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Abstract

If decision makers have exclusive rights to particular investment pro-
jects, they frequently have the opportunity to delay these investments.
This paper analyzes the effect of quasi-hyperbolic discounting, i.e. time-
inconsistent preferences on the exercise timing of such options to defer
an investment. It complements earlier work on this issue covering risk
aversion and capital market interaction. The results are as follows: In a
number of cases, the capital market environment provides for the irrele-
vance of quasi-hyperbolic discounting. Besides this, a different behavior
of time-inconsistent and time-consistent decision makers occurs only for
quite specific parameter conditions. In light of experimental evidence for
time-inconsistent behavior, this provokes the following question: Is time-
inconsistent behavior really driven by quasi-hyperbolic discounting, but
rather by more fundamental irrationality (like a disregard of fairly ubiq-
uitous market opportunities)?
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1 Introduction

Time inconsistency (sometimes called dynamic inconsistency) is among the most
extensively discussed behavioral departures of decision theoretic directives. In
the words of Lengwiler (2004, p. 145), it can be described as follows: “We say
that an . . . intertemporal decision is time consistent (emphasis in original) if,
when the next period comes along, it will be optimal for you to stick to the
same planned path. The decision is time inconsistent if a plan that is optimal
from the point of view of one period is no longer optimal from the point of view
of a later period.”

Our paper is concerned with so-called real options. This term, coined by
Stewart Myers (Myers, 1977) indicates investments that offer options for future
action and are thus characterized by several decision points in time, meaning
a dynamic decision structure (cf. Dixit and Pindyck, 1994). Related literature
refers to different options providing managerial flexibility (e.g. the option to
abandon, contract, expand, stage, defer, grow or switch). Our focus is on the
option to defer, or delay, an investment. The value of this option depends on
the time of its “exercise”. Exercising suboptimally (where it is worth waiting
or when the optimal exericse time has passed) reduces its value. This is where
the problem of time inconsistency arises.

To date, only a few papers have tackled the issue of time inconsistency in the
sense of quasi-hyperbolic discounting and options to defer an investment. The
most important one, the study by Grenadier and Wang (2007), is concerned
with risk-neutral decision makers that do not deal with (or have no access to)
capital market interaction. A similar setting has been developed by Quah and
Strulovici (2013) in the context of optimal stopping. Clearly, the option to defer
an investment can be understood as a problem of optimal stopping, where the
flow payoffs are zero and the termination payoff equals the benefits of exercising
the option. Yet, the assumption of risk neutrality is quite problematic as experi-
mental and empirical evidence shows that decision makers are risk-averse (for an
overview, see Lengwiler, 2004, pp. 68–101). Moreover, following the economic
principle, opportunities to trade on the capital market should not be overlooked,
as the devaluation of future results occurs not only due to impatience or pure
time preference but also as a consequence of (market-based) opportunity costs
(Mulligan, 1996; Read, 2004). Additionally, financial instruments permit the
decision maker to optimally spread consumption over time and states according
to their preferences (Smith and Nau, 1995; Smith, 1998).

Therefore, the paper at hand is structured along two dimensions (see Ta-
ble 1). The first one refers to the decision maker’s risk attitude and includes
the assumptions of risk neutrality and risk aversion. The second one covers the
extent to which capital market strategies are admissible. Here, distinction is
made between the cases of no capital market, only risk-free borrowing and lend-
ing, as well as spanning. In contrast to the continuous-time models developed
by Grenadier and Wang (2007) and Quah and Strulovici (2013), the framework
presented exhibits a time-discrete structure. In a way, it builds on the article
of Khan et al. (2013). Their paper deals with related questions, yet mingles
market-based and preference-based valuation in a somewhat debatable manner.
We will return to Khan et al. (2013) in a later section.

The remainder of the paper progresses as follows. The next section in-
troduces our basic framework and reflects the impact of quasi-hyperbolic dis-
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Table 1: Classification of subject-based literature

admissible capital market strategies

risk no capital incomplete market in spanning
attitude market the sense of (only)

risk-free borrowing
and lending

risk Grenadier and Wang this paper this paper
neutrality (2007), (scenario I) (scenario III)

Quah and Strulovici
(2013)

risk this paper this paper this paper
aversion (scenario IV) (scenario II) (scenario III)

counting for certain combinations of risk attitude and admissible capital market
strategies. In Section three, we present a numerical example and perform a com-
parative static analysis. Section four summarizes major findings and shows some
implications.

