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Abstract

Policy intervention can impact the decision making process of de-
ploying a renewable energy project. The feed-in tariff (FIT) program
is a popular policy for incentivizing new renewable energy projects,
because it establishes a long-term contract with renewable energy pro-
ducers. This paper presents a model to analyze a FIT contract with a
minimum price guarantee in two distinct scenarios. First, we analyze
FIT contracts in an oligopolistic market structure. The derivation uses
an asymmetric Stackelberg model with a real options valuation model.
Second, we analyze a price-taker scenario with a real options valuation
model. We also analyze the FIT contracts with a perpetual and finite
duration in both scenarios. With the model, we can find several inter-
esting properties. For example, we can first identify the optimal time
to deploy a renewable energy project. Second, we can analyze how the
value and duration of a minimum price guarantee affects the invest-
ment threshold and the value of the project. The results show that a
perpetual guarantee can induce investment for prices below the min-
imum price guarantee, when the project compensates the investment
cost. Another interesting result is that a FIT contract with a higher
price and duration induces an earlier investment. From a managerial
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perspective, our model provides a powerful tool to analyze investment
in renewable energy projects where we take into account managerial
flexibilities and a FIT policy with a minimum price guarantee.

JEL Classification: L94, Q42, C72
Keywords: Asymmetric Stackelberg Equilibrium, Perpetual guarantee, Fi-
nite guarantee, Feed-in tariff

1 Introduction

The generation of energy from renewable resources, such as wind and sun-
light, is an important option that can mitigate many environmental prob-
lems. In addition, the utilization of depletable resources, such as gas or coal,
for generating energy is a problem from a sustainability perspective, since
supplies used now are not available for future generations. Therefore, policy-
makers must incentivize energy generation through renewable resource, and
consequently decrease the cost of scarcity for society and price of resources,
and increase the social welfare.

There are many policies to incentivize renewable energy projects (Grubb
2004), which in turn might reduce environmental pollution, global warming
and public health issues. For instance, the Renewable Portfolio Standards
(Wiser, Namovicz, Gielecki & Smith 2007) in the US and the RES Directive
(Klessmann, Lamers, Ragwitz & Resch 2010) in the EU are policies that
are playing an increasingly important role in the decision-making process of
generation companies.

Policy intervention can have a significant impact on the decision of de-
ploying a renewable energy project. Couture & Gagnon (2010) state that the
feed-in tariff (FIT) program is considered one of the most important poli-
cies for stimulating new renewable energy projects. FIT program is a long-
term contract with renewable energy producers (e.g., homeowners, business
and organizations such as schools and community groups) to enhance energy
generation. In addition, Couture & Gagnon (2010) present many different
remuneration schemes utilized by policymakers that have evolved over time.

This article presents a model to analyze a FIT policy with a minimum
price guarantee in two scenarios, namely an oligopoly and a price-taker sce-
nario. The model includes managerial flexibilities and identifies the optimal
timing for the investment in a renewable energy project. The model also
takes into account the effect of the duration of the guarantee: hence, we
analyze a perpetual and finite guarantee.

In particular, the oligopolistic market structure uses an asymmetric Stack-
elberg model with a real options valuation model. The price-taker scenario
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uses a real options valuation model. In both scenarios, the renewable energy
producer receives either the energy market price or a minimum price guaran-
tee. We use the model to analyze how the value and duration of a minimum
price guarantee affects the investment threshold and the value of the project.

The results show that a perpetual guarantee can induce investment for
prices below the minimum price, when the project compensates the invest-
ment cost.

This paper is organized as follows. Section 2 presents the related work
and our main contributions to literature. Section 3 analyzes a minimum price
guarantee FIT within an oligopoly. Section 4 presents a FIT analysis with
many renewable energy producers that are Price taker. Finally, Section 5
presents the concluding remarks.

2 Related Work

In literature, many papers have used the Cournot or Stackelberg game to
model energy markets in order to predict interesting economic results. In
fact, Cournot oligopolies are very popular because the majority of electricity
markets nowadays are neither a monopoly nor a perfect competition; Twomey
& Neuhoff (2010) state that modeling the market as an oligopoly is the most
appropriate assumption. Moreover, these analyses can lead to policies that
may resolve some of the economic and sustainability issues.

For instance, Wolfram (1999) analyzes the market power of generation
companies in the British electricity market, and shows that prices are lower
than estimates due to many reasons, such as entry deterrence and actions
from the regulator. Chuang, Wu & Varaiya (2001) formulate a Cournot
oligopoly market for generation expansion planning, and present numeri-
cal results to analyze industry expansion, generation investment and trends.
Murphy & Smeers (2005) present an open-loop and closed-loop Cournot
model, in which investment and power dispatch decisions occur simultane-
ously in the former model and in two stages in the latter model; in addi-
tion, this work compares both models with a perfect competition. Nanduri,
Das & Rocha (2009) utilize a similar single stage Cournot model as Mur-
phy & Smeers (2005) taking into consideration the network transmission
constraints. Chang, Hu & Han (2013) use a Stackelberg game to analyze
a constant price FIT contract in Taiwan. Twomey & Neuhoff (2010) ex-
amine the case of intermittent generation return under perfect competition,
monopoly and oligopoly; the results show that, when different technologies
are used, the market participants benefit differently from the increased price.
Moreover, intermittent technologies benefit less from the market power effect
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than conventional technologies.
However, despite the numerous of papers with oligopolies for energy mar-

kets, not much has been said (if any) about the impact of the duration of
a guarantee, namely a minimum price guarantee, and the effect of manage-
rial flexibilities. Moreover, although our model focus on the minimum price
guarantee, it can be easily extend to a market dependent Feed in tariff where
the firm receives a bonus over the market price.

