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Abstract 
Intermittent electricity production due to increasing shares of renewable energies, carbon capture and 

storage technologies to retard climate change and the increasing usage of hydrogen for transport appli-

cations have one thing in common: They all need long-term large-scale storage facilities. Consequent-

ly, a future competition for the most cost-efficient storage sites is likely. This study describes an eco-

nomic storage model which enables the user to identify the most economic utilization of one specific 

cavern storage site. Salt caverns represent the most flexible large-scale geological storage. Currently, 

salt caverns are mainly in use as seasonal gas storage. Europe offers a high potential for further cavern 

storage use. The model includes technical properties of salt caverns as storage facilities, and hydrogen, 

compressed air, methane and carbon dioxide as storage media. Real options analysis is used to value 

the stored medium during the lifetime of the cavern storage. The model suggests, based on the ex-

pected market development, the most attractive storage medium to maximize the overall discounted 

earnings. Potential storage costs for each application are compared with economic gains or cost sav-

ings (e.g. avoided carbon tax, revenues from peak-load sale of electricity, etc.) which are generated by 

an optimal time-dependent usage of the stored medium. As the simulation results will show, the esti-

mated storage costs both for the natural gas storage as well as the CAES exceed the discounted reve-

nues in the base variant. On top of that, the value of intertemporal arbitrage of carbon dioxide is not 

enough to cover the marginal costs. 
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Nomenclature 

Symbol Description 

RE Renewable energies 

EEX European Energy Exchange 

OTC Over-the-counter 

EEG Renewable energy law 

CAES Compressed air energy storage 

EUA European Emission Allowance 

1. Introduction 
Intermittent electricity production due to increasing shares of renewable energies (RE), car-

bon capture and storage technologies to mitigate climate change, and the increasing usage of 

hydrogen for transport applications have one thing in common: They all need long-term large-

scale storage facilities. Consequently, a future competition for the most cost-efficient storage 

sites is likely. The topic of this study is unique in multiple dimensions. Firstly, academic liter-

ature which gives a direct economic comparison of different usage scenarios of one specific 

cavern storage does not exist. Secondly, so far, the possibility to switch from one usage sce-

nario to a second usage scenario during the economic lifetime of a cavern storage has not 

been studied. Consequently, this study gives a new perspective on the valuation of geological 

cavern storages. Instead of researching the most suitable storage type for a certain medium, 

the following study identifies the most economic utilization in terms of storage medium of 

one specific cavern storage. 

To model the most economic utilization of the storage units, several assumptions on the 

market development and prices of electricity, natural gas and carbon dioxide are made. Based 

on the assumptions, complex price models for electricity, gas and carbon dioxide are devel-

oped to capture the stochastic price movements over the following 25 years. 

An increasing share of renewable energies (RE) in the European and especially German 

electricity production leads to increasing volatility in electricity supply. Since electricity de-

mand and supply have to be in balance at every moment in time and electricity is nearly a 

none-storable commodity, challenging requirements for future expansion of the electricity 

grid to avoid blackouts are in place. One part of the solution is the construction of large-scale 

electricity storages that enables to flatten the volatility of electricity supply. This will cause an 

increasing need for suitable storage sites.  

Not only the electricity market but also the gas market will need more storage capacity in 

the future. This is due to the fact that the share of long-distance imports of natural gas is in-



  
 
creasing, since national and European natural gas fields are reaching depletion. At the same 

time, the overall natural gas consumption is expected to stagnate as in recent years 

(Petroleum, 2015) or increase due to the growing usage of flexible, less carbon dioxide inten-

sive, gas-fired power plants. This in turn leads to an increasing need for large-scale gas stor-

age sites to balance fluctuating consumption and prices. 

The plan of the European Union is to reduce its carbon dioxide emissions by 80-95% until 

20501 (bpb, 2013; CCC, 2015). To reach this ambitious goal, the vast majority of all fossil 

fuel powered power plants will be substituted by RE. Moreover, technologies to capture and 

use the excessive amounts of carbon dioxide are needed (Fischedick, Esken, Luhmann, 

Schüwer, & Supersberger, 2007). This is why large-scale intermediate or long-term carbon 

dioxide storage facilities will be needed in the upcoming 35 years. 

The expected developments outlined above can lead to a situation in which different stor-

age media compete for the same storage site. Most likely, salt cavern storage sites are the type 

of sites which will be suitable for all applications mentioned above. Salt caverns represent the 

most flexible large-scale geological storage option. Currently, they are mainly in use as sea-

sonal gas storage. These sites are very suitable for compressed air storages, too. Europe offers 

a high potential for further cavern storage expansion (section 5). 

The following sections describe how a simple storage model can be used to answer the 

question which storage medium is, from an economic perspective, most suitable to store in a 

large-scale salt cavern. The model includes technical properties of salt caverns as storage fa-

cilities, and hydrogen, compressed air, methane and carbon dioxide as storage media. 

Potential storage costs for each application are compared with economic gains or cost sav-

ings (e.g. avoided carbon tax, revenues from peak-load sale of electricity, etc.) which are gen-

erated by an optimal time-dependent usage of the stored medium. 

The remainder of this paper is organized as follows. Section 2 gives an overview of related 

literature in the field of study and summarizes the most important theoretical foundations for 

this study. Further, the datasets for the simulation are introduced. Section 3 analyses the status 

quo and expected development on the electricity, natural gas, hydrogen and emission allow-

ances market. The findings are used in section 4 to explain the existence of certain price pat-

terns. In section 4, we introduce the most suitable prices modelling approach, describe the 

developed price models for each storage medium, and present the simulation results. Section 

5 describes the technical and economic properties of salt cavern storages in general and spe-

cifically for a selected site. After an analysis of already existing and potential sites the de-
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scription of the working principle of a salt cavern is given. Moreover, the technical re-

strictions of each storage medium and the cost associated with the usage of a certain medium 

are outlined in section 5 as well. At last, an assumption on the cost for the development of a 

new gas cavern storage is performed. Section 6 presents the general storage model with an 

analysis of all assumptions which have been made in order to make the storage model solva-

ble in a reasonable time span. Also, different scenarios for the usage of the storage are ex-

plained and incorporated in the storage model. Finally, section 7 contains the presentation and 

analysis of the storage model results. A sensitivity analysis shows the most influential factors 

on the economics of the storage operation. Section 8 concludes. The simulation results show 

that the estimated storage costs both for the natural gas storage as well as the CAES exceed 

the discounted revenues in the base variant. Besides, the value of intertemporal arbitrage of 

carbon dioxide is insufficient to cover the marginal costs. 

2. Theoretical foundation 
The theoretical background of our study is based on three fundamental bases. Firstly, through 

a Monte Carlo simulation several price paths are simulated and the value of the storage is es-

timated for each price paths separately. On top of that, the decision of the storage operator can 

be modelled as a real option, with a decision at each time step to inject or withdraw. This 

treatment corresponds to the Real Options Theory, which is described below. Secondly, popu-

lar theoretical approaches to forecast electricity prices are described with an analysis of bene-

fits and downsides of each approach. Thirdly, a brief theoretical introduction into different 

approaches of storage valuation is given in the last part of this section. 

2.1 Real Options Theory 
Dixit (1989) describes the real options theory as an approach which integrates the valuation of 

sunk costs for entry and exit decisions (‘uncertainty hysteresis’) in an investment decision. 

Company A, for instance, needs an initial investment sum k to become active to produce out-

put at a variable cost w. The company A can decide to discontinue operations but has to pay a 

lump-sum cost l to do so (Dixit, 1989). To re-continue operations it has to pay entry cost k 

again. On top of that, the firm’s discount rate for the initial investment costs is p. The uncer-

tainty to enter or to exit the market arises from the non-constant market price. If the price 

fluctuations are expected to be mean-reverting and the price is just at the level w + pk, with 

equal probabilities of a price change up or down at each point in time, the investment oppor-

tunity will yield a net present value of zero. If the company waits until the next period and the 

price has gone up, an investment will yield a positive expected present value. Consequently, 



  
 
the investment decision can be seen as an option, which has a value of waiting. This option 

will only be exercised if the option is in the money (price > w + pk) (Dixit, 1989). 

In a nutshell, the main idea of the real options theory is to consider sequential, irreversible 

investments under uncertainty as a purchase of a real option, which allows firms to postpone 

full commitment until a significant part of the uncertainty has been resolved. The option is 

only exercised if the investment yields a positive net present value (Adner & Levinthal, 

2004). 

2.2 Price simulation 
The article by Rafał Weron, Bierbrauer, and Trück (2004) can be seen as one of the first pa-

pers which focuses on the simulation of electricity spot prices with a jump diffusion and a 

regime switching model including deseasonalization. It was followed and refined in later pa-

pers of Weron. In 2013, Janczura, Trück, Weron, and Wolff (2013) performed an extensive 

study on different methods of spike identification and deseasonalization of electricity spot 

price data. The findings are used in this paper for deseasonalization, outliner filtering as well 

as the Markov regime switching approach. 

Muche (2009) shows very descriptive the entire spot price simulation process with a de-

terministic price component with a stochastic jump process. His work is partly based on 

Weron’s findings. Muche neglects negative prices to achieve a simpler price model. Keles, 

Genoese, Möst, and Fichtner (2012) incorporate negative prices and compare different modi-

fied statistical and reduced form models to simulate electricity spot prices. The detailed de-

composition of historical prices using a deterministic and stochastic component will be used 

in this paper. 

Weron (2007) gives a good overview of different classes of modelling approaches for elec-

tricity markets. Recently, Rafał Weron (2014) published an extensive literature review on 

different approaches for electricity price forecasting. The most important findings will be pre-

sented below. Electricity spot price modeling approaches can be categorized into five types: 

(1) Multi-agent models, which represent the price process by matching the demand and 

supply of interacting heterogeneous agents (utility companies). 

(2) Fundamental models, which determine the price path by modeling impacts of important 

economic and physical factors on the price of electricity. 

(3) Reduced-form models analyze and describe the statistical properties of electricity in an 

econometrical model over time. 

(4) Statistical approaches are either directly applied statistical techniques of load forecast-

ing or econometric models adapted to the power market. 



  
 
(5) Computational intelligence techniques combine ‘nature-like’ processes such as learn-

ing, evolution and fuzziness to create models which are able to adapt to complex dynamic 

systems. 

In practice, many applied modeling and price forecasting approaches are hybrid solutions 

based on two or more techniques (Rafał Weron, 2014). In this paper we will focus, just as 

most related literature, on reduced form modeling approaches. We elaborate on different type 

of reduced-form models below. 

Reduced-form models 

Reduced-form models offer the best of two worlds by managing a trade-off between model 

parsimony and adequacy to capture the unique characteristics (sharp spikes and drops) of 

electricity prices (Rafał Weron, 2014). Frequently used price models are one-factor stochastic 

models with a time-dependent drift µ(t) (Boogert & De Jong, 2008; Schwartz, 1997). These 

approaches use a diffusion-type stochastic differential equation (Rafał Weron et al., 2004). 

The model shown below consists of a mean-reverting component κ and a drift term µ(t). 
𝑑𝑑(𝑡)
𝑑(𝑡)

= 𝜅[𝜇(𝑡) − ln 𝑑(𝑡)]𝑑𝑡 + 𝜎𝑑𝜎(𝑡) 

dW(t) describes a Wiener process (Brownian Motion) 

(1) 

  

The mean reversion model proposed above does not account for the “jumpy” character of 

electricity price movements, which is why Felix, Woll, and Weber (2013) ,Thompson, 

Davison, and Rasmussen (2009), Holland (2008) and Rafał Weron et al. (2004), among oth-

ers, use an extension of equation (1) and include a jump diffusion process based on a Poisson 

process, which gives a Jump-diffusion model: 

𝑑𝑑(𝑡) = 𝜅 𝜇(𝑡)𝑑𝑡 + 𝜎𝑑𝜎(𝑡) +  𝐽𝑡𝑑𝑞𝑡 (2) 

Seifert and Uhrig-Homburg (2007) find that Poisson jump and Poisson spike processes with 

constant intensities perform rather poor for the German EEX spot price estimation. The usage 

of stochastic jump intensity reduces these problems. 

The advantage of Markov regime-switching models over jump-diffusion models is the fact 

that Markov regime-switching (MRS) models can exhibit spike clustering on the daily time 

scale as well as the hourly time scale in a very natural way (Rafał Weron et al., 2004). An 

unobservable variable in the time series will trigger a switch between a predefined number of 

regimes. MRS models are very flexible and allow mean reversion (temporary dependence 

within the regimes). Each regime can have an independent stochastic price process (Carmona 

& Ludkovski, 2010; Keles, Genoese, et al., 2012; Rafał Weron et al., 2004) or can be mod-

elled identically (mostly mean-reverting). Fanone, Gamba, and Prokopczuk (2013) proposed 



  
 
two independent Lévy processes, the first one describes the fluctuations around the long-term 

mean while the second Lévy process models the strong spikes and drops. 

Another approach is to include different regimes in the same price process (Bierbrauer, 

Trück, & Weron, 2004; Carmona & Ludkovski, 2010; Z. Chen & Forsyth, 2010; Rafał Weron 

et al., 2004). The base regime is typically modelled by a mean-reverting diffusion (Huisman, 

Huurman, & Mahieu, 2007). Janczura et al. (2013) use a structure based on three regimes for 

deseasonalized spot prices. The base regime (Rt=1) describes the regular price movement 

based on a mean-reverting, heteroscedastic process (Janczura et al., 2013; Janczura & Weron, 

2012): 

𝑑𝑋𝑡,1 = �𝛼1 − 𝛽1𝑋𝑡,1�𝑑𝑡 +  𝜎1|𝑋𝑡|𝛾𝑑𝜎𝑡 (3) 

The second regime (Rt=2) describes price spikes caused by unexpected demand peaks or sup-

ply shortages and can be modelled as lognormal, Gaussian, Pareto, Weibull or exponential 

distributed spike regime. A shifted log-normal distribution, as described in Janczura et al. 

(2013), with q2 as third quantile is stated below: 

log�𝑋𝑡,2 − 𝑞2�~𝑁(𝜇2,𝜎2), 𝑋𝑡,2 > 𝑞2 (4) 

The third regime (Rt=3) describes sudden price drops, modelled according to the shifted ‘in-

verse log-normal’ law  with q3 as the first quartile of the dataset (Janczura et al., 2013): 

log�−𝑋𝑡,3 + 𝑞3�~𝑁(𝜇3,𝜎3), 𝑋𝑡,3 < 𝑞3 (5) 

An optimized algorithm with three or two regimes of the MRS is proposed by Janczura and 

Weron (2012) in order to estimate the parameters of the MRS with significantly lower compu-

tational burden. 

As described by Rafał Weron (2014), the results of the MRS are conflicting. Kosater and 

Mosler (2006) reach satisfying results for the medium term price forecasting of the EEX spot 

prices, while Liebl (2013) observes a poor performance of the MRS model compared to three 

factor models. All in all, a hybrid model consisting of a MRS model to model the especially 

spiky prices of the EEX spot price market and a similar day method to describe a recurring 

pattern could yield a reasonable performance compared to the other possible approaches men-

tioned above (Rafał Weron, 2014) 

2.3 Storage valuation 
There are four popular theoretical approaches to capture not only the intrinsic value (predicta-

ble seasonal pattern) but also the extrinsic value (reaction on price fluctuations) on a spot-

based storage strategy. The first three approaches are mathematical sophisticated models 

which are developed to increase computation speed and overcome some limitations, while the 

fourth approach implies rather simplistic linear programs and heuristics of practitioners. 



  
 

The stochastic control approach is used by Thompson et al. (2009) and Weston and Ronn 

(2002), among others. The models are based on Bellman equations, connecting directly the 

stochastic price process with the optimal storage strategy. These equations are solved through 

numerical partial differential equation techniques (PDE) (Thompson et al., 2009). The paper 

was originally written in 2003 and was the first paper to valuate gas storages with PIDEs. 

Through clever mathematical simplifications, the resulting equation turns out to be simple. 

However, a change in price processes can violate some mathematical simplifications. Based 

on the approach of Thompson et al. (2009), Felix et al. (2013) assess the value of a gas stor-

age und limited market liquidity. We incorporated the storage data from that paper in chapter 

5. Carmona and Ludkovski (2010) solve the stochastic control approach with a probabilistic 

solution based on optimal multiple stopping problems. This approach decreases the limita-

tions in terms of price models and storage constraints experienced with PDE techniques. 

However, resulting the algorithm has the length of multiple pages and is not easily adjustable, 

due to several mathematical simplifications and assumptions (Carmona & Ludkovski, 2010). 

Z. Chen and Forsyth (2010) integrate an one-factor, two-regime Markov regime switching 

approach in the stochastic control approach and solve the resulting PDEs with a semi-

Lagrangian time-stepping scheme. The result is not only mathematically complex but also 

numerically difficult to trace and to achieve convergence.  

The second approach, the Monte Carlo approach, separates the stochastic price process 

from the optimal strategy estimation. This is an advantage since it makes the integration of 

more detailed price processes easier. Moreover, it simplifies the integration of additional op-

eration constraints. The major drawback of the Monte Carlo approach is the rather long com-

putation time (Boogert & De Jong, 2008). 

The storage can be seen as an American option, because the storage operator is faced with 

a timing problem when to inject and withdraw. An American option can be exercised in every 

moment of time till the expiry date. The option holder has to decide when to exercise the op-

tion (Boogert & De Jong, 2008). Longstaff and Schwartz (2001) introduced the Least Squares 

Monte Carlo method to solve American option pricing by simulation. This approach has be-

come quite popular, which is why Boogert and De Jong (2008) uses this approach to estimate 

the storage value by means of dynamic programming. 

