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Abstract

This paper endogenizes the cost of external funds and explores the implications on irreversible
investments. The investment strategy incorporates equilibrium feedback that result from a bar-
gaining process between the firm and a lender. Contrary to debt issuance, tax benefits and distress
costs cannot be internalized by the firm. “Bad news” are less costly for the firm that has incentives
to accelerate investment whereas creditors intend to delay it; underinvestment or overinvestment
is determined by each party relative bargaining power and the size of bankruptcy costs. Default
and credit market imperfections raise the cost of capital, which dampens the value of waiting. The
impact of assets already in place, bankruptcy costs and leverage level are also examined.
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1 Introduction

Corporate investment decisions are often irreversible and have to be taken under a great deal of
uncertainty. Building on earlier works on investment by Jorgenson (1963) and Arrow (1968), Titman
(1985) and McDonald and Siegel (1986) were among the first to emphasize the benefits of delaying
an irreversible investment. When the payoffs of a project are uncertain, the investor has the option
to wait for new information. Therefore, a growth opportunity of a firm can be understood as a call
option on a real asset and undertaking a project is optimal only when the present discounted value of
future cash-flows exceeds the investment cost by the option value, the marginal benefits of investing
being equal to the marginal cost of investing augmented by the option value of waiting1.

Many companies rely on external funds to finance their projects. In January 2015, US corporations
had an average market value debt ratio (market value of debt to market value of the firm) equal to
38.3 percent whereas the average book value debt ratio (market value of debt to book value of the
firm) was 61.6 percent2. A growing number of papers has examined the interactions between financ-
ing and investment decisions. Researchers strive to understand the determinants of corporate leverage
and optimal capital structure by analyzing agency conflicts (and their associated costs) between eq-
uityholders and bondholders building on the seminal work by Jensen and Meckling (1976) and Myers
(1977).

This paper explores the relationship between the endogenously determined cost of debt and the
timing of an irreversible investment. We use an equilibrium framework where funding is allocated
through a negotiation process between the borrower (the firm) and the lender and study the implica-
tions on the value of the growth opportunity. Our setting is similar to McDonald and Siegel (1986):
time is continuous and the firm has the unique ability to undertake the risky project; however, it needs
to rely on external capital to finance the investment. The lender has access to capital markets at the
risk free interest rate. The debt contract signed between the two parties is a consol bond. When the
firm chooses to invest, it receives funding from the lender and immediately starts paying a perpetual
coupon. Bankruptcy is triggered by the inability of the firm to meet its current debt obligations;
liquidation takes place at no cost and the after tax proceeds of the resale of the company are shared
among creditors and shareholders according to the usual priority rules. We show that after adjusting
the true cost of the project to incorporate tax deductions on coupon payments and a wealth transfer
from bondholders to shareholders when bankruptcy occurs, the expression of the growth opportunity
is identical to the one obtained in the all equity case. The main difference is that now the timing of
the investment also affects this effective cost of investing. As argued by Jensen and Meckling (1976),
the presence of debt distorts the firm’s ex-post choice of risk as equityholders can potentially extract
value from debtholders by increasing investment risk after debt is in place. Closing the model, two
types of credit markets are examined. As a benchmark, we analyze the case of a perfectly competitive
lending sector. Alternatively, we assume that financing is granted after some negotiations, namely a
sequential bargaining mechanism (Stackelberg type) between the two parties. When tax effects are
ignored, two scenarios arise:

- When debt is repaid in full after liquidation, we show that the problem can be understood as
a usual all equity irreversible investment problem with possibly a higher effective cost of investing if
the lender makes a positive profit. The mark up charged over the riskfree rate rises with earnings
volatility and the lender’s bargaining power.

- Conversely, if creditors incur a loss at bankruptcy, we find that default risk combined with credit
market imperfections increase the cost of capital, which dampens the value of waiting to invest. When
default takes place, the loss is shared among parties: this makes the firm keen on hastening investment

1For more details, the reader can refer to Pindyck (1991) as well as the seminal book, Investment under Uncertainty,
by Dixit and Pindyck (1994).

2These values are reported from Aswath Damodaran’s website.
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whereas the lender intends to delay it. Essentially, “bad news” in the spirit of Bernanke (1983) are
relatively less costly for the firm, which provides incentives for earlier investment. Overinvestment
(underinvestment) arises when the firm has a high (low) bargaining power. The perfect competitive
lending sector corresponds to the limit case where the firm has absolute bargaining power, and thus
is able to extract all the surplus in the negotiation process. Numerical simulations show that the
coupon charged rises with the lender’s bargaining power, which can significantly reduce the value of
the growth opportunity. As far as uncertainty effects are concerned, intuitively, a higher earnings
volatility hastens liquidation inducing in equilibrium both a higher coupon and investment trigger.
In the competitive case, we find that more uncertainty always increases the option value. However,
under bargaining, the impact of the earnings volatility on the option value is twofold. In addition to
the usual enhancing effect due to the convexity of the payoffs, more uncertainty, by raising the cost of
capital, also negatively affects the value of waiting to invest. This effect is particularly strong when
the irreversible investment is close to be undertaken.

The impact of taxes on the investment decision arises through two channels. First, tax reductions
on coupon payments contribute to lower the effective cost of the project. Second, the higher the tax
rate, the smaller the after tax proceeds of the resale of the company, which implies a larger wealth
transfer from bondholders to equityholders when bankruptcy occurs leading in equilibrium to the
higher coupon charged. The direct effect of taxes is to accelerate the undertaking of the project
through the reduction of the effective cost of investing. By doing so, tax benefits shrink, so there
is an induced indirect effect which tends to postpone investment. The overall impact on the growth
opportunity is ambiguous. For low levels of the corporate tax rate, debt financing still negatively
affects the option value. However, for high levels of the corporate tax rate, due to large tax benefits,
the impact can become positive, and there may exist an optimal level of a debt that maximizes the
value of the growth opportunity.

This paper builds on several strands of the literature on irreversible investment and real options
and financing with risky debt. Bernanke (1983) highlights that only unfavorable outcomes actually
matter for the decision to undertake or postpone an investment. He calls this effect the “bad news
principle of irreversible investment”. Investment can also proceed incrementally and the firm may
decide sequentially to expand the size and capacity of a factory. Pindyck (1988) addresses the issue
of capacity choice under uncertainty allowing for the opportunity of not using the incremental unit
when demand is low. One of the central issues of this paper, the investment-uncertainty relationship.
Ingersoll and Ross (1992) study the effects of uncertain interest rates on the investment timing and
obtain that uncertainty has an ambiguous impact on the option value of waiting. Similarly, Caballero
(1991) demonstrates that when relaxing the hypothesis of symmetric adjustment costs, the positive
relationship between investment and uncertainty may still hold. He identifies the nature of competition
as the key determinant of the relationship. Under imperfect competition, the investment-uncertainty
relationship can become negative when the adjustment costs are highly asymmetric and there is a
strong negative relationship between marginal profitability of capital and the level of capital.

Along with debt arises the issue of capital structure and its implications on investment. The
Modigliani-Miller theorem (1958) states that financing and investment decisions are completely sep-
arable in perfect capital markets. Merton (1974) and (1977) was the first to use a non-arbitrage
approach to evaluate risky corporate debt. Leland (1994) focuses on the optimal capital structure by
explicitly computing the value of time independent long-term protected debt and unprotected debt
using contingent claim techniques. Leland (1998) analyzes the joint determination of capital structure
and the level of risk and in particular the role played by tax advantages, default costs and agency costs
from asset substitution3. Paseka (2004) endogenizes default on debt and looks at the implications on

3Asset substitution refers to the fact that the presence of debt may distort the firm’s ex-post choice of risk as
equityholders can potentially extract value from debtholders by increasing investment risk after debt is in place. Leland
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credit spreads. In two seminal articles, Jensen and Meckling (1976) and Myers (1977) argue that,
when the firm has risky debt outstanding and when managers act to maximize equity value rather
the total firm value, managers have incentives to under-and overinvest in future growth opportunity
as well as engaging in riskier activities since they can transfer risk to bondholders and preserve upside
potential. Rational bondholders anticipate conflicts and will require a higher cost of debt financing.
These agency conflicts have the potential to significantly reduce the firm value and thereby temper
the firm’s use of debt financing. As reported by Lang, Ofek and Stultz (1996) as well as in Billet,
King and Mauer (2007), there exists a negative relationship between growth opportunities and lever-
age for unprotected debt. Lyandres and Zhdanov (2005) reach a more balanced conclusion as they
uncover two antagonistic over and under-investment effects. Finally, Westerfiled and Bradford (1993)
document that 80 percent of firms prefer relying on internal sources of funds for their investments.
In our paper, under-investment may be rationalized by credit market imperfections. Over-investment
is also obtained in Childs, Mauer and Ott (2005) for an expansion whose underlying asset is riskier
than assets-in place. reduces the wedge between the investment trigger and the cost of investing with
respect to the self financing case. In Mauer and Triantis (1994), the firm dynamically manages its in-
vestment and financing decisions taking into account operating adjustment and recapitalization costs.
They find that a higher production flexibility raises the debt capacity and consequently the value of
tax shield.

Some papers examine investment issues within an equilibrium framework. Hugonnier, Morallec and
Sudaresan (2005) study lumpy investments financed with equity within a general equilibrium model
and obtain that equilibrium feedback effects also reduce the value of waiting to invest. Gomes (2001)
points out that the role of cash flow on investment is probably overstated when using reduced-form
investment regressions due to a combination of measurement error in q and identification problems.
Sabarwal (2003) studies debt financing under limited liability in a perfect capital market. Ignoring
tax effects, he finds that debt financing leads to over-investment. Mauer and Sarkar (2005) consider
an expansion partially financed with debt when default is triggered at a value maximizing equity.
They take into account bankruptcy costs and tax effects and assume that the amount of money
lent corresponds to the fair price of the debt, i.e., the lender makes no profit. Firms maximizing
equity rather than total firm value undertake the investment much earlier, which induces a significant
credit spread and large agency costs. Their analysis is quite insightful but the coupon payment on
debt is taken as exogenous. In contrast in this paper, we are interesting in examining the impact of
equilibrium feedbacks from the credit market on the investment decision and the cost of financing.
Fries, Miller, and Perraudin (1997) endogenize the output price by considering entry and exit of firms
in a competitive industry and explore the implications on the price of debt and dynamic adjustments
of the capital structure. They find that the value of firm can be decomposed into two components:
the value of a firm with a fixed leverage and a continuum of options which are progressively exercised
each time output exceeds its previous peak.

The paper is organized as follows. Section 2 describes the economic setting and provides some
analytical results. In section 3, credit markets are assumed to be perfectly competitive. Conversely,
in section 4, we use a sequential mechanism a la Stackelberg and alternatively a Nash bargaining to
model the negotiation process between the two parties. Section 5 concludes. Proofs of all results are
collected in the appendix.

and Toft (1996) show that these costs could be reduced by relying on short term debts by providing a better convergence
between shareholders and bondholders interests.
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2 The Economic Setting

Time is continuous; the manager of a firm has to choose optimally the timing of an irreversible
investment under uncertainty while partially relying on external capital to cover the cost of the project.

2.1 Investment Opportunity and Information Structure

Uncertainty is modeled by a probability space (Ω,F , Pw) on which is defined a one dimensional (stan-
dard) Brownian motion w. A state of nature ω is an element of Ω. F denotes the tribe of subsets of
Ω that are events over which the probability measure P is assigned. At time t, the investor’s informa-
tion set Ft is the σ-algebra generated by the observations of earnings of the project, {Ps; 0 ≤ s ≤ t)}
and augmented. The filtration F = {Ft, t ∈ R+} is the information structure and satisfies the usual
conditions (increasing, right-continuous, augmented).

Investing into the project increases the production capacity (as well as earnings) of the firm by one
unit; let ρ > 0 denote the number of units already in place. Prior to investment, gross earnings of the
firm are equal to ρP , so that once the investment completed, gross earnings are equal to (1+ρ)P . The
project generates (observable) gross revenues P that fluctuate across time according to a geometric
Brownian motion

dPt = Pt (αdt+ σdwt) ,

where dwt is the increment of a standard Wiener process under the probability Pw, α is the average
growth rate of future revenues and σ is the earnings instantaneous volatility. The investment is
irreversible with cost I > 0 and the risk free rate is r > 0. Let µ be the average return of an asset
portfolio perfectly correlated with P . As argued in Dixit and Pindyck (1994), we assume that δ = µ−α
is positive in order for the value of the project to be bounded. Assuming that the output of the project
is tradable, under complete markets, µ is the market risk-adjusted rate of return and by the CAPM
formula, we have

µ = r + ρPmφσ,

where φ is the market price of risk and ρPm is the coefficient of correlation between P and the whole
market. It follows that under the risk neutral probability Q, the dynamics of the gross revenues P are
given by

dPt = Pt

(
(r − δ)dt+ σdwQt

)
,

where dwQt is the increment of a standard Wiener process under the probability Q. In the sequel,

EQt denotes the conditional probability at time t given the information set Ft under the risk neutral
probability Q.

2.2 Debt Contract

Contract specifications are as follows: The lender agrees to deliver an amount D ≤ I when investment
is undertaken and immediately after, the firm agrees to pay a perpetual fixed coupon C > 0 (consol
bond). Equityholders have the opportunity to default and in this case bankruptcy is declared. We
assume that the company files under Chapter 74 rather than under Chapter 115. The firm’s assets

4Under Chapter 7, the firm’s assets are liquidated by a court appointed trustee; the priority of claims is respected.
Recall that the Absolute Priority Rule (APR) distributes the firm’s payoffs according to priority. In particular, junior
claimholders receive nothing until senior claimholders are fully paid. In the United States (1) administrative expenses
of the bankruptcy process are paid first, then come (2) unpaid taxes or debts to government agencies (e.g., the Pension
Benefit Guarantee Corporation) (3) some wage claims (up to some ceiling), (4) secured and senior creditors, (5) junior
creditors, (6) preferred shares, and, last (7) equityholders. For more details, see Tirole (2006).

