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Abstract
We consider the problem faced by mining companies to set their extraction rate over time in order
to meet their production targets, from a real option perspective.
As part of their strategic planning, mining companies usually set a production target for a given,
short-term to medium-term, time horizon. The extraction rate is constrained by this target, but
remains flexible around a certain base rate. Because of the uncertainty in commodity prices, this
flexibility has a value. Basically, by slowing down production when prices are low and speeding up
production when prices are high, the miner can still meet its production target exactly, while at the
same time significantly increase the value of the mine.
Mathematically, this resource extraction problem can be described as a multi-regime constrained
stochastic control problem. The control is the extraction rate, to be set for every time step, and
the constraint is the total extraction volume over the whole time period. We solve this problem
numerically using an extension of the simulation-based Least-Squares Monte Carlo algorithm. To
deal with the endogenous reserve variable, we use the so-called control randomization technique.
The estimated mine value increase would be nothing without the roadmap to achieve this improve-
ment in practice. Fortunately, our numerical solution provides the optimal extraction regime to
apply over time, for any commodity price level and any reserve level. We summarize the informa-
tion about the optimal regime switching surfaces into intuitive graphics that can assist industry for
their sequential production decisions under uncertainty in practice.

Key words: Mine valuation, multiple switching stochastic control, least squares Monte Carlo, con-
trol randomization, switching boundary
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1 Introduction

The idea of using real option ideas to optimize mining operations in the face of metal price uncertainty
is not new: as early as 1985, Brennan and Schwartz [1985] proposed a simple, stylized model to quantify
the value of temporarily closing, or even abandoning, mines as a response to a drop in metal price.
Though mathematically elegant, this kind of approach was never embraced by mine managers. On the
contrary, it has been so rejected that "real option" now has a very bad name in the mining industry, on
the erroneous belief that real option were limited to the simplistic abrupt shut-down option studied in
Brennan and Schwartz [1985]. One major complaint from mining companies against the on-off type of
strategy considered in Brennan and Schwartz [1985] is that social costs make the option of temporarily
closing a mine very unappealing. Building a mine, hiring and training local workers, bringing skilled
workers to remote mining areas, are all huge efforts that make a temporary closure hard to revert. The
sheer size and scale of a mining project urges compellingly for steady and predictable operations, at
odds with the real option mentality of great flexibility in the face of uncertainty.
For this reason, we decide in this paper to make two major modifications to the Brennan and Schwartz
[1985] framework to make it more realistic and more appealing. Firstly, we assume that the mining
companies set a fixed production target for a given time frame as part of their strategic planning. This
kind of decision is common in practice; it can come from long-term contractual commitments to extract
a specified amount of ore for major clients (see Armstrong and Galli [2013], Zhang and Dimitrakopoulos
[2014] for examples). Secondly, instead of a binary all-or-nothing choice for the production rate, we
assume that it can vary on a finer grid of production regimes, allowing for smaller adjustments over
time. Remark that a small production rate adjustment can be achieved without affecting the volume
extracted from the mine, by digging blocks known to have a higher or lower ore grade. In other words,
small production rate adjustments can be achieve with little impact to day-to-day mining operations,
and no need for dramatic and impractical workforce adjustment.
To sum up, we consider a fixed production target to be met at some specified time horizon, while
allowing for a variable extraction rate over time. Even though the production target limits the scope of
extraction rate variability, it is still possible to, say, compensate a low output period by a high output
period later. Because of that, there is some optionality, and therefore value, to adjust extraction rates
over time. Indeed, if the mine production is sold on the spot market, the uncertainty in metal price
makes it valuable to decrease output when prices are low, and increase output when prices are high, all
the while meeting the specified production target. This is the kind of flexibility we aim at quantifying
and optimizing.
Mathematically, this dynamic extraction optimization under price uncertainty can be expressed as a
multi-regime stochastic optimal control problem, where the control variables are the extraction rates,
and where the state variables are the metal spot price (exogenous risk factor) and the reserve of ore in
the mine (endogenous, as digging decreases the available reserve), with an additional total production
constraint over the time horizon considered. To solve this problem numerically, we favor simulation-based
methods over classical PDE methods, in order to avoid limitations on the possible stochastic dynamic
model for the metal price. More specifically, we use an extension of the classical least-squares Monte
Carlo algorithm from the mathematical finance literature (Longstaff and Schwartz [2001], Tsitsiklis and
Van Roy [2001]). Here, the reserve level is an endogenous state variable, ie. its dynamics depends
on the control. In order to deal with it within the least-squares Monte Carlo framework, and without
resorting to reserve discretization, we use the control randomization technique (Kharroubi et al. [2014]):
the reserve level is first replaced by a dummy random factor in the forward Monte Carlo simulation
loop. This variable is then treated as an additional regression factor for the least-squares estimation
of conditional continuation values in the backward induction loop, and optimized. In the meanwhile,
the optimal policies computed during the backward induction are stored for later use (stress-testing and
graphical display for example).
Although dynamic production strategies improve substantially the value of mining projects, the com-
plexity of stochastic control and the associated algorithms hinders the adoption of modern real option
theory by industry. To overcome this fear, it is key to produce intuitive, graphical display of the results