2 The model

2.1 Formalization of time (in)consistency

Frequently, the concept of stationarity is used to formalize time consistency (e.g.
Fishburn and Rubinstein, 1982, p. 681). It is stated as follows. Provided (x, h1)
denotes an outcome x to be received h1 periods ahead, the following relation
holds.

If (x, h1) � (y, h2) then (x, h1 + ∆) � (y, h2 + ∆)

(analogous for ≺ as well as ∼).

That means, a comparison between two time-dependent outcomes depends only
on the difference h2 − h1 between the points in time. If the points in time are
advanced or deferred by the same amount ∆, the order of preference will be
preserved. Experimental evidence suggests frequent violations of stationarity
(e.g. Thaler, 1981; Benzion et al., 1989), i.e. time-inconsistent behavior.

The most common way to model time-inconsistent preferences is to assume
that at each point in time, the decision maker applies so-called quasi-hyperbolic
discounting in accordance with (∀t = 0, 1, . . . , T )

Ut(xt, xt+1, . . . , xT ) = U(xt) + β

T∑
τ=t+1

δ(τ−t)U(xτ )

and 0 < β, δ < 1

(Phelps and Pollak, 1968; Laibson, 1997). Here, (xt, xt+1, . . . , xT ) denotes a
stream of cash flows. U(xτ ) represent identical functions of periodical cash
flows. These utilities are “discounted” by the factors β and δ. In particular,
t = 0 implies

U0(x0, x1, . . . , xT ) = U(x0) + β
T∑
τ=1

δτU(xτ ).
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It is easy to show that these preferences may lead to dynamic inconsistency.
Imagine the choice between deterministic cash flows x̂τ (τ > 0) and x̂τ+1. As
of time t = 0, the decision maker exhibits a preference for x̂τ if and only if

βδτU(x̂τ ) > βδτ+1U(x̂τ+1) (1)

or

U(x̂τ ) > δU(x̂τ+1). (2)

Yet, from the point of view of t = τ , the decision maker will prefer x̂τ if and
only if

U(x̂τ ) > βδU(x̂τ+1), (3)

which clearly contradicts the former.

2.2 Basic framework

In the following, we set up a simple two-period model. The preferences of the
decision maker are given by the intertemporal utility function

U0(x0, x1, x2) = U(x0) + β

2∑
τ=1

δτU(xτ ).

Where β = 1, the familiar concept of exponential discounting is obtained. β < 1
results in quasi-hyperbolic discounting as described above. Concerning period-
ical utility, we differentiate between the cases of risk neutrality

U(xτ ) = xτ

⇒ U0(x0, x1, x2) = x0 + β

2∑
τ=1

δτxτ (RN)

and (constant absolute) risk aversion

U(xτ ) = 1− e−αxτ

⇒ U0(x0, x1, x2) = 1− e−αx0 + β

2∑
τ=1

δτ
(
1− e−αxτ

)
.1 (RA)

We want to analyze the following option to defer an investment. As shown in
Figure 1, the benefits of exercising the option (modeled as a lump-sum payoff)
follow a multiplicative binomial process, where b denotes the initial value. u
and d represent growth factors that satisfy u > d and u = 1/d. p indicates the
probability of an up-move.

“Exercise” of the option is possible in t = 1 or t = 2 at cost of investment f .
To simplify calculations, b = f is assumed. If the option is held until maturity
at date t = 2, the decision maker will only exercise if two successive up-moves
occur, leading to a cash flow of u2b− f . A premature exercise at t = 1 may be
advantageous after one up-move. The resulting cash flow of ub − f has to be
weighed up against the consequences of deferral. The latter amount to u2b− f
(two up-moves) and 0 (one up- and one down-move), respectively.

