields

(6.6) Ex
[
π̃C(x; 2)

]
=
x2eσ

2
N (dc2)− 2xcN (dc1) + c2N (dc0)

9
,

with dc2 = [2 ln(x/c) + 3σ2]/[2σ2], dc1 = dc2 − σ and dc0 = dc1 − σ. The above confirms a special case

result in Kulatilaka and Perotti (1998, p. 1026).17

6.2. General Option Value. Based on a similar approach, we next derive an analytic expression

for the value of strategic market entry with production flexibility and capacity constraints under

oligopolistic competition based on equation (6.1).

Proposition 9. In the Pareto-dominating MPE, firm i’s investment option shared with n potential

market entrants, Ci(x), when time-0 demand is x, is given by

(6.7) Ci(x) =

n∑
k=i

3∑
m=1

Cmi (x; k),

where Cmi (x; k) is the option value of investing in a k-firm oligopoly (with i ≤ k ≤ n) while initially

adopting production regime m = 1, 2 or 3. These option values are given by

C1
i (x; k) =A′0x

β1Nc
0

(
dkβ1 ,d

k+1
β1

)
− Eie−rTNc

0

(
dk0 ,d

k+1
0

)
,(6.8a)

C2
i (x; k) =CUNPV (x; k) +A′1x

β1N x̄k
c

(
dkβ1 , d

k+1
β1

)
+B′1x

β2N x̄k
c

(
dkβ2 , d

k+1
β2

)
− Eie−rTN x̄k

c

(
dk0 , d

k+1
0

)
,(6.8b)

C3
i (x; k) =CCNPV (x; k) +B′2x

β2N∞x̄k

(
dkβ2 ,d

k+1
β2

)
− Eie−rTN∞x̄k

(
dk0 , d

k+1
0

)
,(6.8c)

15Ex
[
e−rT (XT − E)+] = xe−δTN(dE1 )− Ee−rTN(dE0 ), where dE0 is given by (6.4) with dE1 = dE0 + σ

√
T .

16In the special setting where unconstrained symmetric duopolist firms face linear demand (with b = 1) each firm earns

a positive Cournot profit, π̃Ci (x; 2), when demand x exceeds marginal cost c, with π̃Ci (x; 2) =

{
0, if x ∈ (0, c),
(x−c)2

9
, if x ∈ [c,∞).

17Our result in Proposition 5 is more general, accounting for more firms in an oligopoly (k ≥ 3) and allowing for
repeated strategic Cournot interactions as well as capacity constraints, potentially leading to a linear (rather than
quadratic) dependence of Cournot profit on demand x at large demand.
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where demand thresholds xk are those obtained in Proposition 7 and

CUNPV (x; k) ≡ 1

b(k + 1)2

[
x2e−(2δ−r−σ2)T

2δ − r − σ2
N x̄k
c

(
dk2 , d

k+1
2

)
− 2cxe−δT

r − µ N x̄k
c

(
dk1 , d

k+1
1

)
+
c2e−rT

r
N x̄k
c

(
dk0 , d

k+1
0

)]

CCNPV (x; k) ≡ q̄

b(k + 1)

[
xe−δT

r − µ N
∞
x̄k

(
dk1 , d

k+1
1

)
− c+ bkq̄

r
N∞x̄k

(
dk0 , d

k+1
0

)]
.

In the above,

(6.9a) N(dkβ ,d
k+1
β ) ≡ N

(
dkβ

)
−N

(
dk+1
β

)
, β ∈ R+,

is used to accommodate expression (6.5) for an upper demand trigger xk+1, while

(6.9b) Nb
a(d

k
β , d

k+1
β ) ≡ N

(
max

{
min

{
daβ ,d

k
β

}
, dbβ

}
,min

{
max

{
dbβ , d

k+1
β

}
, daβ

})
, 0 ≤ a ≤ b ≤ ∞,

enables assessing the value of a contingent claim that is exercised only if demand region (xk, xk+1)

is included in (a, b), e.g., (0, c), (c, x̄k) or (x̄k,∞). Above assumes δ >
[
r + σ2

]
/2.

Proof. See Appendix G. �

To interpret expression (6.7), it is necessary to first interpret option value expressions Cmi (x; k).

Essentially, we have to consider overlays of demand regions:

(i) the industry will consist of k operating firms if future demand XT is in region (xk, xk+1);

(ii) an active firm with production flexibility will initially adopt distinct production regimes

depending on realized demand XT . If XT ∈ (0, c), the firm initially will not produce

(regime m = 1). If XT ∈ (c, x̄k), the firm will produce but below full capacity (regime

m = 2). If XT ∈ (x̄k,∞) the capacity constraint becomes binding, with the firm producing

at full capacity (regime m = 3).