Our model relates and contributes to the literature in several ways. Our
first contribution is to game theory, where we extend the Stackelberg model in
order to value managerial flexibilities and identify the optimal timing for the
investment in a renewable energy project. The model also takes into account
the effect of minimum price guarantee FIT policies, using the Shackleton &
Wojakowski (2007) framework. In particular, we show how the value and
duration of a FIT change the investment threshold.

Our second contribution is to real option community, where we extend
Shackleton & Wojakowski (2007) and develop two models: the first one with
a perpetual guarantee and the second with a finite guarantee. The model
shows that perpetual guarantee can only induce investment for prices below
the FIT if it at least compensates the investment sunk cost.

Our third contribution is to energy research community, where we present
a powerful model taking into account a FIT policy and managerial flexibilities
within an oligopoly market. We show how a FIT may affect the investment
decision in renewable energy projects.

3 Oligopolistic Market Structure and FIT Pol-

icy

The majority of electricity markets nowadays are neither a monopoly nor a
perfect competition. In fact, Twomey & Neuhoff (2010) state that modeling
the market as an oligopoly is the most appropriate assumption. We thus
analyze a minimum price guarantee FIT within an oligopolistic market.

The model has a conventional energy producer that acts as the leader and
the follower is a renewable energy producer. Hence, we analyze the producers
within a Stackelberg game. We then include managerial flexibilities with a
real option model. We start assuming that the producers face the linear
inverse demand function of the following form:

P (Q, t) = ax(t)− bQT (t) (1)

where a > 0 represents the market size, b > 0 shows how price changes affect
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the demand function, x(t) denotes the industry’s demand shock at time t
observed by all firms, and QT (t) is the total output produced. We assume
that the industry’s demand shock follows the geometric Brownian motion
process.

dxt = µxtdt+ σxtdWt (2)

where µ < r is a deterministic drift, σ > 0 is the volatility, and dWt is the
standard Brownian motion process. The volatility σ can be estimated (e.g.,
through OLS) from the returns of the historical data.

We denote the conventional energy producer with a subscript c and the
renewable energy producer with a subscript r. The profit function of the
conventional energy producer is:

Πc = P (QT )qc − cc (3)

where qc is the quantity produced. The cost function has the following
form cc = q2c/2kc, where kc is the conventional energy producer’s capacity.

The profit function of the renewable energy producer is:

Πr = Max(F, P (QT ))qr − cr (4)

where, F is a minimum price guarantee due to a FIT contract. The cost
function also has the following form cr = q2r/2kr where kr is the renewable
energy producer’s capacity.

The production cost of conventional energy is different from the renew-
able energy. For instance, the production cost of wind power is almost zero
(Twomey & Neuhoff 2010). This rationale leads to a different cost function
for each producer, as described above.

In the Stackelberg game, the market equilibrium is:

qc =
akc(bkr + 1)

2b(bkrkc + kr + kc) + 1
x (5)

If the renewable energy producer receives the market price, the profit is:

Πr =
a2kr(b(kr(bkc + 2) + kc) + 1)2

2(2bkr + 1)(2b(bkrkc + kr + kc) + 1)2
x2 = αx2 (6)

When the market price is below the minimum price guarantee, the energy
production yields a different profit due to the FIT contract:

Πr =
F 2kr

2
(7)
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Note that the profit function in Equation 6 is proportional to x2, hence,
it is straightforward to prove by Itô’s Lemma that the profit follows the
following stochastic process:

dΠ = (2µ+ σ2)Πtdt+ 2σΠtdWt (8)

Hence, the appropriate discounted rate to find the value of the project
when the market price, p, is greater than the minimum price guarantee, F ,
is:

R = r − 2µ− σ2 (9)

The renewable energy producer maximizes its profit by choosing an ap-
propriate quantity that depends on x. However, the producer with a FIT
contract receives a fixed amount when the market price is below the mini-
mum price guarantee. Let us denote xF as the point where the profit received
by the equilibrium market price (Equation 6) is equals to the profit received
by FIT contract (Equation 7). Hence,

xF = F

√
kr
2α

(10)

3.1 Perpetual FIT within an Oligopoly

In this section, we assume that the duration of the FIT contract is perpetual.
Hence, the renewable energy producer has a perpetual set of options of selling
energy for F instead of selling energy for the market price p. For any value
of x at any time t, the option is exercised when the profit generated by F is
greater than the profit generated by p. This characteristic is consistent with
European put options and not an American options, because each option can
only be exercised at its specified instant. In contrast, an American option
can be exercised at any time before maturity.