A third, rather new approach is the approximate linear programming, to solve intractable 

Markov Decision Processes (MDPs). The main idea is to use approximate linear program-

ming to make high dimensional price models, which are often untraceable in stochastic dy-

namic programming, solvable within an expectable computation time (Lai, Margot, & 

Secomandi, 2010). The approach of Nadarajah, Margot, and Secomandi (2014) is based on 



  
 
findings by Lai et al. (2010) and extended with a Markov Decision Process as price model. 

Nadarajah et al. (2014) describes this approach for a gas storage valuation based on a forward 

curve price estimation. This approach is mathematically rather challenging especially with 

price models exceeding a one-factor model and not easily extendible with additional storage 

constraints. This approach could be used in further research as model for this paper. 

A fourth, rather simplistic approach, is heavily used by practitioners: The heuristic ap-

proach. Heuristic approaches use multi-factor price models, which can incorporate the real 

price movements more sophisticated. The high dimensionality rules out the application of 

dynamic programming approaches (Thompson, 2012). Heuristic approaches generate n dif-

ferent price paths (often hundreds or thousands). Each price path contains t time steps. At 

each time step a decision has to be made to buy or sell (inject / withdraw) under the assump-

tion that future prices are not affected by the decision. The final value is defined as the aver-

age value of all the discounted valuation outcomes of all price paths. The heuristic approaches 

use often linear programs in combination with Monte Carlo simulations (Lai et al., 2010). 

Heuristic approaches have shown to result in nearly optimal injection and withdrawal strate-

gies but with the drawback of high computational complexity (Lai et al., 2010; Thompson, 

2012). 

Holland (2008) formulates a very basic MILP (mixed integer linear program) to allow en-

ergy traders to measure their impact on the storage valuation by their trading decisions on a 

daily basis. By contrast, Muche (2009) uses the day-ahead spot prices to plan an intra-day unit 

commitment. Keles, Hartel, Möst, and Fichtner (2012) and Drury, Denholm, and Sioshansi 

(2011) use mixed integer linear programs (MILP) and linear programs (LP), respectively to 

valuate a CAES. The rather simplistic approaches yield reliable results (Drury et al., 2011). 

Keles, Hartel et al. (2012) propose a simplistic mixed linear program to model a CAES 

properly. The authors assume gas and CO2 prices to be static, and the overall optimization is 

only conducted over 365 days with a perfect foresight on price over the entire timeframe. The 

basic structure of this model will be used in this paper. Sioshansi et al. (2009) estimates the 

value of electricity storage based on arbitrage without specifying an exact storage. The paper 

gives a good overview of the most economic storage size and assumable arbitrage revenues. 

Most importantly, Sioshansi et al. (2009) study the impact of perfect and imperfect foresight 

on prices on the storage valuation. These findings will be used in our model as data and for 

comparison. Conolly et al. (2011) research optimal operation strategies of pumped hydro stor-

age based on spot price spreads with a simple linear program. The basic structure of this line-

ar program can be seen as basis for this paper. The most valuable outcome is the study of val-

uation differences between perfect foresight and limited foresight on future prices. 



  
 
2.4 CAES model 
Gatzen (2008) developed a CAES model based on a mixed linear program. Loisel et al. 

(2010) refined this model with technical preferences and extended it with assumptions on the 

reserve power market. The integration of the reserve power market as additional revenue 

stream for the CAES can be included to extend this paper. Drury et al. (2011) find that CAES 

revenues solely based on electricity arbitrage are unlikely to support investment in most mar-

ket locations, but with additional revenues from the reserve market, the investment can be 

economic in several markets. The technical properties of the CAES as well as the cost estima-

tions and CAES model formulation are used as basis in this paper. 

2.5 Data used 
Table 1 gives a brief review of the used datasets for price simulation purpose. Especially the 

datasets of natural gas and EUA are rather short, due to the very recent establishment of those 

spot markets. The spot market for electricity (EPEXSPOT) reaches back to the liberalization 

of electricity markets in the early 2000s. The liquidity on the day-ahead hourly spot market 

increased steadily and can be seen as very liquid from 2005 on. In order to account for the 

impact of the increasing share of RE on the volatility and price drops the selected data set 

starts in 2009. The limited calibration time period (max. six years for electricity) compared to 

the simulation time of 25 years, can influence the identified patterns in section 4. Consequent-

ly, the simulated price paths should be seen as one potential future outcome. 
 

Table 1: Description of datasets used for price simulation 

No. Name Period No. of  
values 

Source Comments 

1 Natural gas spot 

market daily 

reference price – 

NCG hub 

31 May 2011 –  

21 Sep 2015 

1575 (EEX, 2015c) NCG gas spot market daily refer-

ence price was established in May 

2011 by the EEX. Due to higher 

liquidity in the NCG market area in 

the first two years, prices from the 

NCG area are used. The price is 

determined every day. Hourly 

trading is possible but trading 

volume is very volatile and conse-

quently the market price can only 

be determined for a few hours per 

day. 

2 EPEXSPOT 

day-ahead hour-

01 Jan 2009 – 

02 Sep 2015 

58464 (EEX, 2015a) Data from Phelix day-ahead hourly 

electricity spot market. Each day at 



  
 

ly spot prices 

(Phelix)  

noon the hourly prices for the next 

day are determined and contracts 

settled. Market is very liquid, price 

range from -500 €/MWh – 

3,000 €/MWh possible. 

3 EPEXSPOT 

Day-ahead 

Daily spot pric-

es (Phelix) 

01 Jan 2009 – 

02 Sep 2015 

2436 (EEX, 2015d) Data from Phelix day-ahead base-

load contract. The contract is trad-

ed daily and contains of a 24h 

delivery of electricity. Prices are 

determined each day at noon. 

Base-load price-path are used for 

the estimation of long-term cycles. 

4 EEX emission 

market  

(secondary) 

01 Jan 2013 – 

21 Sep 2015 

994 

(686) 

(EEX, 2015b) EUA data from secondary market 

transactions. EEX EUA emission 

spot market exists from Jan 2013 

on. Only traded on weekdays and 

liquidity is in 2013 rather poor. To 

complete the dataset missing data 

points filled with moving average 

of surrounding market prices. Pri-

mary market is a EUA auction with 

far less yearly trading days. 

3 Storage media – market development 
The following subsections give a brief summary of market developments in the electricity, 

natural gas, carbon dioxide and hydrogen markets in recent years. The four different storage 

media can be used for different purposes in the same geological cavern storage. Natural gas 

and carbon dioxide can be used as a storage medium and provide a basis for intertemporal 

arbitrage. Electricity itself is not storable in a cavern storage and has to be transformed into 

mechanical or chemical energy. Compressed air energy storages (CAES, adiabatic or diabatic) 

provide a mechanical solution to store electricity, by means of compressed air. An electrolys-

er is able to transform electric energy into easily storable chemical energy (hydrogen or me-

thane). This is why the following analysis focusses on above mentioned storage media. The 

regional focus lies on Germany, since Germany, as single biggest market in the European 

Union, offers very liquid spot markets, subsequently the market data is very useful for an in-

depth modelling of price developments. The findings of the following fundamental market 

analysis will be used to explain certain results from the econometric price modelling of elec-

tricity, natural gas, carbon dioxide and hydrogen markets 



  
 
3.1 Electricity 
The electricity market in Europe and especially in Germany has changed tremendously since 

the beginning of the liberalization of electricity markets in Europe in 1999. Due to stronger 

competition and the growth of a liquid electricity exchange (EEX), margins for electricity 

generators decreased and transparency grew, which is why, nowadays, the EEX prices are 

used as a benchmark for the entire electricity market including over-the-counter (OTC) trades 

(Rafal Weron, 2007, p. 15 f.). 

A second big impact on the market structure has had the introduction of a subsidy policy 

for renewable energies (EEG) in Germany. This led and still leads to massive growth of re-

newable electricity production. In Germany, the gross electricity production from renewable 

energies had the biggest share of all electricity sources by surpassing lignite in 2014. Fur-

thermore, the share of electricity generated by nuclear power is steadily decreasing since 2002 

(Graichen, Kleiner, Litz, & Podewils, 2015). This is due to political decisions taken in 2002 

and 2011 respectively, to phase out all nuclear power plants by 2022 (Gal, 2011). 

Figure 1 maps the influence of price movements of different energy-related commodities 

on the average electricity price. The price paths of natural gas and coal are highly correlated. 

Both prices have peaks in the year 2008 with steep price drops following in 2009. The prices 

of natural gas lags about two months the price development of coal. This is mainly due to the 

fact that the gas market is less flexible and less interconnected worldwide, since the transpor-

tation of gas is far more difficult compared to coal and oil (mainly pipeline transport). After a 

sharp drop in 2009, a recovery of the coal price ended at the beginning of 2011 at around 100 

€/t. Today’s price is in the range of the deepest point in 2009. Gas prices increased steadily 

until the summer of 2012. From mid-2012 till the end of 2013 gas prices remained nearly 

constant. Since then, prices slid, excluding some seasonal effects, constantly.  

The price development of Emission Allowances (EUAs) seems to be very much in line 

with the economic cycle. The price crashed during the financial crisis from 32 €/tCO2 in 2008 

to 8 €/tCO2 in 2009. The pattern was highly correlated with the coal price movement. From the 

mid of 2009 until 2011 the carbon price stabilized at a level of 13-16 €/tCO2. In the year 2011 

the market participants expected that the slowdown of the GDP growth and decreasing energy 

growth due to the European debt crisis and the emerging share of renewable electricity pro-

duction would lead to lower carbon dioxide emissions, thus lower demand for EUAs (see al-

so). Prices dropped to levels below 4€/t in 2013. Since then, the prices steadily grew to about 

8 €/t. 



  
 

 
Figure 1: Price development of coal2, electricity3, natural gas4 and European Emission Allowances over time. 

Source: own illustration, based on EEX (2015c), Reuters (2015a), Reuters (2015b), Reuters (2015c)  and 

Quandl (2015). 

 

All in all, a clear correlation between coal prices, prices of emission allowances and gas prices 

is visible. However, most importantly, in the long-run, electricity prices are also highly influ-

enced by the behavior of energy and carbon prices. Even though the price path of electricity is 

very volatile from day to day due to fluctuating supply and demand, a peak in 2008 and a bot-

tom price level in 2009 becomes clear. Along with the movement of energy commodities, 

electricity prices increased until 2011. Since 2011 a downward trend from 60 €/MWh towards 

levels below 30€/MWh becomes visible. This trend is stressed by stochastic and seasonal 

movements. 

The movement of energy prices over the last 9 years makes it hard to believe in a linear fu-

ture trend of electricity prices. Many authors use the concept of constant drift / trend to model 

electricity prices. Linear trends are easy to model and estimate but yield unrealistic results for 

projections of prices over the timespan of 20 – 25 years. Subsequently, the following sections 

on price modelling of gas, emission allowances and electricity will not use constant trends but 

                                                 
2 API2 coal index maps hard coal prices including freight and insurance costs to ARA harbours (Amsterdam, 
Rotterdam and Antwerp). The index is originally denoted in USD/t but is here converted to €/t with the historical 
daily €/$-exchange rate. 
3 In order to make the trend more visible a four-day moving average is applied to the daily baseload price of the 
Phelix-Index. 
4 Due to a lack of market data of spot prices for natural gas (light green line) from 2006-2011, the EGIX natural 
gas index monthly contract is used to show the development over time. This index is based on rolling futures 
contracts in the NCG market area. 



  
 
instead incorporate a cycling model of multiyear trends. This is believed to capture the real 

market movements superiorly, by modelling economic cycles. 

To put it in a nutshell, long-term electricity price movements are mainly caused by eco-

nomic growth cycles, which in turn leads to price movements in energy commodity markets 

and variation of electricity demand. 

Renewable energies tend to be very volatile, which supports the magnitude and frequency 

of price jumps. Price jumps were, before the introduction of renewable energies mostly hap-

pening in an upward direction and never led to negative electricity prices. Nowadays, quite 

frequently, negative price jumps are occurring when an unexpected high influx of renewable 

energy meets a nearly static behavior of fossil-fueled power plants. Due to technical con-

straints, the sale of electricity with a negative price can be more economical than shutting 

down a fossil-fueled power plant (this is especially true for coal-fired plants) (De Graaf, 

2013). Despite the occurrence of negative prices, electricity prices are highly mean-reverting, 

which means that electricity prices tend to move back quickly to the mean after a price jump. 

Figure 2 shows the effect of seasonality on spot prices. On the one hand, average prices are 

higher in the winter due to higher energy demand. On the other hand, volatility is during the 

winter season also higher due to high infeed from wind energy with steep load gradients. 

 
Figure 2: Spot price development on the day-ahead market (baseload & peak-load contract) at the EEX from 

1.01.2009 - 2.09.2015, excerpt shown from 1.01.2014 – 1.01.2015. (EEX, 2015d, 2015e) 

Moreover, figure 2 shows a weekly effect, too. Section 4 will give a more detailed view on 

the weekly and daily price movements. In a nutshell, the electricity market has the following 

properties (Muche, 2009): (1) High volatility; (2) Price jumps caused by price spikes; (3) 

Mean reversion; and (4) Seasonality. 

The German electricity market is changing rapidly towards a more renewable electricity 

generation due to policy interventions. The German government aims to reach a share of re-

newable energies on the electricity generation of 55-60% by 2035. This share was 28% in 

2014 (Bundesregierung, 2015). 



  
 

Although the capacity of grid interconnections between boundaries of the European coun-

tries is increasing, the future energy system with high shares of renewables will not be able to 

work without storage facilities and residual fossil power plants. This is why the German poli-

cy maker are supporting the research and development of storage technologies 

(Bundesregierung, 2015). 

Average baseload electricity costs are not expected to fall significantly below current lev-

els (~30 €/MWh), since most fossil-fired power plants are currently hardly able to cover their 

marginal costs. Gas-fired power plants and older hard coal power plants are even put out of 

the market. Consequently, in the upcoming years several gigawatts of fossil electricity genera-

tion capacity is expected to be phased out (Dowideit, 2013). On top of this phasing-out of 

capacity that is out of the money, the remaining nuclear-based power plants are forced to be 

phased out gradually by law (Gal, 2011). 

This is why, current price levels are expected to form the bottom line of future develop-

ments. A reduced amount of baseload plants and an increasing share of renewable energies 

increase the amount of extreme price spikes, as long as the remaining fossil-fueled power 

plants are not able to fully cover the load ramps of renewable energies and not enough elec-

tricity storages are installed to balance out sudden fluctuations. 

In the section of price modelling the storage operator will trade at the EEX day-ahead 

hourly spot market PHELIX, which is the combined electricity market of Germany and Aus-

tria. One of main necessary assumption for the simulation is that the stochastic volatile behav-

ior of electricity prices will remain similarly to the one seen in recent price movements at the 

hourly spot market. One has to keep in mind that this assumption is made based on a limited 

time period (approx. 6 years) with a focus on the German market. An increasing share of re-

newable energies in other European countries can either increase (more RE close to Germany) 

or decrease (geographically not close RE) the future volatility. 

3.2 Natural gas 
The natural gas market is, in contrast to other energy commodity markets, geographically 

quite regionalized. This is due to the fact that gas is not as easy storable as liquid or solid 

commodities. Natural gas can only be transported in liquefied natural gas (LNG) tankers or 

via pipelines. Since, large-scale LNG transport started emerging only a few years ago, the 

interconnection of prices on worldwide markets is rather limited (Rapoza, 2015). 

Gas prices move in a seasonal pattern, since gas is traditionally used for the heating of 

houses, which leads to higher gas demand in winter than in summer (Carmona & Ludkovski, 

2010). Moreover, the increased usage of gas-fired power plants as balancing units in times of 



  
 
peak electricity demand gives an additional day-night pattern and intraday pattern in gas spot 

prices. 

The monetization of the seasonality effect could be easily realized by a forward spread 

from July to January through a one-time transaction. Note, however, that an optimized trading 

scheme on the liquid and volatile spot market to use the day-night and intraday pattern, offers 

higher returns than solely seasonal trading along the forward curve (Carmona & Ludkovski, 

2010).  

The flexibility in the supply of gas can be met in three ways: (1) Adjusting the output of gas 

fields; (2) Line packing in extensive pipeline systems; and (3) Usage of large-scale gas stor-

ages. 

The adjustment of gas field output is only possible if the gas fields are reasonably full and 

the distance to the grid connection not too far. Line packing, which increases the volume in 

the pipeline network by increasing the pressure, is frequently used. Though this type of “stor-

age” is only applicable for small fluctuations, which could be balancing out the intraday de-

mand pattern. 

The stagnating demand for natural gas in Europe while production capacity and flexibility 

of Western European gas fields are decreasing, leads to a growing interest to invest in new 

gas storage facilities (Boogert & De Jong, 2008).  

As figure 3 shows, the natural gas consumption is slightly declining in recent years. The 

total amount of gas consumed in the EU28 in 2013 was close to the natural gas consumption 

in 2000. The development of production and imports described in the last section becomes 

very clear: 

In 2000 the EU-28 produced roughly as much gas as it imported. Nowadays, the EU28 im-

ports roughly double the amount (12 EJ) as it produces locally (6 EJ). Most market partici-

pants expect this trend to continue, since many European gas fields are depleting and a shale 

gas boom as in the U.S. is not very likely.5 

Consequently, the amount of natural gas produced locally will be at best at the level of re-

cent years (if shale gas is used) or will further decline as in recent years (without shale gas).  