These demand region overlays explain the need to decompose option value Ci(x) into Cmi (x; k)

under three distinct production regimes (m = 1, 2, 3) and various industry structures (k = i, ...n).

For each option value component, Cmi (x; k), adjustments are needed compared to the simpler

problems in (15) and (6.6) that involve unique exercise thresholds E and c. The state space for

our more involved problem is partitioned by more than one exercise threshold; hence the need for

expression (6.9a) that reflects the probability that realized demand lies within two given demand

thresholds. Moreover, because we do not know a priori the ranking of these thresholds, especially

thresholds c and x̄k, relative to the entry triggers x1, . . . , xn, we employ “min” and “max” operators

in (6.9b). Expression Cmi (x, k) in (6.7) and (6.8) corresponds to the value of an option that pays off

only if the firm enters a k-firm Cournot oligopoly and initially adopts production regime m = 1, 2,

or 3. The terms Cmi (x, k) are all mutually exclusive.

The option value expressions in (6.8a)–(6.8c) reflect the value of a flexible firm in Equation

4.4, W (x; k), derived in Proposition 4. The first component results from the NPV expression of

a committed production strategy, while the other terms relate to the option values of adjusting

the production regime over time. Because in a k-firm oligopoly three initial production regimes
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are feasible, we consider the sum
∑3

m=1C
m
i (x; k). Because firm i will only invest in the Pareto-

dominating MPE if future realized demand XT ≥ xi, we must also consider all demand regions

(xk, xk+1) for k = i, ...n from the outset, yielding the aggregated value expression for the shared

investment option shown in (6.7).

Figure 5 illustrates the shared investment option values for firms 1, 2 and 3 in a Cournot oligopoly

with 3 potential entrants (for our specified set of base parameters and two different values for σ

and T ). Contrary to standard European call options, shared investment option values here are

not necessarily monotone increasing and convex. They rather exhibit “competitive waves” of

alternating convex and concave segments. These phenomena are irrespective of the capacity-linked

waves discussed in our earlier analysis. Here, increasing demand inevitably leads to an enhanced

option value for firm i, W (x; k), but it also encourages rival entry with an increased number of

incumbents resulting in a value drop from W (x; k) to W (x; k + 1).18 In the face of heightened

uncertainty, these value drops caused by rival entry are smoothed out as seen in Figure 5. As

shown in panel (a) for low σ and T , option values fail to be monotone increasing or convex in

demand x. The value drop from W (x; k) to W (x; k + 1) is reflected in the general “wavy” shape

of option value, Ci(x). In situations with close maturity dates (e.g., T = 0.25), swift changes in

competitive structure may occur. With increased volatility and/or entry time (maturity), as in

panel (d), the effect of competitive arrivals erodes and gets smoothed out. Asymptotically, Ci(x)

then resembles more a classical European call option with a nearly smooth monotone increasing

and convex shape. This is more clear for firm 3 who faces no subsequent rival entry threat.

The existence of such competitive waves is a bit reminiscent of shared option results in the

seminal duopoly model of Dixit and Pindyck (1994, Chapter 9). There, the follower’s entry at

a given threshold causes an inflection on the option value of the leader. A marked difference is

that in that simpler duopoly setting the value of the leader’s investment option is still monotone

increasing. In an American option setting a follower will enter when the market is “deep in the

money” (not simply “in the money”), resulting in a delayed investment.

7. Conclusion

Option games analysis can give valuable guidance as to when to pursue certain investment

strategies and how to value firm flexibility in competitive settings. We considered a setting where

several firms have an option to enter a new market at a future time. Once they enter, the invested

firms enjoy production flexibility to adjust their output decisions to realized demand alongside

their Cournot rivals. We analyse the general coordination problem potentially arising at the entry

time, pin down the Markov Perfect Equilibria and articulate why the Pareto-dominating MPE is

more likely to arise. We further determine the investment entry triggers in the Pareto-dominating

MPE. We finally obtain a closed-form expression for the shared investment option value. This

18Naturally, this is not the case for firm 3 since being the last entrant it faces no subsequent rival entries.
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Figure 5. Option values for different maturity dates and volatility values.
We assume c = 10, q̄ = 2, b = 5, I = 10, fi =

√
i, r = δ = 0.04.

expression bears some resemblance to the Black-Scholes-Merton formula for European call options,

but is adjusted and generalized to accommodate strategic interactions, capacity constraints and

production flexibility in distinct demand regions. Due to strategic interactions in the market, firms

cannot simply set their investment triggers in a monopolist fashion as they have to collectively

anticipate whether rivals will also exercise their investment options in future demand scenarios.