2



obtained by real option analysis. An intuitive graphical summary of the best production regime to adopt
at each time, for each price and each reserve level, would assist and educate the industry with optimal
sequential decision-making under financial and geological uncertainties in practice. Therefore, we adapt
the summary graphics from Chen et al. [2015] to the constrained extraction model developed in this
paper.
The outline of the paper is as follows. Section 2 provides a mathematical description of the constrained
extraction problem. Section 3 describes the simulation-based numerical method we use to solve the
problem numerically. Section 4 illustrates our results, with tables highlighting the value of flexibility,
and graphics describing the best policies to adopt to take advantage of this flexibility in practice. Section
5 concludes the paper.

2 Problem Formulation
We study how to optimize the operating strategy of a mining company which has a fixed production
target for a given mine so that the maximum expected value can be obtained over the planning horizon
T . The company has the option to adjust the extraction rate over time in response to commodity price
fluctuation and remaining reserve level. This mine valuation problem can be formulated as a discrete
time, finite horizon stochastic control problem under constraint.

2.1 Definitions

We assume that the manager has the option to change operating regimes at pre-specified discrete decision
time tn = n∆t, n = 0, 1, ..., N−1, where ∆t = T/N using uniform time mesh. To make comparisons to
the existing literature easier, we model the commodity price as a univariate geometric Brownian motion.

Sn+1 = Sne

(
µ−δ−σ2

2

)
∆t+σ(Wn+1−Wn)

, Wn+1 −Wn ∼ N (0,∆t) i.i.d.

where µ is the drift rate rate, δ is the instantaneous convenience yield of the commodity, and σ is the
volatility of the spot price S. However, we emphasize that the simulation-based numerical method we
use (described in Section 3) is independent from the specific dynamics chosen for S, so that calibrating
a more realistic dynamics later is perfectly possible (and highly recommended), with no change to the
algorithm itself apart from simulating prices from the new dynamics.
Let Q be the total reserve to be extracted before T (ie. the production target), and let q = Q/T be the
average extraction rate . We define the set of possible operating regimes as Z = {0, 0.5q, q, 1.5q, 2q}.
One can of course use a finer grid if needed.α(St, Qt, a, t) ∈ Z denotes the control at time t, with
previous regime a, commodity price St, remaining reserve Qt. We write αt = ct · q for short where
ct ∈ {0, 0.5, 1, 1.5, 2}.
The change in extraction rate at decision time t from regime α−t to αt incurs a switching cost k(α−t , αt, t) =
Keπt|ct − ct−1| which is proportional to the change in extraction rate, where K is the unit switching
cost at time t0 and π is the inflation rate.
Let Π(t, St, αt) be the instantaneous cash-flow generated by the mine at time s when the metal price is
equal to St and the operating regime is equal to αt ∈ Z. When ct 6= 0: Π(tn, Sn) = ctq(Sn − Atn) −
Tax(Sn), where An = A0e