5Alternatively, firms can file bankruptcy under Chapter 11, which allows for a workout in which a reorganization
plan is designed and thus liquidation is at least temporarily avoided. Under Chapter 11, all payments to creditors are
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are liquidated by a court appointed trustee. Bankruptcy costs are assumed to be proportional with
factor6 α ∈ [0, 1] to the (market) value of assets sold. The priority of claims is respected; the lender
receives the minimum value between the residual value of the firm once the bankruptcy costs are paid
and the perpetuity C

r .

In this setting, debt is unsecured and no covenant is attached to it. It can be understood and a
perpetual loan whose principal is never to be repaid. As shown in the sequel, bankruptcy is triggered
as soon as the firm runs out of equity: we have in mind the case of small companies (proprietary
business) that does not have the ability to issue new equity or raise additional external capital.
Under the assumption that earnings follow a geometric Brownian motion, it is possible to derive the
probability of bankruptcy and get some insights about the contract.

2.2.1 Probability of Bankruptcy

As shown in the sequel, it is optimal to invest as soon as earnings reach some trigger level P = P ∗

and operate until some default threshold P = PD < P ∗ that is found to be proportional to the coupon
charged C. Using some results on first time passage7 of a geometric Brownian motion, the probability

of bankruptcy (under the risk neutral measure) is equal to
(
P ∗

PD

)[1− 2(r−δ)
σ2

]+
, where [x]+ = max(x, 0).

Observe that this probability is non-decreasing in the ratio P ∗

PD
. When the drift of the project (adjusted

for volatility) is non-positive, i.e. r− δ− σ2

2 ≤ 0, bankruptcy occurs with certainty; the average time8

between the investment and bankruptcy dates is finite and given by

E[τ ] =
log P ∗

PD

δ − r + σ2

2

. (1)

Earnings volatility σ has a direct effect through the travelling speed of the earning process: a higher
volatility hastens bankruptcy. In addition, at the equilibrium, there is an indirect effect through
the investment threshold P ∗ and coupon C. We shall see that both parties have incentives to delay
bankruptcy; however, the lender is the one who has the greatest incentives.

We now briefly review some main results for the all-equity financed case.

2.3 All-Equity Financed

Corporate taxes are paid at a rate τc on earnings. At time 0, starting at P0, the value of the equity
of an all-equity financed firm F0(P0) is given by

F0(P0) = sup
τ≥0

EQ0

[∫ τ

0
ρ(1− τc)Pse−rsds+

(
(1− τc)(1 + ρ)Pτ

δ
− I
)
e−rτ

]
=

ρ(1− τc)P0

δ
+G0(P0),

where G0(P0) = sup
τ≥0

EQ0

[(
(1−τc)Pτ

δ − I
)
e−rτ

]
. The value of the all-equity firm is simply equal to

the value of the existing assets (incidentally the value of the equity of the firm that never expands)

suspended (automatic stay) and the firm can obtain additional financing by granting new claims seniority over existing
ones. Paseka (2003) investigates this case.

6A study of Chapter 7 liquidations of small businesses found that the average direct costs of bankruptcy were 12% of
the value of the firm’s assets (see Tashjian, Lease and McConnell (1996)).

7See Karlin and Taylor (1981), chapter 15, from page 191 to page 202.
8See for instance Abel and Eberly (1998).
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augmented by the option value G0 of expanding by one unit. Clearly, assets already in place do not
affect the timing of the investment. This case has been studied extensively in the literature (see for
instance Dixit and Pindyck, 1994 chapter 6, p 180-185). The problem can be seen as an infinite horizon
American Call option with strike price I on an underlying asset whose value is the cumulated future
discounted cash flows generated by the project. The option value G0 is given by

G0(P ) =


(

(1−τc)P ∗0
δ − I

)(
P
P ∗0

)β1
, for P ≤ P ∗0

(1−τc)P
δ − I, for P ≥ P ∗0 ,

where β1 and β2 are respectively the positive and negative roots of the quadratic equation

σ2

2
x2 + (r − δ − σ2

2
)x− r = 0,

and
(1−τc)P ∗0

δ = β1
β1−1I is the investment trigger. The implicit value of the coupon is C∗0 = rI. The

investment decision is: invest as soon as P hits the trigger value P ∗0 . Dixit and Pindyck (1994)
conclude that the NPV rule is simply incorrect. There exists a wedge of size β1

β1−1 > 1 between the
value of the project that triggers investment and the cost of undertaking it.

We now investigate how relying on external funds affects the timing of the investment decision and
the value of the growth opportunity. We first analyze the firm problem.

2.4 The Firm Problem

We start by determining the benefits of investing into the project.

2.4.1 Reward Value of Investing

After investing, shareholders operate the business and optimally choose the time to default as in
Leland (1994). Let us normalize the date at which investment is completed to be 0 and denote
τD = inf {t ≥ 0, Pt = PD} the default stopping time for some optimal default threshold PD to be
determined. Equityholders choose τD so as to maximize

V F (P0) = sup
τD≥0

EQ0

[∫ τD

0
(1− τc)((1 + ρ)Ps − C)e−rsds

]
,

and for all 0 ≤ t ≤ τD, V F (Pt) ≥ 0 or equivalently, for all P ≥ PD, V F (P ) ≥ 0 and for all P ≤ PD,
V F (P ) = 0. As shown in Leland (1994), optimality is achieved by imposing at P = PD a value
matching, namely V F (PD) = 0 and a smooth pasting condition, (V F )′(PD) = 0; the solution is given
by

V F (P ) =
(1− τc)(1 + ρ)P

δ
− C

r
+
τcC

r

(
1−

(
P

PD

)β2)
+

(
C

r
− (1− τc)(1 + ρ)PD

δ

)(
P

PD

)β2
, (2)

where the optimal default threshold9 is such that (1+ρ)PD
δ = β2

β2−1
C
r or equivalently (1+ρ)PD = β1−1

β1
C.

The first term in equation (2) (1−τc)(1+ρ)P
δ − C

r is the difference between the intrinsic value of the
project and the value of a perpetuity with coupon C. Next, tax benefits can be seen as a security

9Observe that V F (P0) = (1 − τc)
(

(1+ρ)P0
δ

− C
r

)
+ sup
τD≥0

(1 − τc)E
Q
0

[
(C
r
− (1+ρ)PτD

δ
)e−rτD

]
. Equityholders have a

put option that they exercise at the critical threshold PD such that (1+ρ)PD
δ

= β2
β2−1

C
r
.
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that pays a coupon τcC as long as the firm is solvent and pays nothing in bankruptcy. The value of

this security is TB(P ) = τcC
r

(
1−

(
P
PD

)β2)
. The last term represents the present value of the loss

incurred by the bondholders and that is transferred to shareholders when bankruptcy is declared. Let

TF (P ) =
(
C
r −

(1−τc)(1+ρ)PD
δ

)(
P
PD

)β2
denote the present value of this wealth transfer. Clearly, to

the extend that this expropriation is anticipated, in equilibrium, the ex-post wealth transfer will be
offset by an ex ante higher price of debt. Finally, note that for a given coupon C, a higher corporate
rate τc lowers the after tax intrinsic value of the project (1−τc)P

δ but rises both tax benefits TB(P )
and the transfer value TF (P ).

2.4.2 Maximizing Equity Value

At time 0, starting at P0, the value of equity F (P0) is given by

F (P0) =
(1− τc)ρP0

δ
+G(P0),

where as before G(P0) = sup
τ≥0

EQ0

[(
V F (Pτ )− (1−τc)ρP

δ − I +D
)
e−rτ

]
denotes the option value of

waiting. Dropping the time index 0, we find that

F (P ) =
(1− τc)ρP

δ
+AP β1 +BP β2 , P ≤ P ∗,

where P ∗ is the optimal investment threshold. Since F (0) = 0, this implies that B = 0 and A is a
positive constant to be determined. The value matching and smooth pasting conditions respectively
are

A(P ∗)β1 =
(1− τc)P ∗

δ
− C

r
+ TB(P ∗) + TF (P ∗)− I +D (3)

β1A(P ∗)β1−1 =
(1− τc)

δ
+ TB′(P ∗) + TF ′(P ∗). (4)

For P ≤ P ∗, the value of the equity is given by

F (P ) =
(1− τc)ρP

δ
+

(
(1− τc)P ∗

δ
− IE(P ∗)

)(
P

P ∗

)β1
, (5)

with IE(P ∗) = I + C
r −D−TB(P ∗)−TF (P ∗). Eliminating constant A between relationships (3) and

(4) leads to the following relationship between the investment trigger P ∗ and the coupon C

(1− τc)P ∗

δ
=

β1

β1 − 1

(
I +

C

r
−D

)
︸ ︷︷ ︸

cost of the project effect when no default

− β1 − β2

β1 − 1

(
C

r
− (1− τc)(1 + ρ)PD

δ

)(
P ∗

PD

)β2
︸ ︷︷ ︸

bankruptcy effect

+
τcC

r

(
− β1

β1 − 1

(
1−

(
P ∗

PD

)β2)
− β2

β1 − 1

(
P ∗

PD

)β2)
︸ ︷︷ ︸

tax shield effect

. (6)

Recall that (1 + ρ)PD = β1−1
β1

C and let denote S the set of couples (P ∗, PD) ∈ R2
+ that satisfies

relationship (6) with P ∗ ≥ PD.

We now interpret relationships (5) and (6) while taking the coupon C as given.
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Equity Value. Relationship (5) indicates that the problem can be understood as a standard ir-
reversible investment all equity financed with equity with effective cost IE(P ∗). However, the main
difference is that the investment timing through the choice of P ∗ has a direct impact on the reduction
of the cost of investing through the tax benefits TB(P ∗) and the transfer of value TF (P ∗).

Investment Trigger. Three effects govern the optimal timing of the investment. First, should no
default occur, a high cost of investing I + C

r −D delays the investment decision. Second, the effect
of bankruptcy is globally captured by the wealth transfer from bondholders to shareholders; it always
accelerates the investment decision and can be expressed as

1

β1 − 1
(εTF − β1)TF (P ∗),

where εTF < 0 is the elasticity of the transfer with respect to earnings P . The term −β1TF (P ∗)
β1−1

encapsulates the direct reduction of the cost of capital due to the transfer; the term εTFTF (P ∗)
β1−1 is

also negative as delaying investment decreases the present value of the wealth transfer. Third, tax
deductions also affect the investment timing; the tax shield effect can be rewritten

1

β1 − 1
(εTB − β1)TB(P ∗),

where εTB > 0 is the elasticity of tax benefits with respect to earnings P . The term −β1TB(P ∗)
β1−1 reflects

the direct reduction of the cost of capital due to the tax shield; the term εTBTB(P ∗)
β1−1 > 0 represents

the increase in tax benefits due to delaying investment. The overall sign of the tax deduction effect is
ambiguous. Finally, observe that relationship (6) can be rewritten

(1− τc)P ∗

δ
=
β1IE(P ∗)

β1 − 1
− (1− τc)(1 + ρ)

β1 − 1

PD
δ

(
P ∗

PD

)β2
,

so we can conclude that the decision of investing is always made at an earlier stage with respect to
some all-equity financed project with (true) cost IE(P ∗). Bernanke’s “bad news principle of irreversible
investment” only applies partially in a context with debt since the impact of “bad news” are now shared
between entrepreneurs and lenders.

2.5 The Lender Problem

Once investment is completed at some normalized date 0, the lender receives the coupon C until
liquidation date τD; Since bankruptcy costs are assumed to account for α percent of the residual value
of the firm (1+ρ)PD

δ , at bankruptcy debtholders receiveX(PD) = (1−τc)(1−α)(1+ρ)PD
δ . For PD ≤ P0 ≤ P ∗,

the reward value of lending V L is given by

V L(P0) = EQ0

[∫ τD

0
(1− τc)Ce−rsds+ e−rτDX(PD)

]
.

Given preliminary result 1. derived in appendix 1, we have EQ0 [e−rτDX(PD)] =
(
P
PD

)β2
X(PD) and

EQ0

[∫ τD

0
Ce−rsds

]
= M1

(
P0

PD

)β1
+M2

(
P0

PD

)β2
+
C

r
, P0 ≥ PD,

where M1 and M2 are constants to be determined. To rule out bubbles, we must have M1 = 0. The
boundary condition at P = PD is M2 + C

r = 0. Dropping the time index, once the investment is
completed, for P ≥ PD, the reward value of lending can be rewritten

V L(P ) =
(1− τc)C

r
− (1− τc)

(
C

r
− (1− α)(1 + ρ)PD

δ

)(
P

PD

)β2
. (7)
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Observe that
(
P
PD

)β2
is the present value of receiving $1 contingent on bankruptcy: V L(P ) is the

after tax average value of a receiving coupon C weighted by the probability that bankruptcy did not

occur 1−
(
P
PD

)β2
and at liquidation with weight

(
P
PD

)β2
the residual value of the firm (1+ρ)PD

δ less the

bankruptcy costs α(1+ρ)PD
δ . This expression is similar to the one derived in Leland (1994). It is easy

to see that V L(P ) is increasing in the coupon C and non-decreasing in earnings value P , which reflects

the lenders’ incentives to delay investment. For convenience, let us set BC(P ) = α(1+ρ)PD
δ

(
P
PD

)β2
the

present value of the bankruptcy costs. The value of the lender L is given by

L(P ) =

{ (
V L(P ∗)−D

) (
P
P ∗

)β1
, P ≤ P ∗

V L(P )−D, PD ≤ P ∗ ≤ P.