Our model extends and generalizes much of extant literature, most notably the work of Kulati-

laka and Perotti (1998). Our model is more general in that it accounts for more firms in oligopoly

and allows for capacity constraints. Capacity constraints potentially lead to a linear (rather than

quadratic or convex) dependance of Cournot profits on demand in high demand regions. The

value achieved by an investing firm at the future market entry time also involves additional op-

tion value terms. The aggregate option value extends over three distinct production regimes and

across various demand states, being the result of optimizing behavior in Cournot oligopoly under

capacity constraints and equilibrium industry structures. In contrast to standard models, we find

that the value of the shared investment option is not monotone increasing and convex in demand.

Option values exhibit “competitive waves” as the underlying market value drops with new rival

entrants. We examine comparative statics illustrating the importance of this competitive effect

under uncertainty across different parameter ranges.
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Appendices

Appendix A: Markov Nash Equilibrium (MNE) in Cournot Competition under Ca-

pacity Constraints. When no confusion arises, Q denotes the vector of production outputs or

the total industry output. In MNE, the quantity-setting problem is

(7.1) max
qi

πi
(
x, qi, Q

C
−i
)

=
(
x− b

(
qi +QC−i

))
qi − cqi,

subject to non-negativity constraint, qi ≥ 0, and the production capacity constraint, q̄i − qi ≥ 0.

The objective function in (7.1) is concave. Besides, the feasible region is convex. The Karush-

Kuhn-Tucker (KKT) conditions are thus both necessary and sufficient. Denote the KKT multipliers

by µ1 and µ2. In MNE, the Lagrangian is given by

L (qi, µ1, µ2) =
(
x− b

(
qi +QC−i

))
qi − cqi + µ1qi + µ2 (q̄i − qi) .

Solving the optimization problem then yields individual quantity as a function of industry out-

put:

(7.2) qCi (x; k) =


0 if x ≤ bQC−i + c

x−bQC−i−c
2b if bQC−i + c < x < 2bq̄i + bQC−i + c

q̄i if x ≥ 2bq̄i + bQC−i + c

Equation (4.1) obtains by pinning down the MNE, i.e., by verifying that each firm is playing its

best response, for each case in (7.2). We do so by expressing QC−i as the sum of the qC−i.

Appendix C: Value of Operational Flexibility in MPE. Suppose x 7→Wi(x; k) is sufficiently

smooth, with Wx and Wxx denoting the first and second-order derivatives of the perpetuity value

Wi. By the Feynman-Kac Theorem, function x 7→ Wi(x; k) solves the second-order differential

equation (ODE)

(7.3) rWi(x; k) = πCi (x; k) + µx Wx(x; k) +
1

2
σ2x2 Wxx(x; k),

where πCi (x; k) is given in Proposition 2 and Wi(0; k) = 0. ODE (7.3) is defined without ambiguity

if x 7→ Wi(x; k) is continuously differentiable everywhere (C1) and twice continuously differen-

tiable almost everywhere (piecewise C2). For notational conciseness, we drop the superscript C in

threshold values xCm = xm, m = 0, . . . , k + 1 in the Appendix.

Functions x 7→ xβ1 and x 7→ xβ2 are two independent solutions of the homogenous ODE

(7.4) rf(x) = µx f ′(x) +
1

2
σ2x2 f ′′(x),
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where β1 and β2, given in Proposition 3, are the positive and negative roots of the quadratic

function

(7.5) Q(β) = r − βµ− 1

2
β(β − 1)σ2, β ∈ R.

We have Q(1) = r − µ (> 0) and Q(0) = r (> 0).

Consider first a contingent claim θ with payoff structure

θ(x) =

0 if x < z,

(x− c)2 if x ≥ z,

and z ≥ c. Note that θ is not C1 if z > c. If one finds a solution Θ of

(7.6) rΘ(x) = θ(x) + µx Θ′(x) +
1

2
σ2x2 Θ′′(x)

that is C1 and piecewise C2, then it corresponds to the discounted stream of contingent claims θ,

Θ(x) = Ex
[ˆ ∞

0
e−rtθ(Xt) dt

]
.

Suppose Q(2) > 0. We can easily verify that

(7.7) Ex
[ˆ ∞

0
e−rt(Xt − c)2 dt

]
=

x2

Q(2)
− 2cx

r − µ
+
c2

r
,

is a particular solution of (7.6) for x ≥ z. The general solution of (7.6) is

(7.8) Θ(x) =

g1(x, z, c) if x < z,

x2

Q(2) −
2cx
r−µ + c2

r + g2(x, z, c) if x ≥ z,

where g1(x, z, c) = xβ1g1(z, c) and g2(x, z, c) = xβ2g2(z, c). Θ in (7.8) is obviously piecewise C2.

We are looking for a solution of (7.6) such that Θ is C1. The smoothness conditions at z read:

zβ1g1(z, c) =
z2

Q(2)
− 2zc

r − µ
+
c2

r
+ zβ2g2(z, c)

β1z
β1−1g1(z, c) =

2z

Q(2)
− 2c

r − µ
+ β2z

β2−1g2(z, c).