Due to the increasing share of heavily fluctuating renewable energies, an increased usage of 

flexible gas-fired power plants to balance out heavy load gradients is probable. In order to 

achieve the European emission reduction targets in the upcoming 25 years an increasing share 

of gas-fired plants in the remaining fossil-fueled generation facilities is necessary. Conse-
                                                 
5 The public opinion on the technology to exploit shale gas, fracking, is in many European countries very nega-
tive, which is why it is not reasonable to assume that a boom of shale gas with such a massive impact on the gas 
market as in the U.S. is likely.  



  
 
quently, an increasing volatility of gas prices at days with an increased usage of gas-fired 

plants is likely. 

 
Figure 3: Sources and Consumption of Natural Gas in Europe (Eurostat, 2015) 

On top of that, the increasing share of far-distance imports of natural gas leads to a higher 

vulnerability to delivery problems (Eurostat, 2015). A cold winter throughout Europe would 

cause not only a higher demand for natural gas in the western European countries but also in 

the eastern European and Eurasian-countries, which are often the transit countries of the most 

important pipelines to the west. As a consequence, the increasing need for natural gas in the 

transit countries will lower the amount of gas arriving at the end of the pipeline in Western 

Europe. This would lead to short-term price peaks, thus increasing the price volatility. 

The intra-day and hourly gas markets in Germany (NCG and GPL) as well as in the Neth-

erlands (TFF) have a low liquidity and no steady trading volume. This is why the price simu-

lation will be based on day-ahead NCG gas spot market with a trading duration of 24h per 

trade. 

3.3 Carbon dioxide 
At first sight, carbon dioxide is not a typical commodity to use as storage medium to perform 

intertemporal arbitrage, but the European emission allowance market allows traders to per-

form exactly this arbitrage. 

The European emission allowance market was established to reach emission reduction tar-

gets of the European Union. The main idea is that through only a limited amount of emission 

allowances the market price of allowances will find the cheapest solution to reduce emissions. 

The participant whose costs of saving carbon dioxide is lower than the market price of emis-

sion allowances (EUA) (in €/tCO2) will generate a profit with the saving of emissions. There is 

an European cap on the maximum amount of yearly CO2 emissions, which is currently low-

ered with a yearly rate of 1.74% to achieve the EU emission targets (Commission, 2015).  



  
 

At the start of the EU emission trading system in 2005 nearly all EUA were allocated for 

free to the producing facilities based on their emission in recent years (grandfathering). In 

2013, 20% of all yearly available certificates were auctioned, whereas the rest was allocated 

for free. Till 2020 the number of auctioned EUA is scheduled to increase to 60% and reach 

100% by 2027 (EU, 2009).  

Electricity generators already have to buy 100% of the needed EUA since 2013. The grant-

ed EUA are given to the emitting industries based on the emission of the best available tech-

nology in that specific industry. A cement-producing facility receives the exact amount of 

EUA which would be emitted by a modern and state of the art cement-producing facility (EU, 

2009). 

There are many exceptions to industry’s obligations regarding specific emissions which are 

not accounted for (or certificates are given for free). Most exceptions try to avoid competitive 

disadvantage of exporting industries compared to worldwide producing facilities without 

emission trading systems.  

The price development of EUA depends on several factors (Benz & Trück, 2009): (1) An-

nual decreasing amount of available EUA in order to reach politically set emission reduction 

targets; (2) Estimated and realized GDP development and development of fuel prices (influ-

ences CO2 – output); (3) Market intervention of European Commission to adjust amount of 

EUA if prices turn out to be low; and (4) Number of EUA granted for free. 

The overall emission of carbon dioxide in Europe is decreasing since 2006. The two largest 

European emitters, Germany and United Kingdom, follow the same decreasing pattern. A 

stronger dip of emissions in 2009 due to the financial crisis and an increase in 2010 due to the 

economic recovery disturbs this pattern slightly (Petroleum, 2015). 

In consideration of the fact that a high price for EUA should trigger emission-saving 

measures, which in turn would reduce future emissions, the trend shown in figure 4 seems 

contradictory. The value of EUA has dropped sharply from 2008 to an all-time low in 2013. 

At the same time total emissions dropped nearly continuously. There are several theories why 

this market pattern is still logical and explicable, with the financial crisis in 2009 (causing an 

excess of EUA) and the increasing share of RE as main reasons. Statically, this explains only 

10% of the price movement. The remaining 90% is still unclear (Koch, Fuss, Grosjean, & 

Edenhofer, 2014). 



  
 

 
Figure 4: Price development of EUA from 2008 - 2015. CO2 emission in Europe in same time period for com-
parison. Source: Based on data from Petroleum (2015) and Quandl (2015) 

The spot price path of EUAs experiences basically no extreme spikes and drops compared to 

natural gas spot prices or electricity spot prices. Moreover, the volatility from day to day is in 

absolute terms rather small (<1 €/t). Contrary to natural gas prices and electricity prices, re-

cently, a clear upward trend is observable (figure 4). An excess of EUA led to a strong drop in 

prices during last trading phase II (2008-2012). At the beginning of trading phase III (2013-

2020) in the spring of 2013, CO2 prices reached it deepest point. Since then, the European 

Union has taken measures to reduce the excess EUA in the market to increase the average 

price level of EUA (Vassiliadis, 2015). The results are already visible in figure 4. 

All in all, the future development of the EUA prices is highly dependent on political deci-

sions and adjustments. Most importantly, the EU has two important targets on the reduction of 

greenhouse gases (Knopf, 2014): 40% emission reduction by 2030 (compared to 1990 emis-

sion levels); 80 – 95% emission reduction by 2050 (compared to 1990 emission levels). 

This is why the maximum yearly amount of available EUA is reduced by 1.74% per year. 

From 2020 on, the yearly reduction rate will increase to 2.2% (BMUB, 2009; Commission, 

2015). The potential impact of this policy is shown in figure 5. With the current reduction 

plan of the Emission Trading System (ETS), the emission targets 80% reduction compared to 

1990 will not be achievable. Consequently, an even steeper decrease in yearly available EUA 

is foreseeable. This is in line with the plans of the European Union to increase the prices of 

EUAs by reducing temporarily the amount of available EUAs (Vassiliadis, 2015). Conse-

quently, a long-lasting increase of EUA prices in the future is very likely. 



  
 

 
Figure 5: Emission pattern and European Emission targets. Source: Based on BMUB (2009), Commission 
(2015), Knopf (2014) and Petroleum (2015). 

The following price simulation will be based on the market data from the secondary EUA 

spot market. EUA are traded every working day. Since EUA are without physical delivery, 

the emission allowances will be available after the settlement and can be used until the expira-

tion date. The primary EUA market is designed as an auction with fixed auction dates. Auc-

tion prices are pretty in line with price levels at the secondary market, but auction dates are 

rare. Consequently, the historical prices of the secondary market will be used for simulation 

purpose.  

3.4 Hydrogen 
The hydrogen market is not comparable with the natural gas or electricity market. There is no 

hydrogen exchange, nor a large clearing house which established a hydrogen price index. 

Most of the produced hydrogen is used for industrial and chemical purposes, which is why the 

sale of hydrogen is basically a business to business transaction based on sealed-bid pricing 

(Saur & Ainscough, 2011). Consequently, a thorough market analysis as a basis for hydrogen 

price modelling is not possible. From an economic perspective is the usage of hydrogen as 

storage medium not reasonable until a liquid hydrogen market evolves. Apart from the very 

limited market size and liquidity for hydrogen, there are also several technical properties 

which reduces the suitability of hydrogen as storage medium significantly. These properties 

are explained in section 5.2.4 below. 

4. Storage media: modelling and simulation 
The following subsections give an overview of different modelling approaches and describe 

and the most suitable approaches for electricity prices, natural gas prices and carbon dioxide 

prices. To perform intertemporal arbitrage with a cavern storage the most efficient, a storage 

operator with a suitable storage has to be able to switch between injection and withdrawal 

within an hour (Barbour et al., 2012). This technical constraint allows to trade on a spot mar-



  
 
ket, which has a much higher volatility than forward markets. The value of a storage increases 

with higher volatility (Boogert & De Jong, 2008). As basis for the following price simula-

tions, the capability of hourly switching will be assumed. A Monte Carlo approach is incorpo-

rated in every price simulation in order to account for the stochastic nature of the price pro-

cesses. 

4.1 Electricity 
The following subsections will describe the mathematical approach to decompose the histori-

cal price data in order to simulate future electricity price paths. Section 2.2 gave an extensive 

overview of different price simulation approaches. In this study a hybrid model consisting of 

Markov regime switching approach (reduced form model) and a similar day method (statisti-

cal model) are used. The algorithm to model a Markov three regime switching approach, 

which will be used in this study, can be found in Janczura and Weron (2015). The overall ap-

proach is pretty much in line with the findings of Janczura et al. (2013). A modified similar 

day method will be used to identify and remove the weekly pattern, while a sine function 

identifies and removes the long term pattern. 

The fundamental type of models, just as most other models described in section 2.2, will 

not be used in this study. However, some fundamental data discussed in section 3 will be used 

to test and explain findings based on stochastic models applied below. 

Keles, Genoese, et al. (2012) and Rafał Weron (2014) give an extensive overview of ap-

proaches to model stochastically realistic spot prices. Most price models are based on loga-

rithmic prices to simplify calculation and better incorporate price spikes. Consequently, these 

price models cannot incorporate negative prices (Keles, Hartel, et al., 2012). Negative prices 

occur quite frequently at the German spot market (PHELIX), which is why certain price mod-

els have to be changed in order to appropriately describe the true price movement. In order to 

model the stochastic component appropriately, the Markov regime-switching model requires 

deseasonalised spot prices. There are many different approaches to extract the long-term sea-

sonal component from the dataset (Nowotarski, Tomczyk, & Weron, 2013). Z. Chen and 

Forsyth (2010) extend the model of Boogert and De Jong (2008) by including an additional 

seasonal component to the mean reversion model: 

𝑑𝑑 = 𝜅(𝜇0 − 𝑑)𝑑𝑡 + 𝜎𝑑𝑑𝜎(𝑡) + 𝑆(𝑡)𝑑𝑑𝑡 (6) 

with µ0 as long-term equilibrium price and S(t) as a sinusoidal shaped seasonality component. 

Huisman et al. (2007) extend the seasonal component with a hourly and weekly component, 

but use the same mean-reverting process as Z. Chen and Forsyth (2010). Holland (2008) 

models µ(t) with a sinusoidal shape to incorporate annual and semi-annual fluctuations: 
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Pilipovic (2007) proposes a sinusoidal approach to model the seasonal pattern of the electrici-

ty price. Rafal Weron (2007) advocates a similar approach and tries to model the seasonal 

effect with a multiple sine function to incorporate all possible discrete frequencies. The func-

tion is as follows: 

𝑥𝑡 = 𝑎0 + �[𝑎𝑘 cos(𝜔𝑘𝑡) + 𝑏𝑘 sin(𝜔𝑘𝑡)]
𝑛

𝑘=1

 (8) 

The above-mentioned approach of multiple sine functions will be used in the subsequent sec-

tion to estimate the long-term and seasonal cycle. 

Weron (2007) applies in his book several techniques to decompose the weekly and daily 

cycle: (1) Mean or Median week (Janczura et al., 2013); (2) Moving Average Technique; (3) 

Rolling Volatility Technique; (4) Wavelet Decomposition. 

The Moving Average Technique yields very good results but has the problem that it is dif-

ficult to use the results from the decomposition of historical data to simulate future prices 

(Janczura et al., 2013). The Rolling Volatility Technique is mainly useful to approximate a 

pattern if only few data points are available. Wavelet Decomposition serves as an alternative 

to the Fourier Transformation. It is composed as a series of Daubechies functions. It is able to 

model historical data very precisely, but is not suitable for long-term projections (Janczura et 

al., 2013). In this study, the Wavelet Decomposition is used to deseasonalize the data in the 

first place by means of an algorithm which can be found in Janczura and Weron (2015). For 

the reconstruction of the deterministic part of the price path the concept of a Median Week is 

used. An algorithm developed by Rafal Weron (2007) incorporates this concept. The main 

idea is to find an average daily pattern for each day of the week. This weekly pattern can be 

replicated infinitely many times, consequently, a weekly and daily pattern even for long-term 

price projections is no problem. The overall price will consist of two main components, a de-

terministic part and a stochastic part. The deterministic part describes all patterns which fol-

low a continuous, repeating movement, while the stochastic part tries to map all random price 

movements: 

𝑑𝑡 = 𝑑𝑑𝑑𝑡 + 𝑑𝑠𝑡𝑠𝑠ℎ = (𝑑𝑙𝑡𝑠 + 𝑑𝑠𝑠𝑠 + 𝑑𝑠𝑡𝑠) + 𝑑𝑠𝑡𝑠𝑠ℎ (9) 

The following price patterns are identified: 

Multi-year, long-term pattern (ltc) 



  
 
As explained in section 3, the development of the long-term electricity price is subject to the 

economic growth and the development on the energy commodity markets. Consequently, a 

long-term pattern, as shown in figure 6, can easily be identified. 

 
Figure 6: Development of the average daily electricity spot price from 1.01.2009 - 2.09.2015 - outliers re-

moved6. Fitted with sinusoidal long-term cycle. Based on data from EEX (2015d) 

 

Figure 6 also shows the result of the Fourier fit graphically and table 2 shows the exact re-

gression results. 

 
Table 2: Regression results to estimate the long-term cycle. Based on average daily spot price data 

Variable Coeff. [ 95% confidence interval]   
a0 40.6 40.16 41.04 R² 0.4328 
a1 -6.451 -7.279 -5.623 Adj. R² 0.4321 
b1 6.101 5.24 6.962 RMSE 9.1 
W 0.002592 0.002488 0.002696 SSE 2.014*105 

The long-term cycle has a periodicity of approx. 2424 days. This is about 6.64 years and is in 

line with the length of an economic cycle, which is assumed to take between 5 and 8 years. 

Seasonal pattern (ssc) 

Electricity demand is also fluctuating seasonally. Traditionally, there is higher demand during 

the winter due to e.g. more need for lightening, but recently the effect has become less signif-

icant. This is due to the fact that the highest average wind speed is achieved during the winter. 

Consequently, the massive increase in available wind turbine output dampens the increase of 

electricity prices during the winter (see figure 7). 

 

                                                 
6 To improve the graphical appearance outliers outside of the interval of [µ±3σ] were removed of the base price 
dataset. The regression results are based on the original dataset. 



  
 
Table 3: Regression results to estimate the seasonal cycle. Based on data of average daily spot price 

Variable Coeff. [ 95% confidence interval]   
a0 0 -0.073 0.073 R² 0.4303 
a1 3.123 3.017 3.228 Adj. R² 0.4303 
b1 0.3717 0.1673 0.5761 RMSE 8.928 
w 0.0007 0.0007 0.0007 SSE 4.659*106 

Figure 7 and table 3 show the outcome of the Fourier fit. The seasonal cycle has a periodicity 

of approx. 8540 hours (= 0.97 years) and an amplitude of approx. 7 €/MWh. 

 
Figure 7: Development of hourly electricity spot price from 1 Jan 2009 – 2 Sep 2015. Without long-term and 

short-term cycle. Fitted with sinusoidal seasonal cycle. Source: Own illustration, based on EEX (2015a) 

Daily pattern (stc) 

Due to varying demand during the day, prices follow a certain pattern throughout the day with 

lows during the night and peaks mainly during the morning and evening hours (see figure 8). 

Weekly pattern (stc) 

Throughout the week, hourly spot prices follow the path of a work week. During the weekend 

less people are at work and less production facilities are running, which leads to lower elec-

tricity demand (see figure 8). On Mondays the price rises gradually until the regular start of a 

working day (8-9 am). The electricity price simulation process can be found in the appendix 

A1. The residual stochastic price path in figure 33 (A1) is the result of the removal of daily, 

weekly, seasonal and long-term cycles. In terms of regimes, one is able to identify sudden 

drops, spikes and a very frequent stochastic behavior in the base regime. 



  
 

 
Figure 8: Development of hourly electricity spot price in detail, fitted with short-term cycle based on algorithm 

developed by (Janczura & Weron, 2012). 

Figure 9 shows one simulated price path compared to the real historical price path. The simu-

lated price path seems to fluctuate a bit more frequently, but has similar extreme price move-

ments. The aim of a stochastic model, which choses the stochastic behaviour with random 

generated numbers, is not to gain exactly the same price at time t but rather to reproduce a 

similar pattern over time. The results presented below are satisfying and will be used as the 

basis to estimate the value of a storage cavern over time. 

 
Figure 9: Comparison of historical hourly data (EEX, 2015a) with the simulation results of price path no. 5 (out 
of 500 runs). 

4.2 Natural gas 
The theory on price modeling of natural gas is, from a technical perspective, not different 

from the modelling of electricity prices described in section 4.1. This is why Carmona and 

Ludkovski (2010) and Eydeland and Wolyniec (2003, p. 136 ff) propose several possible 

price models suitable to trace the price movements on natural gas markets, such as the simple 



  
 
Markovian stochastic differential equation with a Brownian motion, mean-reversion models 

and jump-diffusion models. 

There are some smaller differences which overall cause a slightly simpler modelling ap-

proach: (1) No negative prices; (2) No liquid hourly spot market; and (3) Less intense spikes 

and nearly no drops. The seasonality of natural gas prices and the existence of a long-term 

cycle allow the use of a similar approach as in section 4.1. Although the available data allows 

only an assessment of daily prices, the mean week strategy can still be used, since gas prices 

follow a similar weekly pattern as electricity prices. The fact that gas prices experience nearly 

no extreme drops makes the usage of a Markov Regime Switching approach with three re-

gimes obsolete. Two regimes are enough to account for frequent extreme price spikes.  