Finally, observe the following decomposition:

V F (P ) + V L(P ) = (1− τc)
(
P

δ
−BC(P )

)
.

The (after tax) intrinsic value of the project (1−τc)P
δ , less the (after tax tax) bankruptcy costs must

be divided between equityholders and the lender.

As a benchmark, in order to highlight the effects of an equilibrium credit market mechanism on
the investment timing and the option value, we now examine the case of a firm that is free to issue
some unsecured debt to finance its expansion.

2.6 Unsecured Debt Issuance

2.6.1 No Restriction on the Amount of Debt Issued

In this paragraph, we assume that the firm is free to issue any amount of debt with market value

D(P ) =
C

r
−
(
C

r
− (1− α)(1 + ρ)PD

δ

)(
P

PD

)β2
, P ≥ PD.

Coupon C is to be chosen by the manager of the firm and as before, the optimal default threshold and
the coupon are linked by the following relationship: (1 + ρ)PD = β1−1

β1
C. Immediately after investing

at P ∗, the value of the equity is equal to V F (P ∗)− (I −D(P ∗)). Thus, at time 0, starting at P0, the
option value F (P0) is given by

F (P0) =
(1− τc)ρP0

δ
+ sup
τ≥0, C≥0

EQ0

[(
(1− τc)Pτ

δ
+ TB(Pτ )− (1− τc)BC(Pτ )− I

)
e−rτ

]
.

Using the matching condition at P = P ∗, this program is equivalent to

G(P0) = max
P ∗,C

(
(1− τc)P ∗

δ
− IE,F (P ∗)

)(
P0

P ∗

)β1
, P0 ≤ P ∗,

with IE,F (P ∗) = I − TB(P ∗) + (1 − τc)BC(P ∗). As shown in appendix 2.1, the optimal investment
trigger P ∗F and the optimal coupon C∗F are given by

P ∗F =
β1Iδ

β1 − 1

1

1− τc + τc(1 + ρ)
(

τc
τc−αβ2

)− 1
β2

C∗F
r

=
β1(β2 − 1)I

β2(β1 − 1)

1

τc + 1−τc
1+ρ

(
τc−αβ2
τc

)− 1
β2

,

10



and the option value is

G(P0) =
I

β1 − 1

(
P0

P ∗F

)β1
, P0 ≤ P ∗F .

This expression is similar to the one found by Sundaresan, Wang and Yang (2014).

Properties First of all, regardless of the size of the bankruptcy costs, over-investment always pre-
vails as we have P ∗F ≤ P ∗0 . However, note that the effective cost of the project is IE,F (P ∗F ) =

(β1−1)(1−τc)−τc(1+ρ)
(

τc
τc−αβ2

)− 1
β2

(β1−1)

(
1−τc+τc(1+ρ)

(
τc

τc−αβ2

)− 1
β2

)I < I and it is easy to check that
(1−τc)P ∗F

δ ≥ β1IE,F (P ∗F )
β1−1 : when able

to internalize both tax benefits and distress costs, equityholders optimally decide to postpone their
investment decision with respect to an all-equity financed project with cost IE,F (P ∗F ). This result is
the opposite of the one found in section 2.4.2. when the coupon is taken as given. Second, observe
that for all P ≤ P ∗F , F (P ) ≥ F0(P ) : debt financing always increases the value of the equity and the
percentage increase in the option value with respect to the all-equity financed firm is given by

∆G =
G−G0

G0
=

1 +
τc(1 + ρ)

(
τc

τc−αβ2

)− 1
β2

1− τc


β1

− 1.

This ratio is increasing in τc from 0 up to infinity, increasing in ρ and decreasing in α. All the benefits
are coming from tax deductions; in fact if τc = 0, it is optimal not to issue debt and expansion must
be all-equity financed. As illustrated by the numerical simulations, the corporate tax rate is a key
parameter when expansion is financed by debt issuance; a small change in the corporate tax rate have
very strong quantitative effects. Furthermore, since ∂β1

∂σ < 0 and ∂β2
∂σ > 0, it is also easy to see that

this ratio shrinks as uncertainty rises.

Special Case α = 0. Default occurs right after the investment is completed. Tax benefits are at
their pinnacle and fully internalized: the option value is the same as its all-equity financed counterpart
facing a corporate tax rate equal to −ρτc, i.e. a credit tax rate equal to ρτc. The amount of cash raised
at the investment date D(P ∗F ) is increasing in ρ but decreasing in τc and equal to β1I

β1−1 ×
1

τc+
1−τc
1+ρ

,

which of course is exactly the total expected value of the equity
(1+ρ)P ∗F

δ for an all-equity financed firm
facing a credit tax rate of ρτc.

General Case: α > 0. As shown in the appendix 2, we have
∂P ∗F
∂α > 0,

∂C∗F
∂α < 0,

∂P ∗F
∂ρ > 0,

∂C∗F
∂ρ > 0.

For small values of ρ, we have
∂P ∗F
∂τc

> 0 and
∂C∗F
∂τc

> 0 and, if ρ is large enough, P ∗F and C∗F are
hump-shaped functions of the corporate tax rate τc. Impacts on the option value G are as follows:
for all P ≤ P ∗F , ∂G(P )

∂α < 0, ∂G(P )
∂ρ > 0, ∂G(P )

∂τc
< 0 if ρ is small, otherwise the option value G is a

hump-shaped function of τc. Finally, as far as uncertainty effects are concerned, we establish that as

in the all-equity financed case,
∂P ∗F
∂σ > 0 and ∂G(P )

∂σ > 0: more volatility always enhances the growth
opportunity but delays the investment decision.

Amount of Cash Raised at the Investment Date The amount of cash D(P ∗F ) raised at the
date the investment is completed is given by

D(P ∗F ) =
β2C

∗
F

(β2 − 1)r

(
1− α+

α(1− αβ2)

τc − αβ2

)
.

One can show that D(P ∗F ) is an increasing (decreasing) function of the amount of assets already in
place ρ (the bankruptcy cost α). Furthermore, if ρ is small (large enough), D(P ∗F ) is an increasing

11



(hump-shaped) function of the corporate tax rate τc. The bigger the size of the firm (large ρ), the
greater its ability to meet the coupon payments. Regarding the impact of the corporate tax rate τc,
ceteris paribus, when τc is high, tax shield benefits are large and so are the incentives to issue a large
amount of debt; note that when τc = 1, we have D(P ∗F ) = β1I

β1−1 > I. However, as shown below, a
higher corporate tax rate τc raises the cost of the debt, which may deter the firm from issuing too
much debt. We can conclude that if τc is low, ρ is small or/and α is large, the amount of cash the firm
is able to raise may not be enough to satisfy its investment needs D; formally, we have D(P ∗F ) ≤ D
exactly when (

1− α+ α(1−αβ2)
τc−αβ2

)
v

τc + 1−τc
1+ρ

(
τc−αβ2
τc

)− 1
β2

≤ β1 − 1

β1
. (8)

Finally, the (average) interest rate rF paid on the risky debt is equal to rF =
C∗F

D(P ∗F ) and is given by

rF = r
β2 − 1

β2

1

1− α+ α(1−αβ2)
τc−αβ2

.

We have rF ∈
[
r, β2−1

β2
r
]

and clearly ∂rF
∂τc

> 0 and we also have ∂rF
∂α < 0. This last result may seem

paradoxical but recall that
∂P ∗F
∂α > 0 and

∂C∗F
∂α < 0, so as α goes up, bankruptcy is delayed. We also

find that ∂rF
∂σ > 0, i.e., not surprisingly, more uncertainty raises the cost of the debt.

2.6.2 Amount of Debt Issued Must Cover Investment Needs

In this section we assume that relationship (8) holds: should no restrictions be imposed on the amount
of debt optimally issued, investment needs are not covered. Therefore, the manager’s must solve the
following program

max
P ∗,C

(1−τc)ρP
δ +

(
V F (P ∗)− (1−τc)ρP ∗

δ − I +D
) (

P
P ∗

)β1
s.t. D(P ∗) = D, (1 + ρ)PD = β1−1

β1
C and PD ≤ P ∗.

(F )

The existence of a solution is established in appendix 2.2. Program F is equivalent to maximizing a
simpler one dimensional program that consists in choosing the reduced variable z = PD

P ∗ , the default
threshold over the investment trigger ratio. On the one hand, the larger the equilibrium value z∗F , the
longer the investment is postponed, but on the other hand, once the investment completed the sooner
bankruptcy is declared.

As analytical results are hard to obtain, we conclude the analysis by performing some comparative
statics on the equilibrium couple (P ∗F , C

∗
F ) and the option value G by relying on numerical simulations.

2.6.3 Numerical Simulations

In order to access the quantitative of debt issuance, we perform some comparatives statics in the debt
ratio u = D/I, the corporate tax rate τc, and the bankruptcy cost α on the after-tax investment

trigger
(1−τc)P ∗F

δ , the average interest rate paid on risky debt is rF and the relative gain/loss in the

value of waiting ∆G = G−G0
G0

. Let r = 0.04, δ = 0.04, I = 100 and σ = 0.2. It follows that all-equity

investment trigger is equal to
(1−τc)P ∗0

δ = 200.
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First, we consider the case where τc = 0.35. For the set of parameters chosen, it turns out that
the firm is free to issue any level of debt it wants. Table I summarizes the results.

ρ = 0 ρ = 1

α 0 0.5 0.75 1 0 0.5 0.75 1

(1−τc)P ∗F
δ 130 163.7 170.7 175.5 96.3 138.6 148.9 156.3

∆G (%) 136.6 49.2 37.2 29.7 331.4 108.4 80.3 63.6
rF (%) 8.00 5.79 5.54 5.40 8.00 5.79 5.54 5.40

Table I: Comparative statics for an unconstrained firm τc = 0.35

Next, we consider the case where τc = 0 for u = 0.5 and u = 1. For the set of parameters chosen,
the firm is always constrained regarding how much debt to issue, except for the case α = 0, which is
identical to the all-equity financed case. Table II summarizes the results.

ρ = 0 ρ = 1

α 0 0.5 0.75 1 0 0.5 0.75 1

u = 0.5

(1−τc)P ∗F
δ 200 206.1 209.5 213.2 200 202.6 204.0 205.5

∆G (%) 0 −1.86 −2.83 −3.84 0 −1.68 −2.11 −2.54
rF (%) 4.00 4.45 4.54 4.63 4.00 4.20 4.24 4.28

u = 1

(1−τc)P ∗F
δ 200 231.3 248.5 266.5 200 211.7 218.0 224.4

∆G (%) 0 −8.18 −11.99 −15.6 0 −6.77 −8.34 −9.88
rF (%) 4.00 5.02 5.18 5.33 4.00 4.43 4.51 4.58

Table II: Comparative statics for a constrained firm τc = 0

Overall, we can claim that the impact of the size of the assets already in place is to reduce (increase)
the wedge between the levered firm and the all-equity financed cases when the firm’s choice of debt
is constrained (unconstrained), both for the timing and the cost of the investment as well as the
magnitude of the option value. It also appears that the impact of parameter ρ is quite significant
where the firm can freely choose its debt level (τc = 0.35) but somewhat modest when it is forced to
issue amount D (τc = 0).

Then, we set ρ = 0 and graphically illustrate our findings for two values of the corporate tax rate
τc = 0 and τc = 0.1.

Investment Trigger
(1−τc)P ∗F

δ . When τc = 0, the firm is always forced to issue amount D. Figure
1 shows that both a higher debt ratio u = D/I and bankruptcy cost α always delay investment, up to
33% (for u = 1 and α = 1). When τc = 0.1, for small values of debt ratio u, the firm can freely choose
its debt level and over-investment takes place (figure 2). As u rises, the higher the bankruptcy cost
α, the sooner the firm becomes constrained to issue amount D. Eventually, for large enough values of
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the debt ratio u, under-investment prevails, but the impact is weaker than in the case τc = 0. When
τc = 0.35, over-investment always prevails and the investment strategy is all the more aggressive as
bankruptcy costs are low and assets in place large. Even for a pure development project (ρ = 0),
the reduction in the investment trigger can be severe (down by 35%) with respect to the all-equity
financed case.

Option Value G. Graphs 3 and 4 plots the relative changes in the option value as a function of the
debt ratio u = D/I. In figure 3, for τc = 0, we observe that the impact of the debt financing is all the
more negative as the debt ratio u and the bankruptcy cost α are large, with more than 15% for u = 1
and α = 1. For a higher corporate tax rate, τc = 0.1, for low values of u, the firm can freely decide
of the amount of debt to be released; in this case, issuing debt raises the option value with respect to
the all-equity financed case, up to 23.5% for α = 0 (figure 4). For large enough bankruptcy costs α, as
the debt ratio u rises, covering investment needs becomes binding, and the option value decreases as
parameters u and α rise, down to 6.2% (for u = 1 and α = 1). For τc = 0.35, recall that the amount
of debt to be issued can always be freely decided; table I indicates that gains in the option value are
always significant and potentially can be huge - up to 331% - for small (large) values of α (ρ).