1According to Kirkwood (2004), an appropriately chosen exponential utility function
closely approximates general utility functions in most cases.
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Figure 1: Process of the benefits of exercising the option

2.3 Scenario I: Risk neutrality and risk-free borrowing
and lending

In the first scenario, the case of risk neutrality and risk-free borrowing and
lending is analyzed. As a basis, we calculate the project value, meaning the
multi-period certainty equivalent of the risky stream (given a particular state-
contingent exercise strategy) to the decision maker. This is done in two steps.
The first step deals with the situation of a single period, the second general-
izes. The certainty equivalent is understood as a certain amount at the date of
valuation whose utility equals the expected utility of the risky stream when bor-
rowing and lending opportunities are taken into account.2 Formally, for t = 0,
we obtain

max
y

(ce− y) + βδ [(1 + r)y]

= max
z

(−z) + βδE [x1 + (1 + r)z]

where ce denotes the multi-period certainty equivalent and y as well as z rep-
resent risk-free borrowing and lending over one period. r indicates the risk-free
market rate. Inserting

ce =
E [x1]

1 + r

and
y = z + ce

(and ignoring issues of uniqueness if βδ 6= 1/(1 + r)) yields

max
z

(ce− (z + ce)) + βδ [(1 + r)(z + ce)]

= max
z

(−z) + βδ [E [x1] + (1 + r)z]

2The literature on option pricing frequently uses the term utility indifference price (cf.
Henderson and Hobson, 2009)
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or

max
z

(−z) + βδ [E [x1] + (1 + r)z]

= max
z

(−z) + βδ [E [x1] + (1 + r)z]

which shows that valuation (and the determination of the optimal exercise strat-
egy) are preference-free and time inconsistency has no effect. Now the second
step is quite trivial. Due to the properties of the expectation operator, i.e. lin-
earity and the law of iterated expectations, this result can be generalized in an
obvious way to multiple periods. An alternative derivation of our finding can
be found in Hakansson (1969). As a consequence of the valuation result, the
following exercise policy is obtained. The decision maker exercises prematurely
after one up-move if the net benefits of immediate exercise ce1,e exceed the value
associated with waiting to invest ce1,n, i.e.

ce1,e = ub− f > ce1,n = p
u2b− f
1 + r

.

2.4 Scenario II: Risk aversion and risk-free borrowing and
lending

The second scenario covers the combination of risk aversion and risk-free bor-
rowing and lending. It is analyzed with recourse to the work of Smith (1998).
To start with, note that the intertemporal utility function (RA) can be written
in the form of

U0(x0, x1, x2) = 1− e−αx0 + β

2∑
τ=1

δτ
(
1− e−αxτ

)
=

2∑
τ=0

kτ −
2∑

τ=0

kτe
−αxτ ,

using utility weights k0 = 1, k1 = βδ and k2 = βδ2. Defining risk tolerances
ρτ = ρ̄ = 1/α and taking care of the invariance to positive affine transformations,
we obtain

U0(x0, x1, x2) = −
2∑

τ=0

kτe
−xτ/ρτ , (SM)

which equals the preference funtion used by Smith (1998, p. 1969). Moreover,
the above binomial lattice can be transferred into a decision tree (Figure 2). As
is customary, the boxes are called decision nodes and indicate decisions to be
made. The circles are called chance nodes and represent the states relevant to
the point of decision. Outcomes are written to the tips of the tree.

Smith (1998) introduces the following rollback procedure to solve for the
optimal policy (as of date t = 0):

(i) Calculate net present values (NPVs) for each endpoint in the tree by dis-
counting all cash flows along the path leading to that endpoint using the
risk-free rate

ce2 =

2∑
τ=1

xτ
(1 + r)τ

.
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Figure 2: Decision tree of the option exercise problem
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(ii) At chance nodes, calculate so-called effective certainty equivalents using
the exponential utility function (SM) with effective risk tolerance Rτ . For-
mally, this involves (∀τ = 1, 2)

ceτ−1 = −Rτ ln
(
E
[
e−ceτ/Rτ

])
with Rτ = ρ̄

2∑
t=τ

(1 + r)
−t
,

where ceτ denotes possible successor values.

(iii) At decision nodes, choose the maximum value of the available alternatives.

(iv) The value at the root of the tree equals (in our terminology) the project’s
multi-period certainty equivalent.

As Smith (1998, p. 1697) points out, the multi-period certainty equivalent to
the decision maker does not depend on the utility weights kτ . Consequently,
there is no valuation effect of quasi-hyperbolic discounting. After one up-move,
the rollback procedure stated translates into the following exercise policy. The
decision maker exercises prematurely if

ce1,e = ub− f > ce1,n = − ρ̄

1 + r
ln
(
pe−(u2b−f)/ρ̄ + (1− p)e−0/ρ̄

)
.