It easily obtains

g1(x, z, c) =
(x
z

)β1
{

2− β2

β1 − β2

z2

Q(2)
− 1− β2

β1 − β2

2cz

r − µ
− β2

β1 − β2

c2

r

}
g2(x, z, c) = −

(x
z

)β2
{
β1 − 2

β1 − β2

z2

Q(2)
− β1 − 1

β1 − β2

2cz

r − µ
+

β1

β1 − β2

c2

r

}
.

We know that θ(x) ≥ 0 for all x ∈ R+ and θ(x) > 0 for x ≥ z. Thus by probabilistic arguments,

Θ(x) > 0 for all x ∈ R+. In particular, g1(x, z, c) > 0 for x < z. Besides, θ(x) ≤ (x − c)2 for all
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x ∈ R+ and θ(x) < (x− c)2 for 0 < x < z. Hence,

Θ(x) <
x2

Q(2)
− 2cx

r − µ
+
c2

r

for all x ∈ R+. In particular, g2(x, z, c) < 0 for x ≥ z. Here g1(x, z, c) is the value of the adjustment

made to the (zero) present value to account for the optionality to receive positive profit (Xt − c)2

when future demand Xt exceeds a certain demand threshold z (perpetual American call option).

The term g2(x, z, c) is the (downward) value adjustment needed to account for the fact that the

firm will not receive profit (Xt − c)2 ≥ 0 for low demand Xt < z but instead receive zero. The

term (x/z)β1 in the expression for g1(x, z, c) corresponds to the present value of a bond that

pays $1 when demand Xt exceeds demand level z (> x) for the first time at (stopping) time

τA(x, z) ≡ inf {t ≥ 0 | Xt ≥ z}. The second term in {·} corresponds to the positive forward value

received when the firm earns positive profit for the first time at τB(x, z) ≡ inf {t ≥ 0 | Xt ≤ z}.

(x/z)β2 is the present value of a bond that pays $1 at time τB(x, z) with z < x, while the term in

{·} is the forward value of losing the positive profit stream from time τB(x, z) onwards.

Similarly, we consider a simple contingent claim with payoff structure

ψ(x) =

0 if x < z,

x− c if x ≥ z,

with z ≥ c. x 7→ x/[r − µ]− c/r is a particular solution of

rΨ(x) = ψ(x) + µx Ψ′(x) +
1

2
σ2x2Ψ′′(x)

on [z,∞). The general solution of the second-order ODE is

Ψ(x) =

h1(x, z, c) if x < z,

x
r−µ −

c
r + h2(x, z, c) if x ≥ z,

where h1(x, z, c) = xβ1h1(z, c) and h2(x, z, c) = xβ2h2(z, c), obtained by appropriate smoothness

conditions, are given by

h1(x, z, c) =
(x
z

)β1
{

1− β2

β1 − β2

z

r − µ
+

β2

β1 − β2

c

r

}
h2(x, z, c) = −

(x
z

)β2
{
β1 − 1

β1 − β2

z

r − µ
− β1

β1 − β2

c

r

}
.

We know that ψ(x) ≥ 0 for all x ∈ R+ and ψ(x) > 0 for x > z. Thus, Ψ(x) > 0 for all x ∈ R+.

In particular, h1(x, z, c) > 0 for x < z. Besides, ψ(x) ≥ x− c for all x ∈ R+ and ψ(x) > x− c for

x < c. Hence, Ψ(x) > x/[r−µ]− c/r for all x ∈ R+. In particular, h2(x, z, c) > 0. Here, h1(x, z, c)

corresponds to the value of a call option to earn Xt − c when current demand Xt is sufficiently

high, i.e., when Xt ≥ z, while h2(x, z, c) is the value of the option to stop producing, earning zero

profit, when demand is not sufficiently high, i.e., when Xt < z.
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We now consider the nonhomogenous ODE (7.3). The general solution is

(7.9)

Wi(x; k) =


A0x

β1 +B0x
β2 , if x ∈ (0, x0) ,

1
b(k−m+2)2

[
x2

Q(2) −
2Σmx
r−µ +

Σ2
m

r

]
+Amx

β1 +Bmx
β2 , if x ∈ [xm−1, xm) ,m = 1, . . . , i,

q̄i
k−m+2

[
x
r−µ −

Σm
r

]
+Amx

β1 +Bmx
β2 , if x ∈ [xm−1, xm) ,m = i+ 1, . . . , k + 1,

where Am and Bm, m = 0, . . . , k+ 1 are constants to be determined by appropriate smoothness conditions.