Interest Rate Paid on Risky Debt rF . Figures 5 and 6 depict the effects of the debt ratio u on
the (average) interest paid on risky debt. For τc = 0, the firm is always forced to issue some debt
level D; as shown in Figure 5, the interest rate charged on the debt is increasing with the debt ratio
u and bankruptcy cost and the premium paid over the risk free rate rF − r can be significant, up to
135 basis points (for u = 1 and α = 1). For τc = 0.1, figure 6 reveals that as long as the firm is not
constrained, we have seen that the interest rate paid is independent of the debt ratio u, decreasing in
the bankruptcy cost and notice that discrepancies are significant since the premium rF − r can reach
400 basis points (when α = 0). For large enough values of the debt ratio u and bankruptcy costs α,
the firm is forced to issue debt amount D; the interest rate charged on debt becomes increasing both
in u and α, the maximum premium paid being equal to 136 basis point for u = 1 and α = 1. For
τc = 0.35, the firm always freely decides of its debt level; as in displayed in table I, the interest rate
premium rF − r ranges from 140 basis points up to 400 basis points, the latter value being charged
when bankruptcy is declared right after investing (α = 0).

In the next section, we analyze the equilibrium feedback effects between the investment trigger P ∗

given by relationship (6) and the coupon C under some alternative credit market structures.

3 Perfectly Competitive Credit Market

In this section, the credit market is assumed to be perfectly competitive; lenders do not make any
profit and the no-profit entry condition is simply V L(P ∗C)−D = 0. In equilibrium, the effective cost
of investing is I + (1 − α)BC(P ∗C), which is above the cost of the project I. However, we shall see
that this does not imply that the decision to invest is always postponed with respect to the all-equity
financed case. Contrary to the case where debt is issued, tax benefits and distress costs cannot be
internalized by the firm.

Definition 1 An equilibrium is a couple (P ∗C , C
∗
C) that satisfies

(1− τc)P ∗C
δ

+
(1− τc)(β1 − β2)

β1 − 1

(
C∗C
r
− (1 + ρ)PD

δ

)(
P ∗C
PD

)β2
=

β1

β1 − 1

(
I +

C∗C(1− τc)
r

−D
)
(9)

(1− τc)C∗C
r

−D − (1− τc)
(
C∗C
r
− (1− α)(1 + ρ)PD

δ

)(
P ∗C
PD

)β2
= 0, (10)

with (1+ρ)PD
δ = β2

β2−1
C∗C
r , or equivalently (1 + ρ)PD = β1−1

β1
C∗C .
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Proposition 1 There exists a unique equilibrium (P ∗C , C
∗
C) with P ∗C > C∗C that is given by

(1− τc)P ∗C
δ

= −
β2Dx

∗
C

(1 + ρ)(1− β2 − (1− αβ2)(x∗C)β2)

(1− τc)C∗C
r

=
(1− β2)D

1− β2 − (1− αβ2)(x∗C)β2
,

where x∗C =
P ∗C
PD

> 1 is the unique root the following equation

M(v, α)xβ2 − β2(β1 − 1)

1 + ρ
x+ β1v(β2 − 1) = 0,

with M(v, α) = β1(v − 1)(1 − αβ2) + β1 − β2 > 0 and v = I/D ≥ 1. Over-investment, P ∗C ≤ P ∗0 ,
occurs exactly when bankruptcy costs are low enough, namely α ≤ 1/β1; otherwise under-investment
prevails, P ∗0 ≤ P ∗C . Furthermore, the equity value of the levered firm F is always lower than that of its
all-equity financed counterpart F0.

Proof. See appendix 2

We now examine in details the equilibrium properties. Proofs of all results are collected in appendix
3.

3.1 Properties of the Equilibrium

Unlike in the case where the firm issues debt and is free to decide of the coupon, the firm cannot
internalize the benefits of tax deductions on coupon payments. Since both the borrower and the
lender face the same corporate tax rate, as in the all-equity financed case, the corporate tax rate
simply has a proportional impact: the after tax earning investment trigger (1 − τc)P ∗C and after tax
coupon (1− τc)C∗C are independent of the tax rate.

Investment Trigger and Coupon. On the one hand, the firm bears up-front only a fraction of
the total cost of the project and when bankruptcy is declared, there is loss sharing between the two
parties: this induces a more daring investment decision. Bernanke’s “bad news principle of irreversible
investment” only applies partially in a context with debt since the impact of “bad news” are now shared
between entrepreneurs and lenders. On the other hand, the lender has incentives to delay bankruptcy,
in particular should the bankruptcy costs be large. The first result we derive is P ∗C > C∗C (P1), that
is, even though the manager may be eager to invest, she always makes sure that the coupon can be

safely met for a while after investing. Furthermore, we find that
(1−τc)P ∗C

δ always exceeds the myopic

threshold10 β1(I−D)
β1−1 (P6). The manager takes into account that bankruptcy will truncate earnings as

well as raising the cost of financing so she requires a larger wedge between P ∗C and up-front cost of
investing I −D. Then, from relationship (6), note that for a given coupon, the investment trigger P ∗C
does not directly depends on the bankruptcy cost α; instead the bankruptcy cost only has an indirect
effect through the equilibrium value of the coupon C∗C . Property (P2) establishes that P ∗ defined by
relationship (6) is increasing in C. A higher bankruptcy cost α induces a higher equilibrium coupon,

which in turns leads to a higher equilibrium investment trigger: for all u ≤ 1, we have
∂P ∗C
∂α > 0 and

∂C∗C
∂α > 0 (P3). Not surprisingly, we also have

∂C∗C
∂D > 0, which in turn leads to

∂P ∗C
∂D > 0 (property P4).

The next property (P5) deals with under-over investment, a phenomenon that has drawn much
attention in the literature. It is generally argued that under-investment problem is more severe for
firms in distress. An empirical study by Whited (1992) documents that a firm’s financial position

10Observe that this is the investment trigger optimally chosen by an all-equity financed firm to finance a project with
cost I −D.
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affects its investment and indeed confirms that financial distress measured by a high debt to assets
ratio leads to a lower level of investment. When the firm is facing an endogenous financing constraint,
the investment policy can be quite sensitive to liquidity: the threat of a future cash flow shortfall may
lead to early exercise of the growth option and therefore accelerating investment beyond the first best
optimal level (see for instance Boyle and Guthrie (2003) and Hirth and Uhrig-Homburg (2007)). Our
equilibrium model predicts that for small values of bankruptcy costs α, more specifically, α < 1/β1,
over-investment takes place: P ∗C < P ∗0 and moreover P ∗C is increasing in ρ for all ρ ≥ 0 and decreasing
in u for all u ≤ 1. The manager’s appetite for accelerating investment is mitigating by the threat of
bankruptcy and loosing the already existing activity, which leads to a more conservative investment
strategy. For α = 1/β1, the accelerating force from the firm and the delaying force from the lender
exactly offset each other and P ∗C = P ∗0 for all u ≤ 1 and ρ > 0. Finally, for α > 1/β1, the high
coupon charged induces under-investment: P ∗C > P ∗0 and moreover P ∗C is decreasing in ρ for all ρ ≥ 0

and increasing in u for all u ≤ 1. Since ∂β1
∂σ < 0, we can conclude that a higher earnings volatility

contributes to the over-investment phenomenon.
Finally, property (P8) examines the effects of assets already on the timing of the investment, which

are twofold. First, the larger parameter ρ, the larger revenues generated and a larger equity value to
be used as collateral. Ceteris paribus, coupon payments are easier to meet, so risk for the debtholders

is reduced and we obtain that
∂C∗C
∂ρ < 0. Second, bankruptcy will also imply the loss of the already

existing activities, which could induce a more conservative investment strategy. We find that when
over-investment takes place, i.e. when α ≤ 1/β1, the manager’s appetite for accelerating investment
is mitigating by the threat of bankruptcy and loosing the already existing activity; as a consequence
∂P ∗C
∂ρ > 0. Conversely, when α ≥ 1/β1 under-investment occurs, more assets already in place accelerate

the investment decision
∂P ∗C
∂ρ < 0.

Equity Value. Contrary to the case where the project is financed by issuing some debt, proposition
1. asserts that the value of the levered firm is always below its all-financed equity counterpart.
Moreover, in appendix 3.2, we prove that the higher the debt ratio u or the bankruptcy cost α, the
smaller the equity value for all values of earnings P (P7). On the contrary the higher assets already
in place, the higher the option value of expanding by one unit G and the (total) equity value (P8).

We conclude the analysis by performing some comparative statics on the equilibrium couple
(P ∗C , C

∗
C) and the value of waiting F by relying on numerical simulations.

3.1.1 Numerical Simulations

We perform some comparative statics on the after-tax investment trigger
(1−τc)P ∗C

δ and the relative
gain/loss in the option value of waiting ∆G. This percentage change is independent of the earnings
P and the corporate tax rate τc and is given by

∆G =

(1−τc)P ∗C
δ − (1− τc)BC(P ∗C)− I

(1−τc)P ∗0
δ − I

(
P ∗0
P ∗C

)β1
− 1.

The average interest rate paid on risky debt is rC =
C∗C(1−τc)

D . As before, let r = 0.04, δ = 0.04,

I = 100 and σ = 0.2, so that
(1−τc)P ∗0

δ = 200.
First we investigate the impact of the amount of assets already in place on the equilibrium when

D/I = 0.5 for α = 0 and α = 0.75. Results are reported in table III. Please note that changes in the
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option value are expressed in tenth of percents.

α = 0 α = 0.75

ρ 0 0.5 1 2 10 0 0.5 1 2 10

(1−τc)P ∗C
δ 196.3 197.7 198.2 198.9 199.7 202 201.2 200.9 200.6 200.1

∆G (o/oo) −0.35 −0.14 −0.07 −0.03 −0.00 −29.7 −18.1 −13.0 −8.37 −2.17
rC (o/o) 4.29 4.18 4.13 4.09 4.02 4.56 4.34 4.25 4.16 4.04

Table III: Comparative statics for parameter ρ

Table III indicates that the quantitative impact of assets already in place remains quite modest -
in particular in comparison with the case when debt is issued (see table II), with somewhat a more
significant reduction of the equilibrium average interest rate.

Next, we consider a pure option value; we set ρ = 0 and investigate the impact of the debt ratio
u = D/I and bankruptcy costs α.

Investment Trigger
(1−τc)P ∗C

δ . In Figure 7 we plot the optimal investment trigger
(1−τc)P ∗C

δ as a
function of the debt ratio u = D/I, for several values of the bankruptcy cost α. For small debt ratio
values, the investment trigger is very close to its all-equity financed value, above or below, depending
on the sign of α − 1/β1 and when u = 1, the maximum reduction is 10% for α = 0 whereas the
maximum increase is 12.5% for α = 1.

Interest Rate Paid on Risky Debt rC . Figure 8 depicts the effect of the debt ratio u on the
(average) interest paid on risky debt. The graphs are similar to those obtained when debt is issued
and τc = 0, the larger u and α, the more costly the debt. The interest paid is found to always exceed
the one charged when debt is issued, even if there are no bankruptcy costs and in particular when the
debt ratio is high; when the investment is exclusively financed with debt (u = 1) and α = 1, the yield
spread rC − r reaches 200 basis points.

Option Value G. Figure 9 represents changes in the option value as the debt ratio u varies. As
in the case when debt is issued and τc = 0, relying on external funds reduces the option value, but
here even in absence of bankruptcy costs and the drop in option value appears to be more severe,
up to −20.9% if u = 1 and α = 1 instead of −15.6% when debt is issued. Distress costs cannot be
internalized.

3.1.2 Summary of the Equilibrium Properties

Investment Threshold Coupon Option Value

Debt Level D
∂P ∗C
∂D > 0

∂C∗C
∂D > 0 ∂F

∂D < 0

Bankruptcy Cost α
∂P ∗C
∂α > 0

∂C∗C
∂α > 0 ∂F

∂α < 0

Corporate Tax Rate τc
∂P ∗C
∂τc

> 0
∂C∗C
∂τc

> 0

Assets Already in Place ρ
∂P ∗C
∂ρ ≥ 0 (≤ 0) if α ≤ 1/β1 (≥ 1/β1)

∂C∗C
∂ρ < 0

Over/Under Investment P ∗C ≤ P ∗0 (≥ P ∗0 ) if α ≤ 1/β1 (≥ 1/β1)

Table IV: Summary of properties for perfectly competitive credit markets
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In the next section, we depart from the perfect competitive lending sector and examine the case of a
small firm that has no access to debt markets and needs to bargain with some credit institution to
get funding.

4 Bargaining Over Funding

In this section, we depart from the perfectly competitive credit market hypothesis and explore the
impact of several bargaining processes to get funding on the timing of the investment and the option
value. To keep things simple, we assume that no assets are already in place, ρ = 0. First, we look at a
sequential bargaining process (Stackelberg type equilibrium). Second, we assume that the negotiation
process over funding is represented by a Nash Bargaining mechanism11. As shown in the sequel, a nice
feature of these contracts is that the equilibrium outcomes are independent of the initial condition
(earnings value) at the date when the agreement is signed by the two parties. Finally, observe that,
contrary to Fan and Sundaresan (2000) and Sundaresan and Wang (2007), we do not allow for debt
renegociation.

4.1 Sequential Negotiation Mechanism

The firm has a bargaining ability with weight 1− θ whereas the lender has a bargaining ability with
weight θ for some θ in [0, 1]. The firm is free to choose the timing of the investment, which seems a
reasonable assumption. This implies that the smooth pasting (4) condition still applies. Combining
this latter condition with the value matching condition (3) leads to the following expressions at time
0 for the option value F and the lender’s value L

F (P0) =
(1−β2)(1−τc)P ∗

δ + β2(I + C(1−τc)
r −D)

β1 − β2

(
P0

P ∗

)β1
L(P0) =

(β1−1)(1−τc)P ∗
δ − β2(C(1−τc)

r −D)− β1I

β1 − β2

(
P0

P ∗

)β1
,

and the investment threshold P ∗ and the coupon C belong to set S where

S =

{
(P ∗, C),

(β1 − 1)(1− τc)P ∗

δ
+ (1− τc)(β1 − β2)

(
C

r
− PD

δ

)(
P ∗

PD

)β2
= β1

(
I +

C(1− τc)
r

−D
)}

.