Although the GPL (Gaspool) market area includes the most suitable geological site for salt 

cavern storages in Germany (see figure 10), the historical spot price path for the simulation is 

taken from the daily reference price of the NCG (NetConnect) market area. The GPL spot 

market is less liquid than the NCG area. Since the prices on both markets only differ margin-

ally, no major adverse impact on the validity of the outcome has to be expected. 

 
Figure 10: Market area of gas grid operators in Germany (Gas, 2015) 

Multi-year, long-term pattern (ltc)  

As explained in sections 3.1 and 3.2, the development of the long-term natural gas price is 

subject to the economic growth and the development on the energy commodity markets. 

These markets follow cyclic demand and supply patterns.  



  
 

 
Figure 11: Development of natural gas prices at NCG-Hub and ltc from 31 May 2011 – 21 Sep 2015 (EEX, 
2015c) 

As Figure 11 shows, a multi-year trend on the gas spot market is clearly visible through a 

Fourier fit. The long-term cycle has a periodicity of approx. 1683 days. Consequently, each 

cycle takes about 4.61 years, which is smaller than the expected economic cycle. The results 

and coefficients of this regression (PG-ltc) are shown in figure 11 and table 4. 

 
Table 4: Regression results to estimate long-term cycle. 

Variable Coeff. [ 95% confidence interval]   
a0 23.79 23.65 23.92 R² 0.7953 
a1 -2.364 -2.536 -2.192 Adj. R² 0.7949 
b1 1.831 1.551 2.112 RMSE 1.467 
w 0.0037 0.0036 0.0039 SSE 3382 

Seasonal pattern (ssc) 

Gas demand is also fluctuating seasonally. Traditionally, there is higher demand during the 

winter due to the fact that a big share of the gas consumption is used for heating. Since the 

supply of natural gas is rather constant throughout the year and limited by the maximum 

flowrate of the long-distance pipeline network, the demand surpasses the supply during win-

ter. The shortage in supply is compensated by the withdrawal of natural gas from storages. 

These storages are charged during the summer and discharged during the winter.  

Figure 12 shows that the seasonal cycle of the natural gas price is not as significant as for 

electricity. This is due to the fact that the seasonality depends on the temperature development 

during the winter. If the winter turns out warmer than expected, a price drop during the spring 

and summer follows, because the storages are still nearly full (Stronzik, Neumann, & 

Rammerstorfer, 2008). Consequently, excess gas in the market has to be sold with a discount.  



  
 

 
Figure 12: Price path of natural gas after the removal of the long-term cycle. Seasonal cycle fitted (EEX, 2015c) 

The regression was conducted with a Fourier fit consisting of two sine-cosine combinations. 

The overall periodicity is approx. 760 days but the time from peak (winter) to peak (winter) 

depends on the length of the cold season (either approx. 295 days or 424 days). Results and 

coefficients of this regression can be seen in figure 12 and table 5, respectively. 
 

Table 5: Regression results to estimate seasonal pattern 

Variable Coeff. [ 95% confidence interval]  
a0 -0.2706 -0.3387 -0.2025 R² 0.6384 
a1 1.099 0.9995 1.199 Adj. R² 0.6372 
b1 -0.1436 -0.264 -0.0233 RMSE 1.374 
a2 -1.122 -1.223 -1.021 SSE 2961 
b2 0.2909 0.1018 0.4801  
w 0.008269 0.008176 0.008362 

Weekly pattern (stc) 

Throughout the week, daily gas prices follow the path of a work week. During the weekend 

less people are at work, less production facilities and gas-fired power plants are running, 

which leads to lower gas demand (see figure 13). In contrast to electricity, the short-term pat-

tern suggests that the mean prices on Mondays are the highest of the entire week. It has to be 

said that the short-term pattern is not as significant as in the electricity market. Not only the fit 

is worse but also the overall price difference is, with an amplitude of approx. €0.4, rather 

small. The exact sequence of the price simulation is shown in the appendix.  

The residual stochastic price path in figure 34 (appendix) shows the result of the removal 

of all recurring patterns. In terms of regimes, one is able to identify sudden spikes and a very 

frequent stochastic behavior in the base regime. The overall remaining amplitude is rather 

small (approx. €4-5). 



  
 

 
Figure 13: Residual gas price path without seasonal and long-term pattern. Weekly cycle fitted on data. Data 
from 31.05.2011 – 21.09.2015. This extract is from 30 Apr 2013 – 08 Aug 2013 (EEX, 2015c) 

Figure 14 shows one simulated price path compared to the real historical price path. The sim-

ulated price path is very much in line with the real world price movement. Sudden price 

spikes are visible and the volatility seems very similar. The aim of a stochastic model, which 

choses the stochastic behavior with random generated numbers, is not to gain exactly the 

same price at time t but rather to reproduce a similar pattern over time. 

 
Figure 14: Comparison of historical gas price data with the simulation results of price path no. 5 (out of 500 
runs). 

The results presented above are very satisfying and will be used as basis to estimate the value 

of a storage cavern over time. 

4.3 Carbon dioxide 
Benz and Trück (2009) analyzed EUA market data from the OTC trades in the year 2005 and 

2006 to test two price processes: a Markovian regime switching (MRS) approach and a auto-

regressive-GARCH approach. The regime switching approach with two regimes turned out to 



  
 
fit better on the market data. Further findings were that no clear seasonal or weekly cycles 

were visible (Benz & Trück, 2009). This is a logical finding, since EUA have an expiry data 

of several years and there is no need for real-time balancing, consequently no time-critical 

usage of EUAs is expected.  

In principal all modelling concepts presented in the sections of electricity price modelling 

(4.1) and gas price modelling (4.2) are applicable. Since there are no extreme price spikes or 

drops (Figure 15) there is no need for a MRS-(3-regime)-approach and a Markov base regime 

(Brownian Motion) with drift correction is sufficient (see also Boogert and De Jong (2008)). 

As described in section 3.3, due to a constant decreasing number of yearly available EUA, 

a long-lasting increase of EUA prices in the future is very likely. This is why the following 

paragraphs will not only develop a price model based on historical patterns but will also de-

scribe two alternative scenarios with stronger price increase. Based on the estimations of NEP 

(2013) and Prognos (2013), the following regression results are adjusted to achieve a larger 

inclination of the price path. 

Historical spot price data from the secondary market for carbon emission allowances (ECX 

EUA secondary market) has been used to model the price development. Missing data during 

the weekends and public holidays was filled with prices from the moving average of sur-

rounding days. Although the secondary market is still pretty illiquid at certain points of time, 

the price movement of the secondary market is very close to the movement of the primary 

market. Since the primary market has far less trading days, the usage of the secondary market 

data seems a better approach. 

Multi-year, long-term trend 

The data on the spot prices of EUAs traded at the secondary market shows a significant long-

term trend. This trend can be approximated with an inverse power function (root function), 

which represents a limited growth process. With the parameters found, the fit the function 

grows steadily and achieves a level of approx. 12 €/t after 3500 days and level of 15 €/t after 

6500 days. A second, exponential, function describes the drop in the first 100 days according-

ly. The result is shown in figure 15. The combined trend is constructed out of the following 

combined function: 

𝑑𝐶𝐶2−𝑡𝑡𝑑𝑛𝑑 = 𝑎 ∗ 𝑥𝑏 + 𝑐 ∗ 𝑒𝑑∗𝑥 (10) 

The exact sequence of the price simulation is shown in the appendix. Results are shown in 

Table 6, table 7 and figure 15. 



  
 
 

Table 6: Regression results of power fit 

Variable Coeff. [ 95% confidence interval]     
a 0.6177 0.5768 0.6587 R² 0.8179 RMSE 0.5633 
b 0.3641 0.3537 0.3745 Adj. R² 0.8177 SSE 314.8 

Table 7: Regression results of exponential fit 

Variable Coeff. [ 95% confidence interval]     
c 5.441 5.136 5.746 R² 0.7026 RMSE 0.4999 
d -0.02306 -0.02486 -0.02125 Adj. R² 0.7023 SSE 247.9 

 

 
Figure 15: EUA spot price in secondary market and trend fit. (EEX, 2015b) 

After removing the long-term trend, the residual stochastic path as shown in figure 35 (ap-

pendix) is left. The stochastic path is less spiky than the residual paths of electricity (figure 

33) and gas (figure 34). Only one value over the timeline can be identified as spike [P≥µ+3σ] 

(Janczura et al., 2013). Consequently, only one stochastic process is needed to map the histor-

ical price path. 

 
Figure 16: Comparison of historical EUA price data (EEX, 2015b) with the simulation results of price path no. 5 
(out of 500). 



  
 
Figure 16 shows one simulated price path compared to the real historical price path. The sim-

ulated price path is very in line with the real price movement. The trend is clearly visible and 

the volatility seems very similar. The aim of a stochastic model, which choses the stochastic 

behavior with random generated numbers is not to gain the exact same price at time t but re-

produce a similar pattern over time. The results presented below are very satisfying and are in 

line with the expected steady increase in prices for EUAs. This data will be used as basis to 

estimate the value of a storage cavern over time. 

 
Figure 17: Price path of simulated CO2 prices and alternative price paths based on estimations of Prognos 
(2013), NEP (2013) and Fraunhofer (2013) 

Figure 17 describes not only a price path as a result of the CO2 price simulation described 

above, but shows also two alternative price paths based on the estimated upper and lower 

bound of CO2 prices used in the study of Fraunhofer (2013). The additional price paths are 

estimated through the manipulation of the regression parameters of equation (10). 

The alternative regimes 1 and 2 will also be used in the following storage valuation to de-

termine the impact of higher CO2 prices on the value of the storage applications.  

5. Geological cavern storage 
Geological storage can be classified into pore storages and cavern storages. Saline aquifers 

and depleted oil and gas fields are pore storages whereas cavern storages are artificially made 

caverns in solid soil.  

Natural gas is stored in naturally available small cavities (pores). The deeper the pore stor-

ages the higher the storable volume since the storage pressure increases with depth. The opti-

mal depth is a trade-off between technical properties and restrictions and associated costs, 

which is why the most favorable depth is often seen in the range of 500 – 1000m (Stronzik et 

al., 2008).  



  
 

Cavern storages are artificially made hollow spaces. They can be mined in rock layers 

(mined cavern) or solution minded in salt layers (salt cavern). Most commonly used are salt 

caverns since the solution mining process is rather cheap and a mature technology. The size of 

each cavern is limited due to mechanical constraints. To increase the overall storage volume, 

there is often a field of salt caverns (>10) mined in the same salt deposit (Stronzik et al., 

2008). Caverns are not only made for storage purpose but also to extract salt and as waste 

deposits (Struck, 1993). 

Large-scale storages can be described by its operational constraints:  working volume, base 

gas requirement, injection and withdrawal rates and associated variable and fixed costs. De-

pendent on the type of storage some operational constraints are more favourable than others 

(Thompson et al., 2009). 

Depleted oil and gas fields are often large and cheap to transform into a storage since most 

of the needed infrastructure is already available. Moreover, the fields contained gas or oil for 

millions of years, consequently the risk of leakage is very low. However, the flexibility is 

mostly poor due to limited injection and withdrawal rates and the need for cushion gas is of-

ten rather high (ratio of working gas to total volume is low) (see also table 8). 

Saline aquifers are smaller than depleted reservoirs but have a high risk of leakage since 

these facilities are more difficult to map. The working gas ratio is rather low (20-35%) com-

pared to cavern storages and depleted reservoirs. Saline Aquifers are the least flexible storag-

es in this comparison (table 8) but the geographically most spread (Boogert & De Jong, 2008; 

Maragos & Ronn, 2002).  

Salt cavern storages are rather easy exploitable but need deep geological salt layers which 

limits the usage to certain geographical areas. Most favourable locations are in north-west 

Germany (Struck, 1993). The technical properties of salt itself prevents leakages and enables 

a high flexibility by high injection and withdrawal rates (Sørensen, 2007). The theoretical 

leakage rate of salt caverns is in the range of 0.01% p.a. (Crotogino et al., 2010). 
 
Table 8: Comparison of different storage types (Crotogino et al., 2010; Gillhaus, 2010; Sørensen, 2007; 
Stronzik et al., 2008; Struck, 1993) 
 Saline aquifer Depleted reservoirs Salt caverns 

Working gas volume in Germany 

(Vn in 106 m³) 

30 - 1085 100 - 4,600 50 – 120 /cavern 

Share of Cushion Gas [%] 65-80 50 20-30 

Cycle times 1 1-2 5-12 

Construction time [a] 4 2 2-10 

Injection/withdrawal rates Low Low High 

Daily Deliverability 0.5% 1% Up to 10% 



  
 
As table 8 proves, salt caverns are the most flexible large-scale geological storages. Since the 

main focus of this study is to find the most valuable medium to perform intertemporal arbi-

trage, the following sections will focus on salt caverns as most suitable storage. 

If a cavern is used for daily charging and discharging as in this paper assumed, it is im-

portant to consider that due to higher thermal and pressure stresses not every existing gas cav-

ern is able to be used for high frequency charging and discharging (Zander-Schiebenhöfer et 

al., 2015). The following sections about costs and technical restrictions will only include salt 

cavern storages which can be regarded as high deliverability multiple cycle (HDMC) facili-

ties. These facilities can switch from injection to production within minutes and have steeper 

ramp rates (change of flowrate) than any other power generation unit (Barbour et al., 2012; 

Gill & Cowan, 2014). 

Traditionally, most salt cavern storages were owned by utilities as gas storage to balance 

seasonal fluctuating demands. Due to the deregulation of the electricity and gas markets in 

Europe the natural gas storage services are nowadays unbundled from the sales and transpor-

tation services. Since storage is charged as a separate service and the recent development of 

liquid spot and future markets for gas and electricity, intensive research on value maximizing 

operation modes started about 15 years ago (Boogert & De Jong, 2008). The International 

Energy Agency estimated in 2004 that the global underground gas storage capacity will dou-

ble in the next 30 years (2000–2030) due to falling indigenous production and steady (Eu-

rope) or increasing gas demand (US, Asia) (Boogert & De Jong, 2008). 

But cavern storages can also be used as electricity storage through the usage as a com-

pressed air energy storage (CAES) or to store either hydrogen or carbon dioxide. The tech-

nical properties will be discussed in section 5.2 and the associated costs in section 5.3. 

5.1 Potential storage sites 
The technical process of solution mining to construct caverns in salt layers was first used in 

the USA and Canada after the Second World War. The first gas cavern storage in Germany 

was established at the beginning of the 1970s in Kiel (Struck, 1993). 

Most gas cavern storages can be found in north-western Europe since these regions possess 

geotechnical favorable thick bedded and dome-shaped salt formations. The majority of cav-

erns are used for gas storage while some are used as strategic oil reserves. Only one site is 

used as a CAES in Huntorf, Germany (Struck, 1993), which was world’s first CAES in 1978. 

As figure 18 shows, many European countries use salt cavern fields for storage purpose, but 

the majority of all storages, especially gas storages, are located in Germany due to its favora-

ble salt deposits. The area of the most favorable Zechstein salt deposits in suitable depths as 



  
 
dome formation can be found in north-eastern Netherlands, north-western Denmark and Cen-

tral Poland (Gillhaus, 2007). 

 

 

 

 
Figure 18: Salt deposits and cavern field in Europe (Gillhaus, 2007) 

Since Germany is a major country for gas transit and at the same time the biggest consumer of 

natural gas in Europe, major gas pipelines run through Germany. Consequently, the vast 

amount of storage facilities in northern Germany has a strategic explanation. 

Salt domes are most preferable because of the homogenous vertical expansion. Caverns in 

salt domes can reach the optimal shape with a height to width ratio of about 10:1. The height 

can reach up to 600 m and the width 60-100 m. Most caverns have volumes in the range of 

500,000 – 800,000 m³, which can lead to working gas volumes (depending on pressure) for 

natural gas of 100 – 120 million m³ (VN) (Gill & Cowan, 2014; Gillhaus, 2007; Hannover, 

2014). 

As figure 18 shows, Europe has in terms of suitable salt deposits still enough potential for 

further increase in salt cavern storages. The competition will be on the exploration of the salt 

deposits with the most favorable salt layers and the infrastructure already in place (high volt-

age grid, gas pipeline) (Raju & Kumar Khaitan, 2012). 

In order to promote and map the potentials in detail, the German government is funding a 

research project which analyses all potential suitable sites in Germany and map them in a ge-

ographic information system (GIS). The focus lies especially on potential CAES sites, which 

need HDMC-ready salt layers (BMWi, 2015). 



  
 
5.2 Technical properties and restrictions of salt cavern storages 
The technical challenge during the construction of a salt cavern is to mine a self-sustaining 

cavern which is as big as possible and able to withstand high pressure and high pressure gra-

dients without any help of supporting construction elements. To avoid leakage due to salt 

fracturing, the maximum pressure level may not be exceeded (Struck, 1993). The maximum 

pressure limits the maximum storable amount. The maximum pressure in salt caverns is de-

fined as approx. 80% of the initial formation pressure at the depth of the cavern roof7. For 

most existing caverns the maximum pressure is in the range of 15-20 MPa (Sørensen, 2007; 

Struck, 1993) 

The minimum approved pressure is limited to retain the shape and structure of the cavern 

with the help of cushion gas. To avoid structural damage, the minimal pressure is approx. 

30% of the maximum pressure (Crotogino et al., 2010). Not only are the minimum and maxi-

mum pressure limited but also the cycling frequency. Creep behavior of salt particles limits 

the pressure gradients, which in turn define the possible cycling frequency. If the capability of 

creep is high, less pressure gradients are allowed and vice versa (Struck, 1993). 