πtn is the operating cost, Tax(Sn) = p1ctqSn + p2ctq(Sn(1− p1)−An) is the
total income tax and royalties, with p1 and p2 denoting the royalty rate and the income tax respectively.
When ct = 0: Π(tn, Sn) = −Mn, where M0 is the initial maintenance cost, and Mn = M0e

πtn is the
after-tax maintenance cost.
The value function of the problem is given by

V (t,S,Q,i) = sup
α∈At,i

E

ˆ T

t

e−r̃(s−t)Π(s,Ss,αs)ds−
∑

t≤τn≤T

e−r̃(τn−t)k(τn,ατ−
n
,ατn) |(St,Qt,αt)=(S,Q, i)

 (2.1)

s.t. QT = 0 (2.2)
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where r̃ = µ + λ is the discount rate, with λ being the property tax rate. Notice the constraint (2.2)
that QT = 0, ie. that the whole target volume Q = Q0 be dug out when reaching time T .
Our goal is now to solve the constrained stochastic control problem (2.1)-(2.2) numerically.

3 Numerical Method
Problem (2.1)-(2.2) is a stochastic control problem with a target constraint at the final time T . This
kind of problem is known to be associated with a system of Hamilton-Jacobi-Bellman partial differential
equations. This is why the most common approach in the literature to deal with this kind of problem is
to use numerical methods for partial differential equations (see Evatt et al. [2010] or Haque et al. [2014]
for recent examples in mining). The main limitations of this approach are that it is limited to basic
stochastic dynamics for the risk factors, and that it can only deal with a few risk factors. To get rid of
these limits, we favor simulation-based methods, which have no constraints for the dynamics (anything
that can be simulated can be used), which paves the way for calibrations of realistic dynamics, and can
easily deal with many risk factors (see Langrené et al. [2015] for a simple example with three risk factors:
metal price, estimated remaining reserve and ore quality).
The least-squares Monte Carlo algorithm (more generally Regression Monte Carlo algorithm), initially
developed to solve American option pricing problem (Longstaff and Schwartz [2001], Tsitsiklis and
Van Roy [2001]) can actually be extended to any kind of Markovian stochastic control problem. An
extension of this Monte Carlo algorithm has been used successfully in Chen et al. [2015] and Langrené
et al. [2015] for mine valuation problem. One uncommon feature with mining problems is that the mine
reserve (or remaining reserve to reach a production target) Q is a state variable that is dynamically
affected by the control (extraction speed). One possibility to extend the Regression Monte Carlo al-
gorithm to such endogenous state variables is to use the control randomization technique developed in
Kharroubi et al. [2014]. A short description of it in a mining valuation context is provided in Langrené
et al. [2015], in addition to implementation tricks.
The control randomization technique requires to first simulate all the state variables with a random
control independent from the other sources of uncertainty. One difficulty specific to problem (2.1)-(2.2)
is the constraint that QT = 0, as it puts a constraint on the possible random control to use. Therefore,
it is worth describing more precisely how to properly implement control randomization for problem
(2.1)-(2.2).
The state variable Q = (Qt)0≤t≤T corresponds to the excess reserve in the mine above the production
target. Thus Q0 is equal to the production target, and the goal is to reach QT = 0 at time T . The
dynamics of Q is given by

Qti+1 = Qti − q · cti ·∆t
where cti ∈ Z = {0, 0.5, 1, 1.5, 2} in our example. In other words, our goal here, in order to use the control
randomization technique, is to simulate an i.i.d. sample from a random vector C = [C0, C1, . . . CN−1] ∈
ZN such that

q∆t
N∑
i=0

Ci = Q0 a.s. (3.1)

One idea would be to enumerate all the possible combinations (C0, C1, . . . CN−1) that satisfy (3.1), and
select one of them randomly. The problem with this enumeration approach is that the list can quickly
become unmanageable when the mesh of the production grid Z becomes small, which is why we look for
a more efficient alternative method, described below.
First, remark that if C can take continuous values instead of being constrained to ZN , then simulating
C is easy: simulate first C̃i ← 2Ui, where Ui are i.i.d. uniform random variables, and then set Ci ←
C̃i ×Q0/(q∆t

∑N
i=0 C̃i).