Participation Constraints. Both parties must be willing to enter into the deal so for all P0 > 0,
we must have

F (P0) ≥ 0 (FPC constraint) (11)

L(P0) ≥ 0 (LPC constraint). (12)

Contract. At time 0, the two parties agree on a couple (P ∗S , C
∗
S) that maximizes the weighted

average of the equity and the debt values

max
(P ∗,C)∈S

[F (P0)]1−θ [L(P0)]θ

s.t. (FPC) and (LPC).
(S)

11Nash bargaining between lenders and borrowers was originally introduced by Fan and Sundaresan (2000) who examine
the implications of debt renegociation characterized by a temporary contractual coupon reduction as long the firm is
under financial.
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Proposition 2 There exists an equilibrium (P ∗S , C
∗
S) such that

∂P ∗S
∂θ > 0,

∂C∗S
∂θ > 0 and for all P ≤ P ∗S

∂F (P )

∂θ
< 0 and

∂L(P )

∂θ
> 0,

so in particular, the equity value of the levered firm F is always lower than that of its all-equity financed
counterpart F0. Furthermore, as θ approaches 0, we have lim

θ→0
P ∗S = P ∗C and lim

θ→0
C∗S = C∗C .

Proof. See appendix 4.1

As in the constrained unsecured debt issuance case, program S can be transformed into a simpler one
dimensional program that consists in choosing the reduced variable z = PD

P ∗ , the default threshold over
the investment trigger ratio. On the one hand, the larger the equilibrium value z∗S , the longer the
investment is postponed, but on the other hand, once the investment completed the sooner bankruptcy
is declared. Since the lender is the party that is directly affected by the bankruptcy costs, we can
expect the latter to have a higher impact on the equilibrium outcome than when markets are perfectly
competitive. Finally, note that both P ∗S and C∗S are found to be increasing in the choice of variable z.

4.1.1 Interpretation of the Results

As θ approaches 0, the LPC constraint becomes binding: the firm extracts all the surplus, the lender
makes no profit and the equilibrium outcome coincides with the one found for the perfectly competitive
credit market case. In some sense, this contract is an extension to the perfect competitive credit
market studied in section 3. On the opposite, the case θ = 1 corresponds to the standard Stackelberg
equilibrium where the lender is the leader first charging a coupon and the firm is the follower that
decides of the optimal timing of the investment given the coupon charged.

Not surprisingly, as θ rises, the lender can rip off a larger share of the benefits generated by the
project by charging a higher coupon at the expense of the firm that is forced to delay investment.
However, there is a trade-off between (i) increasing profit by charging a high coupon and (ii) inducing
early investment to collect the coupon as soon as possible. Underinvestment or overinvestment is
determined by each party relative bargaining power and the size of bankruptcy costs. For instance,
notice that if α ≤ 1/β1 and θ is small, over-investment may still take place. On the contrary, for
α ≥ 1/β1, under-investment always prevails and can be significant, since for θ = 1 and α = 1/β1, we
find that

(1− τc)P ∗S
δ

=

(
β1

β1 − 1

)2

I.

Unfortunately, analytical results are hard to obtain. We rely on numerical simulations to analyze the
properties of the contract.

4.1.2 Numerical Results

We perform some comparative statics on the after-tax investment trigger
(1−τc)P ∗S

δ , the after-tax coupon
(1−τc)C∗S

r and the relative gain/loss in the value of waiting ∆F . This percentage change is still inde-
pendent of the earnings P and the corporate tax rate τc and is given by

∆F =
(1− β2)

(1−τc)P ∗S
δ + β2(I +

(1−τc)C∗S
r −D)

(β1 − β2)
(

(1−τc)P ∗0
δ − I

) (
P ∗0
P ∗S

)β1
− 1.

As before, let r = 0.04, δ = 0.04, I = 100 and σ = 0.2, so that
(1−τc)P ∗0

δ = 200. Contrary to the perfect
credit market case, even if D = 0, there is still a positive coupon charged: the firm incurs some fixed
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cost plus a variable cost that is increasing in the amount of money borrowed D.

Investment Trigger
(1−τc)P ∗S

δ . Figure 10 represents the optimal investment trigger
(1−τc)P ∗S

δ as a
function of the debt ratio u = D/I, for several values of the bankruptcy cost α and the lender
bargaining power θ. Clearly, for large values of θ, the impact on the investment trigger is quite
significant and the investment decision is always delayed, the wedge between the investment trigger
and its all-equity financed counterpart reaching nearly 250% for θ = 1 and α = 1. For small debt
ratio values, the fixed cost effect is quite strong and the investment trigger appears to be decreasing
in bankruptcy cost α, although the magnitude of the changes is small. For large values of parameter
θ, the equilibrium outcome is mostly driven by the lender’s profit. It turns out that the latter is the
most sensitive to bankruptcy cost α when u is small (see appendix 4.1); at the equilibrium, when u
is small, the equilibrium ratio z∗S tends to be larger the larger parameter α is. For large values of
u, the lender’s profit is less sensitive to bankruptcy costs and the behavior of the investment trigger
is similar to the one found when the credit market is perfect, the larger θ the higher the investment
threshold. Although we do not report further results, simulations show that the ratio P ∗S/C

∗
S that

determines the magnitude of the bankruptcy cost is always increasing in u.

Coupon Paid on Risky Debt
(1−τc)C∗S

r . Figure 11 depicts the effect of the debt ratio u on the
coupon charged paid on risky debt. First of all, the coupon charged is quite sensitive with respect to
parameter θ and always increasing in the debt ratio u. For small values of u, the higher the bankruptcy
cost α the lower the coupon charged; conversely for large values of u, the graphs are similar to those
obtained when θ = 0, the larger u and α, the more costly the debt. Notice that when α = 1 and
θ = 0, the coupon charged is 150 for u = 1; for α = 1 and θ = 1, when u = 0 and u = 1, the coupons
charged are respectively 105.8 and 300, so even controlling for the fixed cost effect, the debt is more
expensive.

Option Value G. Figure 12 displays the changes in the option value as the debt ratio u varies for
several values of the bankruptcy costs α. Overall, the graphs are similar to those obtained when the
credit market is perfect, except for large values of θ and low values of α for which the reduction in the
option value shrinks as the debt ratio u raises. Nevertheless, observe that for small (large) values u,
the higher the bankruptcy costs α, the lower (higher) reduction in the option value. Also note that
even when θ = 1, the lender cannot expropriate all the benefits of investing; at worst when α = 1 and
u = 1, the drop in the option value reaches 60%.

4.2 Nash Bargaining Mechanism

In this section, we let the timing of the investment to be determined by the interests of both parties
through the negotiation process, allowing tax benefits and distress costs to be partially internalized
by the firm. The main difference with the sequential equilibrium case is that the smooth pasting
condition (4) that ensures that the manager of the firm acts to maximize equity value F no longer
holds. Nevertheless, the value matching condition (3) that ensures that there is no jump in the equity
value at the investment date still applies.

Contract. At time 0, the two parties agree on a couple (P ∗N , C
∗
N ) that maximizes the weighted

average of the equity and the debt values12

max
P ∗,C

[F (P0)]1−θ [L(P0)]θ

s.t. (FPC) and (LPC),
(N)

12For simplicity, we assume that the disagreement point is (0, 0). This means that both parties have no outside option,
which is the case if there is a unique lender and only one firm. Such a framework allows for a comparison with the
perfectly competitive lending sector studied in the previous section.
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where this time the option value F and the lender value are given by

F (P0) =
(
V F (P ∗)− I +D

)(P0

P ∗

)β1
L(P0) = (V L(P ∗)−D)

(
P0

P ∗

)β1
,

and the expressions for V F (P ∗) and V L(P ∗) are given by relationships (2) and (7) respectively. We
first examine the special case when there are no bankruptcy costs α = 0.

4.2.1 Special Case α = 0

As shown in appendix 4.2.1, the optimal solution is

P ∗N = P ∗0

(1− τc)C∗N
r

− (1− τc)
(
C∗N
r
− PD

δ

)(
P ∗0
PD

)β2
= D +

θI

β1 − 1
,

and for all P ≤ P ∗0 , we have

F (P ) = (1− θ)F0(P ) and L(P ) = θF0(P ). (13)

The timing of the investment is the same as in the all-equity financed case; however the effective cost
of the project IE,N = I +V L(P ∗N )−D = I + θI

β1−1 and, therefore once more, investment is undertaken
too early from the firm’s optimality point of view. In appendix 4.2.1. we establish that C∗N is uniquely

determined and not surprisingly,
∂C∗N
∂D > 0,

∂C∗N
∂θ > 0. Notice that even if D = 0, a positive coupon

is charged, so under Nash bargaining, the firm incurs a fixed cost that is increasing in the lender’s
bargaining power coefficient θ; inspection of relationship (??) reveals that on a total amount D+ θI

β1−1 ,
which is increasing in the lender’s bargaining power coefficient θ. Since there are no bankruptcy costs,
before completion of the project, the firm and the lender split the value of the (net) intrinsic value

of the project (1−τc)P
δ − I, which is equal to F0(P0). Relationship (13) indicates that the optimal rule

is quite simple: each party obtains a share of the pie that is proportional to its bargaining power
coefficient.

4.2.2 General Case α > 0

Details of the existence of an equilibrium are discussed in appendix 4.2.2 Two decisions have to be taken
simultaneously ; for convenience, we chose to reformulate the program using variable k = −β2D/P

∗

that controls the timing of the investment and variable z = PD/P
∗ that controls for how long the

firm remains in business. We find that both the firm and the lender have profit functions that are
hump-shaped in variable k, so both party face a similar trade-off as far as the timing of the investment
is concerned, the firm and the lender being eager to speed up investment when u is large and α is
large respectively. Next, note that for the choice of a given investment trigger, the larger the coupon
charged, the sooner bankruptcy occurs. The firm has incentives to delay bankruptcy as much as
possible by choosing a small value of z in particular when the debt ratio u is small, whereas the lender
has also some incentive to postpone it, but not too much13 specially when bankruptcy costs α are
small.

When the firm has full bargaining power, θ = 0, the equilibrium outcome coincides with the
case when the firm can decide of the coupon and is forced to raise an amount D/(1 − τc) to finance

13Recall that the default threshold is proportional to the coupon charged.
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investment. Nevertheless, as both parties are facing the same corporate tax rate τc, the firm cannot
internalize any tax benefits and broadly speaking the problem can be understood as issuing debt
when the corporate tax rate τc is equal to 0. Therefore, the Nash bargaining process can be seen as
an extension of the unsecured debt issuance case studied in section 2.6.

When the lender has full bargaining power, θ = 1, the firm participation constraint is binding for
small values of the bankruptcy cost α and the debt ratio u as the lender intends to raise the coupon
and hasten investment, not worrying too much about speeding up bankruptcy. For large values of u,
the coupon is independent of the bankruptcy cost α and proportional to the amount lent D, which

corresponds to an interest rate rN =
C∗N (1−τc)

D = β1(β2−1)
(β1−1)β2

r > r.

4.2.3 Numerical Results

We perform some comparative statics on the after-tax investment trigger
(1−τc)P ∗N

δ , the after tax

coupon
(1−τc)C∗N

r and the relative gain/loss in the value of waiting ∆F . This percentage change
remains independent of the earnings P and the corporate tax rate τc and is given by

∆F =

(1−τc)P ∗N
δ − C∗N

r + TB(P ∗N ) + TF (P ∗N )− I +D
(1−τc)P ∗0

δ − I

(
P ∗0
P ∗N

)β1
− 1.

As before, let r = 0.04, δ = 0.04, I = 100 and σ = 0.2, so that
(1−τc)P ∗0

δ = 200. Results are reported in
table V.

As in the sequential equilibrium case, the lender’s bargaining power has a strong impact on the
equilibrium outcome. Worth noticing is the fact that when θ is small, the firm is better off under a
Nash versus a sequential Stackelberg bargaining process, as for instance, the reduction in option being
−15.6% when θ = 0, α = 1 and u = 1 under the former contract whereas the drop in option value is
close to 20.9% for the latter. The opposite takes place since for θ = 0.5, α = 1 and u = 1, the option
value shrinks by 51.16% under a Nash bargaining process instead of −47.30% under a sequential
Stackelberg bargaining process. Results reported in table V for θ = 1 confirm this intuition, in
particular for small values of bankruptcy costs α and the debt ratio u for which the participation
constraint of the firm is binding. The rationale for such a result is that under a Nash bargaining
process, two decisions have to be taken independently, which gives some advantage to the party with
a strong bargaining ability while making sure that the other party is willing to participate. Finally,
observe that when both parties have the same bargaining power, the reduction in the option oscillates
around 50%, weakly depending on the debt ratio and bankruptcy costs.