Note that x 7→ Wi(x; k) given in (7.9) is piecewise C2 in (−∞, x0) and [xm−1, xm) for m = 1, . . . , k + 1. It

remains to select values for Am and Bm, m = 0, . . . , k+1, such that x 7→Wi(x; k) is C1 at xm, m = 0, . . . , k.

To ensure that Wi(0; k) = 0 and avoid bubble solutions, we set B0 = Ak+1 = 0. The smoothness

conditions at x0 = c read

(A0 −A1)xβ10 + (B0 −B1)xβ20 =
1

b(k + 1)2

[
x2

0

Q(2)
− 2cx0

r − µ +
c2

r

]
β1(A0 −A1)xβ1−1

0 + β2(B0 −B1)xβ2−1
0 =

1

b(k + 1)2

[
2x0

Q(2)
− 2c

r − µ

]
.

It obtains

A0 = A1 +
g1(x0, c)

b(k + 1)2
(> A1) and B1 = B0 +

g2(x0, c)

b(k + 1)2
(< B0).

The smoothness conditions at xm, m = 1, . . . , i− 1, are

(Am −Am+1)xβ1m + (Bm −Bm+1)xβ2m =
1

b(k −m+ 1)2

[
x2
m

Q(2)
− 2Σm+1xm

r − µ +
Σ2
m+1

r

]
− 1

b(k −m+ 2)2

[
x2
m

Q(2)
− 2Σmxm

r − µ +
Σ2
m

r

]
β1(Am −Am+1)xβ1−1

m + β2(Bm −Bm+1)xβ2−1
m =

1

b(k −m+ 1)2

[
2xm
Q(2)

− 2Σm+1

r − µ

]
− 1

b(k −m+ 2)2

[
2xm
Q(2)

− 2Σm
r − µ

]
We thus have

Am = Am+1+
g1(xm,Σm+1)

b(k −m+ 1)2
− g1(xm,Σm)

b(k −m+ 2)2
, and Bm+1 = Bm+

g2(xm,Σm+1)

b(k −m+ 1)2
− g2(xm,Σm)

b(k −m+ 2)2
, m = 1, . . . , i−1.

The smoothness conditions at xi are

(Ai −Ai+1)xβ1i + (Bi −Bi+1)xβ2i =
q̄i

b(k − i+ 1)

[
xi

r − µ −
Σi+1

r

]
− 1

b(k − i+ 2)2

[
x2
i

Q(2)
− 2Σixi
r − µ +

Σ2
i

r

]
β1 (Ai −Ai+1)xβ1−1

i + β2 (Bi −Bi+1)xβ2−1
i =

q̄i
b(k − i+ 1)

1

r − µ −
1

b(k − i+ 2)2

[
2xi

Q(2)
− 2Σi
r − µ

]
.

Similarly, we obtain

Ai = Ai+1 + q̄i
h1(xi,Σi+1)

b(k − i+ 1)
− g1(xi,Σi)

b(k − i+ 2)2
and Bi+1 = Bi + q̄i

h2(xi,Σi+1)

b(k − i+ 1)
− g2(xi,Σi)

b(k − i+ 2)2
.

Finally, the smoothness conditions at xm, m = i+ 1, . . . , k, read

(Am −Am+1)xβ1m + (Bm −Bm+1)xβ2m =
q̄i

b(k −m+ 1)

[
xm
r − µ −

Σm+1

r

]
− q̄i
b(k −m+ 2)

[
xm
r − µ −

Σm
r

]
β1 (Am −Am+1)xβ1−1

m + β2 (Bm −Bm+1)xβ2−1
m =

q̄i
b(k −m+ 1)

1

r − µ −
q̄i

b(k −m+ 2)

1

r − µ.

It obtains

Am = Am+1 +
q̄i
b

[
h1(xm,Σm+1)

k −m+ 1
− h1(xm,Σm)

k −m+ 2

]
Bm+1 = Bm +

q̄i
b

[
h2(xm,Σm+1)

k −m+ 1
− h2(xm,Σm)

k −m+ 2

]
, m = i+ 1, . . . , k.
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Appendix D: Quantity, Profit and Firm Value in Symmetric Capacity MNE/MPE.

The assumption of symmetric capacity greatly simplifies the analysis. Following the same solution

approach as for Proposition 1, we prove that firm i produces Cournot quantity

qCi (x) =


0 if x ∈ (0, c),

x−c
b(k+1)

if x ∈ [c, x̄k),

q̄ if x ∈ [x̄k,∞),

in MNE, where x̄ ≡ b(k + 1)q̄ + c. The Cournot profit expression readily obtains.

We now turn to the value expression. We are now looking for a solution of the second-order

ODE

rWi(x; k) = πCi (x; k) + µx Wx(x; k) +
1

2
σ2x2 Wxx(x; k), Wi(0; k) = 0.

that is continuously differentiable and piecewise twice continuously differentiable. Obviously, the

candidate solution x 7→Wi(x, k) given in Proposition 4 is piecewise C2.