For cavern construction large amount of freshwater is needed and a brine disposal system 

has to be in place. This is why most existing cavern sites are preferable located close to a 

shore or a river where the diluted brine can be easily disposed. 

The amount of storable energy in a mined cavern depends on the one hand on the cavern 

size. The assumed cavern has a working gas volume of 77,500,000 million m³ (VN-standard 

volume)8. This corresponds to a void volume of approx. 500,000 m³. On the other hand, the 

storable energy depends on the caloric value [MJ/m³] of the stored gas, too. 

The biggest advantage of caverns over other storage types is the high injection and with-

drawal rate. The state of the art salt caverns in Germany have withdrawal rates of 150,000 – 

200,000 m³/h (VN) and injection rates of 75,000-100,000 m³/h (VN) (Hannover, 2014). Stor-

ages in use for CAES have even higher discharge rates in the range of 700,000 m³/h9 

5.2.1 Compressed Air Energy Storage (CAES) 

Compressed air storages store mechanical energy by means of the transformation of electrici-

ty into compressed air. Diabatic CAESs (D-CAESs) are already in use commercially as large-

                                                 
7 Empirical Formula: pmax= 0.18 * depth of cavern roof in m (Acht,2012) 
8 The size of the biggest single cavern in Germany is in Etzel with 115 million m³ (Hannover, 2014). It uses 
methane as storage medium. The storage volume based on the given numbers suggest a cavern pressure of ap-
prox. 146 – 166 bar. If a cavern should also be usable as CAES, Haubrich (2007) suggest a maximum cavern 
volume of 500,000 m³ which corresponds to a storage volume of 77,500,000 m³. 
9 Own calculations, based on Haubrich (2007) and Institute (2008), which suggest approx. 500 kg/s for a CAES 
with two caverns. 



  
 
scale energy storage. Before the air enters the storage cavern it is highly compressed in a de-

coupled compression cycle of a gas turbine. Electricity bought on the spot market is used to 

power the compressors. To generate electricity, the compressed air is released with additional 

natural gas into the combustion chamber. 

After the combustion, the compressed gas powers a turbine to generate electricity. Conse-

quently, D-CAESs not only need electricity to operate but also natural gas (Hadjipaschalis, 

Poullikkas, & Efthimiou, 2009). But, due to the use of additional natural gas, D-CAESs have 

an electricity output to input ratio bigger than one. This means only approx. 0.7 MWh of 

stored electric energy is needed to discharge 1 MWh of electric energy. 

Although the technology is mature, there are only two D-CAES facilities worldwide in op-

eration. The major barrier to the implementation of further D-CAESs is the need for suitable 

geological sites and rather poor efficiencies. Salt caverns or depleted gas fields form the 

cheapest possibility to build a D-CAES (H. Chen et al., 2009). The simple design of the 

Huntorf D-CAES yields only an efficiency of approx. ηel-el=42%. 

This is why more advanced technological layouts of D-CAES have been developed.These 

concepts are based on a recuperator which uses the hot exhaust gas of the gas turbine to pre-

heat the released compressed air from the cavern before entering an expander. All in all, this 

leads to an efficiency of approx. ηel-el=55% (Haubrich, 2007; Institute, 2008). But CAESs are 

not only suitable for intertemporal arbitrage on the electricity spot market they can also pro-

vide tertiary and secondary reserve (Eckroad & Gyuk, 2003). Though, there is one major 

drawback of the improved design: The usage of a recuperator which has to be heated before 

achieving higher loads leads to higher ramp-up times (20-35 min vs. 8-12 min) (Haubrich, 

2007). This higher ramp-up time can have influence on the possibility of participation on the 

reserve energy market10, but has no influence of the possibility of intertemporal arbitrage, 

since the time needed to change charging or discharging rate is negligible compared to spot 

price period (1 h) (Barbour et al., 2012). 

A technologically more advanced version of the D-CAES is the adiabatic CAES (AA-

CAES), which in contrast to the diabatic CAES stores the emerging excessive heat during the 

compression process and re-uses this heat during the withdrawal. Consequently, no additional 

gas firing is needed and a higher round-trip efficiency is reached (Loisel, Mercier, Gatzen, 

Elms, & Petric, 2010). Though, an additional heat storage is needed, which leads to higher 

investment costs. Many scientific papers have been written about this topic but as of today no 

commercial AA-CAES plant has been built anywhere in the world (Loisel et al., 2010). 

                                                 
10 The impact of this drawback is explained in chapter 4.3 and relativized by Institute (2008). 



  
 
This is the reason why this study will focus on the usage of a D-CAES plant with the basic 

data of the plant shown in from Haubrich (2007) and Institute (2008) (table 9, table 10). 

Table 9: Technical specification of assumed CAES design – Part 1 
Type Value Source / Base 

Power compressor 300 MW [Sensitivity: ±50%] (Institute, 2008) 

Power expander 255 MW (Institute, 2008) 

Power gas turbine 175 MW (Institute, 2008) 

Total power 430 MW  [Sensitivity: ±50%] (Institute, 2008) 

Max. charge rate 475 kg/s (Institute, 2008) 

Max. discharge rate 500 kg/s (Haubrich, 2007; Institute, 2008) 

pmin (Turbine limitation) 60 bar (Haubrich, 2007) 

pmax (Turbine limitation) ≤100 bar (Haubrich, 2007) 

Max. pressure difference 𝛥p 40 bar11, 𝛥paverage= 20 bar (Haubrich, 2007; Institute, 2008) 

 
Table 10: Technical specification of assumed CAES design – Part 2 
Type Value Sensitivity range Source / Base 

Pel-comp/Pel-turb 0.696612 kWhel-in/kWhel-out [0.625-0.725] Own calculations 

Qgas/Pel-turb 1.115813 kWhgas-in/kWhel-out [1.0 -1.25] Own calculations 

Roundtrip efficiency  

η=(Qgas+Pel-comp)/Pel-turb 

0.55  Own calculations, (Barnes & 

Levine, 2011) 

Cavern size 980,000 m³ = 2 caverns14 [500,000 m³–2,000,000 m³] (Haubrich, 2007) 

Withdrawal time 55.7 h  Own calculations 

Injection time 55.7 h  Own calculations 

 

5.2.2 Gas cavern storage 

In contrast to the usage of a cavern for compressed air, the pressure level of a gas cavern stor-

age can be much higher. This is due to the fact that the gas arrives already pre-compressed at 

approx. 80–100 bar (FNB, 2014) so an additional compression to a level of 162 bar15 is less 

costly than a compression of air from ambient pressure to 80-100 bar. Moreover, the lower 

discharge and charge rates of gas cavern storages lead to lower stress in the salt layer, which 

is why higher pressure levels can be accepted (Haubrich, 2007). 

                                                 
11 The maximum pressure difference 𝛥p is limited due to stresses in the salt rock layer. Haubrich (2007) esti-
mates the maximum allowed 𝛥p to 40 bar, while 𝛥p=20bar is estimated as optimal trade-off between cavern size 
and compressor size (higher 𝛥p decreases cavern size but increases power consumption and size compressor). 
This is in line with the plant design of Institute (2008) which estimates a 𝛥p in static view to 13 bar. 
12 This number explains how much electricity is used to generate 1 kWh of electricity output based on the plant 
design of Institute (2008). The number is slightly higher than assumed by (Haubrich, 2007) (0.697 vs. 0.625). 
13 Amount of gas used in the gas turbine divided by the electricity output. Based on values from Institute (2008). 
Outcome is slightly lower than results from Haubrich (2007) (1.12 vs. 1.17). 
14 Cavern size of Huntorf plant is 300,000 m³ (Haubrich, 2007; Raju, 2012), here the maximum size is assumed 
to be 500,000 m³. Max. operating storage pressure is 95 bar. 
15 Maximum pressure limited due to assumed cavern height in section 5.1 (0.18 * 900 m=162 bar). 



  
 
The design of an injection and withdrawal site for a gas cavern storage is straightforward. The 

pre-compressed gas is compressed to a level of 162 bar. The withdrawn gas contains some 

moisture due to the storage process, which is why it has to be dried before it can be released 

in to the pipeline network. After the dehumidifying process the gas has to be preheated to 

avoid too low temperatures after the expansion to pipeline-pressure-levels. Table 11 shows 

the technical specifications of an assumed natural gas storage. It is also based on two caverns, 

to be able to compare the performance of a gas storage with the performance of the previously 

defined CAES. 
Table 11: Technical specification of assumed natural gas storage 
Type Value Sensitivity range Source / Base 

Storage volume 155,000,000 m³ [77,500,000 – 310,000,000] (Haubrich, 2007) 

Injection rate 150,000 m³/h [75,000 – 300,000] Own estimation 

Withdrawal rate 300,000 m³/h [150,000 – 600,000] Own estimation 

Injection loss 2% [1% - 4%] (Felix et al., 2013) 

Withdrawal loss 2% [1% - 4%] (Felix et al., 2013) 

Max. pressure 162 bar  Own calculation 

Withdrawal time 21.5 days  Own calculation 

Injection time 43 days  Own calculation 

An important number is the injection and withdrawal loss. Both losses are assumed to be 2% 

of the gas amount each. This means that only 98% of the bought gas is injected into the cav-

ern in order to power the compressor. Just like only 98% of the withdrawn gas arrives at the 

pipeline in order to power the pre-heating and dehumidifier unit. Real numbers on this losses 

are rare to find in literature which is why the value of Felix et al. (2013) is used. 

5.2.3 CO2 cavern storage 

Salt caverns can also be used to store carbon dioxide. A possible business model could be the 

intertemporal arbitrage due to fluctuating EUA prices. 

The transport of CO2 is technically identical to the transport of natural gas due to the fact 

that same pipeline infrastructure and pressure levels can be used. CO2 is preferably transport-

ed and stored in a supercritical state due to its high density in this state. The supercritical state 

is reached if the temperature and pressure exceeds 31° C and 7.4 MPa respectively (Eccles, 

Pratson, Newell, & Jackson, 2009). Which is why the same pipeline and storage values are 

assumed as for the gas cavern storage (for values see table 11). The only difference is that 

either additional gas or electricity is used for the operation of the compressor and pre-heater 

and dehumidifier.  

Despite the possible usage of CO2 as storage medium, as mentioned above, there are more 

favorable type of storages for CO2. There are possibilities to sequester CO2 indefinitely at a 

profit. Enhanced oil recovery (EOR) through the injection of CO2 into existing oil fields is for 



  
 
example a more economic approach. Due to the fact that one kilogram of sequestrated CO2 

recovers approx. one to one quarter kilogram of extra oil, additional revenues through the sale 

of oil can be generated. The North Sea is expected to serve as an ideal location for EOR with 

CO2, since Brent is lighter than WTI (thus easier to dissolve with CO2) and the oil fields are 

more homogeneous than in the US. (Blunt, Fayers, & Orr, 1993). Further co-optimization can 

enhance the ratio of injected CO2 to enhanced oil to be able to sequester even more CO2 in the 

same oil field (Kovscek & Cakici, 2005). 

It is expected that even without an increase in EUA that carbon capture and storage (CCS) 

technology will be in use in the upcoming years due to its economic benefit on the enhanced 

oil and gas recovery (van der Zwaan & Smekens, 2007). Another possibility is to use the se-

questration of CO2 in deep coal seems to produce coalbed methane (Krooss et al., 2002).  

While there are several technical possible options for sequestration of carbon dioxide and 

even a few economic options, one has to keep in mind that there are still many gaps in the 

understanding of the CO2 storage process in terms of leakage and dissolving of CO2 in under-

ground storages (Sean T. McCoy & Rubin, 2009). 

5.2.4 Hydrogen cavern storage 

There are world-wide three hydrogen storage sites in salt caverns in use16. Apart from that, 

there is a very important advantage of salt caverns compared to depleted oil and gas fields or 

aquifers as hydrogen storage: Salt acts inert, which is why there is no risk of a reaction of hy-

drogen with salt, while there is a significant chance of reaction with rock structures or micro-

organisms in other storage types (Acht, 2012; Ozarslan, 2012).  

Though the usage of hydrogen as storage medium has a major drawback: At the same pres-

sure level hydrogen has only approx. 30% of the caloric value of natural gas17. Consequently, 

the amount of storable energy with hydrogen is less than one third compared to methane. In 

contrast to methane, hydrogen is dissolvable in ground water which requires additional provi-

sions to avoid any contact with water and hydrogen. This provision is typically the lowering 

of the overall pressure level to take the higher risk of leakage18 into account (Sørensen, 2007). 

Consequently, to store the same amount of energy in hydrogen instead of methane, a 5-6 

times larger storage is needed. Thus the difficult storability compared to similar commodities 

decreases hydrogens economic viability (Budny, Madlener, & Hilgers, 2015). A possibility to 

increase the storable volume of hydrogen would be liquefaction. As Taylor, Alderson, 
                                                 
16 Teesside, UK; Clemens Dome, Moss Bluff and Spindletop in Texas, USA (Acht,2012; Ozarslan,2012). 
17 Natural gas: assumed to be 100% methane with a calorific value of HCH4= 35.883 MJ/m³ (standard conditions) 
Hydrogen has calorific value of HH2=10.783 MJ/m³ 
18 The hydrogen molecule H2 is smaller than the methane molecule CH4, consequently higher risk of leakage. 
Sørensen (2007) suggests a maximum pressure of 50-100 bar, rather than 160-230 bar in his example cavern. 



  
 
Kalyanam, Lyle, and Phillips (1986) states, the increased costs due to the technical challenge 

to liquefy hydrogen on a large-scale don’t offset the gain through an increased capacity in the 

cavern. 

On top of that, the design of the steel and sealing of the salt cavern has to be adapted in or-

der to avoid the possibility of hydrogen embrittlement of steel (Ozarslan, 2012). Still, caverns 

are seen as the storage with the lowest cost for storing hydrogen compared to depleted gas 

fields, rock mined caverns and high-pressure tube storage (Taylor et al., 1986). 

To increase the storability of hydrogen significantly, an additional step after the electroly-

sis can be included: Methanation. The methanation process merges hydrogen (H2) with car-

bon dioxide (CO2) to synthetic methane (CH4), also called synthetic natural gas (SNG) 

(Budny et al., 2015). 

The SNG can be injected into the gas grid. The overall efficiency from electricity to elec-

tricity of hydrogen compared to SNG is only slightly higher (approx. 40% vs. 36%) (Budny et 

al., 2015; Crotogino et al., 2010). Though, a paper by Budny et al. (2015) suggests that the 

direct sale of hydrogen to blend into the gas network is more economic viable than the 

methanation or the storage of hydrogen in a salt cavern to decouple production and sales. 

This is why the storage of hydrogen is not incorporated into this study. The implementa-

tion is for further research, when large-scale electrolysis and fuel cells become more mature 

and affordable and a market for hydrogen beyond the chemical industry evolves. 

5.3 Costs of storage 
In the following section a cost estimation of a cavern storage and its components will be per-

formed. Several sources of data will be compared and the most valid estimation chosen. Not 

only will the cost for the cavern itself be estimated but also the cost of a CAES, the cost to 

store natural gas and CO2. 

5.2.1. Cavern costs 

In order to assume the construction costs of salt caverns one has to keep in mind large varia-

bility of site characterization costs. The primary factor influencing the site characterization 

costs is the size of the area of review (Sean T. McCoy & Rubin, 2009). Major costs compo-

nents are: (1) Site characterization costs; (2) Project capital costs (construction of the cavern – 

solution mining and drilling); and (3) Operation and Maintenance (O&M) costs. 
 
Table 12: general assumptions on cavern dimensions 
Maximum depth 1300 m Working gas volume (VN) 77.5 million m³ 
Length of Cavern 400 m Withdrawal rate (VN) 175,000 m³/h 
Width (max.) 42 m Injection rate (VN) 87,500 m³/h 



  
 
Solution minded volume19 500,000 m³ Site characterisation 4 km² 

Table 12 describes the technical assumptions on the dimensions of the selected cavern design. 

These assumptions are needed to estimate costs appropriately. A compressor is needed to in-

crease the pressure of the medium before injecting it into the borehole. In reality, the com-

pressor needs a higher pressure when the storage is nearly full, and less pressure if the storage 

is nearly empty. For simplification purpose, the pressure, and consequently the injection and 

withdrawal rate are assumed to be constant. The operating pressure and the pressure differ-

ence which the compressor has to generate depends on the usage of the storage site (CAES, 

etc.). Subsequently, those costs will be estimated for each application separately. The drilling 

process is straightforward, which is why oil and gas well equipment can be used (Acht, 2012). 

Based on the assumptions on site size and drilling depth (table 12), the estimated drilling costs 

including equipment is according to Bock et al. (2003) approximately €3.9 million (table 13), 

while Lukawski et al. (2014) put the cost of drilling at €1.7 million. The last source in table 

13 estimates all relevant costs such as site characterization and injection piping at €8 million. 
 
Table 13: Drilling and equipment costs based on several sources 
Source Cost in M€ Remarks 

Bock et al. (2003) 3.87 Incl. equipment and permissions, converted from $1998 to €2015 

(Lukawski et al., 2014) 1.68 Only costs for oil/gas well 

(Sean T. McCoy & Rubin, 2009) 

(Sean T McCoy, 2008) 

7.51 

0.16 

0.19 

0.11  

7.97 

Drilling and completion converted from $2004 to €2015 

Site characterisation 

Equipping injection well 

O&M costs 

It is hard to find reliable data on the exact construction costs of caverns (without additional 

equipment for gas storage or to use as CAES). Consequently, the table below (table 14) shows 

cost estimates of different sources. The cost estimates are scaled either by the assumed work-

ing gas volume (Sources no. 1–4) or by the assumed CAES size (Sources no. 5–6). There is a 

wide cost margin between €17 million and €100 million. Since some of the costs are total 

costs of ready-to-use gas storage caverns (including cushion gas – Sources 1–4), an assump-

tion of cavern construction costs of €26 million for a 500,000 m³ cavern seems reasonable and 

is in line with source no 3, 5 and 6 of table 14. This is also in line with the previous estima-

tions of drilling costs (table 13), which indicate drilling, equipment, injection piping and site 

characterization costs of approx. 8 million euros which would be 30% of the total construc-

                                                 
19 The mined volume will never have perfect cylindrical shape, which is why the volume is less than expected 
from the length and width.  