Let V (x) be the value of the project. Therefore the differential equation
for the value of the project is:

rV = α x
∂V (x)

∂x
+ 0.5σ2 x2

∂2V (x)

∂x2
+ Π(x) (11)

where

Π(x) =


F 2kr

2r
x < xF

αx2

R
x > xF

(12)

6



And the general solution to this ODE is given by:

V (x) = Kxβ1 +Bxβ2 (13)

Following Dixit & Pindyck (1994), the value of the project is:

V (x) =


Kxβ1 +

F 2kr
2r

x < xF

Bxβ2 +
αx2

R
x > xF

(14)

where

K =

β2F
2kr

2r
− (β2 − 2)(αx2F )

R
(β1 − β2)xβ1F

(15)

B =

β1F
2kr

2r
− (β1 − 2)(αx2F )

R
(β1 − β2)xβ2F

(16)

Let us assume now that the firm has a perpetual option to invest, for a
given sunk cost I. The value of that option is given by:

F (x) = Axβ1 (17)

For x > xF , the value matching and smooth pasting conditions are:

Ax∗
β1 = Bx∗

β2 +
α

R
x∗

2 − I (18)

β1Ax
∗β1−1

= Bβ2x
∗β2−1

+
2α

R
x∗ (19)

where x∗ is the threshold for investment.
These two equations reduce to the following non-linear equation:

(1− β2)Bx∗
β2 − α

R
x∗

2 − I = 0 (20)

We can calculate the trigger for investment, x∗, by numerically solving
Equation 20. It is straightforward to show that investment will never occur
for x < xF . Value matching and smooth pasting conditions are not met for
the the first branch of Equation 14. A perpetual FIT will defer investment
until a time when the state variable x is higher than xF , meaning that it
is never optimal to invest if the initial price for selling energy is below the
minimum price guarantee. This apparently counter-intuitive result is due to
the perpetual guarantee, which is not foregone if investment does not occur.
The next section studies the case of a finite-lived guarantee.
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3.2 Finite FIT within an Oligopoly

In this section, we derive the value of a renewable energy project that has
a FIT contract with a finite duration. The complete derivation is presented
in Appendix A, where we extend the model from Shackleton & Wojakowski
(2007) to include an equilibrium analysis and FIT policy.

Equation 21 presents the value of the project until T (when the firm
benefits from the FIT guarantee) and Equation 23 presents the value of the
project with a finite FIT contract.

V G(x) =



Kxβ1N(dβ1) +
F 2kr

2r

(
1− e−rT (1−N(d0))

)
−Bxβ2N(dβ2)−

αx2

R
e−RTN(d2) x < xF

−Kxβ1(1−N(dβ1))−
F 2kr

2r
e−rT (1−N(d0))

+Bxβ2(1−N(dβ2)) +
αx2

R

(
1− e−RTN(d2)

)
x > xF

(21)

where N(.) is the cumulative normal integral and

dβ =

ln
x

xF
+

(
µ+ σ2

(
β − 1

2

))
T

σ
√
T

(22)

V (x) = V G(x) +
αx2

R
e−RT (23)

When there is no guarantee (T = 0) the value of the project reduces
to αx

R
, which is the present value of the profits in Equation 6. When the

guarantee is perpetual (T =∞), the value reduces to Equation 14.1

The value of the option to invest is:

F (x) = Axβ1 (24)

The value matching and smooth pasting conditions are:

Ax∗
β1 = V (x∗)− I (25)

β1Ax
∗β1−1

= V ′(x∗) (26)

1Proofs are presented in Appendix B.
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These two equations reduce to the following nonlinear equations, that
must be solved numerically to find the investment threshold x∗ (Appendix
C):

−(β1 − β2)Bx∗β2N(dβ2)− (β1 − 2)

(
αx∗2

R
e−RTN(d2)

)
+β1

(
F 2kr

2r
(1− e−rT (1−N(d0)))− I

)
x∗ < xF

(β1 − β2)Bx∗β2(1−N(dβ2)) + (β1 − 2)

(
αx∗2

R
(1− e−RTN(d2))

)
−β1

(
F 2kr

2r
e−rT (1−N(d0)) + I

)
x∗ > xF

(27)
The value of the option to invest is given by:

F (x) =


(V (x∗)− I)

( x
x∗

)β1
x < x∗

V (x)− I x > x∗

(28)

3.3 Numerical analysis of the FIT Policy within an
Oligopoly

In this section we present a comparative statics analysis of the main drivers
of a renewable energy producer’s option to invest and its threshold. We use
the base-case parameters presented in Table 1.

Table 1: Base-case parameters used to calculate the threshold

a 10
b 0.1
kl 1
kf 0.2
r 0.05
F €1 / KWh
T 5 years
µ -0.01
σ 0.2
I €10
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Figure 1 illustrates the value of the threshold x∗ for a finite guarantee
(pink curve) and for a perpetual guarantee (blue curve) as a function of the
minimum price guarantee F . The gray line is the value of xF as a function
of F . Recall that xF is the value of x when the producer receives the market
price instead of the guarantee.

Perpetual

Finite

xF

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

F

x

*

Figure 1: Investment thresholds as a function of the minimum price guarantee

For the perpetual case, the threshold reduces and converges to xF from
above as we increase F . At the point where the two lines converge, the per-
petual guarantee produces a positive net present value (NPV) for every x
and a null NPV for x = 0. Hence, a perpetual FIT is sufficient to induce
investment for every x. However, it is not economically sound to increase
the FIT guarantee above the point where the two lines converge, as it will
produce always a risk-free profit. On the contrary, a finite FIT guarantee is
able to induce investment below xF without producing a risk-free profit. For
the base-case parameter, a minimum price guarantee around 4.8 is the max-
imum needed to induce investment for every x. As expected, the investment
threshold is higher for the finite case.