For small values of the debt ratio u, both the investment trigger P ∗N and the coupon C∗N charged
are found to be decreasing in bankruptcy cost α and non-increasing in θ. This result indicates that
when u is small, the firm participation constraint is more likely to bind: the best trade-off for a
powerful lender is to rush investment while making a concession on the coupon charged. For large
values of the debt ratio u, the behavior of the couple (P ∗N , C

∗
N ) as a function of parameters u and α

is similar to the issuance debt case.
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θ = 0

u 0 0.2 0.4 0.6 0.8 1

α = 0 (1− τc)P ∗F /δ 200 200 200 200 200 200
∆G (%) 0 0 0 0 0 0

(1− τc)C∗F /r 0 20 40 60 80 100

(1− τc)P ∗F /δ 200 200.8 203.7 209.3 218.3 231.3
α = 0.5 ∆G (%) 0 −0.269 −1.551 −2.747 −5.109 −8.184

(1− τc)C∗F /r 0 20.80 43.48 68.38 95.75 125.52

(1− τc)P ∗F /δ 0 201.7 207.9 220.3 240 266.5
α = 1 ∆G (%) 0 −0.550 −2.381 −5.651 −10.221 −15.597

(1− τc)C∗F /r 0 21.10 44.83 71.65 101.44 133.30

θ = 0.5

u 0 0.2 0.4 0.6 0.8 1

(1− τc)P ∗F /δ 200 200 200 200 200 200
α = 0 ∆G (%) −50 −50 −50 −50 −50 −50

(1− τc)C∗F /r 53.6 77.5 103.4 131.7 163.4 199.8

(1− τc)P ∗F /δ 197.9 200.3 205.7 215.7 232.1 255.6
α = 0.5 ∆G (%) −48.95 −48.80 −48.82 −49.02 −49.43 −50.18

(1− τc)C∗F /r 51.3 76.2 104.9 138.7 178.2 222.6

(1− τc)P ∗F /δ 195.9 200.8 213.33 237.5 274.3 319.8
α = 1 ∆G (%) −47.89 −47.44 −47.27 −47.57 −48.83 −51.16

(1− τc)C∗F /r 49.0 74.8 106.7 146.0 191.5 239.8

θ = 1

u 0 0.2 0.4 0.6 0.8 1

(1− τc)P ∗F /δ 200 200 200 200 200 200
α = 0 ∆G (%) −100 −100 −100 −100 −100 −100

(1− τc)C∗F /r 116.6 146.2 180 220 271.9 378.1

(1− τc)P ∗F /δ 188.3 190.0 195.3 207.0 240.0 300
α = 0.5 ∆G (%) −100 −100 −100 −100 −95.35 −85.21

(1− τc)C∗F /r 102.2 133.5 174.1 232.0 320.0 400

(1− τc)P ∗F /δ 177.8 180 189.6 240 320.0 400
α = 1 ∆G (%) −100 −100 −100 −86.10 −76.56 −75.00

(1− τc)C∗F /r 88.9 120 165.9 240.0 320.0 400

Table V: Comparative statics for Nash equilibrium
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5 Conclusion

This paper explores the impact of debt financing on the timing of an irreversible investment and the
value of waiting to invest when the cost of external funds is endogenously determined. We have used
a simple extension of the McDonald and Siegel (1986) setting and obtained some equilibrium feedback
from the lending sector. We show that the problem can be nested in the all equity setting in which
the cost of investing is altered to incorporate tax benefits and the loss incurred by the lender. This
effective cost of investing is endogenous and depends on the timing of the investment. Two credit
market structures have been considered: Perfect capital markets and funding allocated through a
negotiation process (sequential equilibrium or Nash bargaining) between the lender and the borrower.
Perfect competition turns out be a special case corresponding to lenders with no bargaining power
at all. In this case, we obtain over-investment in the growth option if the lender incurs a loss when
defaulting. Intuitively, from the firm’s point of view, the up-front investment cost is reduced, the
sooner it undertakes the project, the sooner it starts receiving cash flows. Moreover, the loss induced
due to bankruptcy is shared among the parties, so “bad news” are less costly for the firm. Conversely,
the lender is one who is relatively more concerned with default and intends to postpone investment.
In equilibrium, both investment trigger and coupon increase with the lender bargaining power and
eventually exceeds the threshold found in the self financing case. Provided that the credit market
is fairly competitive (low bargaining power of lenders), consistent with the results by Jensen and
Meckling (1976), over-investment can be interpreted as engaging into riskier projects since the all
equity counterpart firm would have required better market conditions (higher earnings value) in order
to exert its growth option. Alternatively, the model predicts that when lenders have a high bargaining
power, firms that are able to self finance their projects should enter earlier in a market than firms
forced to rely on external funds.

The risk of debt default induces a higher cost of capital, so independently of the credit market
structure the value of growth options are reduced with respect to the self financing case. Numerical
simulations reveal that this reduction is very small within the perfect competitive loan market structure
but can be quite significant when the lender has a large bargaining power. This may be a reason why
firms seem to mainly rely on internal sources to finance investment. Finally, as in the self financing
and competitive loan market cases, a higher earnings volatility enhances the value of waiting to invest.
However, under bargaining, the relationship uncertainty-option value is not monotonic but instead has
an inverted U -shape. As in the all equity case, due to the convexity of the payoffs, more uncertainty
increases the option value. In addition, in our setting, a greater earnings volatility raises the effective
cost of investing, which reduces the value of waiting. In particular, we find that this latter effect
dominates the former when the investment is close to be undertaken.

Our model is very stylized and for instance, we have ignored the effects of bankruptcy costs
that can play a significant role by raising the cost of capital and making investment less attractive.
Another possible extension to the model would be to assume that some renegotiation process takes
place between the lender and the borrower when the coupon payment cannot be met. Clearly, when
the resale value of the company exceeds that of the consol bond, both parties have incentives to
renegotiate. For instance, as in Sannikov (2007), the lender could grant the borrower a credit line and
tolerate losses up a limit before she declares default. This is left for future research.
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6 Appendix

6.1 Appendix 1

Preliminary Result 1. If τ is a stopping time, then for all continuous function f, the function F
defined as

F (P0) = EQ0

[∫ τ

0
f(Ps)e

−rsds

]
,

satisfies the following ODE

rF (P ) = f(P ) + (r − δ)PF ′(P ) +
σ2

2
P 2F ′′(P ).

Proof. See Karling and Taylor (1981).

Then, let P0 ≥ PD and define τD = inf {t ≥ 0, Pt = PD}. We want to compute EQ0 [e−rτ ] . Let us

write 1− r
∫ τ

0 e
−rsds = e−rτ . Given what precedes, G(P0) = EQ0

[∫ τ
0 e
−rsds

]
satisfies

rG(P ) = 1 + (r − δ)PG′(P ) +
σ2

2
P 2G′′(P ).

The general bounded solution to this equation is G(P0) = 1
r+BP β20 . At P0 = PD, we have EQ0 [e−rτ ] = 1

so it must be the case that −BP β2D = 1. It follows that

EQ0 [e−rτ ] =

(
P0

PD

)β2
.

Preliminary Result 2. β1 > (β1 − β2)
(

β1
β1−1

)β2
. Set y = β1−1

β1
< 1 and a = −β2 > 0. It is

equivalent to show that for all y ∈ (0, 1), (1 + a(1− y))ya < 1. Define the auxiliary function

[0, 1] → R
Ψ : y 7→ a ln y + ln(1 + a(1− y)).

Ψ is a smooth function and Ψ′(y) = a(1+a)(1−y)
y(1+a(1−y)) . Thus, Ψ is strictly increasing on [0, 1] with Ψ(1) = 0,

so Ψ is negative on (0, 1). The desired result follows.

Preliminary Result 3. ∂β1
∂σ < 0 and ∂β2

∂σ > 0. Recall that roots β1 and β2 are solutions of the
following quadratic

σ2

2
x2 + (r − δ − σ2

2
)x− r = 0, (14)

and it is easy to see that β1 > 1 and β2 < 0. Using the Implicit Function Theorem, totally differenti-
ating relationship (14) w.r.t. σ yields

σx(x− 1) + (σ2x+ r − δ − σ2

2
)
∂x

∂σ
= 0.

Using relationship (14) and rearranging terms leads to
(
σ2

2 x
2 + r

)
∂x
∂σ = −σx2(x − 1). Since β1 > 1

and β2 < 0, the desired result follows.
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6.1.1 Appendix 2: Debt Issuance

6.1.2 Appendix 2.1: Unconstrained Choice

For P ≤ P ∗, the equity value is given by

F (P ) =
(1− τc)ρP

δ
+

(
(1− τc)P ∗

δ
+ TB(P ∗)− (1− τc)BC(P ∗)− I

)(
P

P ∗

)β1
=

(1− τc)ρP
δ

+

(
(1− τc)P ∗

δ
+ τc

β2 − 1

β2

(1 + ρ)PD
δ

+
τc − αβ2

β2

(1 + ρ)PD
δ

(
P ∗

PD

)β2
− I

)(
P

P ∗

)β1
.

Maximizing w.r.t. to C or equivalently PD leads to τc − (τc − αβ2)
(
P ∗

PD

)β2
= 0, so

PD =

(
τc

τc − αβ2

)− 1
β2

P ∗.

Note that indeed PD ≤ P ∗. Plugging back into the value of the firm yields

F (P ) =
(1− τc)ρP

δ
+

1− τc + τc(1 + ρ)
(

τc
τc−αβ2

)− 1
β2

δ
P ∗ − I

( P

P ∗

)β1
, (15)

and the optimal investment trigger P ∗F , the optimal coupon C∗F and the option value G are given by

P ∗F =
β1Iδ

β1 − 1

1

1− τc + τc(1 + ρ)
(

τc
τc−αβ2

)− 1
β2

(16)

C∗F
r

=
β1(β2 − 1)I

β2(β1 − 1)

1

τc + 1−τc
1+ρ

(
τc−αβ2
τc

)− 1
β2

(17)

G(P ) =
I

β1 − 1

(
P

P ∗F

)β1
, P ≤ P ∗F . (18)

The effective cost of the project is

IE,F (P ∗F ) = I − τc(1 + ρ)

(
τc

τc − αβ2

)− 1
β2 P ∗F

δ

=
(β1 − 1)(1− τc)− τc(1 + ρ)

(
τc

τc−αβ2

)− 1
β2

(β1 − 1)

(
1− τc + τc(1 + ρ)

(
τc

τc−αβ2

)− 1
β2

)I < I.

It is easy to check that
(1−τc)P ∗F

δ ≥ β1IE,F (P ∗F )
β1−1 ,

∂P ∗F
∂α > 0,

∂P ∗F
∂ρ < 0,

∂C∗F
∂α < 0 and

∂C∗F
∂ρ > 0. Define the

auxiliary function Ψ(τc) = 1− τc + τc(1 + ρ)
(

τc
τc−αβ2

)− 1
β2 . We have

Ψ′(τc) = −1 + (1 + ρ)

(
τc

τc − αβ2

)− 1
β2

(
1 +

α

τc − αβ2

)
Ψ′′(τc) = − α2(1 + ρ)β2

τc(τc − αβ2)2

(
τc

τc − αβ2

)− 1
β2

> 0.
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Ψ′ is an increasing function from −1 up to −1+(1+ρ)(1−αβ2)
1
β2
−1

(1+α(1−β2). If (1−αβ2)
1
β2
−1

(1+

α(1 − β2) < 1
1+ρ , then Ψ′ is always negative, so Ψ is increasing and we can conclude that

∂P ∗F
∂τc

> 0.

Conversely, if (1 − αβ2)
1
β2
−1

(1 + α(1 − β2) > 1
1+ρ , then Ψ′ is negative on some interval [0, τ∗c ] and

positive on [τ∗c , 1], with Ψ′(τ∗c ) = 0. We conclude that on [0, τ∗c ],
∂P ∗F
∂τc

> 0 but on [τ∗c , 1] ,
∂P ∗F
∂τc

< 0.

Next, set Φ(τc) = (1 + ρ)τc + (1− τc)
(
τc−αβ2
τc

)− 1
β2 . We have

Φ′(τc) = 1 + ρ−
(

1− αβ2

τc

)− 1
β2

(
1 +

α(1− τc)
τc(τc − αβ2)

)
.

Observe that both τc 7→
(

1− αβ2
τc

)− 1
β2 and τc 7→ 1 + α(1−τc)

τc(τc−αβ2) are decreasing functions so Φ′ is an

increasing function from −∞ up to 1 + ρ− (1− αβ2)
− 1
β2 . If ρ < (1− αβ2)

− 1
β2 − 1, then Φ′ is always

negative, Φ is always decreasing and we can conclude that
∂C∗F
∂τc

> 0. Conversely, if ρ > (1− αβ2)
− 1
β2−1,

we can conclude that on [0, τ∗c ] ,
∂C∗F
∂τc

> 0 and on [τ∗c , 1],
∂C∗F
∂τc

< 0, with τ∗c such that Φ′(τ∗c ) = 0. Finally,

using relationship (18), for P ≤ P ∗F , we find that ∂G(P )
∂α < 0, ∂G(P )

∂ρ > 0 and ∂G(P )
∂τc

< 0.

Uncertainty Effects. Set x = −αβ2, it follows that rF = r
α
α+x
x

τc+x
α(1−τc)+τc+x . We want to show that

rF is decreasing in x, or equivalently that

1

α+ x
− 1

x
+

1

τc + x
− 1

α(1− τc) + τc + x
,

is negative. Gathering terms, after some simplification, the previous quantity is equal to

− ατc(x
2 + 2x+ α(1− τc) + τc

x(α+ x)(τc + x)(α(1− τc) + τc + x)
< 0.

Since ∂β2
∂σ > 0, it follows that ∂rF

∂σ > 0. Then, set y = −β2; since β1δ
β1−1 = (β2−1)r

β2
, it follows that

P ∗F =
r

α

1 + y

y

1

1− τc + τc(1 + ρ)
(

1 + αy
τc

)− 1
y

.

For y > 0, define the auxiliary function Ψ(y) = − 1
y ln

(
1 + α

τc
y
)
. We have

Ψ′(y) =
1

y2(1 + α
τc
y)

((
1 +

α

τc
y

)
ln

(
1 +

α

τc
y

)
− α

τc
y

)
.