2.5 Scenario III: Spanning

In the third scenario, we analyze the case of spanning. This means that the cash
flow of the project to be valued can be perfectly duplicated on the capital mar-
ket (DeAngelo, 1981). Again, the project value is understood as multi-period
certainty equivalent of the decision maker, i.e. a certain amount at the date of
valuation, whose utility equals the expected utility of the risky stream (given
a particular state-contingent exercise strategy) when trading opportunities in
duplicating securities (including risk-free borrowing and lending) are taken into
account. Formally, as of date t = 0, this implies

max
ψ0,ψ1

U
(
ce− ψT0 P0

)
+ βδE

[
U
(
(ψ0 − ψ1)TP1

)]
+ βδ2E

[
U
(
ψT1 P2

)]
= max

ξ0,ξ1
U
(
−ξT0 P0

)
+ βδE

[
U
(
x1 + (ξ0 − ξ1)TP1

)]
+ βδ2E

[
U
(
x2 + ξT1 P2

)]
,

where ψτ , ξτ (∀τ = 0, 1) denote state-contingent trading strategies in duplicating
securities (including risk-free borrowing and lending). Pτ (∀τ = 0, 1, 2) represent
vectors of state-contingent securities prices. Setting (∀τ = 0, 1)

ξτ = ψτ − ψdτ ,

where ψdτ represents the state-contingent duplicating trading strategy, yields

max
ψ0,ψ1

U
(
ce− ψT0 P0

)
+ βδE

[
U
(
(ψ0 − ψ1)TP1

)]
+ βδ2E

[
U
(
ψT1 P2

)]
= max
ψ0,ψ1

U
(
−[ψ0 − ψd0 ]TP0

)
+ βδE

[
U
(
x1 + ([ψ0 − ψd0 ]− [ψ1 − ψd1 ])TP1

)]
+ βδ2E

[
U
(
x2 + [ψ1 − ψd1 ]TP2

)]
.
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With the definition of the duplicating trading strategy, we obtain

max
ψ0,ψ1

U
(
ce− ψT0 P0

)
+ βδE

[
U
(
(ψ0 − ψ1)TP1

)]
+ βδ2E

[
U
(
ψT1 P2

)]
= max
ψ0,ψ1

U
(
ψd

T

0 P0 − ψT0 P0

)
+ βδE

[
U
(
(ψ0 − ψ1)TP1

)]
+ βδ2E

[
U
(
ψT1 P2

)]
.

Obviously

ce = ψd
T

0 P0,

this means that the multi-period certainty equivalent of the decision maker
equals the current value of the duplicating trading strategy irrespective of the
shape of periodical utility. The valuation (and the determination of the optimal
exercise strategy) are thus preference-free and there is also no effect of quasi-
hyperbolic discounting.

A derivation of the optimal exercise policy requires the specification of avail-
able capital market instruments. It is assumed that, in addition to the possi-
bility of risk-free borrowing and lending at an interest rate r, a risky market
instrument is traded. The price process of this security follows a multiplicative
binomial process as shown in Figure 3. ū and d̄ represent growth factors that
satisfy ū > d̄, ū = 1/d̄ and ū > 1 + r > d̄.

ū2

ū

1 1

d̄

d̄2

t = 0 t = 1 t = 2

p

1 − p

p

1 − p

p

1 − p

Figure 3: Price process of the risky market instrument

With the help of this specification, the duplication of project cash flows can
be condensed in the use of so-called risk-neutral probabilities

q =
1 + r − d̄
ū− d̄

(for the up-move) and 1 − q (for the down-move), respectively. Consequently,
the decision maker exercises prematurely after one up-move if

ce1,e = ub− f > ce1,n = q
u2b− f
1 + r

.
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An explicit instruction is obtained, if the “underlying” of the real option is
traded or if the benefits of exercising the option exhibit the same dynamic as
the risky (market) instrument, i.e. u = ū. In this case, as is well-known (Merton,
1973, p. 144; Cox et al., 1979, pp. 234-235), a premature exercise of the option
to defer is never optimal.

2.6 Scenario IV: Risk aversion and no capital market

The fourth scenario covers the case of risk aversion without capital market
interaction. In this context, the value of the project equals the multi-period
certainty equivalent of the risky stream (given a particular state-contingent
exercise strategy) at the date of valuation. From the point of view of t = 0, it
is defined by

U0(ce, 0, 0) = E
[
U0(x0, x1, x2)

]
or

1− e−αce = 1− e−αx0 + β

2∑
τ=1

δτE
[
1− e−αxτ

]
.

Consequently, after one up-move, we obtain the following exercise policy. A
premature exercise results in a cash flow of

ce1,e = ub− f.

In contrast, the expected utility of waiting to invest amounts to

E
[
U1(x1, x2)

]
= pβδ

(
1− e−α(u2b−f)

)
.

With the condition
ce1,n = U−1

(
E
[
U1(x1, x2)

])
,

this translates into

ce1,n = − 1

α
ln
(

1− pβδ
(

1− e−α(u2b−f)
))

.

Clearly, the decision maker exercises after one up-move if ce1,e > ce1,n.
Using this result, it is possible to elaborate on the effect of time inconsistency.

A time-inconsistent decision maker will exercise the option earlier than a time-
consistent decision maker if

− 1

α
ln
(

1− pβδ
(

1− e−α(u2b−f)
))

< ub− f < − 1

α
ln
(

1− pδ
(

1− e−α(u2b−f)
))

holds. Solving

− 1

α
ln
(

1− pβδ
(

1− e−α(u2b−f)
))

!
= ub− f

for β yields

β̄ =
1− e−α(ub−f)

pδ
(
1− e−α(u2b−f)

) .
If β ≤ β̄ (and β̄ < 1) a time-inconsistent decision maker will exercise the option
earlier (for a similar reasoning, Khan et al., 2013, p. 207). β̄ is thus called the
critical value of the present-bias self-control parameter. As the expression above
shows, β̄ is a function of α, u, b, f, δ and p.
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3 Numerical example and comparative static
analysis

To illustrate the effect of quasi-hyperbolic discounting, we use an example with
the parameter shown in Table 2. To start with, we conduct some comparative

Table 2: Parameter specification

Parameter Value

u 1.25
b 100
p 0.75
f 100
α 0.02
δ 0.95
r 0.05

static analysis. The partial derivative of the critical self-control parameter β̄
with respect to the coefficient of risk aversion α equals

∂β̄

∂α
=

(ub− f)e−α(ub−f)

pδ
(
1− e−α(u2b−f)

) − (u2b− f)pδe−α(u2b−f)
(
1− e−α(ub−f)

)[
pδ
(
1− e−α(u2b−f)

)]2 .

As Figure 4(a) shows, it is positive for reasonable values of α. This could be
explained in the following way. An increase in risk aversion causes the cer-
tainty equivalent of future cash flows to decline. As a result, waiting will be
less beneficial. In order to lift the certainty equivalent up to the level of the
benefits resulting from immediate exercise, the self-control parameter has to
rise. Therefore, a wider range of time-inconsistent decision makers will exercise
prematurely.

The sensitivity of the critical self-control parameter β̄ to the magnitude of
an up-move u can be computed as follows

∂β̄

∂u
=

αbe−α(ub−f)

pδ
(
1− e−α(u2b−f)

) − 2αubpδe−α(u2b−f)
(
1− e−α(ub−f)

)[
pδ
(
1− e−α(u2b−f)

)]2 .

The expression is positive for conventional values of u (see Figure 4(b)). This
may be due to the following mechansism. If u rises, both the benefits resulting
from immediate exercise and the certainty equivalent of future cash flows will
increase, yet the former effect will dominate the latter. Consequently, waiting
will be less beneficial. In order to equalize the certainty equivalent of future
cash flows with the level of the benefits associated with immediate exercise, the
self-control parameter has to rise. Hence, a wider range of time-inconsistent
decision makers will exercise prematurely.

The partial derivative of β̄ with respect to the probability of an up-move p
equals

∂β̄

∂p
= − 1− e−α(ub−f)

p2δ
(
1− e−α(u2b−f)

) < 0.

Obviously, this expression is negative (see also Figure 4(c)). The result can be
explained as follows. An increase in p causes the certainty equivalent of future
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(a) Risk aversion α (b) Magnitude of an up-move u

(c) Probability of an up-move p (d) Utility weight δ

Figure 4: Sensitivity of the critical self-control parameter β̄
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cash flows to rise. This means that waiting will be more beneficial. In order
to reduce the certainty equivalent to the level of the benefits resulting from
immediate exercise, the self-control parameter has to decrease. Therefore, a
narrower range of time-inconsistent decision makers will exercise prematurely.

Finally, we investigate the sensitivity of the critical self-control parameter β̄
to the utility weight (or impatience) δ. Our computations yield

∂β̄

∂δ
= − 1− e−α(ub−f)

pδ2
(
1− e−α(u2b−f)

) < 0.

Clearly, this expression is negative (see also Figure 4(d)). Our explanation
is as follows. If δ increases, the certainty equivalent of future cash flows will
rise. Waiting will thus be more beneficial. In order to equalize the certainty
equivalent of future cash flows with the level of the benefits associated with
immediate exercise, the self-control parameter has to fall. Hence, a narrower
range of time-inconsistent decision makers will exercise prematurely.

A numerical analysis of the optimal exercise policy provides further insights.
As Table 3 in the appendix shows, in the case of risk neutrality and risk-free
borrowing and lending, waiting to invest is preferred for reasonable parameter
combinations. Due to preference-free valuation, individual components (e.g. the
utility weight δ) have no impact on the decision to be made.

The results concerning our second scenario are less explicit (see Table 4 in
the appendix). In case of risk aversion and risk-free borrowing and lending, both
premature exercise and waiting to invest occur. This means that an immediate
exercise of the option is possible irrespective of the particular values of β and δ
that characterize the decision maker’s time preference.

Our third scenario considers the case of spanning. Once again, valuation
is preference-free and individual components do not influence the decision to
be made. Instead, optimal exercise depends on the properties of the stochastic
processes governing the benefits of exercising the option and the market price of
the risky financial instrument. As Table 5 in the appendix shows, a premature
exercise is more likely to occur for higher volatilities of the market instrument,
provided the stochastic processes mentioned above are possitively correlated,
i.e. u > 1 and ū > 1.3

In the case of risk aversion and no capital market interaction, the decision
maker’s preferences exert influence on the exercise policy of the option to defer
the investment. As one would expect, exercise happens earlier for smaller values
of the utility weight δ and the self-control parameter β (see Table 6 in the
appendix). Yet, immediate exercise in all parameter combinations considered
requires the self-control parameter to be unrealistically low.4

4 Major findings and implications

This paper is concerned with the valuation of options to defer an investment
in the presence of quasi-hyperbolic discounting. It derives the following results.
Project characteristics and capital market environment constitute important

3Quah and Strulovici (2013) obtain similar results in the context of optimal stopping with
unspecified (and possibly individualistic) stochastic discounting.

4The specification of β = 0.7 and δ = 0.95 implies a discount rate of no less than 50.38 %
over one year.
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determinants of the decision maker’s exercise policy. This means that both pre-
mature exercise and waiting to invest are possible irrespective of the values of
the self-control parameter β. Moreover, different behavior of investors exhibit-
ing exponential and quasi-hyperbolic discounting occurs only for quite specific
parameter conditions.

As mentioned in the review of literature earlier on, our study partially shares
the object of investigation with the work of Khan et al. (2013). Yet their find-
ings clearly differ from ours. This is mostly due to an inconsistent combination
of market-based and preference-based valuation (see Khan et al., 2013, p. 212).
If there is a traded “underlying” (or at best, spanning is possible), so-called
risk-neutral probabilities can be calculated and used for valuation (see our dis-
cussion of scenario III). In this case, individual preferences (i.e. quasi-hyperbolic
discounting) play no role. On the other hand, if there is no such market instru-
ment (incomplete market), individual preferences have to be considered via the
stated preference function. Here, probabilities are the result of subjective esti-
mation and cannot be calculated in the sense of option pricing theory.5

The paper at hand documents the limited effect of quasi-hyperbolic dis-
counting in off-the-shelf economic settings. In light of empirical and experi-
mental evidence for time-inconsistent behavior, the following question merits
examination. Is time-inconsistent behavior really driven by quasi-hyperbolic
disounting, or rather by more fundamental irrationality (such as a disregard of
fairly ubiquitous market opportunities)?

5A more detailed analysis of Khan et al. (2013) is available from the author upon request.
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A Numerical example and optimal exercise
policy

The figures in parentheses are to be understood as follows. The first one refers
to the net benefits of immediate exercise ce1,e. The second number reflects the
certainty equivalent of future cash flows associated with deferring the investment
ce1,n. (ce1,e?, ce1,n) denotes the case of ce1,e > ce1,n, i.e. premature exercise
after one up-move. (ce1,e, ce1,n?) is to be interpreted as ce1,e < ce1,n, in which
case waiting to invest becomes optimal.

A.1 Scenario I: Risk neutrality and risk-free borrowing
and lending

Table 3: Optimal exercise in scenario I

δ

u δ = 0.92 δ = 0.95 δ = 0.98

u = 1.1 (10, 15?) (10, 15?) (10, 15?)
u = 1.25 (25, 40.18?) (25, 40.18?) (25, 40.18?)
u = 1.5 (50, 89.29?) (50, 89.29?) (50, 89.29?)
u = 1.8 (80, 160?) (80, 160?) (80, 160?)

A.2 Scenario II: Risk aversion and risk-free borrowing and
lending

Table 4: Optimal exercise in scenario II

δ

u δ = 0.92 δ = 0.95 δ = 0.98

u = 1.1 (10, 14.16?) (10, 14.16?) (10, 14.16?)
u = 1.25 (25, 33.36?) (25, 33.36?) (25, 33.36?)
u = 1.5 (50, 55.53?) (50, 55.53?) (50, 55.53?)
u = 1.8 (80?, 64.42) (80?, 64.42) (80?, 64.42)
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A.3 Scenario III: Spanning

Table 5: Optimal exercise in scenario III

(a) ū = 0.6

δ

u δ = 0.92 δ = 0.95 δ = 0.98

u = 1.1 (10, 11.56?) (10, 11.56?) (10, 11.56?)
u = 1.25 (25, 30.97?) (25, 30.97?) (25, 30.97?)
u = 1.5 (50, 68.82?) (50, 68.82?) (50, 68.82?)
u = 1.8 (80, 123.33?) (80, 123.33?) (80, 123.33?)

(b) ū = 1.2

δ

u δ = 0.92 δ = 0.95 δ = 0.98

u = 1.1 (10, 11.82?) (10, 11.82?) (10, 11.82?)
u = 1.25 (25, 31.66?) (25, 31.66?) (25, 31.66?)
u = 1.5 (50, 70.35?) (50, 70.35?) (50, 70.35?)
u = 1.8 (80, 126.06?) (80, 126.06?) (80, 126.06?)

(c) ū = 1.8

δ

u δ = 0.92 δ = 0.95 δ = 0.98

u = 1.1 (10?, 7.95) (10?, 7.95) (10?, 7.95)
u = 1.25 (25?, 21.28) (25?, 21.28) (25?, 21.28)
u = 1.5 (50?, 47.30) (50?, 47.30) (50?, 47.30)
u = 1.8 (80, 84.74?) (80, 84.76?) (80, 84.76?)
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A.4 Scenario IV: Risk aversion and no capital market

Table 6: Optimal exercise in scenario IV

(a) β̄ = 0.7

δ

u δ = 0.92 δ = 0.95 δ = 0.98

u = 1.1 (10?, 9.05) (10?, 9.38) (10?, 9.71)
u = 1.25 (25?, 19.74) (25?, 20.53) (25?, 21.34)
u = 1.5 (50?, 29.29) (50?, 30.61) (50?, 31.96)
u = 1.8 (80?, 32.46) (80?, 33.97) (80?, 35.53)

(b) β̄ = 0.8

δ

u δ = 0.92 δ = 0.95 δ = 0.98

u = 1.1 (10, 10.49?) (10, 10.88?) (10, 11.26?)
u = 1.25 (25?, 23.32) (25?, 24.30) (25?, 25.30)
u = 1.5 (50?, 35.33) (50?, 37.03) (50?, 38.80)
u = 1.8 (80?, 39.45) (80?, 41.45) (80?, 43.53)

(c) β̄ = 0.9

δ

u δ = 0.92 δ = 0.95 δ = 0.98

u = 1.1 (10, 11.97?) (10, 12.42?) (10, 12.86?)
u = 1.25 (25, 27.18?) (25, 28.38?) (25, 29.60?)
u = 1.5 (50?, 42.20) (50?, 44.41) (50?, 46.72)
u = 1.8 (80?, 47.59) (80?, 50.25) (80?, 53.07)

(d) β̄ = 1.0

δ

u δ = 0.92 δ = 0.95 δ = 0.98

u = 1.1 (10, 13.50?) (10, 14.01?) (10, 14.52?)
u = 1.25 (25, 31.37?) (25, 32.81?) (25, 34.30?)
u = 1.5 (50, 50.17?) (50, 53.06?) (50, 56.14?)
u = 1.8 (80?, 57.31) (80?, 60.94) (80?, 64.85)
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