Figure 2 shows that a higher duration of the guarantee induces an ear-
lier investment. The threshold also converges to the perpetual case as T
increases. In Figure 3, we can see that a higher volatility defers investment
for both cases.

4 Price Taker Scenario and FIT Policy

In this section, the scenario has a large number of renewable energy producers
with small scale projects. A renewable energy producer is not influential
enough to affect the market price. In other words, the renewable energy
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Figure 2: Investment thresholds as a function of T
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Figure 3: Investment thresholds as a function of σ

producers are Price taker. The energy price follows a geometric Brownian
process, which is the usual assumption in real options models.

dpt = µptdt+ σptdWt (29)

4.1 Perpetual FIT within the Price Taker Scenario

We first present a model that assumes a FIT contract with a perpetual du-
ration. In this scenario, the value of the project is:

V (p) =


Kpβ1 +

F

r
p < F

Bpβ2 +
p

r − µ
p > F

(30)
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The two regions above meet when p = F . Recall that V (p) must be
continuously differentiable across F . Equating the values and derivatives
gives:

K =

Fβ2
r
− F (β2 − 1)

r − µ
F β1(β1 − β2)

(31)

B =

Fβ1
r
− F (β1 − 1)

r − µ
F β2(β1 − β2)

(32)

Following the assumption that a firm has a perpetual option to invest,
for a sunk cost of I, will lead to a value of the option that is given by:

F (x) = Axβ1 (33)

The value matching and smooth pasting conditions for p > F are:

Ap∗
β1 = Bp∗

β2 +
p∗

r − µ
− I (34)

Aβ1p
∗β1−1

= Bβ2p
∗β2−1

+
1

r − µ
(35)

The two equations reduce to the following non-linear equation:

(β1 − β2)Bp∗
β2 + (β1 − 1)

p∗

r − µ
− Iβ1 = 0 (36)

The trigger for investment, p∗ is the numerical solution to Equation 36.
It is straightforward to show that the results are the same as in the Oligopoly
scenario. Hence, a perpetual FIT defers investment until a time when the
state variable p is higher than F . This means that it is never optimal to
invest if the price at which the firm will start selling energy is bellow the
minimum price guarantee. The next section studies the case of a FIT with
a finite guarantee, assuming producers are Price taker.

4.2 Finite FIT within the Price Taker Scenario

Similar to the previous section, we use Shackleton & Wojakowski (2007) to
derive the value of the project for a FIT contract with a finite duration. The
complete derivation is presented in Appendix D.
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Equation 37 presents the value of the project until T , when the firm
benefits from the FIT guarantee. Equation 39 presents the value of the
project with a finite FIT contract.

V G(p) =



Kpβ1N(dβ1) +
F

r
(1− e−rT (1−N(d0)))

−Bpβ2N(dβ2)−
p

r − µ
e−(r−µ)TN(d1) p < F

−Kpβ1(1−N(dβ1))−
F

r
e−rT (1−N(d0))

+Bpβ2(1−N(dβ2)) +
p

r − µ
(1− e−(r−µ)TN(d1)) p > F

(37)
where N(.) is the cumulative normal integral and

dβ =

ln
p

F
+

(
µ+ σ2

(
β − 1

2

))
T

σ
√
T

(38)

V (p) = V G(p) +
p

r − µ
e−(r−µ)T (39)

When there is no guarantee (i.e., T = 0) the value of the project reduces
to the present value p

r−µ . In the case of a perpetual guarantee (i.e., T =∞),

the value reduces to Equation 30.2

The value of the option to invest is:

F (p) = Apβ1 (40)

The value matching and smooth pasting conditions are:

Ap∗
β1 = V (p∗)− I (41)

β1Ap
∗β1−1

= V ′(p∗) (42)

These two equations reduce to the following nonlinear equations, that
must be solved numerically to find the investment threshold p∗ (Appendix

2Proofs are presented in Appendix E.
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F):

−(β1 − β2)Bp∗β2N(dβ2)− (β1 − 1)

(
p∗

r − µ
e−(r−µ)TN(d1)

)
+β1

(
F

r
(1− e−rT (1−N(d0)))− I

)
p∗ < F

(β1 − β2)Bp∗β2(1−N(dβ2)) + (β1 − 1)

(
p∗

r − µ
(1− e−(r−µ)TN(d1))

)
−β1

(
F

r
e−rT (1−N(d0)) + I

)
p∗ > F

(43)
The value of the option to invest is given by:

F (p) =


(V (p∗)− I)

(
p

p∗

)β1
p < p∗

V (p)− I p > p∗

(44)

4.3 Numerical analysis within the Price Taker Sce-
nario

Similar to the previous section, we present o̧mparative statics to analyze the
option to invest and the threshold that triggers a renewable energy invest-
ment. We use the base-case parameters presented in Table 2.