Then, one would need to project this continuous vector into the discrete grid ZN . Rounding each
component to the closest point in the grid would not work, as the constraint (3.1) might not be satisfied
anymore. This projection problem is fortunately identical to an old problem from a very different context:
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how to allocate seats to each political party after a proportional parliamentary election? Similarly to
our problem, rounding may not work, as the number of seats is fixed and needs to be matched exactly.
Over the years, different algorithms have been proposed to solve this problem, cf. Benoit [2000] for a
comparison of several of them. For our problem, we currently use the famous d’Hondt method (D’Hondt
[1882]), though we plan to switch to the Sainte-Laguë method (Sainte-Laguë [1910]), as Benoit [2000]
suggests it is less biased.

4 Numerical Results
In this section, we test numerically the algorithm described in section 3 to the optimal extraction problem
introduced in section 2, on a specific example.

4.1 Numerical Example

In their seminal paper, Brennan and Schwartz [1985] studied a continous, infinite horizon, unique ex-
traction rate, finite resource copper mine value problem. Our problem (2.1)-(2.2) can be seen as a
modified Brennan&Schwartz problem where a predefined production target needs to be met by the end
of a fixed time horizon T , with a larger set of possible extraction rates. To make our results easy to
compare to this classical example, we choose our parameters as in Brennan and Schwartz [1985]: q = 106

tons/year for the standard operating rate, Q0 = 150 × 106 pounds, A0 = $0.5/ton, k(0) = $200 000,
M0 = $500 000/year, σ = 0.08, δ = 0.01, µ = 0.1, p1 = 0.02, p2 = 0.5, and π = 0.08. We set the time
horizon to T = 15 years and the production target to Q0 (ie. we force the mine to be empty at time
T = 15 years). To investigate in detail the value of extraction rate flexibility, we tested different sets of
extraction rates:
1) A set of five variable extraction rates (VR5) {0.0, 0.5, 1.0, 1.5, 2.0} × q ;
2) A set of three extraction rates (VR3) {0, 1, 2} × q, and
3) A full open strategy (FO) with constant extraction rate q.
Our results are summarized in Table 4.1. A few observations can be made:

1. As expected, the more flexible the extraction rates the more valuable the mining project: V R5 >
V R3 > FO. This flexibility is successfully captured by our Regression Monte Carlo algorithm
approach with control randomization, which can help to take advantage of it in practice.

2. The dynamics strategies can significantly increase the value of a mine, especially when the price
S0 is low. When the initial price is high (eg. S0 = 1), the accelerated extraction rates (1.5q, 2.0q)
options give more opportunities to the period when digging is more profitable.

S0 VR5 VR3 FO VR5-VR3 VR5-FO VR3-FO
0.4 −2.35 −3.74 −4.26 1.39 1.91 0.52
0.5 3.33 2.30 1.87 1.05 (46.0%) 1.47 (78.8%) 0.42 (22.5%)
0.6 9.21 8.40 8.00 0.80 ( 9.5%) 1.21 (15.1%) 0.41 ( 5.1%)
0.7 15.20 14.60 14.12 0.60 ( 4.1%) 1.07 ( 7.6%) 0.48 ( 3.4%)
0.8 21.31 20.87 20.25 0.45 ( 2.1%) 1.06 ( 5.3%) 0.62 ( 3.0%)
0.9 27.60 27.30 26.38 0.30 ( 1.1%) 1.22 ( 4.6%) 0.92 ( 3.5%)
1.0 34.11 33.83 32.51 0.28 ( 0.8%) 1.60 ( 4.9%) 1.32 ( 4.1%)