A first smoothness condition is

(A′0 −A′1)xβ10 + (B′0 −B′1)xβ20 =
1

b(k + 1)2

[
x2

0

Q(2)
− 2cx0

r − µ +
c2

r

]
β1(A′0 −A′1)xβ1−1

0 + β2(B′0 −B′1)xβ2−1
0 =

1

b(k + 1)2

[
2x0

Q(2)
− 2c

r − µ

]
.

We obtain

A′0 = A′1 +
g1(x0, c)

b(k + 1)2
(> A′1)

B′1 = B′0 +
g2(x0, c)

b(k + 1)2
(< B′0).

The smoothness condition at x̄k is:

(A′1 −A′2)x̄β1k + (B′1 −B′2) x̄β2k =
q̄

b(k + 1)

[
x̄k
r − µ −

c+ bkq̄

r

]
− 1

b(k + 1)2

[
x̄2
k

Q(2)
− 2cx̄k
r − µ +

c2

r

]
β1(A′1 −A′2)x̄β1−1 + β2(B′1 −B′2) x̄β2−1

k =
q̄

b(k + 1)

1

r − µ −
1

b(k + 1)2

[
2x̄k
Q(2)

− 2c

r − µ

]
.

It obtains

A′1 = A′2 +
q̄

b(k + 1)
h1(x̄k, c+ bkq̄)− g1(x̄k, c)

b(k + 1)2

B′2 = B′1 +
q̄

b(k + 1)
h2(x̄k, c+ bkq̄)− g2(x̄k, c)

b(k + 1)2
.

As usual, A′2 = B′0 = 0. Hence,

A′0 =
q̄

b(k + 1)
h1(x̄k, c+ bkq̄) +

g1(x0, c)− g1(x̄k, c)

b(k + 1)2
,

A′1 =
q̄

b(k + 1)
h1(x̄k, c+ bkq̄)− g1(x̄k, c)

b(k + 1)2
,

B′1 =
g2(x0, c)

b(k + 1)2
,

B′2 =
q̄

b(k + 1)
h2(x̄k, c+ bkq̄) +

g2(x0, c)− g2(x̄k, c)

b(k + 1)2
.
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Appendix E: Industry structure. Suppose first x < Xk
1 . We thus have Vn(x; k) < · · · <

V1(x; k) < 0. Therefore, Ri(x; k) = “Stay out” for all i = 1, . . . , n, with no Nash equilibrium

involving k operating firms.

Suppose now x ∈
[
Xk

1 , X
k
k

)
. Here,

Ri(x; k − 1) =

“Enter,” i = 1, . . . , k − 1

“Stay out,” i = k, . . . , n,

Ri(x; k − 2) = “Enter,” i = 1, . . . , n.

Thus, if x ∈
[
Xk

1 , X
k
k

)
, all Nash equilibria involve at least k − 1 firms. Suppose a strategy profile

with k invested firms, say without loss of generality firms 1, . . . , k. This strategy profile is not

a Nash equilibrium since Rk(x; k − 1) = ‘Stay out.” Hence, if x ∈
[
Xk

1 , X
k
k

)
, all Nash equilibria

involve exactly k − 1 operating firms.

Therefore, if x ∈
(
−∞, Xk

k

)
, respectively x ∈

(
−∞, Xk+1

k+1

)
, no Nash equilibrium involves k,

respectively k + 1, operating firms. Therefore, if x ∈
[
Xk
k , X

k+1
k+1

)
, all Nash equilibria involve

exactly k investing firms.

Appendix F: Pure-strategy Markov Nash equilibria. If x ∈
(
−∞, X1

i

)
, then i has a domi-

nant strategy not to invest. All firms have a dominant strategy not to invest if x ∈∩ni=1

(
−∞, X1

i

)
.

Given firms’ ranking, ∩ni=1

(
−∞, X1

i

)
=
(
−∞, X1

n

)
. Hence, if x ∈

(
−∞, X1

n

)
, there is a unique

Nash equilibrium (“Stay out,”..., “Stay out”). Setting X0
n = −∞, this obtains as a special case

of (iii) with
(
n
0

)
. If x ∈ (Xn

i ,∞), firm i has a dominant strategy to invest. All firms have a

dominant strategy to invest if x ∈ ∩ni=1 (Xn
i ,∞). As ∩ni=1 (Xn

i ,∞) =
(
Xn
n , X

n+1
1

)
where we set

Xn+1
1 = ∞, this case obtains a special case of (iii) with

(
n
n

)
= 1 and a unique Nash equilibrium

(“Enter,”...,”Enter”). If x ∈
(
Xk
n, X

k+1
1

)
, then all n firms can profitably operate and invest; there

are
(
n
k

)
possible Nash equilibria, proving (iii).