Since Ψ′(0) = 0 and x 7→ (1 + x) ln (1 + x)− x is an increasing function, we conclude that Ψ′ is non-

negative, so Ψ is increasing. Incidentally β2 7→
(

τc
τc−αβ2

)− 1
β2 is a decreasing function. It follows easily

that P ∗F is a decreasing function of y as the product of two decreasing functions in y. By preliminary

result 3, we have ∂β2
∂σ > 0; given what precedes, it follows that

∂P ∗F
∂σ > 0. Finally, using relationship

(18), for P ≤ P ∗F , we obtain that

∂G(P )

∂σ
=

I

β1 − 1

(
P

P ∗F

)β1 (
− 1

β1 − 1
+ ln

(
P

P ∗F

)
− β1

∂ lnP ∗F
∂β1

)
∂β1

∂σ
.

First, by preliminary result 3, recall that ∂β1
∂σ < 0. Next

β1
∂ lnP ∗F
∂β1

= − 1

β1 − 1
− β1

∂ ln

(
1− τc + τc(1 + ρ)

(
τc

τc−αβ2

)− 1
β2

)
∂β2

∂β2

∂β1
.
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Recall that β1δ
β1−1 = (β2−1)r

β2
, so − δ

(β1−1)2
∂β1
∂β2

= r
β2
2
, which implies that ∂β2

∂β1
< 0. Then recall that

β2 7→
(

τc
τc−αβ2

)− 1
β2 is decreasing, so

∂ ln

(
1−τc+τc(1+ρ)

(
τc

τc−αβ2

)− 1
β2

)
∂β2

< 0. As P ≤ P ∗F , we also have

ln
(
P
P ∗F

)
≤ 0 and therefore − 1

β1−1 + ln
(
P
P ∗F

)
− β1

∂ lnP ∗F
∂β1

< 0. It follows that ∂G(P )
∂σ > 0.

6.1.3 Appendix 2.2: Constrained Choice

In this case, the maximization program becomes

max
P ∗,C

(
V F (P ∗)− (1−τc)ρP ∗

δ − I +D
) (

P
P ∗

)β1
s.t. D(P ∗) = D, (1 + ρ)PD = β1−1

β1
C and PD ≤ P ∗.

SetX = 1−τc
δ P ∗, Y = 1−τc

δ PD and z = Y
X . It follows that−β2D(1−τc)

X = (1+ρ)
[
(1− β2)z − (1− αβ2)z1−β2

]
.

For z ∈ [0, 1], define

HF1(z) = −β2(1− τc)− (v − τc)(1 + ρ)(1− β2)z + (1 + ρ)N(v, α, τc)z
1−β2

HF1(z) = (1− β2)z − (1− αβ2)z1−β2 ,

where N(v, α, τc) = v − τc − (v − 1)αβ2 > 0.

HF1 is increasing on [0, z] and decreasing on [z, 1] where z =
(

v−τc
N(v,α,τc)

)− 1
β2 and HF1(1) = vβ2(v−

1) < 0. This implies that HF1 is non-negative on [0, z1] with z < z1 < 1 and HF1(z1) = 0. Next,
HF2 is increasing from 0 up to −β2(1 − α) on [0, 1], so it is non-negative on [0, 1] . Define HF (z) =

HF1(z)Hβ1−1
F2

(z); the maximization program is equivalent to

max
z∈[0,z1]

HF (z).

The objective function HF is continuous, the maximum is attained at z = z∗F on the compact interval
[0, z1]. As HF (0) = HF (z1) = 0, we have an interior solution. The first order condition implies that
z∗F must be solution of the following equation H ′F (z) = 0, i.e.,

β1(1− αβ2)N(v, α, τc)z
1−2β2 −Q(v, α, τc)z

1−β2 − β2(β1 − 1)(1− αβ2)
1− τc
1 + ρ

z−β2

+β1(1− β2)(v − τc)z + β2(β1 − 1)
1− τc
1 + ρ

= 0,

where Q(v, α, τc) = β1(2−β2)(v− τc)−αβ2(β1(2−β2)v− (β1−β2)− (β1 +β2−β1β2)τc) > 0. Finally,

P ∗F
δ

= − β2D

(1 + ρ)HF2(z∗F )
and

C∗F
r

= −
Dz∗F

(β2 − 1)HF2(z∗F )
.

6.2 Appendix 3: Proof of Proposition 1.

6.2.1 Appendix 3.1: Existence and Uniqueness of the Equilibrium.

Set x∗C =
P ∗C
PD
. Using the fact that (1+ρ)PD

δ = β2−1
β2

C∗C
r , manipulating relationships (9) and (10), we find

that x∗C must be solution of the following equation:

M(v, α)xβ2 − β2(β1 − 1)(1− γ)x+ β1v(β2 − 1) = 0, (19)
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where M(v, α) = β1(v − 1)(1 − αβ2) + (β1 − β2) > 0, v = I
D ≥ 1, and for convenience we have set

1− γ = 1
1+ρ , so the higher ρ, the higher γ. Next, we want to show that the function

[1,∞) → R
ΨC : x 7→ M(v, α)xβ2 − β2(β1 − 1)(1− γ)x+ β1v(β2 − 1),

has a unique root x∗C > 1. ΨC is a continuous differentiable convex function with

ΨC(1) = β1(v − 1)(1− αβ2) + β1 − β2 − β2(β1 − 1)(1− γ) + β1v(β2 − 1)

= β1β2(v − 1)(1− α) + γβ2(β1 − 1) ≤ 0,

and
Ψ′C(x) = β2M(v, α)xβ2−1 − β2(β1 − 1)(1− γ).

Note that Ψ′C(1) = β2(β1(v − 1)(1 − αβ2) + 1 − β2 + γ(β1 − 1)) < 0, so we have Ψ′C ≤ 0 on[
1,
(

M(v,α)
(β1−1)(1−γ)

) 1
1−β2

]
and Ψ′C > 0 on

((
M(v,α)

(β1−1)(1−γ)

) 1
1−β2 ,∞

)
Ψ′C . Since ΨC(1) ≤ 0 and lim

∞
ΨC =

∞, it follows that ΨC has a unique root x∗C on (1,∞). Notice that Ψ′C(x∗C) > 0 and for all x > 1, if
ΨC(x) < 0 (ΨC(x) > 0), then x < x∗C (x > x∗C). The optimal coupon is given by

(1− τc)C∗C
r

=
(1− β2)D

1− β2 − (1− αβ2) (x∗C)β2
, (20)

and the optimal investment trigger P ∗C = x∗CC
∗
C . Finally note that x∗C is independent of τc.

6.2.2 Appendix 3.2: Properties of the Equilibrium.

P1: P ∗C > C∗C . This is equivalent to show that x∗C >
β1
β1−1 . We actually show that x∗C >

β1
(β1−1)(1−γ) .

It is enough to show that ΨC

(
β1

(β1−1)(1−γ)

)
< 0, i.e.

M(v, α)

(
β1

(β1 − 1)(1− γ)

)β2
− β2(β1 − 1)

β1

β1 − 1
+ β1v(β2 − 1) < 0.

Note that the LHS of the inequality is decreasing in γ, so it is enough to show the result for γ = 0.

From preliminary result 2, recall that
(

β1
β1−1

)β2
< β1

β1−β2 , so it is enough to show that

β1(v − 1)(1− αβ2) + β1 − β2 + (β1 − β2) (v(β2 − 1)− β2) < 0.

Observe that the RHS of the inequality is equal to β2(v − 1)(1 − β2 + β1(1 − α)), which indeed is
non-positive.

P2:
∂C∗C
∂x∗C

< 0 and
∂P ∗C
∂C∗C

> 0. Using relationships (10) and (20), we obtain that

∂C∗C
∂x∗C

=
1

1− τc
rDβ2(1− β2)(1− αβ2)(x∗C)β2−1

(1− β2 − (1− αβ2)(x∗C)β2)2
< 0.

Next, observe that
∂P ∗C
∂C∗C

=
∂P ∗C
∂PD

∂PD
∂C∗C

=
∂P ∗C
∂PD

β2
β2−1 . Then using relationship (9), we find that P ∗C and PD

are linked by the following relationship:

(1− τc)
δ

(
(β1 − 1)(1− γ)P ∗C −

β1 − β2

β2
PD

(
P ∗C
PD

)β2)
= β1

(
I −D − (1− τc)(β2 − 1)PD

δβ2

)
. (21)
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Totally differentiating relationship (21) with respect to PD leads to

1

PDx∗C

(
(β1 − 1)(1− γ)x∗C − (β1 − β2)(x∗C)β2

)
)
∂P ∗C
∂PD

=
(β2 − 1)

β2

(
β1 − (β1 − β2)(x∗C)β2

)
. (22)

Recall that (β1 − 1)(1 − γ)x∗C > β1 so (x∗C)β2 ≤
(

β1
(β1−1)(1−γ)

)β2
≤
(

β1
β1−1

)β2
< β1

β1−β2 , which implies

that the RHS of relationship (22) is non-negative. Finally, observe that β1 > (β1−β2)(x∗C)β2 , which in

turn implies that the LHS of relationship (22) is non-negative. It follows that
∂P ∗C
∂PD

> 0 and therefore
∂P ∗C
∂C∗C

> 0.

P3: Effect of Parameter α on P ∗C and C∗C . First of all, totally differentiating relationship (19)
with respect to α, we find that

−β1β2(v − 1)(x∗C)β2 + Ψ′C(x∗C)
∂x∗C
∂α

= 0. (23)

Since Ψ′C(x∗C) > 0, it follows that
∂x∗C
∂α < 0. Next, in order to show that

∂C∗C
∂α > 0, it is enough to show

that α 7→ (1− αβ2) (x∗C)β2 is increasing, or equivalently −x∗C + (1− αβ2)
∂x∗C
∂α < 0. Using relationship

(23), we find that
∂x∗C
∂α

=
β1(v − 1)(x∗C)β2

M(v, α)(x∗C)β2−1 − (β1 − 1)(1− γ)
,

so −x∗C + (1− αβ2)
∂x∗C
∂α has the same sign as

M(v, α)(x∗C)β2 − (β1 − 1)x∗C(1− γ)− (1− αβ2)β1(v − 1)(x∗C)β2 ,

which is equal to
(β1 − β2)(x∗C)β2 − (β1 − 1)x∗C(1− γ).

Since (β1 − 1)(1 − γ)x∗C > β1 so (x∗C)β2 < β1
β1−β2 , the desired results follows. Finally, notice that P ∗C

as a function of C∗C does not directly depend on α, so
∂P ∗C
∂α =

∂P ∗C
∂C∗C
× ∂C∗C

∂α > 0.

P4: Effect of Parameter D on P ∗C and C∗C . Totally differentiating relationship (19) with respect
to v, we find that

β1(β2 − 1) + β1(1− αβ2)(x∗C)β2 + Ψ′C(x∗C)
∂x∗C
∂v

= 0, (24)

so Ψ′C(x∗C)
∂x∗C
∂v = β1(1 − β2 − (1 − αβ2)(x∗C)β2) > β11 − β2(1 − (x∗C)β2) > 0. Since Ψ′C(x∗C) > 0, it

follows that
∂x∗C
∂v > 0. It follows that

∂x∗C
∂D = − v

D
∂x∗C
∂v < 0. Next, differentiating relationship (20) with

respect to D leads to
∂C∗C
∂D

=
r(1− β2)

1− β2 − (1− αβ2) (x∗C)β2
+
∂C∗C
∂x

∂x∗C
∂D

.

Since
∂C∗C
∂x∗C

< 0 and
∂x∗C
∂D < 0 it follows that

∂C∗C
∂D > 0. Then, manipulating relationships (9) and (10),

we find that
(β1 − 1)(1− γ)(1− τc)P ∗C

δ
= β1I −

(1− τc)PD
δ

(1− αβ1) (x∗C)β2 . (25)

Observe that PD
δ (x∗C)β2 is increasing in D, so

∂P ∗C
∂D ≥ 0 (

∂P ∗C
∂D ≤ 0) iff α ≤ 1/β11 (α ≥ 1/β1).

P5: Over/Under-investment. From relationship (25) it straightforwardly to see that

P ∗C ≤ P ∗0 (P ∗C ≥ P ∗0 ) iff α ≤ 1/β1 (α ≥ 1/β11),
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and exactly when α = 1/β1, P
∗
C = P ∗0 .

P6: Myopic Threshold:
(1−τc)P ∗C

δ ≥ β1(I−D)
β1−1 . From relationship (9) and using the fact that

(1+ρ)PD
δ = β2

β2−1
C
r , it is easy to see that

(1−τc)P ∗C
δ ≥ β1(I−D)

β1−1 iff (β1 − β2)(x∗C)β2 ≤ β1(1− β2), which is

satisfied as we have already established in P4 that (β1 − β2)(x∗C)β2 ≤ β1 and β1 ≤ β1(1− β2).

P7: Effect of Parameter α and D on the Equity Value. Recall that for P ≤ P ∗C , the equity value
is given by

F (P ) =
(1− τc)ρP

δ
+

(
(1− τc)

(
P ∗C
δ
−
C∗C
r

+

(
C∗C
r
− (1 + ρ)PD

δ

)(
P ∗C
PD

)β2)
− I +D

)(
P

P ∗C

)β1
.

Since ∂F (P )
∂P ∗C

= 0 and using the fact that (1+ρ)PD
δ = β2−1

β2

C∗C
r , it follows that

∂F (P )

∂α
=

(
−(1− τc)(β2 − 1)(1 + ρ)

δβ2
(1− (x∗C)β2)

∂PD
∂α

)(
P

P ∗C

)β1
< 0.

Next
∂F (P )

∂D
=

(
−(1− τc)(β2 − 1)(1 + ρ)

δβ2
(1− (x∗C)β2)

∂PD
∂D

+ 1

)(
P

P ∗C

)β1
.