Table 4.1: Comparison of mine value with different initial price and extraction flexibility

4.2 Constructing the Switching Surfaces

To construct and display the optimal regimes and the switching surfaces between them, we use the same
methodology as in Chen et al. [2015]. The structure of the objective function and the Bellman induction
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indicate that at each decision time t, the optimal extraction rate qt depends on the operating regime
α−t at the previous decision time, the current commodity price St, and the remaining target Qt. The
regression Monte Carlo algorithm described in Section 3 provides, as a by-product, a mapping between
the simulated state variables and the optimal operating regimes, and therefore provides an estimate of
the switching sets, which can then be plotted.
To illustrate this, using our numerical example, we choose to display the switching boundaries of the
VR3 case, which has three operating regimes. Problems with five or more regimes can be deal with
in the same way. As explained in Chen et al. [2015], each decision time tn has switching sets Λi,j(tn)
from each operating mode i ∈ Z = {0, q, 2q} to each other regime j ∈ Z. Let the number 0, 1, 2 be the
index of the regime in set Z, so that we denote the switching set Λ0,1(tn) as the switching set from 0
to q at time tn, and so on. There are 6 switching sets: Λ0,1(tn),Λ0,2(tn),Λ1,0(tn),Λ1,2(tn),Λ2,0(tn) and
Λ2,1(tn). Our numerical results illustrate the fact that the switching sets form connected components
in the (S,Q) plane. The frontiers between these sets form the switching boundaries. More precisely, at
decision time tn, the switching boundary between the operating modes i and j contains all the critical
combination of commodity price S∗n and reserve Qn that trigger a regime switch from i to j.
In figure 4.1, we produce the switching boundaries from each regime to the other three at three different
decision times: t = 6, 8 and 10 years. Each row corresponds to the current extraction rate (qt = 0, q or
2q), and each column corresponds to a different decision time (t = 6, 8 or 10). For example, the first row
(subfigures 4.1a, 4.1b, 4.1c) shows the optimal switching regimes for a mine which has qt = 0 extraction
rate at time t = 6, 8, 10 respectively. The first column (subfigures 4.1a, 4.1d, 4.1g) shows the optimal
switching regimes at time t = 6 from different regimes at the previous time. From these figures, we can
observe the following features of the structures of switching regions:

1. The feasible reserve levels, which corresponds to the width of the colored regions, is a function of
time: Qtmin < Qt < Qtmax, whereQtmin = max {0, Q0 − 2q(T − t)} andQtmax = min {Q0, 2q(T − t)}.
So a moving window for the feasible reserves can be observed as time passes.

2. As time goes by, the shape of the switching boundary between Regime 1 (qt = q) and Regime 2
(qt = 2q) changes from convex to concave, while the switching boundary between Regime 1 and
Regime 0 (qt = 0) changes from concave to convex. This is due to the target constraint, whereas
in the uncontrained problem in Chen et al. [2015], the curvatures of both curves are almost the
same.

3. A sharp drop occurs from time t = 8 in subfigure 4.1b and can be seen more clearly later at t = 10
from the subfigures 4.1c, 4.1f and 4.1i (third column). Indeed, when one gets closer to the time
horizon T , a mine with large remaining reserve is forced to open or/and accelerate production so
that it can meet the production target.
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(a) From regime 0 at time = 6
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(b) From regime 0 at time = 8
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(c) From regime 0 at time = 10
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(d) From regime 1 at time = 6
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(e) From regime 1 at time = 8
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(f) From regime 1 at time = 10
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(g) From regime 2 at time = 6
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(h) From regime 2 at time = 8
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(i) From regime 2 at time = 10