Table 2: Base-case parameters used to calculate the threshold

r 0.05
F €1 / KWh
T 5 years
µ -0.01
σ 0.2
I €30

Figure 4 presents the value of the threshold p∗ for a finite guarantee
(pink curve) and for a perpetual guarantee (blue curve) as a function of the
minimum price guarantee F . The gray line is the value of the minimum price
guarantee F .
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Figure 4: Investment thresholds as a function of the FIT

Similar to the oligopoly scenario, the threshold of the perpetual case starts
above F and then converges to F . Notice that the perpetual guarantee
produces a positive NPV when the two lines converge. Hence, increasing
the minimum price guarantee above that point is not economically sound,
because it will produce always a risk-free profit. A finite FIT guarantee
is able to induce investment below F without producing a risk-free profit.
Considering the base-case parameter of Table 2, a minimum price guarantee
around 6.8 is the maximum needed to induce investment for every p. As
expected, the investment threshold is higher for the finite case.

A higher duration of the guarantee induces an earlier investment, and
the threshold converges to the perpetual case (Figure 5). A higher volatility
defers investment for both cases (Figure 6).
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Figure 5: Investment thresholds as a function of T
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Figure 6: Investment thresholds as a function of σ

5 Concluding Remarks

This work analyzes a FIT contract with a minimum price guarantee in two
different scenarios, namely an oligopoly and price-taker scenario. In the
oligopoly, we use a Stackelberg game and include managerial flexibilities with
a real options model. While the price-taker scenario is based on a real options
model. In both scenarios, the renewable energy producer receives either the
energy market price or a minimum price guarantee. The key results of this
paper is twofold. First, both scenarios show that a perpetual guarantee
can induce investment for prices below the minimum price guarantee, when
the project compensates the investment cost. Second, FIT contracts with a
higher price and duration induces an earlier investment.
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Appendix A Value of the project for a finite

FIT

This is an extension of Shackleton & Wojakowski (2007) to a renewable
energy project, where we include a FIT and an equilibrium analysis. The
value of the project with perpetual guarantee is:

V (xT ,∞) =


Kxβ1 +

F 2kr
2r

xT < xF

Bxβ2 +
αx2

R
xT > xF

(A.1)

Now, the value of the project is extended with finite guarantee. For more
details see Appendix A of Shackleton & Wojakowski (2007).

V (x, T ) = V (x,∞)− V (xT ,∞) = V (x,∞)− e−rTEQ
0 [V (xT ,∞)] (A.2)

V (x,∞) =

[
Kxβ1 +

F 2kr
2r

]
1x<xF +

[
Bxβ2 +

αx2

r − 2µ− σ2

]
1x>xF (A.3)

V (xT ,∞) =

[
Kxβ1T +

F 2kr
2r

]
1xT<xF +

[
Bxβ2T +

αx2T
r − 2µ− σ2

]
1xT>xF (A.4)

dβ =

ln
x

xF
+

(
µ+ σ2

(
β − 1

2

))
T

σ
√
T

(A.5)

q(β) =
1

2
σ2β(β − 1) + βµ− r (A.6)

e−rTEQ
0

[
xβT1xT<xF

]
= eq(β)TxβN(−dβ) (A.7)

e−rTEQ
0

[
xβT1xT>xF

]
= eq(β)TxβN(dβ) (A.8)
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β = β1

q(β1) = 0

dβ1 =

ln
x

xF
+

(
µ+ σ2

(
β1 −

1

2

))
T

σ
√
T

e−rTEQ
0

[
Kxβ1

]
= Kxβ1N(−dβ1)

(A.9)

β = 0

q(0) = −r

d0 =

ln
x

xF

(
µ− σ2

2

)
T

σ
√
T

e−rTEQ
0

[
F 2kr

2r

]
= e−rT

F 2kr
2r

N(−d0)

(A.10)

β = β2

q(β2) = 0

dβ2 =

ln
x

xF

(
µ+ σ2

(
β2 −

1

2

))
T

σ
√
T

e−rTEQ
0

[
Bxβ2

]
= Bxβ2N(dβ2)

(A.11)
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β = 2

q(2) = σ2 + 2µ− r

d2 =

ln
x

xF
+

(
µ+

3σ2

2

)
T

σ
√
T

e−rTEQ
0

[
αx2

R

]
=
αx2

R
N(d2)e

−RT

(A.12)

Recall that V (x, T ) = V (x,∞)− e−rTEQ
0 [V (xT ,∞)]

For x < xF

Kxβ1 +
F 2kr

2r

−
[
Kxβ1N(−dβ1) +

F 2kr
2r

e−rTN(−d0) +Bxβ2N(dβ2) +
αx2

R
e−RTN(d2)

]
(A.13)

N(−dβ) = 1−N(dβ). Hence, for x < xF

Kxβ1N(dβ1) +
F 2kr

2r

(
1− e−rT (1−N(d0))

)
−Bxβ2N(dβ2)−

αx2

R
e−RTN(d2) (A.14)

For x > xF

Bxβ2 +
αx2

R

−
[
Kxβ1N(−dβ1) +

F 2kr
2r

e−rTN(−d0) +Bxβ2N(dβ2) +
αx2

R
e−RTN(d2)

]
(A.15)
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−Kxβ1(1−N(dβ1))−
F 2kr

2r
e−rT (1−N(d0))

+Bxβ2(1−N(dβ2)) +
αx2

R

(
1− e−RTN(d2)

)
(A.16)

V G(x) =



Kxβ1N(dβ1) +
F 2kr

2r

(
1− e−rT (1−N(d0))

)
−Bxβ2N(dβ2)−

αx2

R
e−RTN(d2) x < xF

−Kxβ1(1−N(dβ1))−
F 2kr

2r
e−rT (1−N(d0))

+Bxβ2(1−N(dβ2)) +
αx2

R

(
1− e−RTN(d2)

)
x > xF

(A.17)
Now, we add the part without guarantee

V (x) = V G(x) +
αx2

R
e−RT (A.18)
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Appendix B Limits of the value of project for

a finite FIT

Checking the limit for T → +∞

lim
T→+∞

d0 = lim
T→+∞

ln
x

xF
+

(
µ− σ2

2

)
T

σ
√
T

=


−∞ µ− σ2

2
< 0

+∞ µ− σ2

2
> 0

(B.1)

lim
T→+∞

d2 = lim
T→+∞

ln
x

xF
+

(
µ+

3σ2

2

)
T

σ
√
T

= +∞ (B.2)

lim
T→+∞

dβ1 = lim
T→+∞

ln
x

xF
+

(
µ+ σ2

(
β1 −

1

2

))
T

σ
√
T

= +∞ (B.3)

lim
T→+∞

dβ2 = lim
T→+∞

ln
x

xF
+

(
(µ+ σ2

(
(β2 −

1

2

))
T

σ
√
T

= −∞ (B.4)

Recall that β2 < 0 and β1 > 1. In addition, β1 and β2 is the solution of
the following quadratic equation: 0.5σ2β(β−1)+µβ−r. Hence limT→+∞ dβ2
is always −∞.

0.5σ2β(β − 1) + µβ − r = 0 (B.5)

µ =
r − 0.5σ2β2(β2 − 1)

β2
(B.6)

µ+ σ2(β2 − 0.5) =
r − 0.5σ2β2(β2 − 1)

β2
+ σ2(β2 − 0.5) (B.7)

µ+ σ2(β2 − 0.5) =
r + 0.5σ2β2

2

β2
< 0 (B.8)

N(+∞) = 1 (B.9)
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N(−∞) = 0 (B.10)

limT→+∞ for x < xF

lim
T→+∞

[
Kxβ1N(dβ1) +

F 2kr
2r

(
1− e−rT (1−N(d0))

)
−Bxβ2N(dβ2)−

αx2

R
e−RTN(d2) +

αx2

R
e−RT

]
=

= Kxβ1 +
F 2kr

2r
(B.11)

Hence the same result for perpetual option

limT→+∞ for x > xF

lim
T→+∞

[
−Kxβ1(1−N(dβ1))−

F 2kr
2r

e−rT (1−N(d0))

+Bxβ2(1−N(dβ2)) +
αx2

R

(
1− e−RTN(d2)

)
+
αx2

R
e−RT

]
=

= Bxβ2 +
αx2

R
(B.12)

lim
T→0

d0 =

{
−∞ x < xF

+∞ x > xF
(B.13)

limT→0 for x < xF

lim
T→0

[
Kxβ1N(dβ1) +

F 2kr
2r

(
1− e−rT (1−N(d0))

)
−Bxβ2N(dβ2)−

αx2

R
e−RTN(d2) +

αx2

R
e−RT

]
=
αx2

R
(B.14)

limT→0 for x > xF

lim
T→0

[
−Kxβ1(1−N(dβ1))−

F 2kr
2r

e−rT (1−N(d0))

+Bxβ2(1−N(dβ2)) +
αx2

R

(
1− e−RTN(d2)

)
+
αx2

R
e−RT

]
=
αx2

R
(B.15)
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Hence for both the limT→0 is the value of the project without guarantee,
in other words is the NPV.
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Appendix C Investment thresholds

Appendix C.1 First interval: x < xF

The value-matching condition is:

Ax∗β1 = Kx∗β1N(dβ1) +
F 2kr

2r
(1− e−rT (1−N(d0)))

−Bx∗β2N(dβ2)−
αx∗2

R
e−RTN(d2) +

αx∗2

R
e−RT − I (C.1)

The smooth-pasting condition is:

β1Ax
∗β1−1 = Kx∗β1

∂N(dβ1)

∂p
+ β1Kx

∗β1−1N(dβ1) +
F 2kr

2r
e−rT

∂N(d0)

∂p

− β2Bx∗β2−1N(dβ2)−Bx∗β2
∂N(dβ2)

∂p

− 2αx∗

R
e−RTN(d2)−

αx∗2

R
e−RT

∂N(d1)

∂p
+

2αx∗

R
e−RT (C.2)

As in Shackleton & Wojakowski (2007) (Appendix B), the partial deriva-
tives of the cumulative distribution function cancel across the betas, reducing
the value-matching and smooth-pasting conditions to the following nonlinear
equation:

− (β1 − β2)Bx∗β2N(dβ2)− (β1 − 2)

(
αx∗2

R
e−RTN(d2)

)
+ β1

(
F 2kr

2r
(1− e−rT (1−N(d0)))− I

)
(C.3)

Equation C.3 must be solved numerically to find optimal exercise thresh-
old, x∗.

Appendix C.2 Second interval: x > xF

The value-matching condition is:

A1p
∗β1 = −Kx∗β1(1−N(dβ1))−

F 2kr
2r

e−rT (1−N(d0))

+Bx∗β2(1−N(dβ2)) +
αx∗2

R
(1− e−RTN(d2) +

αx∗2

R
e−RT − I (C.4)
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The smooth-pasting condition is:

β1A1p
∗β1−1 = −β1Kx∗β1−1N(dβ1)−Kx∗β1

∂N(dβ1)

∂p
+ e−rT

F 2kr
2r

∂N(d0)

∂p

+ β2Bx
∗β2−1(1−N(dβ2))−Bx∗β2

∂N(−dβ2)
∂p

+
2αx∗

R
(1− e−RTN(d2))−

αx∗2

R
e−RT

∂N(d1)

∂p
+

2αx∗

R
e−RT (C.5)

As before, the partial derivatives of the cumulative distribution function
cancel across the betas, reducing the value-matching and smooth-pasting
conditions to the following nonlinear equation:

(β1 − β2)Bx∗β2(1−N(dβ2)) + (β1 − 2)

(
αx∗2

R
(1− e−RTN(d2))

)
− β1

(
F 2kr

2r
e−rT (1−N(d0)) + I

)
(C.6)

Equation C.6 must be solved numerically to find optimal exercise thresh-
old, x∗.
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Appendix D Value of the project for a finite

FIT: Price taker

This is an extension of Shackleton & Wojakowski (2007) to a renewable en-
ergy project, where we include a FIT. The value of the project with perpetual
guarantee is:

V (pT ,∞) =


Kpβ1 +

F

r
p < F

Bpβ2 +
p

r − µ
p > F

(D.1)

Now, the value of the project is extended with finite guarantee. For more
details see Appendix A of Shackleton & Wojakowski (2007).

V (p, T ) = V (p,∞)− V (pT ,∞) = V (p,∞)− e−rTEQ
0 [V (pT ,∞)] (D.2)

V (p,∞) =

[
Kpβ1 +

F

r

]
1p<F +

[
Bpβ2 +

p

r − µ

]
1p>F (D.3)

V (pT ,∞) =

[
Kpβ1T +

F

r

]
1pT<F +

[
Bpβ2T +

pT
r − µ

]
1pT>F (D.4)

dβ =

ln
p

F
+

(
µ+ σ2

(
β − 1

2

))
T

σ
√
T

(D.5)

q(β) =
1

2
σ2β(β − 1) + βµ− r (D.6)

e−rTEQ
0

[
pβT1pT<F

]
= eq(β)TpβN(−dβ) (D.7)

e−rTEQ
0

[
pβT1pT>F

]
= eq(β)TpβN(dβ) (D.8)
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β = β1

q(β1) = 0

dβ1 =

ln
p

F
+

(
µ+ σ2

(
β1 −

1

2

))
T

σ
√
T

e−rTEQ
0

[
Kpβ1

]
= Kpβ1N(−dβ1)

(D.9)

β = 0

q(0) = −r

d0 =

ln
p

F
+

(
µ− σ2

2

)
T

σ
√
T

e−rTEQ
0

[
F

r

]
= e−rT

F

r
N(−d0)

(D.10)

β = β2

q(β2) = 0

dβ2 =

ln
p

F
+

(
µ+ σ2

(
β2 −

1

2

))
T

σ
√
T

e−rTEQ
0

[
Bpβ2

]
= Bpβ2N(dβ2)

(D.11)
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β = 1

q(1) = µ− r

d1 =
ln
p

F
+
(
µ+

σ

2

)
T

σ
√
T

e−rTEQ
0

[
p

r − µ

]
=

p

r − µ
N(d1)e

−(r−µ)T (D.12)

Recall that V (p, T ) = V (p,∞)− e−rTEQ
0 [V (pT ,∞)]

For p < F

Kpβ1 +
F

r

−
[
Kpβ1N(−dβ1) +

F

r
e−rTN(−d0) +Bpβ2N(dβ2) +

p

r − µ
e−(r−µ)TN(d1)

]

(D.13)

N(−dβ) = 1−N(dβ). Hence, for p < F

Kpβ1N(dβ1) +
F

r
(1− e−rT (1−N(d0)))

−Bpβ2N(dβ2)−
p

r − µ
e−(r−µ)TN(d1) (D.14)

For p > F

Bpβ2 +
p

r − µ

−
[
Kpβ1N(−dβ1) +

F

r
e−rTN(−d0) +Bpβ2N(dβ2) +

p

r − µ
e−(r−µ)TN(d1)

]

(D.15)
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−Kpβ1(1−N(dβ1))−
F

r
e−rT (1−N(d0))

+Bpβ2(1−N(dβ2)) +
p

r − µ
(1− e−(r−µ)TN(d1))

(D.16)

V G(p) =



Kpβ1N(dβ1) +
F

r
(1− e−rT (1−N(d0)))

−Bpβ2N(dβ2)−
p

r − µ
e−(r−µ)TN(d1) p < F

−Kpβ1(1−N(dβ1))−
F

r
e−rT (1−N(d0))

+Bpβ2(1−N(dβ2)) +
p

r − µ
(1− e−(r−µ)TN(d1)) p > F

(D.17)
Now, we add the part without guarantee

V (p) = V G(p) +
p

r − µ
e−(r−µ)T (D.18)
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Appendix E Limits of the value of project for

a finite FIT: Price taker

Checking the limit for T → +∞

lim
T→+∞

d0 = lim
T→+∞

ln
p

F
+

(
µ− σ2

2

)
T

σ
√
T

=


−∞ µ− σ2

2
< 0

+∞ µ− σ2

2
> 0

(E.1)

lim
T→+∞

d1 = lim
T→+∞

ln
p

F
+

(
µ+

σ2

2

)
T

σ
√
T

= +∞ (E.2)

lim
T→+∞

dβ1 = lim
T→+∞

ln
p

F
+

(
µ+ σ2

(
β1 −

1

2

))
T

σ
√
T

= +∞ (E.3)

lim
T→+∞

dβ2 = lim
T→+∞

ln
p

F
+

(
µ+ σ2

(
β2 −

1

2

))
T

σ
√
T

= −∞ (E.4)

Recall that β2 < 0 and β1 > 1. In addition, β1 and β2 is the solution of
the following quadratic equation: 0.5σ2β(β−1)+µβ−r. Hence limT→+∞ dβ2
is always −∞. In addition, N(+∞) = 1 and N(−∞) = 0.

limT→+∞ for p < F

lim
T→+∞

[
Kpβ1N(dβ1) +

F

r
(1− e−rT (1−N(d0)))

−Bpβ2N(dβ2)−
p

r − µ
e−(r−µ)TN(d1) +

p

r − µ
e−(r−µ)T

]
=

= Kpβ1 +
F

r
(E.5)

Hence the same result for perpetual option

limT→+∞ for p > F
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lim
T→+∞

[
−Kpβ1(1−N(dβ1))−

F

r
e−rT (1−N(−d0))

+Bpβ2(1−N(dβ2)) +
p

r − µ
(1− e−(r−µ)TN(d1)) +

p

r − µ
e−(r−µ)T

]
=

= Bpβ2 +
p

r − µ
(E.6)

Checking the limit for T → 0

lim
T→+0

d0 =


−∞ p < F

+∞ p > F

(E.7)

limT→0 for p < F

lim
T→0

[
Kpβ1N(dβ1) +

F

r
(1− e−rT (1−N(d0)))

−Bpβ2N(dβ2)−
p

r − µ
e−(r−µ)TN(d1) +

p

r − µ
e−(r−µ)T

]
=

=
p

r − µ
(E.8)

limT→0 for p > F

lim
T→0

[
−Kpβ1(1−N(dβ1))−

F

r
e−rT (1−N(−d0))

+Bpβ2(1−N(dβ2)) +
p

r − µ
(1− e−(r−µ)TN(d1)) +

p

r − µ
e−(r−µ)T

]
=

=
p

r − µ
(E.9)

Hence for both the limT→0 is the value of the project without guarantee,
in other words is the NPV.
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Appendix F Investment thresholds: Price taker

Appendix F.1 First interval: p < F

The value-matching condition is:

Ap∗β1 = Kp∗β1N(dβ1) +
F

r
(1− e−rT (1−N(d0)))

−Bp∗β2N(dβ2)−
p∗

r − µ
e−(r−µ)TN(d1) +

p∗

r − µ
e−(r−µ)T − I (F.1)

The smooth-pasting condition is:

β1Ap
∗β1−1 = Kp∗β1

∂N(dβ1)

∂p
+ β1Kp

∗β1−1N(dβ1) +
F

r
e−rT

∂N(d0)

∂p

− β2Bp∗β2−1N(dβ2)−Bp∗β2
∂N(dβ2)

∂p

− 1

r − µ
e−(r−µ)TN(d1)−

p∗

r − µ
e−(r−µ)T

∂N(d1)

∂p

+
1

r − µ
e−(r−µ)T (F.2)

As in Shackleton & Wojakowski (2007) (Appendix B), the partial deriva-
tives of the cumulative distribution function cancel across the betas, reducing
the value-matching and smooth-pasting conditions to the following nonlinear
equation:

− (β1 − β2)Bp∗β2N(dβ2)− (β1 − 1)

(
p∗

r − µ
e−(r−µ)TN(d1)

)
+ β1

(
F

r
(1− e−rT (1−N(d0)))− I

)
(F.3)

Equation F.3 must be solved numerically to find optimal exercise thresh-
old, p∗.

Appendix F.2 Second interval: p > F

The value-matching condition is:

A1p
∗β1 = −Kp∗β1(1−N(dβ1))−

F

r
e−rT (1−N(d0))

+Bp∗β2(1−N(dβ2)) +
p∗

r − µ
(1− e−(r−µ)TN(d1) +

p∗

r − µ
e−(r−µ)T − I

(F.4)
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The smooth-pasting condition is:

β1A1p
∗β1−1 = −β1Kp∗β1−1N(dβ1)−Kp∗β1

∂N(dβ1)

∂p
+ e−rT

F

r

∂N(d0)

∂p

+ β2Bp
∗β2−1(1−N(dβ2))−Bp∗β2

∂N(−dβ2)
∂p

+
1

r − µ
(1− e−(r−µ)TN(d1))−

p∗

r − µ
e−(r−µ)T

∂N(d1)

∂p

+
1

r − µ
e−(r−µ)T (F.5)

As before, the partial derivatives of the cumulative distribution function
cancel across the betas, reducing the value-matching and smooth-pasting
conditions to the following nonlinear equation:

(β1 − β2)Bp∗β2(1−N(dβ2)) + (β1 − 1)

(
p∗

r − µ
(1− e−(r−µ)TN(d1))

)
− β1

(
F

r
e−rT (1−N(d0)) + I

)
(F.6)

Equation F.6 must be solved numerically to find optimal exercise thresh-
old, p∗.
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