Consider state region
[
Xk
i , X

k
i+1

]
. As Vn(x; k) < · · · < Vi+1(x; k) < 0 < Vi(x; i + 1) < · · · <

V1(x; k), we have

Ri(x; k − 1) =

”Enter,” for firms1, . . . , k,

”Stay out,” for firmsk + 1, . . . , n,

Ri(x; k − 2) = ”Enter,” for firms1, . . . , n.

If k ≤ i and i+ 1 ≤ n, i.e., if k ≤ i ≤ n− 1, then exactly k firms enter the market. Hence, exactly

k firms out of the i (≥ k) possible entrants will enter the market, leading to
(
i
k

)
distinct Nash

equilibria, as stated in (ii).

If i < k or i ≤ k − 1, then
[
Xk
i , X

k
i+1

]
⊆
[
Xk−1
k−1 , X

k
k

]
. Then, all Nash equilibria involve exactly

k − 1 operating firms. Suppose a strategy profile where k − 1 firms operate but firms 1, . . . , i do



STRATEGIC MARKET ENTRY WITH PRODUCTION FLEXIBILITY IN OLIGOPOLY 32

not. This strategy profile is not a Nash equilibrium because, as Ri(x; k − 1) = “Enter,” firms

1, . . . , i are not reacting optimally. Hence, firms labeled 1, . . . , i are invested in all Nash equilibria.

Of the remaining n− i firms, k−1− i will also be profitably operating in Nash equilibrium, leading

to
(
n−i
k−1−i

)
Nash equilibria, which proves (i).

Appendix G: Pareto-dominating Nash equilibrium. From Proposition 6, k firms will op-

erate in demand region (xk, xk+1) in MNE. Let V (x; k) = (Vj(x; k))nj=1 denote the column vector

of firm values and 1 be a n-dimensional vector of 1. Vector e(k) denotes an arbitrary MNE in

demand region (xk, xk+1), with e(k) · 1 = k; is the set of MNE. ê(k) ∈ Ek is the MNE with ej = 1

for j = 1, . . . , k and ej = 0 for j = k+ 1, . . . , n. As firms are strongly ranked in terms of increasing

values, V1(x; k) > · · · > Vi(x; k) ≥ · · · ≥ Vn(x; k), there exists no MNE e(k) ∈ Ek \ {ê(k)} such

that e(k) · V (x; k) > ê(k) · V (x; k). This proves that the MNE with firms 1 to k investing Pareto-

dominates all other MNE in [xk, xk+1). Similarly, in the Pareto-optimal MNE, firms 1 to k + 1

operates in [xk+1, xk+1), and so on. In summary, firm k operates for x ≥ xk.

Appendix H: Shared Investment Option Value in Cournot Oligopoly. For conciseness,

we write z ≡ XT in the appendix. We derive first the following lemma.

Lemma. For β ∈ R and y, y1, y2 ∈ R++ with y1 ≤ y2 and a ≤ b, we have

Ex
[
e−rT zβ | z ≥ y

]
= xβe−Q(β)TN(dyβ),(7.10a)

Ex
[
e−rT zβ | y1 ≤ y ≤ y2

]
= xβe−Q(β)TN(dy1β , d

y2
β )(7.10b)

Ex
[
e−rT zβ | y ∈ (y1, y2) ∩ (a, b)

]
= xβe−Q(β)TNb

a

(
dy1β , d

y2
β

)
,(7.10c)

where

N(dy1β , d
y2
β ) ≡ N(dy1β )−N(dy2β )

Nb
a

(
dy1β ,d

y2
β

)
≡ N

(
max

{
min

{
daβ , d

y1
β

}
,dbβ

}
,min

{
max

{
dbβ , d

y2
β

}
, daβ

})
.

Proof. We know that ln z is normally distributed with mean γ ≡ lnx + (r − δ − σ2/2)T and

standard deviation s ≡ σ
√
T . Let ε denote the realization of a standard normal random variable

with density
(
1/
√

2π
)

exp
{
−ε2/2

}
. It obtains dy0 = (γ − ln y) /s. Since x 7→ exp(x) is monotone

increasing and invertible, exp {γ + sε} ≥ y is equivalent to ε ≥ −dy0. Define dyβ ≡ dy0 + βs and

β ∈ R+. We have

Ex
[
zβ | z ≥ y

]
=

1√
2π

ˆ ∞
−d

y
0

exp {βγ + βsε} exp
{
−ε2/2

}
dε

=
1√
2π

exp
{
βγ + β2s2/2

} ˆ ∞
−d

y
0

exp
{
−
(
ε2 − 2βsε+ β2s2) /2} dε.