Figure 4.1: Switching boundaries for 3 different regimes at time t = 6, 8, 10

5 Conclusion

In this paper, we propose to use a Regression Monte Carlo method combined with control randomization
technique to solve a mine valuation problem with fixed production target but adjustable production rate,
formulated as a finite horizon, constrained stochastic optimal multiple switching problem. This not only
provides the best value for the mine, but also the practical roadmap for decision makers to make optimal
decisions in response to the financial market uncertainties at different future decision times. We carry
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on numerical tests with different operating flexibilities to demonstrate the effectiveness of our method
on taking advantage of uncertainties though the operating options. The switching boundaries generated
from our algorithm also bring deep insight into the structure of the optimal regimes and can be used as
intuitive decision support tool. In the future, we aim at performing the same numerical analysis on even
more elaborate decision-making problems for mineral industry, taking into account more risk factors
such as geological uncertainties, major incidents, and optimal scheduling.

References
M. Armstrong and A. Galli. Using copulas and multi-stage optimisation to manage major production
incidents. In Proceedings of the 36th APCOM Symposium, 2013. (Cited on page 2)

K. Benoit. Which electoral formula is the most proportional? a new look with new evidence. Political
Analysis, 8(4):381–388, 2000. (Cited on page 5)

M. Brennan and E. Schwartz. Evaluating natural resource investment. Journal of Business, 58(2):
135–157, 1985. (Cited on pages 2 and 5)

W. Chen, T. Tarnopolskaya, N. Langrené, and T. Lo. Switching surfaces for optimal natural resource
extraction under uncertainty. In Proceedings of the 21st International Congress on Modelling and
Simulation (MODSIM 2015), 2015. (Cited on pages 3, 4, 5, and 6)

V. D’Hondt. Système pratique et raisonné de représentation proportionnelle. C. Muquardt, 1882. (Cited
on page 5)

G. Evatt, P. Johnson, P. Duck, and S. Howell. The measurement and inclusion of a stochastic ore-grade
uncertainty in mine valuations using pdes. IAENG International Journal of Applied Mathematics, 40
(4):1–7, 2010. (Cited on page 4)

M. Haque, E. Topal, and E. Lilford. A numerical study for a mining project using real options valuation
under commodity price uncertainty. Resources Policy, 39(1):115–123, 2014. (Cited on page 4)

I. Kharroubi, N. Langrené, and H. Pham. A numerical algorithm for fully nonlinear HJB equations:
an approach by control randomization. Monte Carlo Methods and Applications, 20(2):145–165, 2014.
(Cited on pages 2 and 4)

N. Langrené, T. Tarnopolskaya, W. Chen, Z. Zhu, and M. Cooksey. New regression Monte Carlo
methods for high-dimensional real options problems in minerals industry. In Proceedings of the 21st
International Congress on Modelling and Simulation (MODSIM 2015), 2015. (Cited on page 4)

F. Longstaff and E. Schwartz. Valuing American options by simulation: a simple least-squares approach.
Review of Financial Studies, 14(1):113–147, 2001. (Cited on pages 2 and 4)

A. Sainte-Laguë. La représentation proportionnelle et la méthode des moindres carrés. Annales scien-
tifiques de l’É.N.S., 3(27):529–542, 1910. (Cited on page 5)

J. Tsitsiklis and B. Van Roy. Regression methods for pricing complex American-style options. IEEE
Transactions on Neural Networks, 12(4):694–703, 2001. (Cited on pages 2 and 4)

J. Zhang and R. Dimitrakopoulos. Optimising a mineral supply chain under uncertainty with long-term
sales contracts. In Proceedings of the Orebody Modelling and Strategic Mine Planning Symposium
2014, pages 25–31, 2014. (Cited on page 2)

8


	1 Introduction
	2 Problem Formulation
	2.1 Definitions 

	3 Numerical Method
	4 Numerical Results 
	4.1 Numerical Example
	4.2 Constructing the Switching Surfaces

	5 Conclusion