  
 
tion cost. Haubrich (2007) describes the price development of cavern mining as an unsteady 

process. There is certain base level of costs, independent of the cavern size due to site charac-

terization and drilling costs, while the cost increases with size of the cavern gradually from 

this base level. This statement gives prove to previous findings.  
 
Table 14: Cost of cavern construction based on different sources 
No Project / Source  Cost (in 

M€) 

Remarks Source 

1 Katharina Kavernen 47.54  In total 12 caverns for gas storage incl. equipment 

for gas injection 

(Schroeter, 2014) 

2 Trainel Kaverne 4 Epe 100.75 One additional cavern incl. equipment for gas 

injection 

(Trianel, 2010) 

3 Storenergy Peckensen 29.21 Source states cost of one cavern without equipment 

as 25 M€ 

(Schröder, 2014) 

4 EWE Jemgum 79.92 Eight caverns for 330 M€ including all equipment 

for gas injection 

(Schürmeyer, 2013) 

5 Drury et. al 28.32 Cavern only, price was given in $2009/kW, con-

verted to €2015 and 400 MW CAES assumed 

(Drury et al., 2011) 

6 CAES study Califor-

nia 

17.00 Only cavern construction (Institute, 2008) 

To properly compare the overall revenues and costs of CAES, gas storage and CO2 storage, 

the usage of two caverns is assumed. Subsequently, the investment costs for two caverns 

amounts to €52 million. 

5.3.1 Gas storage costs 

The cost for gas storages are the easiest to estimate since most of the data in table 14 is based 

is on recently realized gas cavern storages. Consequently, an estimate for a working gas cav-

ern incl. cushion gas and all necessary infrastructure is the average of sources 1–4, which is 

approx. €65 million. The construction of a cavern costs about €26 million, consequently the 

additional costs for the possibility to store natural gas amounts to €39 million. 

The most important cost component of gas storages, except for the cavern and cushion gas, 

is the compressor. The compressor has to compress from 80-100 bar to 162 bar, thus ∆p=82 

bar. The value of the cushion gas is approx. €0.34 million20. If one estimates that the com-

pressor accounts for roughly 70% of the remaining gas storage costs, the cost for the com-

pressor train amounts to €27 million. 

                                                 
20 Based on an natural gas price of 16€/MWh, caloric value of methane (35.833 MJ/m³) and a working gas stor-
age volume of VN=77,500,000 m³ 



  
 

Since two gas storage caverns are considered, the total additional costs amount to €78 mil-

lion. The overall investment costs for cavern and gas injection facilities amounts to €130 mil-

lion.  

5.3.2 CO2 storage costs 

As described in subsection 5.2.3, the storage of CO2 in caverns is from technical perspective 

nearly identical. This is why the same compressor trains and injection infrastructure can be 

used. Consequently, the cost of storage will be identical. This leads to additional costs for a 

CO2 storage, excluding the cavern, of €39 million. Most importantly, switching from natural 

gas storage to CO2 storage is possible at nearly no costs, since only the cushion gas has to be 

replaced (natural gas withdrawn and carbon dioxide injected). If no carbon dioxide source is 

nearby, pipeline connections have to be changed. That is why the switching process will be 

assumed to cost €3 million. 

5.3.3 CAES costs 

Table 15 shows the estimates for a compressed air energy storage based on different sources. 

The cost estimations of each source is transformed to €/kW and scaled to the chosen generator 

output (see also section 5.2.1). The overall costs differ from €193 million to €334 million. It is 

important to mention that sources 4-6 have the identical underlying source but interpret the 

data differently, which results in diverging costs. 
 
Table 15: CAES cost estimations based on different sources 
No Source Costs €/kW Remarks 

1 (Haubrich, 2007) 250 M€ 625 - 833 Compressor 250MW – Generator 300 - 400MW 

2 (Institute, 2008) 193 M€ 449 - 483 Compressor 288 - 300 MW – Generator 400 - 430 MW 

3 (Drury et al., 2011) 334 M€ 777 Drury’s estimation is based on 81 MW compressor and 110 MW 

Generator – adjusted to 300 – 430 MW 

4 (Keles, Genoese, et 

al., 2012) 

 

237 M€ 550 Based on 150 compressor and 300 MW generator –adjusted to 

300 – 430 MW 

5 (Gatzen, 2008) 258 M€ 600 -750 See above 

6 (Loisel et al., 2010) 297 M€ 690 See above 

 average 254 M€ 592   

As explained in section 5.2.1, the CAES not only needs a compressor and cavern but also an 

expander and gas turbine. Consequently, the total investment costs are considerably higher 

than the storages for gas or carbon dioxide. The overall size of the CAES is developed ac-

cording to the technical requirements of off-the-shelf gas turbines from major producers. The 

large compressor train, the heat recuperator and the expander or turbine are to a lesser extent 

mass products, which is why the economic performance is expected to improve. This can be 

achieved through using different designs or simplifications of technical designs (Baker, 



  
 
2008). A reduction in investment costs by 15% by 2030 is a realistic assumption (Loisel et al., 

2010). 

Based on the estimates from table 15 the average cost for a 430 MW-sized CAES is ap-

prox. €254 million. The residual investment cost (after removing the cost for two caverns) is 

202 million euros. The estimated share of the compressor costs is in the range of 10,6% 

(Institute, 2008) - 11% (Drury et al., 2011), in absolute terms €27.94 million. 

Although the pressure levels for the usage of CAES are lower (but ∆p similar) and the flow 

rate is higher, it is reasonable to assume that not an entire new compression train is needed if 

a change from a CAES facility to a gas storage facility occurs. This study assumes switching 

costs for the adjustment of the compression train to higher pressure levels in the range of 10 

million euros. The change from a gas or CO2 storage facility is the difference between initial 

CAES investment costs less cavern costs and compressor costs plus 10 million adjustment 

costs. The switching costs amounts to €158 million. 

6. Economic storage model 
The economic storage model incorporates the real options theory through the usage of random 

variations in revenue streams (Kroniger & Madlener, 2013). The price model over every 

commodity included in this simulation is partly based on a randomly distributed stochastic 

process. In order to account for the changing value of the storage due to varying prices, the 

optimal behavior of the storage operator is simulated for each price path. The overall estimat-

ed storage value is the mean of all storage valuations.  

This study assumes the storage operator acts as a price taker and the market will not be in-

fluenced by any trades. Moreover, the market has incorporated all knowledge about the opti-

mal usage of storage into the prevailing forward curve. 

6.1 Basic structure 
The optimal usage of a storage is mainly determined by the price spread of the stored medium 

at injection time t-x and withdrawal time t of the medium. This process is economic if the 

spread is high enough to cover the marginal charge and discharge costs. The working princi-

pal of a storage can be seen as a spread option (pt-pt-x). The option is in the money, thus exe-

cuted, if the spread achieves a positive value (Keles, Hartel, et al., 2012). 

Optimal plant value can be described as the expected sum of the optimized returns from a 

series of spread options within the economic plant lifetime (Keles, Hartel, et al., 2012).  

max𝐸� 𝑒−𝑡𝑟
𝑟

0
�(𝑝𝑡 − 𝑐𝑣𝑣𝑡)𝑥𝑠𝑠𝑠𝑡(𝑡) − 𝑝𝑔(𝑡) ∗ 𝑥𝑔(𝑡) − 𝑝𝐶𝐶2(𝑡) ∗ 𝑥𝐶𝐶2(𝑡)�𝑑𝑡 (11) 



  
 
This study will use a very basic LP (linear program) model to approximate the upper bound of 

revenues which can be generated with the usage of the storage. A LP tries to simulate com-

plex nonlinear processes by breaking them apart into constituent linear processes. This ap-

proach is perfectly suited for complex optimization problems with multiple and competing 

decisions and constraints (Middleton & Bielicki, 2009). 

For each simulated price path the optimal unit commitment is determined by the LP. The 

respective contribution margin, determined for each single simulated price path, is aggregated 

to an expected contribution margin by averaging. The difference between contribution mar-

gins of different price paths can be seen as real option value of the future scope of actions. 

The storage valuation is performed with a dual approach: (1) a realistic simulation with two 

weeks horizon and (2) an idealistic simulation with a horizon of 25 years (econ. timespan) as 

upper bound. 

At first, the storage operator estimates the optimal dispatch strategy with the knowledge of 

future prices a priori for a time period of two weeks21. This approach is not unusual and ruled 

as good approximation (Connolly, Lund, Finn, Mathiesen, & Leahy, 2011; Drury et al., 2011; 

Keles, Hartel, et al., 2012; Sioshansi, Denholm, Jenkin, & Weiss, 2009). Every day the stor-

age operator has foresight on the prices of the upcoming two weeks. Based on these market 

prices, the optimal unit commitment for the following day is determined. This unit commit-

ment leads to a certain storage level at the end of the day. The calculated storage level will be 

used as basis for the following day to perform the unit commitment analysis once again. Con-

sequently, the simulation of one price path with a length of 365 days needs 365 sub-

simulations. If this linear program is expanded to 25 years and 500 price paths the computa-

tion time increases massively22. One run with only 5 price paths of this simulation takes with 

a decent desktop computer approx. 8 hours.  

This is why a dual approach is needed. The second type of simulation is conducted with a 

further simplified model. The simulation is carried out with perfect foresight on prices. Sub-

sequently, the number of sub-simulations decreases from t (number of days in dataset) to 1. 

The idealistic simulation runs only one time for every price path. Since the operator knows all 

future prices in advance, the number of calculated  data points for each price path is 14-times 

lower. 

The usage of a two-week optimization horizon allows for both intra- and inter-day arbi-

trage opportunities, including greater charging during weekend because hourly electricity 

                                                 
21 Connolly et al. (2011) and Keles at al. (2012b) even use 12 month perfect foresight on market prices. 
22 In total 25*365*14 calculated data points per price path (with daily price). 



  
 
prices often tend to be lower than during the week. An optimization over a two- week period 

accounts for the fact that a storage operator would not have realistically a foresight on prices 

many weeks in the future. 

The following equations describe a general heuristic approach to estimate the optimal deci-

sion with perfect foresight on prices in the upcoming two weeks. Subsections 6.2–6.5 describe 

necessary changes and extensions of the general model to fit on the specific use case (CAES, 

gas storage, CO2-storage). 

Equation (12) describes the general objective function23 with the aim of finding the opti-

mal storage usage. The aim is to maximize the spread between charging and discharging pric-

es, allowing for operation and maintenance costs of compressor and turbine as well as costs 

for supplemental media. 

Z(i) = max�𝑥𝑠𝑜𝑡(𝑡)𝑑𝑚𝑑𝑑𝑚𝑜𝑚(𝑡) − 𝑥𝑚𝑛(𝑡)𝑑𝑚𝑑𝑑𝑚𝑜𝑚(𝑡) − 𝑥𝑚𝑛(𝑡)𝑑ℎ𝑑𝑙𝑠𝑚𝑛(𝑡)𝑈𝐹1

𝑟

𝑡=1

− 𝑥𝑠𝑜𝑡(𝑡)𝑑ℎ𝑑𝑙𝑠𝑠𝑜𝑡(𝑡)𝑈𝐹2 − 𝑥𝑠𝑜𝑡(𝑡)𝑐𝑡𝑜𝑡𝑏 − 𝑥𝑚𝑛(𝑡)𝑐𝑠𝑠𝑚𝑠 

(12) 

The general idea is to maximize the spread between revenue from the withdrawal of the stored 

medium and the injection of the stored medium over time. The cost of the injected medium 

and the cost for injection and withdrawal is subtracted from the revenue generated from the 

withdrawal. 

The constraints are similarly constructed for all storage media. The main constraints are 

limits for injection & withdrawal rates (eqs. (16) and (17)) and storage size (equation (15)). 

Moreover, the storage balance (eq. (14)) is needed to account for the losses occurring in stor-

age process. It is important to note that for simplicity reasons the operation and maintenance 

cost (O&M) are assumed to be constant over the lifetime and dependent on the amount of 

stored media injection or withdrawn over time (€/MWh). On top of that, the maximum injec-

tion and withdrawal rates are assumed to be constant and the minimum compressor and tur-

bine power is zero.24 
 

Table 16: Constraints of the general LP 

𝑙(0) = 𝑙(𝑇) = 0 (13) 

𝑙(𝑡) = 𝑥𝑚𝑛(𝑡) ∗ 𝐸𝐹𝐹𝑚𝑛 − 𝑥𝑠𝑜𝑡(𝑡) ∗ 𝐸𝐹𝐹𝑠𝑜𝑡 + 𝑙(𝑡 − 1) (14) 

0 ≤ 𝑙(𝑡) ≤ 𝑙𝑚𝑣𝑥 (15) 

                                                 
23 General objective function is simplified for a better appearance and readability without consideration of dis-
counting of revenue streams and only limited foresight. The complete model can be found in the digital appen-
dix. 
24 Further details on this topic can be found in section 6.5. 



  
 

𝑝𝑠𝑠𝑚𝑠−𝑚𝑚𝑛 ≤ 𝑥𝑚𝑛(𝑡) ≤ 𝑝𝑠𝑠𝑚𝑠−𝑚𝑣𝑥 (16) 

𝑝𝑡𝑜𝑡𝑏−𝑚𝑚𝑛 ≤ 𝑥𝑠𝑜𝑡(𝑡) ≤ 𝑝𝑡𝑜𝑡𝑏−𝑚𝑣𝑥 (17) 

Table 17 explains all variables used in eqs. (12) - (17).  
 
Table 17: Definition of variables of general storage model 
xout(t) Amount of medium sold xin(t) Amount of medium stored 

Phelpin(t) Price of medium used to inject at time t Pmedium(t) Price of medium at time t 

Phelpout(t) Price of medium to withdraw at time t UF1 Utility factor 1 

EFFin Efficiency factor of injection process UF2 Utility factor 2 

EFFout Emission factor of withdrawal process ccomp Operating costs compressor 

l(t) Storage level at time t cturb Operating costs turbine 

pcomp-min Minimum power of compressor lmax Maximum storage level 

pcomp-max Maximum power of compressor pturb-min Maximum power of turbine 

pturb-max Minimum power of turbine   

 

The formulas given in (32)-(38) have to be seen as general concept and are in principle appli-

cable for both approaches. The integral (31) is the theoretical description of the optimization 

problem but not solvable in a closed form. This is why a linear program is developed to ap-

proximate the upper bound of revenues which can be generated with the usage of the storage. 

After the Monte Carlo simulation of the most economic unit commitment over a time peri-

od of 25 years and 500 price paths, the results are post-processed. The yearly return of every 

price path is first discounted with a weighted discount rate. Afterwards the yearly discounted 

results of each price path is summed up. Finally, the mean storage value of all price paths is 

calculated (eq. (18)). 

𝑉𝑠𝑡𝑠𝑡𝑣𝑔𝑑 =
1
𝑁
∗��

𝑍(𝑖, 𝜏)
(1 + 𝑟)𝜏

𝑟

𝜏=1

𝑁

𝑚=1

 (18) 

To calculate a suitable discount rate as basis for the present value of the storage site the 

Weighted Average Cost of Capital (WACC) method will be applied. This approach calculates 

an average discount rate based on equity and debt interest rates (Ross, Westerfield, & Jordan, 

2008). Based on an in-depth analysis of reasonable equity and debt interest rates by 

Fraunhofer (2013), the following discount rate is estimated: 
 

Table 18: Discount rate calculation based on WACC (Fraunhofer, 2013; Ross et al., 2008) 

Equity ratio sequity 40% 
Debt ratio sdebt 60% 
Interest rate on equity (nominal) requit,nom 13.5% 
Interest rate on debt (nominal) rdebt,nom 6% 
WACCnominal WACCnom 9% 



  
 
Expected inflation rate zinfl 2% 
Discount rate WACCreal

25
  r 6.9% 

Economic lifetime T 25 a 

 

The simulated spot prices represent real prices since price level is assumed to be constant over 

the time period of 25 years. This is why nominal interest rates have to be adjusted by the in-

flation rate to represent real interest rates. In order to secure an easily calculable discount rate, 

a constant inflation rate over the upcoming 25 years of 2% is assumed. This is a clear simpli-

fication of the variation of inflation rates in the real world, but common practice in academic 

literature (Fraunhofer, 2013). The resulting discount rate is r=6.9% p.a. 

6.2 Model details for CAES 
Equation (19) describes the objective function of the CAES storage model. The most im-

portant difference between the general model and the CAES model is the inclusion of the heat 

rate (EFFst-elect), which is defined as the usage of natural gas for every sold MWh of electrici-

ty.  

𝑍(𝑖) = max�𝑥𝑠𝑜𝑡(𝑡) ∗ 𝑑𝑑𝑙𝑑𝑠𝑡(𝑡) − 𝑥𝑚𝑛(𝑡) ∗ 𝑑𝑑𝑙𝑑𝑠𝑡(𝑡)  − 𝑥𝑠𝑜𝑡 (𝑡)𝑐𝑡𝑜𝑡𝑏

𝑟

𝑡=1

− 𝑥𝑚𝑛 (𝑡)𝑐𝑠𝑠𝑚𝑠 −𝑥𝑠𝑜𝑡(𝑡) ∗ 𝐸𝐹𝐹𝑠𝑡−𝑑𝑙𝑑𝑠𝑡 ∗ �𝑑𝑔𝑣𝑠(𝑡) ∗ +𝑑𝑠𝑠2(𝑡) ∗ 𝐸𝐹� 

(19) 

Table 19 describes the variables of the CAES storage model for the base variant. In section 

7.1 further variants are defined to test the sensitivity of the value of the CAES with changing 

parameters. It is important to note that the assumed parameter values differ significantly from 

source to source. The efficiency values are based on the CAES design presented in Institute 

(2008). The O&M cost of turbine and compressor are assumed to be 1 €/MWh, respectively. 

This is in line with Gatzen (2008), while according to Lund, Salgi, Elmegaard, and Andersen 

(2009), operating costs of compressors are approx. 2.3€/MWh and for the turbine approx. 2.7 

€/MWh. 
 

Table 19: Definition of CAES storage model variables  

Variable Description Value (base variant) 

xout Amount of electricity sold - 

xin Amount of electricity bought - 

PCO2 CO2 price path - 

Pelect Electricity price path - 

Pgas Natural gas price path - 

                                                 
25 𝜎𝐴𝑊𝑊𝑡𝑑𝑣𝑙 =

�1+𝑡𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛𝑛�∗𝑠𝑒𝑒𝑒𝑒𝑒𝑒
(1+𝑍𝑒𝑛𝑖𝑖)

+ �1+𝑡𝑑𝑒𝑑𝑒,𝑛𝑛𝑛�∗𝑠𝑑𝑒𝑑𝑒
(1+𝑍𝑒𝑛𝑖𝑖)

 



  
 
EFFst-elect Heat rate (usage of natural gas for every sold unit of electricity) 1.1158 (MWhgas/MWhelect) 

EF Emission factor natural gas  0.2 (tCO2/MWhgas) 

cturb Operating and maintenance costs turbine 1 (€/MWhelect) 

ccomp Operating and maintenance costs compressor 1 (€/MWhelect) 

EFFin 

 

Compressed air energy factor (amount of electricity needed to sell 

one unit of electricity) – used in constraints party (equation (14)) 

1/0.6966 (MWhelect-in/MWhelect-out) 

6.3 Model details for gas storage 
The objective function of the gas storage model (eq. (20)) is nearly identical with the general 

objective function (eq. (13)). Table 20 shows the explanation and values of the newly intro-

duced variables. 

𝑍(𝑖) = max�𝑥𝑠𝑜𝑡(𝑡)𝑑𝑔𝑣𝑠(𝑡) − 𝑥𝑚𝑛(𝑡)𝑑𝑔𝑣𝑠(𝑡) − 𝑥𝑠𝑜𝑡(𝑡)𝐸𝐹𝐹𝑠𝑡−𝑔𝑣𝑠𝑑𝑠𝑠2(𝑡)𝐸𝐹
𝑟

𝑡=1

− 𝑥𝑚𝑛(𝑡)𝐸𝐹𝐹𝑠𝑠−𝑠𝑠2𝑑𝑠𝑠2(𝑡)𝐸𝐹 − 𝑥𝑠𝑜𝑡  (𝑡)𝑐𝑡𝑜𝑡𝑏 − 𝑥𝑚𝑛 (𝑡)𝑐𝑠𝑠𝑚𝑠 

(20) 

Table 20: Definition of gas storage model variables 
Variable Description Value 

xout Amount of natural gas sold - 

xin Amount of natural gas bought - 

EFFst-gas Efficiency of re-injection into the gas pipeline  

(usage of NG to preheat and dehumidify released NG) 

0.98 

EFFcs-co2 Efficiency of compressor 

(usage of NG to compress NG to storage pressure)  

0.98 

cturb Operating and maintenance costs turbine 0.1 (€/MWh) 

ccomp Operating and maintenance costs compressor 0.1 (€/MWh) 

6.4 Model details for CO2 storage 
The objective function of the CO2 storage (eq. (21)) has been modified compared to the gen-

eral objective function (eq. (13)) due to the fact that a CO2 storage generates revenue with the 

injection of CO2 into the storage (avoided EUA) and generates costs when it releases CO2. 

Consequently, the algebraic signs have changed. Moreover, the compression, preheating and 

dehumidification are assumed to operate on natural gas. This is why for every tonne of inject-

ed carbon dioxide a certain amount of natural gas is needed, which in turn emits again some 

carbon dioxide. 

𝑍(𝑖) = max�𝑥𝑚𝑛(𝑡) ∗ 𝑑𝐶𝐶2(𝑡) − 𝑥𝑠𝑜𝑡(𝑡) ∗ 𝑑𝐶𝐶2(𝑡) − 𝑥𝑠𝑜𝑡(𝑡) ∗ 𝐸𝐹𝐹𝑠𝑡−𝑠𝑠2

𝑟

𝑡=1

∗ �𝑑𝑔𝑣𝑠(𝑡) ∗ +𝑑𝑠𝑠2(𝑡) ∗ 𝐸𝐹� − 𝑥𝑚𝑛(𝑡) ∗ 𝐸𝐹𝐹𝑠𝑠−𝑠𝑠2

∗ �𝑑𝑔𝑣𝑠(𝑡) + 𝑑𝐶𝐶2(𝑡) ∗ 𝐸𝐹� − 𝑥𝑠𝑜𝑡 (𝑡) ∗ 𝑐𝑡𝑜𝑡𝑏 − 𝑥𝑚𝑛 (𝑡) ∗ 𝑐𝑠𝑠𝑚𝑠 

(21) 



  
 
The constraints of the CO2 storage model are similar to equation (13) - (17) except for the fact 

that no losses of the CO2 occur the during injection and withdrawal process. Consequently, 

EFFin and EFFout are assumed to equal 1. Table 21 shows the explanation and values of the 

newly introduced variables. 
 
Table 21: Definition of CO2 storage model variables 
Variable Description Value 

xout Released carbon dioxide - 

xin Stored carbon dioxide - 

EFFst-co2 Efficiency storage-turbine 

(usage of NG to preheat and dehumidify CO2)  

0.0503 (MWhgas/tCO2) 

EFFcs-co2 Efficiency compressor-storage 

(usage of NG to compress CO2) 

0.1007 (MWhgas/tCO2) 

cturb Operating and maintenance costs turbine 0.1 (€/MWh) 

ccomp Operating and maintenance costs compressor 0.1 (€/MWh) 

6.5 Limitations 
The storage model assumes that the necessary time to change from charging to discharging is 

negligible compared to the smallest traded timeslot on the spot market. This is not totally true, 

since there is some time necessary to ramp up or ramp down the compressor or turbine. 

Haubrich (2007) describes ramping times for his CAES concept of approx. 10-15 min. Con-

sequently, the simplification to neglect the necessary time to change from charging to dis-

charging is reasonable. This is in line with assumptions of Barbour et al. (2012). 

The storage is able to operate 364 days a year. The limitation to 364 days is for simplicity 

chosen, since 364 is dividable by 7. Subsequently, the weekly pattern is easier to simulate. In 

the real world one should assume an availability lower than 100%, more in the range of 90-

95% per year. 

The model assumes the minimum compressor and turbine power to be zero, while real 

compressors and turbines have a minimum load in the range of 20-40% of the maximum load. 

This simplification allows a faster simulation since no additional “on-off”-state of the com-

pressor and turbine has to be included into the model. 

One of the biggest limitations of this optimization approach is the perfect foresight on 

hourly energy prices. A real operator has no perfect foresight and might not be able to capture 

the entire value of a storage. Especially for the hourly electricity spot market even two weeks 

foresight (limited foresight alternative) is rather long. Consequently, all results should be seen 

as an upper revenue bound. This approach is not unusual and Sioshansi et al. (2009) analyzed 

the impact of a more realistic approach with an operator who decides the operation mode (in-

ject, withdrawal, do nothing) based on the previous two weeks’ hourly prices. After the opera-



  
 
tion mode decision, the value of the trade was estimated with the real prices. The two-week 

Backcasting approach captured about 85% of the perfect foresight estimation and can be seen 

as lower bound (Sioshansi et al., 2009). Practitioners have more advanced price model 

/estimation tools based on several fundamental data, which allows them to estimate future 

prices more accurately than with rudimental historic prices. Subsequently, a perfect foresight 

approach for a limited time period (e.g. two-weeks) is a legitimate simplification. 

Deployment of energy storages on large-scale would, in the long run, influence market 

prices of the stored medium and smoothen the load and price pattern at gas, CO2 or electricity 

markets, respectively, by reducing peak prices and increasing off-peak prices. As described 

earlier, the model assumes that the operator is a price taker and does not influence prices due 

to the fact that the overall capacity is marginal compared to the entire market capacity (see 

also Sioshansi et al. (2009)).  

The storage model assumes constant injection and withdrawal rates, while a real cavern 

storage would have lower injection rates when the storage is nearly full and lower withdrawal 

rates when the storage is nearly empty. In contrast to Thompson (2012), no level and pressure 

dependent injection and withdrawal rates are integrated, due to performance considerations. 

7. Results 
The following section is subdivided into three sections. First, all variants (sensitivities) are 

defined and summarized in a table. Second, the simulation results of the base case and the 

additional CO2 price regimes are presented. Moreover, the profitability of each investment is 

assessed. Finally, all remaining variants are analyzed and presented. 

7.1 Variants definition 
The base variant, as described in the previous section, will be simulated with limited foresight 

and perfect foresight. In order to map the effect of a limited amount of storage parameters on 

the storage valuation with a reasonable computation time, the simulation of sensitivities is 

carried out with perfect foresight on prices. The simulation results of the base case show that 

the usage of carbon dioxide as a medium creates no revenue with intertemporal arbitrage, 

which is why the sensitivity analysis of the CO2 storage will be limited only to reduced O&M 

costs. Table 22 shows a range of parameter values and the associated variants. 
 
Table 22: Definition of variants to calculate sensitivities 
 Natural Gas Electricity CO2 

O&M Base N1.1 N1.2   Base E1.1 E1.2   C1.1 

Sensitivity  -50% +100%    -50% +100%   -50% 

ccomp 0.1 0.05 0.2   1 0.5 2   0.05 



  
 
cturb 0.1 0.05 0.2   1 0.5 2   0.05 

Flow rates Base N2.1 N2.2 N2.3 N2.4 Base E2.1 E2.2 E2.3 E2.4  

Sensitivity MWh -50% +100%   MWh -50% +50%    

pcomp-max 34,680 17,340 69,360 69,360 34,680 300 150 450 450 300  

pturb-max 69,360 34,680 138,720 34,680 34,680 430 215 645 215 215  

Flow rates N2.5 N2.6 N2.7 N2.8  E2.5 E2.6 E2.7 E2.8   

pcomp-max 69,360 17,340 34,680 17,340  450 150 300 150   

pturb-max 69,360 69,360 138,720 138,720  430 430 645 645   

Storage size Base N3.1 N3.2   Base E3.1 E3.2    

Sensitivity GWh -50% +100%    -50% +100%    

lmax 1,545 772.5 3,090   23,972 11,986 47,944    

Efficiency Base N4.1 N4.2   Base E4.1 E4.2 E4.3 E4.4  

UF1 0.98 0.96 0.99   1.1158 1.0 1.0 1.25 1.25  

UF2 0.98 0.96 0.99   0.6966 0.625 0.725 0.625 0.725  

7.2 Base variant 
The following subsection describes the simulation results based on technical and cost assump-

tions from section 5. 

7.2.1 Natural gas storage 

Figure 19 describes the fluctuating revenues of ten different price paths. Due to revolving 

negative revenues in certain years, a strong seasonal pattern becomes obvious. This means 

that the main share of the revenue, generated by the gas storage, is seasonal or even long-term 

trading. 

  
Figure 19: Fluctuating discounted gas storage revenues 
dependend on price paths 

Figure 20: Impact of different CO2 price levels on the 
economics of the gas storage 



  
 
Figure 20 shows the present value of all simulated gas price path for the base price level of 

co2 and for the increased price regimes (alt 1 & alt 2). The total present value of the high 

price regime (alt 2) is approx. 20 million euros, while the base regime has an average present 

value of approx. 66 million euros. The negative impact of higher CO2 prices on the profitabil-

ity of the gas storage is due to the gas consumption and consequently CO2 emission to inject 

and withdrawal natural gas. 

  

Figure 21: Excerpt of charge and discharge pattern of 
simulation path 5 with perfect foresight 

Figure 22: Comparison of natural gas storage revenue 
with perfect foresight and limited foresight 

Figure 21 describes the discharge and charge pattern of the natural gas storage with perfect 

foresight. As stated previously, the storage operator is rather operating on the long-term scale 

than on a spot market. This is due to the limited price spreads in the natural gas price paths. 

A huge difference between the discounted yearly revenue of the gas storage with perfect 

foresight and limited foresight is shown in figure 22 and figure 23. Although only one price 

path is shown in this figure, the overall average earnings with limited foresight is about 22 

million euros, while the storage value with perfect foresight is approx. 66 million euros (see 

also figure 23). Again, the usage of gas storages for long-term trading becomes obvious. Due 

to the fact that gas prices are far less volatile than electricity prices, a reasonable foresight 

period would probably be longer than 14 days. 

 
Figure 23: Present value of natural gas storage with perfect and limited foresight for each price path 



  
 
Even with perfect foresight, the sum of average discounted revenue is not enough to cover the 

investment costs. In section 5.3.2 the investment costs of gas storage facility including 

equipment and caverns is estimated to be 130 million euros. Consequently, the discounted 

revenue over 25 years covers only half of the investment costs. Based on these findings, an 

investor would not invest into a gas cavern storage. With limited foresight the overall revenue 

is less than 20% of the total investment value. Only the lower bound of the sensitivity range 

(50% less storage construction costs than expected), becomes the investment reasonable. 

7.2.2 CAES 

In contrast to the natural gas storage, figure 24 shows rather constant revenues. On top of that, 

the impact of higher CO2 prices on the economics of the CAES is significantly smaller than 

the impact of higher CO2 prices on the gas storage. The summed average discounted earnings 

amounts to approx. €152.5 million in the base case and €132.4 million respectively €118.6 

million for the first and second alternative regime. 

Figure 25 emphasizes the above mentioned findings. The overall variances between price 

paths is rather small and the impact of higher CO2 prices with about 20% less revenue in the 

worst case, still manageable. However, the present value of the CAES in the base case is not 

enough to cover the investment costs of approx. €254 million. Just as the natural gas storage, 

only with a significant reduction of the construction costs by 50%, the investment in a CAES 

turns out to be profitable. 

  
Figure 24: Discounted revenues of CAES dependent 
on CO2 path 

Figure 25: Impact of different CO2 price levels on the 
economics of the CAES 

The charge and discharge pattern shown in Figure 26 has a significantly higher frequency 

compared with the results of the gas storage simulation. Moreover, the CAES operator de-

cides hourly, while the natural gas storage operator decides daily, due to the lack of a liquid 

hourly natural gas market. 



  
 

 
 

Figure 26: Excerpt of charge and discharge pattern of 
simulation path 5 with perfect foresight 

Figure 27: Comparison of CAES revenue with perfect 
foresight and limited foresight 

The comparison of the discounted CAES revenues with perfect foresight and limited foresight 

has only limited significance due to the extremely long simulation time of the storage model 

with limited foresight. This is why only five price paths are calculated with limited foresight. 

Interestingly, the difference in storage value between a 14-day foresight and perfect foresight 

is negligible. The average earnings with limited foresight (based on solely 5 price paths) is 

€152.4598 million, while the CAES value with perfect foresight amounts to €152.4768 mil-

lion. These findings are much better than the estimates of Sioshansi, Denholm, and Jenkin 

(2011). 

7.2.3 CO2 storage 

As described in section 7.1, the CO2 storage model does not generated any revenues because 

of the too small volatility spread in conjunction with rising CO2 prices over time. This is why 

only four price paths out of 500 generate a profit for the base CO2 price case. This profit is 

marginal (less than €10,000 in total). The height of the profit does not significantly change 

with the implementation of the sensitivity variant. Consequently, EUA are not suitable for 

intertemporal arbitrage. 

7.3 Sensitivity analysis 
As defined in section 7.1, in the following, the flow rates, storage size, efficiency and O&M 

costs are varied. 

7.3.1 Natural gas storage 

The increase of O&M costs by 100% has a rather small impact on the overall present value. 

The present value decreases by approx. 6% from €66 million to €62 million. On the other 

hand, the decrease of the O&M costs by 50% increases the present value to €68 million. As 

figure 28 shows, the impact of different flow rates on the profitability of the gas storage is 

enormous. It turns out strategy N2.4 seems to be the most profitable. Variant N2.4 decreases 

the withdrawal rate by 50%, while the injection rate stays constant. This leads to equal injec-



  
 
tion and withdrawal rates. This strategy leads to a present value of 105 million euros, which is 

60% more than the base case. 

  

Figure 28: Impact of different flow rates on the present 
value of the natural gas storage 

Figure 29: Impact of the change in charging and dis-
charging efficiency on the present value of the natural 
gas storage 

A 100% increase of storage size leads to a 16% increase of the present value, while a reduc-

tion by 50% results in 30% reduction in revenue. This can be interpreted as a sign that the 

storage size seems pretty well chosen (Sensitivity N3 – N3.2). 

In contrast to the limited impact of changing O&M costs, the increase of charging and dis-

charging efficiency leads to significantly higher revenues. A rise of 0.01 efficiency points 

leads to nearly 20% higher revenues, while a reduction by 0.02 efficiency points decreases the 

revenue by 20% (see figure 29). 

All in all, an optimization of the injection and withdrawal rate simultaneously with the en-

hancement of the charge and discharge efficiencies could lead to high enough revenues to 

pass the break-even point. 

7.3.2 CAES 

The reduction of the O&M costs by 50% leads only to a 6% increase of the average earnings, 

while a 100% increase of the O&M costs lead to a 10% decrease of the average earnings (var-

iants E1 – E1.2).  

  
Figure 30: Impact of different flow rates on the dis-
counted revenue of the CAES 

Figure 31: Impact of the change in charging and dis-
charging efficiencies on the present value of the CAES 



  
 
The impact of the adjustment of the flow rates, as shown in figure 30 is very significant. The 

best case (E2.4) increases the earnings by 50%, while the worst case leads to a revenue reduc-

tion of 50%. The best case is, once again, the case with equal injection and withdrawal rates. 

Figure 31 shows the impact of different charging and discharging efficiencies on the pre-

sent value of the CAES. E4.3 and E4.1 increase the storage value by 22% and 17% respec-

tively, while E4.4 reduces the storage value by roughly 20%. Consequently, the most efficient 

improvements to increase the present value of the CAES are the adjustment of the flow rates 

and the enhancement of the injection and withdrawal efficiency. 

 
Figure 32: Impact of different storage sizes on the present value. 

The impact of different storage sizes on the overall present value is very small. This can be 

the result of a high cycling rate and enough price volatility to trade nearly hourly. On the one 

hand, figure 32 shows an increase of present value by 2% when the storage size increases by 

100%. On the other hand, a reduction of the storage size by 50% leads to a present value re-

duction of only 4.5 %. This can be interpreted as a sign to decrease the storage size in order to 

save construction costs. 

8. Conclusion 
The purpose of this study was to create a multi-purpose storage model to evaluate the most 

economic storage medium for one specific cavern storage. The uniqueness of the approach is 

the assessment of the most suitable storage medium for one specific storage, while most aca-

demic literature deals with the search for the most suitable storage for one specific medium.  

After an introduction into the applied theory, datasets and most important literature, the 

status quo and expected development of possible storage media such as electricity, natural 

gas, carbon dioxide and hydrogen is analysed. This analysis is performed with fundamental 

market data in order to map the dependencies and correlation of those storage media. 

Because of the non-existent market and infrastructure for hydrogen and the rather difficult 

storability, hydrogen is excluded as storage medium. With the historical price paths of the 



  
 
remaining candidates, extensive price models are created. The historical prices are decom-

posed into a deterministic and a stochastic part. In order to account for the relatively long 

simulation timeframe (25 years), the deterministic part of the prices is reproduced with rather 

complex sinusoidal (electricity and natural gas) or power functions instead of a constant drift 

term as used in many academic papers. The mathematically identified patterns are in line with 

previous fundamental observations and findings. The stochastic part is modelled with a Mar-

kov regime switching approach (with different numbers of regimes depending on the medi-

um), which is especially suitable for price series with a high frequency of spikes and drops. 

Due to the stochastic price process, for every storage medium 500 price paths are calculated. 

These price path are solved successively in the storage model in order to treat the storage as a 

real option. 

After the analysis of potential storage sites and the identification of the most important 

technical properties, the potential costs are estimated. The cost assessment turns out to be ra-

ther complicated because of the inherent data and wide differences in costs. Especially the 

estimation of CAES costs is not very sound, due to the fact that there are only two existing 

CAES in the world. 

In contrast to the price models, which were rather complex, the chosen storage model is 

designed as a simple linear program to be able to adjust the restrictions and objective function 

easily for every storage medium. A linear program has no issues with numerical traceability 

or heavily simplifying assumptions to reach solvability. The major drawback is a very high 

computation time due to the Monte Carlo simulation of 500 price paths. This is why only a 

part of the simulation is conducted with limited foresight (the operator can perfectly predict 

the prices of the upcoming two weeks). All other simulations are performed with perfect fore-

sight on future prices.  

Interestingly, it turns out that the CAES valuation with limited foresight is nearly identical 

to the storage value with perfect foresight. This is due to the fact that the CAES is operating 

hourly and has a very high cycling rate and only limited storage capacity (approx. 12h). By 

contrast, the value of the natural gas storage with limited foresight accounts only for 20% of 

the value of the storage with perfect foresight. This is due to the fact that natural gas is only 

traded daily and the daily and weekly spreads are rather small. Consequently, with perfect 

foresight, the operator trades mainly seasonally, while with limited foresight only short-term 

trades are possible. 

Most importantly, the simulation results suggest that neither the natural gas storage, nor the 

CAES generate enough revenue to reach the break-even within 25 years. Only if the invest-

ment costs are significantly reduced (by 40-50%) will the investment be profitable. The CO2 



  
 
storage turns out be unprofitable, due to the fact that the price volatility is too small and cover 

the marginal costs and the constantly increasing CO2 price makes seasonal trading impossible. 

The definition of several variants yields interesting results concerning the sensitivity of the 

storage value. A stronger increase in CO2 prices leads to heavily decreasing natural gas stor-

age revenues, while the CAES is only slightly influenced. Both storage media benefit from 

increasing charging and discharging efficiencies as well as the alignment of the injection rate 

with the withdrawal rate. If both parameters are adjusted, the natural gas storage and the 

CAES are profitable. 

All in all, the solid storage model based on complex price paths suggests that no storage 

application should be implemented at this point in time. However, some additional revenue 

streams, which are addressed in the following subsection could improve the profitability sig-

nificantly.  

Most of the academic literature dealing with the potential of compressed air energy storag-

es find that solely wholesale price arbitrage is not enough to retrieve the high initial invest-

ment costs with an acceptable internal rate of return (Loisel et al., 2010). That’s why often 

secondary and tertiary reserves provision is seen as second source of income. The current sys-

tem of secondary and tertiary reserve provision in the German electricity market is seen as not 

sustainable in the long run (Haubrich, 2007). This is due to the fact that the increasing share 

of RE stresses the profitability of existing fossil-fired power plants. If more and more fossil-

fired power plants are phased out, less secondary and tertiary reserve can be provided. This is 

why a political discussion about capacity compensation to prevent fossil-fired power plants to 

be phased out, a so called capacity market, is emerging. Due to the expected regulatory 

changes a simulation of future reserve market prices for the next 25 years is not useful. Fur-

ther research has to be done in this field when the outcome of the political discussion emerg-

es.  

The costs of a gas cavern storage could be reduced with the substitution of the cushion gas 

with carbon dioxide. Which could on the one hand decrease the initial investment costs (no 

costly natural gas cushion needed) and on the other hand enhance available storage volume. 

Due to the fact that carbon dioxide is way more compressible, less cushion gas is needed to 

exploit the range of pressure ∆p, and consequently significantly larger quantities of working 

gas can be stored. The effect of mixing of CO2 with methane is still questionable and has to 

be tested in reality. Models predict limited mixing in gas reservoirs with large vertical exten-

sion (caverns) because of the higher density of CO2, but it is still questionable how high cy-

cling rates influence the mixing of CO2 and methane (Oldenburg, 2003). 



  
 

The usage of hydrogen as a storage medium is left for further research. Additional research 

is to a lesser extent needed from a technical perspective but more from an economic perspec-

tive. As described in section 3.4, there exists no transparent and liquid hydrogen market, 

which is why neither operation in terms of intertemporal arbitrage is possible nor are large-

scale electrolysers available off the shelf. If a more mature hydrogen market emerges, the 

storage model should be extended. An extension of the storage model could be a trading pat-

tern between daily off-peak and peak electricity contracts. This trade would only be conduct-

ed if the price difference between the off-peak and peak contract would be high enough to 

cover the marginal charge and discharge costs. The implementation of a switching model was 

already conducted, but due to the outcome that neither the CAES nor the natural gas storage 

are profitable, the switching model had no function. For further research, a deeper integration 

of a switching model should be addressed. 
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A1 Electricity price simulation 

 
Figure 33: Residual stochastic price path after removal of the daily, weekly, seasonal and long-term cycles. 

Following paragraph describes the electricity price simulation process: 

1. Perform a Fourier Fit on the dataset of daily spot prices to estimate the long-term cycle. 
Use the non-linear least squares method with a filter to decrease the weight of outliers 
(Bisquare Robust in Matlab). The resulting equation has the following form: 

𝑑𝐷−𝑙𝑡𝑠 = 𝑎0 + 𝑎1 ∗  cos(𝑥 ∗ 𝑤) + 𝑏1 ∗ sin(𝑥 ∗ 𝑤) (22) 

2. Convert daily data to hourly data. 

𝑑𝐻−𝑙𝑡𝑠 = 𝑎0 + 𝑎1 ∗  cos �
𝑥

24
∗ 𝑤� + 𝑏1 ∗ sin �

𝑥
24

∗ 𝑤� (23) 

3. Remove long-term cycle (ltc) from historical hourly spot price data. 

𝑑𝑠𝑠𝑠𝑡−𝑙𝑡𝑠 = 𝑑𝑠𝑠𝑠𝑡ℎ𝑠𝑜𝑡𝑙𝑜 − 𝑑𝐻−𝑙𝑡𝑠 (24) 

4. Deseasonalize Pspot-ltc using the JW-algorithm26. The algorithm returns three components: 
the deseasonalized price path Pdes1-ltc, a long-term seasonal price path Plts1 and a short-term 
seasonal price path Psts1. 

5. Calculate mean µdes and standard error σdes of deseasonalized prices Pdes1-ltc. Start outlier 
correction by replacing all prices exceeding the interval [µdes ± 3σdes] with the mean price 
µdes.  

6. Rebuild dataset using the deseasonalization components and the outlier corrected residual 
price: 

𝑑𝑠𝑠𝑡𝑡−𝑡𝑑𝑏𝑜𝑚𝑙𝑑 = 𝑑𝑙𝑡𝑠 + 𝑑𝑠𝑡𝑠 + 𝑑𝑠𝑠𝑡𝑡−𝑑𝑑𝑠1−𝑙𝑡𝑠 (25) 

7. Run the JW-algorithm to deseasonalize. See Figure 8 for results. 
8. Remove short-term cycle: 

𝑑𝑠𝑠𝑡𝑡−𝑠𝑡𝑠2 = 𝑑𝑠𝑠𝑠𝑡−𝑙𝑡𝑠 − 𝑑𝑠𝑡𝑠2 (26) 

9. Perform a Fourier Fit based on Pcorr-stc2 to estimate the seasonal cycle. Use the same ap-
proach as in 1. The resulting equation has the following form: 

                                                 
26 JW-algorithm presented in Janczura and Weron (2012), Janczura et al. (2013) and Janczura and Weron (2015) 



  
 

𝑑𝑠𝑠𝑠 = 𝑎0 + 𝑎1 ∗  cos(𝑥 ∗ 𝑤) + 𝑏1 ∗ sin(𝑥 ∗ 𝑤) (27) 

10. Construct residual price curve. Graphical results are shown in figure 33. 

𝑑𝑡𝑑𝑠−𝑠𝑡𝑠𝑠ℎ = 𝑑𝑠𝑠𝑡𝑡−𝑠𝑡𝑠2 − 𝑑𝑠𝑠𝑠 (28) 

11. To evaluate the long-term value of the storage, the simulation time is 25 years with 500 
price paths. 

12. Run the JW-algorithm - MRS_est to estimate parameters of Markov regime-switching 
model. Use the exponential model, since it has the best fit on data. 

13. Run the simulation algorithm MRS_sim to generate values for base, spike and drop re-
gime for the upcoming 25 years. 

14. Add all components to Psim. 
𝑑𝑠𝑚𝑚 = 𝑑𝑠𝑡𝑠𝑠ℎ + 𝑑𝑠𝑠𝑠 + 𝑑𝑠𝑡𝑠2 + 𝑑𝐻−𝑙𝑡𝑠 (29) 

A2 Gas price simulation 
Following paragraph describes the gas price simulation process: 

1. Perform a Fourier Fit on the dataset of the daily spot prices to estimate the long-term cy-
cle. Use the non-linear least squares method with a filter to decrease the weight of outliers 
(Bisquare Robust in Matlab). The resulting equation has the following form: 

𝑑𝐺−𝑙𝑡𝑠 = 𝑎0 + 𝑎1 ∗  cos(𝑥 ∗ 𝑤) + 𝑏1 ∗ sin(𝑥 ∗ 𝑤) (30) 

The results and coefficients of this regression (PG-ltc) are shown in figure 12 and table 4. 
2. Remove long-term cycle (ltc) from historical hourly spot price data. 

𝑑𝐺−𝑠𝑠𝑠𝑡−𝑙𝑡𝑠 = 𝑑𝐺−𝑠𝑠𝑠𝑡 − 𝑑𝐺−𝑙𝑡𝑠 (31) 

3. Deseasonalize PG-spot-ltc using the algorithm presented in (Janczura & Weron, 2015). Algo-
rithm returns three components: the deseasonalized price path PG-des1-ltc, a long-term sea-
sonal price path PG-ltc1, and a short-term seasonal price path PG-stc1. 

4. Calculate mean µdes and standard error σdes of deseasonalized prices PG-des1-ltc. Start outlier 
correction by replacing all prices exceeding the interval [µdes ± 3σdes] with the mean price 
µdes.  

5. Rebuild dataset using the deseasonalization components and the outlier-corrected residual 
price: 

𝑑𝐺−𝑠𝑠𝑡𝑡−𝑡𝑑𝑏𝑜𝑚𝑙𝑑 = 𝑑𝐺−𝑙𝑡𝑠1 + 𝑑𝐺−𝑠𝑡𝑠1 + 𝑑𝐺−𝑠𝑠𝑡𝑡−𝑑𝑑𝑠1−𝑙𝑡𝑠 (32) 

6. Run the JW-algorithm again to deseasonalize (see Figure 13 for results). 
7. Remove short-term cycle: 

𝑑𝐺−𝑠𝑠𝑡𝑡−𝑠𝑡𝑠2 = 𝑑𝑠𝑠𝑠𝑡−𝑙𝑡𝑠 − 𝑑𝐺−𝑠𝑡𝑠2 (33) 

8. Perform a Fourier Fit based on PG-corr-stc2 to estimate the seasonal cycle. Use the same 
properties as in 2., but now perform a double Fourier Fit. The resulting equation has the 
following form: 

𝑑𝐺−𝑠𝑠𝑠 = 𝑎0 + 𝑎1 ∗  cos(𝑥 ∗ 𝑤) + 𝑏1 ∗ sin(𝑥 ∗ 𝑤) + 𝑎2
∗ cos(𝑥 ∗ 𝑤) + 𝑏2 ∗ sin(𝑥 ∗ 𝑤) 

(34) 

Results and coefficients of this regression can be seen in figure 12. 
 



  
 

9.  𝑑𝐺−𝑡𝑑𝑠−𝑠𝑡𝑠𝑠ℎ = 𝑑𝐺−𝑠𝑠𝑡𝑡−𝑠𝑡𝑠2 − 𝑑𝐺−𝑠𝑠𝑠 (35) 

Graphical results are shown in figure 34  

11. To evaluate the long-term value of the storage, the simulation time is 25 years with 500 
price paths. 

12. Run the JW-algorithm - MRS_est to estimate parameters of Markov regime-switching 
model. Use the logarithmic model, since it has the best fit on data. 

13. Run the simulation algorithm MRS_sim to generate values for base and spike regime for 
the upcoming 25 years. 

14.  𝑑𝐺−𝑠𝑚𝑚 = 𝑑𝐺−𝑠𝑡𝑠𝑠ℎ + 𝑑𝐺−𝑠𝑠𝑠 + 𝑑𝐺−𝑠𝑡𝑠2 + 𝑑𝐺−𝑙𝑡𝑠 (36) 

 
Figure 34: Residual gas price path after removal of all long-term, seasonal and short-term patterns. 

A3 CO2 price simulation 
Following paragraph describes the carbon price simulation process: 

1. Estimate parameters of root / power function: 

𝑑𝐶𝐶2−𝑡𝑡𝑑𝑛𝑑1 = 𝑎⋅𝑥𝑏 (37) 

Results are shown in Table 6 and figure 15. 

 

2.  𝑑𝐶𝐶2−𝑡𝑑𝑠1 = 𝑑𝐶𝐶2−𝑠𝑠𝑠𝑡 − 𝑑𝐶𝐶2−𝑡𝑡𝑑𝑛𝑑1 (38) 

3. Estimate parameters of exponential fit on residual data: 

𝑑𝐶𝐶2−𝑡𝑡𝑑𝑛𝑑2 = 𝑐 ∗ 𝑒𝑑∗𝑥 (39) 

Results are shown in Table 6 and figure 15. 
4.  𝑑𝐶𝐶2−𝑡𝑑𝑠 = 𝑑𝐶𝐶2−𝑡𝑑𝑠1 − 𝑑𝐶𝐶2−𝑡𝑡𝑑𝑛𝑑2 (40) 

5. Estimate parameters of Markov base regime, see digital appendix for exact approach 
6. To evaluate the long-term value of the storage, the simulation time is 25 years with 500 

price paths. Simulate Markov base regime by means of an Ornstein-Uhlenbeck process. 

𝑑𝐶𝐶2−𝑠𝑚𝑚 = 𝑑𝐶𝐶2−𝑠𝑡𝑠𝑠ℎ + 𝑑𝐶𝐶2−𝑡𝑡𝑑𝑛𝑑 (41) 
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Figure 35: EUA residual stochastic path after removal of combined trend 

 



  
 

 

 

 

  

 

Figure 36: Price modelling flow chart 
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Figure 37: Flow chart of gas price decomposition 
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Figure 38: Flowchart of CO2- price decomposition 
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