Set ε = ε− βs and note that ε ≥ −dy0 implies ε ≥ −dyβ. Therefore,

Ex
[
zβ | z ≥ y

]
= exp

{
βγ + β2s2/2

} ˆ ∞
−d

y
β

1√
2π

exp
{
−ε2/2

}
dε

= exp
{
βγ + β2s2/2

}
N
(
dyβ
)

(7.11)
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by symmetry of the standard normal distribution (of ε) at zero. Substituting γ ≡ lnx + (r − δ −

σ2/2)T and s ≡ σ
√
T in (7.11) yields (7.10a).

Besides, we have Ex
[
zβ | z ≥ y

]
+Ex

[
zβ | z ≤ y

]
= Ex

[
zβ
]
. Since Ex

[
e−rT zβ

]
= xβe−Q(β)T , it

obtains from (7.10a)

Ex
[
e−rT zβ | z ≤ y

]
= xβe−Q(β)T [1−N(dyβ)

]
.

We thus have

Ex
[
e−rT zβ | y1 ≤ z ≤ y2

]
= Ex

[
e−rT zβ | z ≤ y2

]
− Ex

[
e−rT zβ | z ≤ y1

]
= xβe−Q(β)T [N(dy1β )−N(dy2β )

]
,

proving (7.10b)

Suppose now y1 ≤ y2 and a ≤ b and define A = (y1, y2) ∩ (a, b). We consider five cases:

(1) y1 ≤ y2 ≤ a ≤ b. Since x 7→ 1/x and x 7→ ln(x) are respectively monotone decreasing

and monotone increasing, we have dy1

β ≥ dy2

β ≥ da0 ≥ db0. On the one hand, we have

P [z ∈ A] = 0. On the other hand, we have

max
{

min
{

daβ ,d
y1
β

}
, dbβ

}
= max

{
daβ , d

b
β

}
= daβ ,

min
{

max
{

dbβ ,d
y2
β

}
, daβ

}
= min

{
dy2β , d

a
β

}
= daβ ,

or N b
a(d

y1

β ,d
y2

β ) = 0.

(2) y1 ≤ a ≤ y2 ≤ b. Here, dy1

β ≥ daβ ≥ dy2

β ≥ dbβ. We have Px [z ∈ A] = Px [a ≤ z ≤ y2] =

N(da0,d
y2
0 ) and

max
{

min
{

daβ ,d
y1
β

}
, dbβ

}
= max

{
daβ , d

b
β

}
= daβ ,

min
{

max
{

dbβ ,d
y2
β

}
, daβ

}
= min

{
dy2β , d

a
β

}
= dy2β .

Thus, N b
a(d

y1

β ,d
y2

β ) = N(daβ,d
y2

β ).

(3) y1 ≤ a ≤ b ≤ y2. Here, dy1

β ≥ daβ ≥ dbβ ≥ dy2

β , Px [z ∈ A] = Px [a ≤ z ≤ b] = N
(
da0, d

b
0

)
, and

max
{

min
{

daβ , d
y1
β

}
,dbβ

}
= max

{
daβ , d

b
β

}
= daβ ,

min
{

max
{

dbβ , d
y2
β

}
,daβ

}
= min

{
dbβ ,d

a
β

}
= dbβ .

(4) a ≤ b ≤ y1 ≤ y2. Here, daβ ≥ dbβ ≥ dy1

β ≥ dy2

β , Px [z ∈ A] = 0, and

max
{

min
{

daβ , d
y1
β

}
, dbβ

}
= max

{
dy1β , d

b
β

}
= dbβ ,

min
{

max
{

dbβ ,d
y2
β

}
, daβ

}
= min

{
dbβ , d

a
β

}
= dbβ .

(5) a ≤ y1 ≤ y2 ≤ b. Here, daβ ≥ dy1

β ≥ dy2

β ≥ dbβ, Px [z ∈ A] = Px [y1 ≤ z ≤ y2] = N(dy1
0 ,d

y2
0 ),

and

max
{

min
{

daβ , d
y1
β

}
, dbβ

}
= max

{
dy1β ,d

b
β

}
= dy1β ,

min
{

max
{

dbβ , d
y2
β

}
, daβ

}
= min

{
dy2β , d

a
β

}
= dy2β .
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This completes the proof of (7.10c). Finally, we note from (7.10c) that

Nb
0

(
dy1β ,d

y2
β

)
= N

(
max

{
dy1β , d

b
β

}
,max

{
dbβ ,d

y2
β

})
,

N∞a
(
dy1β ,d

y2
β

)
= N

(
min

{
daβ ,d

y1
β

}
,min

{
dy2β , d

a
β

})
.

This proves the lemma. The remaining of the proof should be obvious given Proposition 5. �


