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Abstract

The strategic bene�t of commitment and the option value associated with �exibility are

jointly examined in a model of capacity investment in a new market. When this is feasible,

a �rst-mover optimally divides a discrete investment into two parts, a �rst installment that

positions the �rm strategically and a contingent remainder that accounts both for risk and

simultaneous competition. A �rm�s superior ability to stage investment is thus seen to be a

possible source of �rst-mover advantage in a two-period model. In a continuous time model,

a leader �rm is seen to adopt a capital accumulation strategy that durably maintains its rival

on the brink of market entry, and to �nally invest at an optimal threshold that consitutes a

preemption trigger for its rival.
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1 Introduction

In industries in which imperfect competition reigns both uncertainty and the threat of competition

play a signi�cant role in investment decisions. Thus the strategic decisions of �rms typically

involve a classic trade-o¤ between two opposing motives: on the one hand, uncertainty creates

an option value which calls for waiting and �exibility, but on the other hand, the threat of

competition gives rise to a strategic incentive to act quickly and to commit.1 Although this

trade-o¤ is intuitive, specifying it further is a more daunting task that requires bringing several

strands of research in economics and in �nance together.

The main contribution of this paper is to set out a model of capacity investment in the presence

of both uncertainty and competition in which a leader �rm chooses to sink a part of its capacity

investment early so as to gain a strategic advantage in the product market. Leadership is thus

linked to a �rm�s relatively greater ability to fraction, or stage, an otherwise discrete investment.

The temporal framework within which investment decisions occur is shown to a¤ect the nature of

the leader �rm�s strategy, insofar as in a continuous time setting the leader�s optimal investment

policy involves a form of brinkmanship that does not emerge in the two-period framework. Once a

critical threshold is reached at which preemption would otherwise occur, the leader incrementally

accumulates a su¢ cient level of capital so as to keep its rival just indi¤erent between entering

and waiting, up until a speci�c optimal threshold is reached.

1.1 Literature review

The main ideas pertaining to the strategic commitment associated with capacity investment are

laid out in Dixit [6]�s seminal article. Early on, several authors sought to incorporate both strategic

commitment and �exibility into duopoly competition by introducing uncertainty into a two-period

model of capacity investment. To mention just a few, Spencer and Brander [19] �nd that with a

linear demand and cost speci�cation the value of �exibility outweighs �rst-mover advantage when

demand volatility is large enough, inducing a leader to forgo precommitment altogether. In an

article whose primary focus is endogenous Stackelberg leadership, Maggi [13] identi�es a su¢ cient

1See e.g. Chevalier-Roignant and Trigeorgis [4], p. 97:

�In an uncertain competitive environment, any company considering a capital-intensive decision,

like whether to invest in a new technological process or to develop a new product, faces a trade-o¤ be-

tween investing early to build competitive advantage over rivals versus delaying investment to acquire

more information and mitigate the potentially unfavorable consequences of market uncertainty.�
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condition for positive capacity precommitment to be optimal, which is discussed in further detail

in Section 2 below. Under the assumption that the degree of uncertainty and hence the value

of �exibility are relatively small, Maskin [14] �nds that cost uncertainty in the product market

competition stage reduces the degree of entry deterrence chosen by a leader �rm.

Whereas the contributions listed above are cast in a two-period framework, the joint presence

of competition and uncertainty naturally calls for a game-theoretic analysis of the continuous

time real options that �rms e¤ectively hold. In what Azevedo and Paxson [1] describe as a

standard real options game, two �rms engage in a preemption race (Fudenberg and Tirole [9])

with stochastic payo¤s (Thijssen et al. [22]) in which the rents accruing to the �rst-mover are

dissipated by positional competition that leads ex-ante symmetric �rms to enter too early. A

noteworthy recent contribution in this area is due to Huisman and Kort [11], who allow �rms to

choose both the timing and scale of entry and are thus able to reexamine foundational concepts

of the strategic investment literature such as entry deterrence through the lens of more recent

models of irreversible investment.2 In the standard real options game investments are discrete,

and at the other end of the spectrum of possible investment strategies, entry competition between

duopolists may also involve incremental investments, a study of which using closed-loop strategies

is given by Chevalier-Roignant et al. [5].

There are several dimensions along which a standard real option game can, and has been,

extended. The main innovation in the present paper is to allow for asymmetric �rm strategies

(rather than asymmetric �xed costs for instance, which constitute a more common extension), by

taking the capital good to be divisible for one �rm and indivisible for the other. Thus, in a hybrid

form of competition drawing on both types of models described above, investment is assumed to

be sequential in nature for one of the �rms (as in Bertola and Cabalero [2], see also Stokey [20],

Ch. 11), and discrete for the other. Aside from this asymmetry, the assumption that a single

unit of capital must be accumulated is maintained although some authors have emphasized that

industry development may follow a richer pattern than unit capital accumulation allows, such as

the multiple investment rounds described by Boyer et al. [3], but this possibility is not pursued

further here.

2�It might be interesting to see if Dixit�s (1980) result that entry deterrence is ine¤ective if �rms cannot commit

to produce at full capacity ... is still true in a stochastic dynamic setting.� [11], p. 395.
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1.2 Results and outline

The remainder of this paper studies the �exibility and commitment motives in a model of invest-

ment with input price uncertainty. In Section 2, a leader �rm that has the ability to segment

its investment is seen to optimally commit part of its �nal capacity investment before the input

price prevailing at the time of product market competition is known, so long as the probability

of drastic bad news (of a shutout of the industry) is not too large. As a result, in this framework

leadership may emerge not from a �rm�s advantage with respect to timing but from its greater

ability to stage investment. This possibility is illustrated in the linear demand case in which the

e¤ects of competition and uncertainty can be disentangled.

As noted by some several authors, a more realistic approach to strategic investment involves

incorporating richer dynamics into the analysis.3 In Section 3 therefore, the investment policy

of a leader �rm is studied in a continuous time setting under the assumption it can engage in

sequential investment whereas its rival�s investment is discrete. It is shown that in equilibrium

the leader �rm begins investing as soon as the preemption threshold is reached so as to maintain

its rival indi¤erent between entering or not, up until an optimal threshold is reached at which it

completes its investment. Moreover, this optimal threshold is that level which, given the leader

�rm�s accumulated capital stock at the moment of investment, equates its optimal standalone

investment threshold and its rival�s preemption threshold.

Section 4 concludes by revisiting a famous historical example of strategic commitment in light

of the preceding analysis.

2 Commitment under uncertainty in a two-period framework

with divisible and indivisible investments

Consider the standard (Stackelberg-Spence-Dixit) model of strategic capacity investment in which

a leader �rm shifts its ex-post product market reaction function through an irreversible ex-ante

investment, resulting in a higher pro�t than when capacity investment decisions are simultaneous.

An element of uncertainty can be introduced by supposing that the price of capital goods �uctuates

3From the onset, Dixit is quite clear as to the simpli�cations inherent in restricting the analysis to two periods

whereas �rm choices typically occur in a dynamic context: �It is as if the two players could see through the whole

problem and implement the solution immediately.�([6] , p. 96) Smit and Trigeorgis [18] make a similar restriction

and observe: �strategic commitment should not be seen as a one-time investment at the outset, but rather as a

�rst necessary link in a chain of interrelated investment decisions.�
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over time, so that capacity pre-commitment requires purchasing some amount of capital before

its price at the time of product market competition is known. A part of the opportunity cost

of strategic commitment then re�ects the leader �rm�s reduced ability to tailor its capacity to

current economic conditions.

In such an environment, there are di¤erent ways to specify the choice set of the leader �rm. For

example Spencer and Brander [19] take ex-ante and ex-post investment to be mutually exclusive

so a leader �rm cannot rescale its capacity once a demand shock is observed. Then when the

leader�s ex-ante capacity investment is positive the product market equilibrium is invariably of

the Stackelberg type, with the follower �rm adapting its output to the leader�s existing capacity.

Evaluating the relative bene�t of pre-commitment then involves comparing expected Stackelberg

leader and Cournot equilibrium pro�ts, and Brander and Spencer �nd that this comparison is

ambiguous with a linear demand form, with strategic leadership preferred so long as uncertainty

is not too large.

An alternative speci�cation is to allow the leader �rm to acquire positive amounts of capacity

both ex-ante and ex-post, thus introducing the possibility of a partial or degree of commitment,

as in Maggi [13]. This alternative speci�cation can be motivated empirically, either if the leader

�rm�s technology is such that no signi�cant additional cost is incurred when new capital is added

to existing capacity (so its capital cost function is linear rather than a¢ ne) or if the leader �rm has

access to such simple contractual devices as a fairly priced forward contract on the capital input.4

In the above cases the leader �rm can both pre-commit and subsequently increase capacity if it

wishes to do so. This change in speci�cation makes a crucial di¤erence with regard to product

market outcomes, as second period equilibrium then involves either Cournot and Stackelberg

equilibria depending both on the degree of the leader�s precommitment and on the ex-post price

of capital (Figure 1 illustrates these outcomes for an arbitrary pre-commitment level K0). As

compared with the mutual exclusivity case, the leader �rm�s tactical product market �exibility

lowers its opportunity cost of commitment.

To formalize these ideas, suppose that there are two �rms in an industry. The demand function

is denoted by P (q) and assumed to be strictly decreasing and di¤erentiable. Production follows

a �xed proportions technology with constant returns to scale, and the price of labor is set to zero

for simplicity. The ex-ante price of a unit of capital is denoted by r, with 0 < r < P (0) so as

to restrict attention the more interesting case in which precommitment may be pro�table. The

price of a unit of capital at the product market competition stage is a random variable, denoted

4The possibility of making a nonrefundable deposit payment to a supplier on the capital input would play a

similar role, up to an additional input price risk component.
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by er0. It is assumed that Eer0 = r and that the discount rate between periods is zero, so that there
is no inherent bene�t either to delaying or to hastening investment. This price is assumed to be

continuously distributed over a support [r; r], with 0 � r < r. Since technology and tastes are

generally independent there is no reason to assume that ex-post production is viable, i.e. that

r � P (0).

In addition suppose su¢ cient regularity conditions hold so that i) a unique Cournot equilib-

rium exists, ii) the Stackelberg leader pro�t is strictly quasiconcave, and iii) the interior equi-

librium Stackelberg and Cournot outputs are distinct. This is true for instance if the industry

revenue function is strictly concave and Cournot best responses are convex. Let the individual

Cournot output be denoted by qC (r) and the Cournot pro�t by �C (r). For notational simplicity,

let qC := qC (r) and qC := qC (r). Similarly, let qL (r) denote the equilibrium Stackelberg leader

output, with lower bound qL = infr2[r;r] qL (r). Let q�i (qj ; r), i; j 2 f1; 2g ; i 6= j, denote �rm i�s

best response to a rival output qj when the price of capital is r. Then the pro�t of a Stackelberg

leader �rm that has a capacity of K is �L (K; r) := K (P (K + q�i (K; r))� r). Note �nally that
if r < P (0) then qL > 0.

Firm 1 is assumed to move �rst by acquiring K0 units of capacity ex ante at a unit price r.

When the value of er0 is realized ex post, both �rms may acquire capacity units and production
and sales occur.

To determine �rm 1�s payo¤ and ex-ante decision to invest one reasons by backward induction.

With cost uncertainty, the reaction functions in the product market stage vary according to the

realization of the cost shock er0. Visual inspection of the best responses (Figure 1) indicates

that for a given capital investment K0 the equilibrium in the product market stage is either of

the sequential type (q1 (K0) ; q�2 (q1 (K0) ; r
0)) if the cost shock realization is relatively high or of

the Cournot type
�
qC (r0) ; qC (r0)

�
if the cost shock realization is low enough that the leader

�rm prefers to expand its output beyond its initial capacity K0. It is necessary to introduce

the notation q1 (K0) here because if K0 is su¢ ciently large, product market equilibrium may

involve an output below K0 for �rm 1.5 For simplicity in the discussion that follows the range of

capacity commitment is taken to be
�
0; qC (0)

�
, restricting attention to sequential equilibria of the

form (K0; q
�
2 (K0; r

0)). Finally let br (K0) denote the critical level of the cost shock that delimits
5For a given capital price r let bq1 (r) denote the abscissa of the intersection of �rm 1�s zero capital cost reaction

function q�1 (q2; 0) and �rm 2�s full cost reaction function q�2 (q1; r). In the Stackelberg-Spence-Dixit model, bq1 (r) is
an upper bound of �rm 1�s equilibrium output. If �rm 1�s capacity satis�es K0 > q

C (0), then there exist cost levels

r0 > 0 so bq1 (r0) � K0, in which case �rm 1 does not produce up to its preinstalled capacity in product market

equilibrium.
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the ranges of Cournot and Stackelberg product market equilibrium, i.e. br (K0) = P (2K0) +

K0P
0 (2K0).

Ex-ante, the payo¤ of �rm 1 is

E� (K0) = Er�er0�br �P �2qC �er0�� qC �er0�� er0 �qC (er)�K0��+ Ebr<er0�r �P �K0 + q�2 �K0; er0��K0�� rK0
= Er�er0�br�C �er0�+ Ebr<er0�r�L �K0; er0� (1)

where the second line follows from the assumptions of constant returns to scale in production and

Eer0 = r. It is then possible to de�ne the net bene�t of strategic commitment to the capacity K0,
as compared with the value the leader �rm would derive from retaining full �exibility and earning

the expected Cournot payo¤, as

�(K0) = Ebr<er0�r ��L �K0; er0�� �C �er0�� . (2)

Note that strategic commitment is clearly advantageous (�(K0) > 0) if uncertainty is suf-

�ciently small, since in this case the leader �rm approaches the Stackelberg pro�t �L
�
qL (r) ; r

�
which is greater in the limit than the expected Cournot pro�t of approximately �C (r)+

�
�2er0=2� ��C�00 (r).

As cost uncertainty increases, the relative bene�t of strategic commitment (2) is a¤ected in several

ways. One important channel is through the negative Cournot pro�t term. Since Cournot pro�t

is convex in unit cost6 whereas the direct e¤ect of cost on the Stackelberg leader pro�t is linear,

to the extent that the strategic e¤ect of a cost change (on �L through dq�2=dr) is not too large,

greater uncertainty reduces the relative attractiveness of strategic commitment. Nevertheless the

strategic bene�t of commitment outweighs the value of additional �exibility for a broad range of

cost uncertainty as described by the next proposition, originally due to Maggi [13]:

Proposition 1 In the Stackelberg-Spence-Dixit model with capital cost uncertainty, if a shutout

cannot occur in the industry (if r < P (0)), strategic leadership is valuable and a positive commit-

ment K�
0 > q

L is optimal.

Proof If r < P (0) then qL > 0. Because interior Cournot and Stackelberg equilibria are distinct

for a given capacity cost, br �qL� < r. Letting f denote the density of er0, the net bene�t from
setting K0 = qL is �

�
qL
�
=
R rbr(qL) ��L �qL; s�� �C (s)� f(s)ds. For all r > br �qL�, qC (r) < qL

6Let r0 and r00 denote two capital cost levels, q0 and q00 the associated Cournot equilibrium outputs, and take

r� = �r0 + (1� �) r00 with � 2 (0; 1). Letting q� denote the Cournot output at cost r�, by revealed preference
� (P (2q0)� r0) q0 > � (P (2q�)� r0) q� and (1� �) (P (2q0)� r0) q0 > (1� �) (P (2q�)� r0) q� so that by summing,
��C (r0) + (1� �)�C (r00) > �C (r�).
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Figure 1: Cournot (C) and Stackelberg (S) product market equilibria in low (er0 < r) and high

(er0 > r) cost states, for a given capital precommitment K0 by �rm 1. In grey the reaction curves

de�ning the critical capital price threshold br (K0) that separates the two kinds of equilibria.

and qL (r) � qL. Because �L is strictly quasiconcave, it follows that for all r > br �qL�, �L �qL; r� >
�C (r). Since the integrand is positive over the non-empty interval (br; r), � �qL� > 0. Suppose

that K0 < qL. Then, br (K0) > br �qL� in which case both the integrand and range of integration
in �(K0) =

R rbr(K0)

�
�L (K0; s)� �C (s)

�
f(s)ds are smaller than in �

�
qL
�
so �(K0) < �

�
qL
�
.

�

If r � P (0), there is a positive probability of �drastic� bad news, in which case the option

value of �exibility can be su¢ cient to outweigh the bene�t of drastic commitment (for an example,

set a = :5 in Example 1 below). Otherwise, capacity commitment is optimal for the leader and

moreover the optimal capacity is at least as large as the capacity the �rm chooses in the worst

cost realization.
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2.1 Staging and endogenous Stackelberg leadership

The main result given above, Proposition 1, forms the basis of a further observation regarding the

relationship between the ability to stage investment and �rst-mover advantage. In a framework

combining elements of the analyses of both Spencer and Brander [19] and Maggi [13], suppose

that �rms strategies are asymmetric in that �rm 1 can segment its investment whereas �rm 2

cannot, but that �rm roles are not set exogenously. That is, assume now that both �rms have

the ability to acquire a positive amount of capital Ki
0, i = 1; 2, in the �rst period. Leadership,

should it now arise, is then endogenous.

Although a more general result is beyond the scope of this paper (note that Spencer and

Brander [19] focus on a linear demand speci�cation), a particularly simple case of endogenous

leadership arises if uncertainty is such that the �rm that can segment its investment (�rm 1)

�nds commitment pro�table whereas the �rm that invests exclusively (�rm 2) does not. In a

unique subgame perfect Nash equilibrium, it is �rm 1 that invests, earning an additional pro�t

that corresponds to its �rst-mover advantage. In this case, �rst-mover advantage may be properly

attributed to the �rm�s greater ability to segment investment.

The following example illustrates this possibility.

Example 1 Let inverse demand in a duopoly be P (Q) = 1 � Q. The unit cost of capital is
r0 = :5 ex-ante and er1 = :5 + e" with e" = [:5; :5 : :5� a; :5 + a] ex-post. Assume that :3 < a < :5,
so as to rule out certain cumbersome corner solutions in the product market stage. Note that

uncertainty is large enough so that both Cournot and Stackelberg equilibria may result in the

product market stage when commitment is possible (as a > :1). Firm 1 has the ability to stage

investment (that is, to make a positive investment both ex-ante and ex-post) whereas ex-ante and

ex-post investment are mutually exclusive for �rm 2.

To identify the equilibrium of the two-period investment game, consider �rm 2 �rst and assume

that �rm 1 does not invest initially, i.e. K1
0 = 0. In this case, for �rm 2 the expected pro�t from

an optimal positive pre-commitment (setting K2
0 = :25) is 1=32 whereas the expected Cournot

pro�t is
�
1 + 4a2

�
=36, so �rm 2 prefers not to pre-commit (see Section A.1). Moreover, if pre-

commitment is not pro�table for �rm 2 when K1
0 = 0, it is not pro�table if K

1
0 > 0 either. Hence,

in an equilibrium of the investment game, K2�
0 = 0.

Computing �rm 1�s payo¤ directly given K2
0 = 0, it is possible to show that �rm 1 optimally in-

vests so as to acquire the high cost Stackelberg leader capacity K1�
0 = :25�:5a. Thus, for the chosen

parameter values, the unique equilibrium of the investment game is
�
K1�
0 ;K

2�
0

�
= (:25� :5a; 0).

Because of its ability to stage investment, �rm 1 is thus an endogenous leader whereas �rm 2 acts
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as a follower. Firm 1 earns an expected pro�t from committing to its optimal initial capacity of�
17� 4a+ 68a2

�
=576 so that the expected �rst-mover advantage is (:5� a)2 =32 > 0. Note �rm

2 would derive no such value from leadership, even if it were an exogenously designated leader.

The analysis of the relative importance of the commitment and �exibility motives conducted in

this section naturally rests on several restrictive assumptions that are standard for this framework,

such as product homogeneity and the absence of any substitution between inputs. But in addition,

there are some features of strategic investment do not emerge clearly in a two-period model, and

these are developed in a continuous time model in the next section.

3 Stackelberg leadership in a dynamic setting

In a new market, entry decisions may occur in a continuous time framework and there may

be several approaches to rendering the key ideas of the Stackelberg model regarding strategic

commitment.7 If two �rms contemplate entry in a new market in the face of cost or demand

uncertainty, the sequence of �rm entry might �rst of all be determined exogenously. In this case,

a di¤usion equilibrium results (Reinganum [17]) in which each of the �rms invests at an optimal

monopoly or duopoly threshold, and the leader earns a positional rent corresponding to its phase

of monopoly pro�t. An second approach would be to assume that one �rm has sunk a portion of

the �xed cost of investment ex-ante. In this other case, �rms engage in a preemption game with

asymmetric �xed costs, as described in chapter 8 of Huisman [10]. Equilibrium is then either of

the preemptive or the sequential investment type depending on the degree of cost asymmetry,

that is to say on the magnitude of the leader �rm�s investment. In this case, the leader �rm also

earns a positive rent, but this rent is related to the greater threat the leader exerts on its rival

if it has the role of a follower, as it would cut its rival�s monopoly phase short earlier due to its

more aggressive duopoly investment threshold.

But there are still other ways in which the sequencing of investment and the role of sunk

capacity expenditure may be cast in a dynamic framework. In the model that follows, �rms

are assumed to have endogenous roles as leader and follower and to have initially identical �xed

costs. Naturally some asymmetry must be introduced in order for a �rst-mover advantage to arise

(absent which entry competition would constitute a standard real option game), but this is done

through contrasting assumptions with respect to each �rm�s choice set. One of the �rms (�rm

7Besides the motivations described in this paragraph, �rst-mover advantage may also arise for entirely di¤erent

reasons that are beyond the scope of the present paper. For instance if there may ne �rm asymmetries in the

product market as a result of endogenous capacity asymmetry (see Huisman and Kort [11]).
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1) is assumed to be more reactive at any moment by virtue of its ability to break a lump-sum

investment into �ner parts so as to gradually build up to the level of capital required to operate

in the market, whereas its rival (�rm 2) takes investment to be a binary decision at all points in

time.

3.1 Assumptions and �rm payo¤s

Two �rms compete to enter the product market. Entering requires that a �rm acquire a unit of

capital. Demand and variable cost are stationary and generate �ow pro�ts of �M or �D to active

�rms depending on whether the industry is currently a monopoly or a duopoly, with �M > �D.

The common discount rate � is positive and constant, so the present values of monopoly and

duopoly pro�t streams are given by �M := �M=� and �D := �D=�. The unit price of capital

follows a geometric Brownian motion dX = �Xdt + �XdW , with � � 0, � + j�j > 0. For the

heuristic discussion of this section assume a su¢ ciently large initial value X(0) > �M so that

�rms initially prefer to wait rather than invest immediately. Capital is �rm-speci�c and has no

resale value.

Firms are assumed to have qualitatively di¤erent strategies. Firm 1�s strategy is a nonin-

creasing left-continuous function K1 : [0; X(0)] ! [0; 1] with lim0K1 (X) = 1, which describes

its capital accumulation policy or expansion strategy in the absence of investment by its rival.8

Let X1 := inf
�
X � 0;K1 (X) < 1

	
denote �rm 1�s investment threshold in accordance with its

capital accumulation strategy, and K
1
(X) = limX!X1+K

1(X) denote �rm 1�s existing capital

stock at the moment that a threshold X is reached for the �rst time from above. Firm 2�s strategy

is an investment threshold X2 2 [0; X(0)].

If Xi > Xj , i; j 2 f1; 2g, i 6= j, then �rm i is the leader and �rm j is the follower. Firm i then

invests when the input price reaches Xi and earns a monopoly pro�t �ow from that moment up

until the time at which the input price reaches Xj and �rm j invests. In this case, as a follower

�rm j chooses a new investment threshold Xj
F 2

�
0; X i

�
. If Xi = Xj , then the leader role is

assumed here to be attributed to either �rm with equal probability. Note in particular that �rm

1�s expansion strategy is assumed to apply provided that no investment has yet occurred, so that

if �rm 1 takes on the follower role at the threshold X2, its accumulated capital stock is taken to

be K
1 �
X2
�
and it is free to subsequently revise its expansion strategy. Finally, as discussed in

the previous section a number of di¤erent rationales may justify the asymmetry in �rm strategies.

8Thus �rm 1 is assumed to have the ability to solve a singular stochastic control problem as per Kobila [12] so

as to implement the capital accumulation process K1
t = sup

�
K1 (Xs) ; s 2 [0; t)

	
.
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For instance, this might be due to a di¤erence between the technologies of the two �rms, or �rm

1 may be thought of as having a long-term relationship with an input supplier that allows it to

transact arbitrarily small amounts of the capital input at the current spot price.

Before determining �rm behavior in the initial investment stage note �rst that once one the

threshold input price X1 _ X2 is reached at which one of the �rms invests, any remaining �rm

i holds a growth option on a perpetual stream of duopoly pro�ts. Standard arguments establish

that the follower �rm�s optimal policy is then to invest when an optimal duopoly investment

threshold is attained (Dixit and Pindyck [8]).

Consider �rst the case of �rm 1�s follower option when its rival invests when the current

level of the input price reaches X = X2. If as a follower it holds a capital stock K
1
(X) < 1,

it may delay investing and its remaining �xed cost has the form X
�
1�K1

(X)
�
. Its op-

timal policy is then to complete its investment at the input price threshold X1
F

�
K1; X

�
=

(�= (� + 1))
�
�D=

�
1�K1

(X)
��
, where the function of parameters

� (�; �; �) =
�

�2
� 1
2
+

s�
�

�2
� 1
2

�2
+
2�

�2
(3)

is denoted � for short (see Section A.2 derivation) and satis�es � > 0, @�=@�; @�=@� > 0; @�=@� <

0. Note that because K1 is a nonincreasing function n of X, the threshold X1
F is nonincreasing

in X. The value of the duopoly follower option for �rm 1 is then

F 1
�
X;K1

�
=

8<: �D �X
�
1�K1

(X)
�
, X � X1

F

�
K1; X

�
A
h
X
�
1�K1

(X)
�i��

, X > X1
F

�
K1; X

� (4)

where A � ����+1D = (� + 1)�+1.

Since it does not expand capacity incrementally by assumption, �rm 2�s duopoly follower

option has an exercise threshold X2
F = (�= (� + 1))�D and value

F 2 (X) =

(
�D �X, X � X2

F

AX�� , X > X2
F

. (5)

The payo¤s for each �rm if it has the leader role run as follows. If �rm 1 invests as a leader at

a threshold X = X1, �rm 2 invests as a follower at the threshold X2�
F = min

�
X;X2

F

	
. Moreover

when the threshold X1 is reached �rm 1 has acquired a share K
1
(X) of its capital input. The

instantaneous value of leadership to �rm 1 is thus

L1
�
X;K1

�
= �M �X

�
1�K1

(X)
�
� (�M ��D)

�
X2�
F

X

��
. (6)
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If �rm 2 invests as a leader at a threshold X = X2, �rm 1 invests as a follower at the threshold

X1�
F = min

�
X;X1

F

�
K1; X

�	
. The instantaneous value of leadership for �rm 2 is thus

L2
�
X;K1

�
= �M �X � (�M ��D)

�
X1�
F

X

��
. (7)

Thus, the discounted expected payo¤s at the beginning of the game are:

Firm 1

V 1
�
K1; X2

�
=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

L1
�
X1;K1

� �
X1

X(0)

��
+

X(0)Z
X1+

Z
�

Z
X(0)

��
dK1(Z), X1 > X2

�
1
2L

1
�
X1;K1

�
+ 1

2F
1
�
X1;K1

�� �
X1

X(0)

��
+

X(0)Z
X1+

Z
�

Z
X(0)

��
dK1(Z), X1 = X2

F 1
�
X2;K1

� �
X2

X(0)

��
+

X(0)Z
X2+

Z
�

Z
X(0)

��
dK1(Z), X1 < X2

.

(8)

Note that (8) incorporates the expected cost of �rm 1�s expansion strategy up until the �rst

investment threshold is reached. At a given input price threshold X its incremental investment

is �XdK1(X), and the cumulative cost is given by the right integral terms.

Firm 2

V 2
�
K1; X2

�
=

8>>>><>>>>:
L2
�
K1; X2

� �
X1

X(0)

��
, X2 > X1�

1
2L

2
�
X2;K1

�
+ 1

2F
2
�
X2
�� �

X2

X(0)

��
, X2 = X1

F 2
�
X1
� �

X2

X(0)

��
, X2 < X1

. (9)

3.2 Equilibrium

An "�equilibrium of the investment game is a pair of strategies
�
K1
" ; X

2
"

�
such that V 1

�
K1
" ; X

2
"

�
�

V 1
�
K1; X2

"

�
� ", all K1, and V 2

�
K1
" ; X

2
"

�
� V 2

�
K1
" ; X

2
�
� ", all X2. This subsection describes

such an equilibrium so as to set out the key economic insights of the model in an intuitive way.

Section B in the appendix provides some further speci�cation of the model, in particular regarding

simultaneous investment, so as to derive the unique Markov perfect equilibrium towards which

the "�equilibrium converges, but the discussion given here covers the main economic aspects.

To begin with, assume for the moment that �rm 1 has a capital stock K
1
that is given

exogenously and that both �rms can make only a single investment. This situation corresponds to

13



a standard preemption game with asymmetric �xed costs, in which �rm 1�s relative cost advantage

is k � 1 �K1
. In the following, understand the argument in K

1
in the payo¤ functions to refer

to the appropriate discrete investment strategy for �rm 1, i.e. K1 (X) = 1X�X1 + K
1
1X>X1 .

In this simpli�ed game, the leader and follower payo¤s Li
�
X;K

1
�
and F i

�
X;K

1
�
that arise

for each �rm i, are associated with the concept of a preemption threshold, denoted Xi
P . When

a solution to this equation exists, Xi
P (k) is de�ned as the upper root in X of the condition

Li (X; 1� k) = F i (X; 1� k), which gives the least upper bound of the input prices at which �rm
i strictly prefers the leadership. In the case when k = 1, �rms are symmetric and the preemption

threshold is denoted XP . A standard result in the asymmetric preemption game of new market

entry is that equilibria are either preemptive or sequential in nature (Huisman [10]), with initial

investment occurring at X1
L(k) _ X2

P (k) where X
1
L(k) = (�= (� + 1)) (�M=k) denotes �rm 1�s

leader threshold and X2
P (k) is �rm 2�s preemption threshold as de�ned above. Moreover there

exists a unique level of cost asymmetry, k�, such that X1
L(k

�) = X2
P (k

�) := X�, i.e. such that

the equilibrium is preemptive but has the property that at �rm 1�s monopoly optimum threshold

�rm 2 is just indi¤erent between investing or not.

Returning to the setting with incremental investment by �rm 1, the input price threshold at

which �rm 2 prefers to invest as a leader depends on �rm 1�s capital accumulation strategy, and

plays a key role in the analysis. For a given input price X > X2
F and current capital stock of

the �rst �rm K
1
, �rm 2 is indi¤erent between the leadership role and investing as a follower if

L2
�
X;K

1
�
= F 2 (X), i.e. if X and K

1
satisfy the condition

�M �X � (�M ��D)

0@ X2
F

X
�
1�K1

�
1A� = AX��. (10)

It is then straightforward to show that there exists an upper bound on K
1
, denoted by K,

below which (10) has a well-de�ned upper root in X. Letting X2
P denote this upper root, X

2
P

is a di¤erentiable and strictly increasing function of k over
�
1�K; 1

�
, with X2

P (1) = XP and

X2
P (1 � K) = (�= (� + 1))�M . A larger capital stock held by �rm 1 thus lowers the threshold

at which �rm 2 �nds it just pro�table to invest as a leader. Conversely (10) yields a closed form

expression for KP (X), the level of sunk investment by �rm 1 that is required in order to keep �rm

2 just indi¤erent between the leader and follower roles when the current input price is X. Note

that KP (X) is a continuous and decreasing function of X over the relevant range
�
X1
L(1); XP

�
.9

9See Section A.3 for a derivation of K = 1 �
�
(� + 1) ((�M=�D)� 1) =

�
(�M=�D)

�+1 � 1
�� 1

�
and characteri-

zation of the function KP (X).
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Having de�ned KP (X), an "�equilibrium of the investment game can now be described.

Choose � small enough and consider the following pair of strategies:

K1
" (X) =

8>>>><>>>>:
0, X > XP + �

�, XP < X � XP + �
KP (X) + �, X� < X � XP
1, X � X�

and X2
" = X

� � �. (11)

With the strategies (11), �rm 1 starts to invest slightly before the standard preemption threshold

for symmetric �rms is reached. When the input price reaches a lower threshold for the �rst time,

�rm 1 invests so as to maintain its level of capital slightly (� units) above that required to dissuade

�rm 2 from immediate entry (KP (X) units). Firm 1 continues to do so until the threshold X� is

reached, at which time it completes its investment. Then,

Proposition 1 For � low enough the pair of strategies
�
K1
" ; X

2
"

�
is an "�equilibrium of the

investment game.

An intuitive argument for the "�equilibrium in Proposition 1 runs as follows (see section

A.4 for a formal derivation). Absent any incremental investment, �rms would play a standard

preemption game whose symmetric equilibrium has both �rms investing at the threshold XP , and

both would earn a follower payo¤because of rent dissipation. However, around XP the discounted

payo¤ to leading is decreasing in the input price threshold and any �rm would prefer to push back

investment by lowering the equilibrium threshold if it could do so without incurring too much

additional cost. Because it can invest incrementally, �rm 1 has the ability to acquire an arbitrarily

small capital stock slightly before the preemption threshold XP is reached. If it does this, then

from that moment on the investment game between the �rms is intuitively similar to a dynamic

agency problem. Firm 1 incrementally accumulates su¢ cient capital (setting dK1 = dKP ) to

dissuade �rm 2 from investing, up until an optimal threshold is reached at which it completes its

investment by acquiring the remaining 1���KP (X�) units of capital.10 Because this investment

policy maintains �rm 2 indi¤erent between investing or not for a period of time, it may be thought

of as a form of brinkmanship by the leader �rm that does not arise in the two-period model.

To verify that investment at the threshold X� is optimal for �rm 1, let � ! 0 so �rm 1�s

10Put another way, for input prices between X� and XP levels of capital below KP (X) (+�) constitute a forbidden

region with �rm 1 adjusting its level of capital to remain at the boundary KP (X) until X� is reached.
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optimization problem approaches

max
K1(X)

L1
�
K1; X1

�� X1

X(0)

��
+

X(0)Z
X1+

Z

�
Z

X(0)

��
dK1(Z)

s.t. K1 (X) � KP (X) , all X > X1.

The solution to this problem is straightforward. Carrying additional capital is costly and �rm 1

minimizes its capital holdings conditional upon dissuading preemptive investment by �rm 2. Sub-

stituting the constraint into the objective and reorganizing terms, �rm 1�s optimization problem

is e¤ectively to choose an investment threshold X1 2 [XL; XP ] so as to maximize the payo¤

bV 1 �X1
�
=
�
�M �X1

�
1�KP

�
X1
���� X1

X(0)

��
� (�M ��D)

�
X2
F

X(0)

��
+

XPZ
X1

Z�+1

[X(0)]�
dKP (Z) .

(12)

This payo¤ is quasiconcave in X1 and optimization yields the �rst-order condition

��M � (� + 1)
�
1�KP

�
X1
��
X1 = 0 (13)

after normalization by
�
X1
���1

= [X(0)]� .

At an optimum therefore, �rm 1 completes its investment when it has sunk the expenditure

on fraction KP (X�) = 1 � k� of the capital good where k� has the property described earlier,
namely that X1

L(k
�) = X2

P (k
�). The intuition behind the �rst-order condition (13) is that when

�rm 1 considers delaying market entry a little more, the incremental cost of its �ow investment

is negligible compared to the cost of holding the capital stock KP (X). The optimal investment

decision thus depends on a standard trade-o¤ in which the cost of holding a larger capital stock

reduces the �rm�s expected marginal bene�t from delaying entry. The solution to (13) is neces-

sarily an optimal monopoly threshold for �rm 1�s given its accumulated capital stock, but must

also constitute a preemption threshold for �rm 2, and these requirements are only met at the

threshold X�.

Corollary 1 In an equilibrium of the investment game �rm 1 invests at an input price X� such

that its optimal threshold and its rival�s preemption threshold are equal (X1
L(k

�) = X2
P (k

�)).

3.2.1 Discussion

Comparative statics The e¤ects of changes in uncertainty or the intensity of competition on

the �rst-order condition (13) are not easily disentangled since part of their e¤ect is linked to
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the preemption equilibrium condition through the function KP . The optimal cost asymmetry

at the moment of investment, k�, is scale-free, whereas the optimal investment threshold X� is

proportional to X2
F . A comparative static result that allows some economic insight into the latter

is to allow �M to vary. Doing this a¤ects the preemption equilibrium and �rst-mover advantage

but leaves the duopoly option value F 2 (X) which constitutes a form of reservation value for �rms

in the investment game unchanged.

From the �rst-order condition, it follows that in equilibrium (1�KP (X�))X� = (�M=�D)X
2
F .

As at the moment of investment K
1
= KP (X

�) = 1� k�, substituting into (10) and rearranging
yields

A [X�]�� +X� = �M � (�M ��D)
�
�D
�M

��
. (14)

The left-hand side of (14) is an increasing function of X� (its derivative is 1�
�
X2
F =X

���+1 > 0)
whereas the right-hand side can be shown to be increasing in �M . Therefore, dX�=d�M > 0, i.e.

a greater �rst-mover advantage in the product market results in earlier market entry as may be

expected.

The sign of dk�=d�M is more revealing. From (13),

dk�

d�M
=

�

� + 1

1

X�
�
1� "X�=�M

�
(15)

so that this sign depends on the magnitude the elasticity of X� with respect to �M . Direct

calculation (see Section A.5) establishes that dk�=d�M > 0 in this model (and hence "X�=�M < 1).

Thus, a greater incentive for strategic investment leads to earlier investment and a relatively

lower degree of precommitment at the moment of investment. This seemingly paradoxical result

arises because the �rm chooses not to wait as long to approach an optimal monopoly option value,

but instead attributes relatively more weight the bene�t derived from successful preemption and

a longer monopoly phase.

Entry deterrence Lastly, strategic investment is often studied in the context of entry deter-

rence. To address this issue in a simple way, suppose that there exists an action that �rms can

take at the moment of entry that dissuades subsequent entry by their rival, at an additional cost f .

A given �rm i investing at a threshold X = Xi �nds its optimal to deter if the cost of deterrence

is lower than the discounted pro�t loss due to the rival�s entry, i.e.

f < (�M ��D)
 
Xj�
F

X

!�
. (16)
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Suppose that f is low enough that (16) holds for both �rms. Then, if �rms cannot commit

not to deter entry when they invest, deterrence necessarily occurs and �rm 2�s reservation value

in the investment game is driven to zero, so that it �nds it pro�table to invest as soon as its

Marshallian threshold XNPV = �M � f is reached. But in that case, �rm 1 can no longer use

sequential investment to push back its rival�s investment by accumulating capital incrementally.

The possibility of deterrence thus underscores the fact that �rm 1�s brinkmanship strategy hinges

on its ability to progressively scale its threat to enter as a follower at the threshold X1
F , whereas

when �rms have the ability to shut out a rival, such a strategy cannot be employed.

4 Conclusion

This paper has sought to develop a framework that accounts for both strategic commitment, such

as set out in Dixit [6]�s model of sequential capacity choice in duopoly, and option value, as in

Dixit and Pindyck [8]�s framework for investment under uncertainty, so as to highlight linkages

that exist between these approaches to investment. In a two-period framework the ability to

segment, or stage, investment confers an additional value to strategic commitment in the face of

uncertainty and under certain conditions this ability may be a source of endogenous �rst-mover

advantage. In a dynamic framework, a leader �rm is seen to follow a strategy of brinkmanship

leading to investment at a threshold that constitutes an optimum for one �rm and a preemption

threshold for the other.

Some historic military actions have provided valuable illustrations of otherwise abstract game

theoretic concepts. Notably, the notion of strategic commitment can be understood with reference

to the Spanish conquistador Hernán Cortés�order to scuttle his �eet before marching on Mexico.

As Dixit and Nalebu¤ [7] explain, this destruction served the double purpose of both compelling

Cortés�men to �ght and of signalling their determination to their enemy. As the loss of his ships

involved a clear irreversibility and moreover sent an unambiguous public signal to the Aztecs whom

the Spaniards had encountered, this episode provides an eloquent illustration of the strategic e¤ect

of the commitments similar to those that are studied by researchers in the context of investment

decisions.

In light of the analysis of the present paper, the story of Cortés can perhaps be retold, with

an eye towards the dimensions of both strategy and uncertainty. The historical record cited by

Dixit and Nalebu¤, Prescott [16], is instructive in this regard. The destruction of the �eet did

not occur right upon the arrival of the Spaniards, but rather several months after Cortés and his

men �rst landed further down the Mexican coast on the shores of the Yucatán. They had by
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then already begun to found of a colony and what would become the city of Veracruz. There had

been several exchanges between the Spaniards and both local Totonac populations in Cempoala

and Aztec emissaries. Moreover, some of Cortés�men had just conspired to commandeer one of

the ships and escape back to Cuba. Seen in its broader context, Cortés�strategic commitment

appears not as an isolated or impetuous action, but as the result of a progressive process of

learning over the course of which the conquistador and his men acquired a growing familiarity

with their new environment. Moreover, Cortés�actions over these �rst months can be thought

of as involving not a single strategic move, but a series of them. Upon setting sail, an ongoing

dispute with the governor of Cuba, Diego Velázquez, had already complicated the possibility of

turning the expedition back. An alliance concluded with the Totonacs had led to their dismissal

of Aztec emissaries and positioned the Spaniards within the patchwork of existing local disputes.

Moreover, a colony had begun to be founded, so that one could make the case that it is only when

the prevailing element of uncertainty had been su¢ ciently reduced through a chain of more or

less incremental prior actions that the destruction of the �eet could actually take place.
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A Appendix

A.1 Example 1

In addition to the notation in the text, let qL denote the Stackelberg leader quantities in the low

cost state, and �C ; �C the Cournot pro�ts in low and high cost states. Since a > :1 by assumption,

qL = (:5� a) =2 < (:5 + a) =3 = qC , so equilibrium Cournot and Stackelberg outputs are ranked

as 0 � qC < qL < qC < qL. Since investing beyond the largest Stackelberg capacity can never be
optimal for the leader �rm, the relevant range of initial capacities to consider is Ki

0 2
�
0; qL

�
.

Consider �rst �rm 2 and suppose that K1
0 = 0. Then, as in Spencer and Brander [19] �rm 2

chooses K2
0 so as to maximize the expected Stackelberg leader pro�t

E�
�
K2
0 ; er� = :5K2

0

�
1�K2

0 � q�1
�
K2
0 ; :5 + a

��
+ :5K2

0

�
1�K2

0 � q�1
�
K2
0 ; :5� a

��
� :5K2

0

= K2
0

�
:25� :5K2

0

�
, (17)

which yields an optimal initial investment of K2�
0 = :25, and E�

�
K2�
0 ; er� = 1=32. The expected

Cournot pro�t (if K1
0 = K

2
0 = 0) is

E� (0; er) = :5 (:5� a)2 =9 + :5 (:5 + a)2 =9 = �1 + 4a2� =36: (18)

Then E�
�
K2�
0 ; er� < E� (0; er) as a > :3(> 1=p32).

Now consider �rm 1, and note that K2
0 = 0 in equilibrium. To derive �rm 1�s ex-ante expected

pro�t, note �rst that in the product market stage, for a given K1
0 �rms choose Cournot outputs in

the low (high) cost state if and only ifK1
0 � qC (K1

0 � qC). Otherwise, �rm 1�s equilibrium output
is min fK0; bq1 (r)g where bq1 (r) denotes �rm 1�s output at the intersection of its r = 0 capital cost

reaction function with �rm 2�s reaction q�2 (q1; r) in R2+, when it exists. In the low cost state,

q�2 (q1; :5� a) = (:5 + a� q1) =2 intersects q�1 (q2; 0) = :5 (1� q2) at bq1 = :5 � (a=3). Note thatbq1 � qC since a � :5 and that bq1 � qL for a � :3 so �rm 1�s output choice is indeed be constrained
by its outer reaction function over the relevant range of values of K1

0 . In the high cost state the

relevant reaction functions are q�2 (q1; :5 + a) = (:5� a� q1) =2 and q�1 (q2; 0) = :5 (1� q2), whose
intersection occurs for bq1 = :5 + (a=3). In this latter case, bq1 � qL since a � :5 so the constraint
is not binding.

By Proposition 1, �rm 1 optimally sets K1
0 � qL. The ex-ante payo¤ of �rm 1, E�

�
K1
0 ; er�, is

thus de�ned piecewise over the relevant range as follows.

20



qL � K1
0 � qC : �rms choose Cournot outputs in the low cost state and leader and follower

outputs K1
0 and q

�
2

�
K1
0 ; :5 + a

�
in the high cost state. Therefore

E�
�
K1
0 ; er� = :5

�
qC
�
1� 2qC

�
� (:5� a)

�
qC �K1

0

��
+ :5K1

0

�
1�K1

0 � q�2
�
K1
0 ; :5 + a

��
� :5K1

0(19)

= :5�C + :5K1
0

�
:5� a�K1

0 � q�2
�
K1
0 ; :5 + a

��
. (20)

Note that whereas trivially q�2
�
qL; :5 + a

�
> 0 for all a � :5, the non-negativity constraint

may bind �rm 2�s best response for some larger values of K1
0 . As a � :25, q�2

�
qC ; :5 + a

�
=�

:5� a� qC
�
=2 = (1� 4a) =6 � 0 so q�2

�
K1
0 ; :5 + a

�
= 0 over an interval

�
:5� a; qC

�
�
�
qL; qC

�
.

Therefore (19) can be written

E�
�
K1
0 ; er� =

(
:5�C + :25K1

0

�
:5� a�K1

0

�
, qL � K1

0 � :5� a
:5�C + :5K0 (:5� a�K0) , :5� a � K0 � qC

. (21)

qC < K1
0 � qL : �rms choose leader and follower outputs q1 = min

�
K1
0 ; bq1	 and q�2 (q1; :5� a) in

the low cost state and K1
0 and q

�
2

�
K1
0 ; :5 + a

�
= 0 in the high cost state. Recall also from above

that bq1 2 �qC ; qL�. For K1
0 � bq1, q1 = K1

0 and the leader �rm�s expected pro�t is

E�
�
K1
0 ; er� = :5K1

0

�
1�K1

0 � q�2
�
K1
0 ; :5� a

��
+ :5K1

0

�
1�K1

0

�
� :5K1

0 = :125K
1
0

�
3� 2a� 6K1

0

�
.

(22)

For K1
0 > bq1, the leader �rm�s expected pro�t is

E�
�
K1
0 ; er� = :5bq1 (1� bq1 � q�2 (bq1; :5� a))+:5K1

0

�
1�K1

0

�
�:5K1

0 = :125�(a=12)�
�
a2=9

�
�:5

�
K1
0

�2
.

(23)

So that over
�
qC ; qL

�
,

E�
�
K1
0 ; er� =

(
125K1

0

�
3� 2a� 6K1

0

�
, qC � K1

0 � min
�
qL; bq1	

:125� (a=12)�
�
a2=9

�
� :5

�
K1
0

�2 , K1
0 � min

�
qL; bq1	 . (24)

The leader�s optimal capacity maximizes E�
�
K1
0 ; er�. Over �qL; qC�, there is a local maximum

K1�
0 = :25� :5a (= qL). The resulting expected pro�t is E�

�
qL; er� = :5�C + :25 (:25� :5a)2. The

remaining piece of the expected pro�t, (24), is concave over
�
qC ;min

�
qL; bq1	� and decreasing

thereafter. Over the latter interval, dE�=dK1
0 = :125

�
3� 2a� 12K1

0

�
so that

�
dE�=dK1

0

� �
qC
�
=

:125 (1� 6a) < 0 and expected pro�t over
�
qC ; qL

�
is thus maximized at qC . Therefore, K1�

0 as

de�ned above is a global maximum of expected pro�t.

Substituting values into (21) and rearranging gives

E�
�
K1�
0 ; er� = :5(:5 + a)29

+ :5
(:5� a)2

8
=
17� 4a+ 68a2

576
. (25)
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The value of exercising strategic leadership to �rm 1 is E�
�
K1�
0 ; er� � E� (0; er), i.e. the

di¤erence between (25) and (18), is (1� 2a)2=576. Firm 1�s �rst-mover advantage is taken to be

the di¤erence in pro�t between �rm 1 and �rm 2 at equilibrium. As �rm 2 earns

Eb� �K1�
0 ; er� = :5(:5 + a)29

+ :5
(:5� a)2

16
, (26)

the �rst-mover advantage here is simply (:5� a)2 =32.

A.2 Duopoly option payo¤

For a given current price Xt = X of the capital good let F (X) denote the expected value of an

option on the duopoly pro�t stream whose net present value is �D. The function F is known to

be twice di¤erentiable and to satisfy

�F (X) dt = EdF (X) . (27)

Standard reasoning (expanding the right-hand side of (27) around Xt using Itô�s lemma and

taking the expectation, see Dixit and Pindyck [8]) yields the di¤erential equation that F solves

�F (X) = �XF 0 (X) +
�2

2
X2F 00 (X) (28)

along with the di¤erent boundary and smooth pasting conditions F (1) = 0, F (XF ) = �D �
XF , and F 0 (XF ) = �1. The solution to (28) has the form F (X) = AXb. The corresponding

fundamental quadratic �2

2 b (b� 1) + b� � � = 0 has two roots of which only the negative lower

root b0 � �� :=
�
1
2 �

�
�2

�
�
q�

1
2 �

�
�2

�2
+ 2�

�2
satis�es the �rst boundary condition. Solving then

yields the optimal investment threshold XF =
�
�+1�D and option value

F (Xt) =

8<: �D �Xt, Xt � XF
��

(�+1)�+1
��+1D X��

t , Xt � XF
. (29)

A.3 Firm 2 preemption threshold

As described in the text for a given accumulated capital K
1
�rm 2�s preemption threshold X2

P

when it exists is the upper root of the condition

�
�M �X2

P

� �
X2
P

�� � (�M ��D)
�

�

� + 1

�D

1�K1

��
=

����+1D

(� + 1)�+1
. (30)
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First write (30) more compactly by normalizing by ��+1D and setting x � X2
P =�D and m �

�M=�D. Then the condition is equivalent to

f(x) := (m� x)x� =
�

�

� + 1

��0B@ 1

� + 1
+

m� 1�
1�K1

��
1CA =: g

�
K
1
�
. (31)

The left hand side is a concave function f with f (0) = f (m) = 0 that attains a maximum value

��m�+1= (� + 1)�+1 at x0 = �m= (� + 1). The right-hand side is an increasing function g over

[0; 1) with g (0) = �� ((� + 1)m� �) = (� + 1)�+1 and lim
K
1!1 g

�
K
1
�
=1. After simpli�cation

g (0) < f (x0) if and only if

m�+1 � (� + 1)m+ � > 0, (32)

which holds for m > 1. The upper root in x of (31) exists so long as K
1
is not too large. Letting

K denote the solution to g
�
K
�
= f (x0), i.e.

K = 1�
�
(� + 1) (m� 1)
m�+1 � 1

� 1
�

, (33)

then x (andX2
P ) is well-de�ned forK

1 2
�
0;K

�
. Economically,K is the upper bound of the capital

stocks over which equilibrium in a preemption game between the two �rms is of the preemptive

type, and for K
1
> K it is of the sequential (Stackelberg) type. From 30 and when �rm 2�s

preemption threshold X2
P is well-de�ned one may explicitly de�ne KP : [��M= (� + 1) ; XP ] !�

0;K
�
as

KP (X) = 1�
 

1

m� 1

 �
m� X

X2
F

��
X

X2
F

��
� 1

� + 1

!!� 1
�

(34)

which is the minimum capital stock that �rm 1 must hold when the price of the capital good is

X in order to dissuade instantaneous leader investment by �rm 2.

Note that as a result of this derivation:

Proposition 2 There is an upper bound K < 1 on the amount of capital that �rm 1 precommits

before investing.

A.4 "�equilibrium derivation

In equilibrium �rm 2�s payo¤from the thresholdX2
" is F

2(X�) (X�=X(0))� , but it cannot do better

either by delaying or by preempting, as in the latter case for instance, choosing X20 = X�+ �0 for

23



some small �0. Given �rm 1�s capital accumulation policy, K1
"

�
X20� > KP

�
X20� and therefore

such a choice by �rm 2 would yield a payo¤ L2(K
1
; X20) < F 2(X20) = F 2(X�).

The are a greater number of deviations from the equilibrium strategy to consider for �rm

1, of which many can be directly eliminated. For instance, incremental investment at any

rate greater than jdKP (X)j holding the investment threshold constant results in a stochas-
tically dominated payo¤ that only raises costs without altering the bene�t derived from en-

try. For �rm 1 the most pro�table deviation from the equilibrium strategy K1
" given that

it carries an additional capital stock of � units is to invest optimally at the threshold X1
� =

(�= (� + 1))
�
�M=

�
1�KP

�
X1
�

�
� �
��
, i.e.

K10
" (X) =

8>>>><>>>>:
0, X > XP + �

�, XP < X � XP + �
KP (X) + �, X1

� < X � XP
1, X � X1

�

. (35)

If �rm 1 follows this strategy, it earns a payo¤

bV 1 �X1
�

�
=
�
�M �X1

�

�
1�KP

�
X1
�

���� X1
�

X(0)

��
� (�M ��D)

�
X2
F

X(0)

��
+

XPZ
X1
�

Z�+1

[X(0)]�
dKP (Z)

(36)

and the di¤erence,

bV 1 �X1
�

�
�bV 1 (X�) =

�
�M �X1

�

�
1�KP

�
X1
�

���� X1
�

X(0)

��
�[�M �X� (1�KP (X�))]

�
X�

X(0)

��
� 0,

(37)

vanishes as � ! 0 by continuity of KP and bV 1.
A.5 k� comparative static

Combining the �rst-order condition,

X� =
�

� + 1

�M
k�
. (38)

and de�nition of k in (34)

k� =

(
�D

�M ��D

"�
�M
�D

� X

X2
F

��
X

X2
F

��
� 1

� + 1

#)� 1
�

(39)
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yields after rearrangement�
�M
�D

��+1
[k�]�(�+1) +

"
�
�
�M
�D

��+1
+
�M
�D

� 1
#
[k�]�� +

1

� + 1
= 0. (40)

Letting m � �M=�D, k� is implicitly de�ned by a condition F (k;m; �) = 0. Then

Fk = � (� + 1)m�+1 [k�]�(�+2) � �
�
�m�+1 +m� 1

�
[k�]�(�+1) (41)

= �
�
(1 + �k�)m�+1 + � (m� 1) k�

�
[k�]�(�+2) < 0 (42)

and

Fm = (� + 1)m� [k�]�(�+1) +
�
� (� + 1)m� + 1

�
[k�]�� (43)

=
�
1 + (� + 1)m� (1� k�)

�
[k�]�(�+1) > 0. (44)

Since dk�=d�M has the sign of �Fm=Fk it follows that dk�=d�M > 0.

B Markov perfect equilibrium of the investment game

Further speci�cations are necessary in order to show that the "�equilibrium in Section 3 converges
to an appropriate Markov perfect equilibrium as " becomes arbitrarily small. In order to focus

on the game-theoretic aspects, this is done in the case of a deterministic input price and further

speci�cs of the stochastic case are left for future work.

...
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