Recall that − (1−τc)
β2

(1+ρ)PD
δ = D

1−β2−(1−αβ2)xβ2
and D

∂x∗C
∂D = −v ∂x

∗
C

∂v , so

−(1− τc)(1 + ρ)

β2δ

∂PD
∂D

=
1

1− β2 − (1− αβ2)xβ2
−
β2v(1− αβ2)(x∗C)β2−1 ∂x

∗
C

∂v

(1− β2 − (1− αβ2)xβ2)2
.

Using relationship (24), we have

β2
∂x∗C
∂v

1− β2 − (1− αβ2)xβ2
=

β1

(β1(v − 1)(1− αβ2) + β1 − β2))(x∗C)β2−1 − (β1 − 1)(1− γ)

=
β1x

∗
C

(β2 − 1)((β1 − 1)(1− γ)x− β1v)
.

It follows that

∂F (P )

∂D

(
P

P ∗C

)−β1
=

1

1− β2 − (1− αβ2)(x∗C)β2

(
1− β2 − (1− αβ2)(x∗C)β2 + (β2 − 1)(1− (x∗C)β2)

−
β2(β2 − 1)v(1− αβ2)(1− (x∗C)β2)(x∗C)β2−1 ∂x

∗
C

∂v

1− β2 − (1− αβ2)(x∗C)β2

)
,

which has the same sign as

−(1− α)β2 −
β2(β2 − 1)v(1− αβ2)(1− (x∗C)β2)(x∗C)−1 ∂x

∗
C

∂v

1− β2 − (1− αβ2)(x∗C)β2
,

which has the same sign as

−(1− α)β2((β1 − 1)(1− γ)x∗C − β1v)− β1v(1− αβ2)(1− (x∗C)β2).

Using relationship (24), the previous quantity has is equal to

(1− α)
(
β1v − (β1(v − 1)(1− αβ2) + β1 − β2)(x∗C)β2

)
− β1v(1− αβ2)(1− (x∗C)β2),
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which is equal to

−β1v(1− β2)α+ [αβ1v(1− αβ2) + (1− α)β2(1− αβ1)] (x∗C)β2 .

If αβ1v(1 − αβ2) + (1 − α)β2(1 − αβ1) is negative (α small), then the previous quantity is negative.
Conversely, if αβ1v(1−αβ2) + (1−α)β2(1−αβ1) is positive (α large), since (x∗C)β2 < 1, the previous
quantity is smaller than

−β1v(1− β2)α+ αβ1v(1− αβ2) + (1− α)β2(1− αβ1),

which after re-arranging terms and some simplifications is equal to

−(1− α) [β1v(1− αβ2)− β2(1− αβ1] < 0.

Indeed we obtain that ∂F (P )
∂D is always negative.

P8: The Role of Assets in Place: Parameter ρ. Totally differentiating relationship (19) with
respect to γ, we find that

β2(β1 − 1)x∗C + Ψ′C(x∗C)
∂x∗C
∂γ

= 0,

Since Ψ′C(x∗C) > 0, it follows that
∂x∗C
∂γ > 0 and therefore

∂x∗C
∂ρ > 0. Observe that relationship (20) is

still valid and is independent of parameter ρ, so
∂C∗C
∂ρ =

∂C∗C
∂x ×

∂x∗C
∂ρ < 0. Finally, recall that

P ∗C = x∗CPD

=
−β2Dx

∗
C(1− γ)

1− β2 − (1− αβ2)(x∗C)β2
.

It follows that

− 1

β2D

∂P ∗C
∂γ

=
−x∗C

1− β2 − (1− αβ2)(x∗C)β2
+

(1− γ)(1− β2)(1− (1− αβ2)(x∗C)β2(
1− β2 − (1− αβ2)(x∗C)β2

)2 ∂x∗C
∂γ

.

Recall that β2(β1 − 1)x∗C + Ψ′C(x∗C)
∂x∗C
∂γ = 0; using relationship (19), we obtain that

∂x∗C
∂γ

=
(β1 − 1)(x∗C)2

(1− β2)
[
(β1 − 1)(1− γ)x∗C − β1v)

] .
It follows that − 1

β2D
∂P ∗C
∂γ has the same sign as

− [(β1 − 1)(1− γ)x∗C − β1v)]
[
1− β2 − (1− αβ2)(x∗C)β2

]
+ (1− γ)β1 − 1)(1− (1− αβ2)(x∗C)β2+1,

which is equal to
β2(β1 − 1)(1− γ)x∗C + β1v(1− β2)− β1v(1− αβ2)(x∗C)β2 .

Using relationship (19), we find that the previous quantity is equal to −β2(1−αβ1)(x∗C)β2 . We conclude

that
∂P ∗C
∂ρ ≥ 0 (

∂P ∗C
∂ρ ≤ 0) iff α ≤ 1/β1 (α ≥ 1/β1). Finally, for P ≤ P ∗C , we examine the impact of

parameter ρ on the option value of expanding by one unit, G(P ) = F (P )− (1−τc)ρP
δ . Using fact that

(1+ρ)PD
δ = β2−1

β2

C∗C
r and ∂G(P )

∂P ∗C
= 0, we obtain that

∂G(P )

∂ρ
=

(
P

P ∗C

)β1 ∂

∂x∗C

(1− τc)C∗C
[
(x∗C)β2 − (1− β2)

]
r(1− β2)

 ∂x∗C
∂ρ

.
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Using relationship (20) leads to

∂

∂x∗C

(1− τc)C∗C
[
(x∗C)β2 − (1− β2)

]
r(1− β2)

 =
Dαβ2

2(1− β2)(x∗C)β2−1

(1− β2 − (1− αβ2) (x∗C)β2)2
> 0.

Since
∂x∗C
∂ρ > 0, we conclude that ∂G(P )

∂ρ > 0.

6.3 Appendix 4

6.3.1 Appendix 4.1. Sequential Equilibrium

The maximization program is

max
(P ∗,C)∈S

[F (P0)]1−θ [L(P0)]θ .

s.t (FPC) and (LPC).
(26)

For θ ∈ (0, 1), x 7→ xθ and x 7→ x1−θ both have infinite derivatives at x = 0, so at the maximum, we

must have F (P0) > 0 and L(P0) > 0. Define X = (1−τc)P ∗
δ and Y = (1−τc)PD

δ . Then for P ≤ P ∗, we
have

F (P ) =

(
1− τc
δ

)−β1 (
X − β2 − 1

β2
Y − Y

β2

(
X

Y

)β2
− (v − 1)D

)(
P

X

)β1
L(P ) =

(
1− τc
δ

)−β1 (β2 − 1

β2
Y +

Y

β2

(
X

Y

)β2
− αY

(
X

Y

)β2
−D

)(
P

X

)β1
,

and recall that (P ∗, C) ∈ S, so we have

(β1 − 1)X − β1 − β2

β2
Y

(
X

Y

)β2
= β1(v − 1)D +

β1(β2 − 1)

β2
Y. (27)

Then, set z = Y
X ≤ 1. Using relationship (27), we obtain that

F (P ) = − 1

β1β2

(
1− τc
δ

)−β1
(1− z1−β2)Hβ1−1

S2
(z)P β1 (28)

L(P ) = − 1

β1β2(v − 1)

(
1− τc
δ

)−β1
HS1(z)Hβ1−1

S2
(z)P β1 , (29)

with

HS1(z) = β2(β1 − 1) + β1v(1− β2)z − (β1v − β2 − αβ1β2(v − 1))z1−β2

HS2(z) = −β2(β1 − 1) + β1(β2 − 1)z + (β1 − β2)z1−β2 .

Inspection of relationship (28) reveals that the (FPC) constraint is never binding even when θ = 1,
otherwise The (LPC) constraint would also be binding.

HS1 is strictly concave as H ′′S1
(z) = β2(1− β2)(β1v − β2 − αβ1β2(v − 1))zβ2−1 < 0 with HS1(0) =

β2(β1 − 1) < 0, HS1(1) = −β1β2(v − 1)(1 − α) > 0 and H ′S1
(1) = β2(1 − β2)(1 + αβ1(v − 1)) < 0.

It follows that HS1 is hump-shaped and is non-negative on some interval [z1, 1] with 0 < z1 < 1 and
HS1(z1) = 0.

HS2 is strictly convex as H ′′S2
(z) = β2(1 − β2)(β1 − β2)zβ2−1 < 0 with HS2(0) = −β2(β1 − 1) > 0

and HS2(1) = 0. This implies that HS2 has a U -shape and is non-negative on some interval [0, z2]

33



with 0 < z2 < 1, H ′S2
(z2) < 0 and HS2(z2) = 0. In fact, H ′S2

is negative on [0, z2]. Next, we want to
show that 0 < z1 < z2 < 1. It is enough to show that HS1(z2) > 0. Using the fact that HS2(z2) = 0,
we can write

HS1(z2) = β1(v − 1)z2

[
1− β2 − (1− αβ2)z−β22

]
≥ β1(v − 1)z2(1− β2)(1− z−β22 ) > 0.

Finally, the maximization program (26) is equivalent to

max
z∈[z1,z2]

HS(z, θ) = Hθ
S1

(z)(1− z1−β2)1−θHβ1−1
S2

(z).

The objective function is smooth and continuous so it attains its maximum z∗S on the compact interval

[z1, z2], with
∂HS(z∗S ,θ)

∂z = 0 and
∂2HS(z∗S ,θ)

∂z2
≤ 0. It follows that

(1− τc)P ∗S
δ

= −β1β2(v − 1)D

HS2(z∗S)

(1− τc)C∗S
r

=
β1(1− β2)(v − 1)z∗SD

HS2(z∗S)
.

Notice that both P ∗S and C∗S are increasing in z∗S and

∂2HS(z∗S , θ)

∂z2

∂z∗S(θ)

∂θ
+
∂2HS(z∗S , θ)

∂z∂θ
= 0,

with
∂2HS(z∗S ,θ)

∂z∂θ = HS(z∗S , θ)

(
H′S1

(z∗S)

HS1 (z∗S) −
(β2−1)(z∗S)−β2

1−(z∗S)1−β2

)
> 0. We can conclude that

∂z∗S(θ)
∂θ > 0. Finally,

since XS = −β1β2(v−1)D
HS2 (z∗S) , it follows that ∂XS

∂θ = β1β2(v−1)D
H2
S2

(z∗S)
H ′S2

(z∗S)
∂z∗S(θ)
∂θ > 0, so

∂P ∗S
∂θ > 0. Similarly,

recall that YS = z∗SXS , so we have ∂YS
∂θ > 0, and

∂C∗S
∂θ > 0. Finally, using relationship (28), we have

∂F (P )

∂z

∣∣∣∣
z=z∗S

= − 1

β1β2

(
1− τc
δP

)−β1
Hβ1−2
S2

(z∗S)
[
(β2 − 1)(z∗S)−β2HS2(z∗S) + (β1 − 1)H ′S2

(z∗S)(1− (z∗S)1−β2)
]
< 0.

This implies that ∂F (P )
∂θ = ∂F (P )

∂z

∣∣∣
z=z∗S

× ∂z∗S(θ)
∂θ < 0. Since

∂HS(z∗S ,θ)
∂z = 0, we must have ∂L(P )

∂θ =

∂L(P )
∂z

∣∣∣
z=z∗S

× ∂z∗S(θ)
∂θ > 0.

Limit Case θ = 0. Since both z 7→ 1 − z1−β2 and HS2 are decreasing on [z1, z2], the maximum is
achieved at z∗S = z1, i.e., HS1(z∗S) = 0. It is easy to verify that the solution coincides with the perfectly
competitive credit market case.

Special Case θ = 1 and α = 1/β1. In this case, we have β1HS2(z∗S) = −β2(β1 − 1)2(v − 1) and

(1− τc)P ∗S
δ

=

(
β1

β1 − 1

)2

I

(1− τc)C∗S
r

=
(β2 − 1)z∗S

β2

(
β1

β1 − 1

)2

I.

34



6.3.2 Appendix 4.2. Nash Bargaining

Appendix 4.2.1: Special Case α = 0. The program is

max
P ∗,C

[
(1− τc)P ∗

δ
− I − (V L(P ∗)−D)

]1−θ [
V L(P ∗)−D

]θ
(P ∗)−β1 .

The maximization with respect to C yields

−(1− θ)
(1−τc)P ∗

δ − I − (V L(P ∗)−D)
+

θ

V L(P ∗)−D
= 0.

Hence we obtain that V L(P ∗) − D = θ
(

(1−τc)P ∗
δ − I

)
. Plugging back this identity into the initial

objective function, the maximization with respect to P ∗ becomes

max
P ∗

(1− θ)(1−θ)θθ
[

(1− τc)P ∗

δ
− I
]

(P ∗)−β1 ,

and therefore P ∗N = P ∗0 . The optimal coupon C∗N is implicitly defined by

(1− τc)C∗N
r

− (1− τc)
(
C∗N
r
− PD

δ

)(
P ∗0
PD

)β2
= D +

θI

β1 − 1
.

Recall that PD
δ = β2

β2−1
C∗N
r and set z∗N = PD

P ∗0
; z∗N satisfies

(1− β2)z∗N − (z∗N )1−β2 = −β2
β1 − 1 + θv

β1v
.

For z ∈ [0, 1], Ψ : z 7→ (1 − β2)z − z1−β2 is a continuous and Ψ′(z) = (1 − β2)(1 − z−β2) > 0. It
follows that Ψ is a strictly increasing with Ψ(0) = 0 and Ψ(1) = −β2 > −β2

β1−1+θv
β1v

. We conclude

that the equation Ψ(z) = 0 has a unique root z∗N in (0, 1). Furthermore observe that Ψ′(z∗N ) > 0

and Ψ′(z∗N )
∂z∗N
∂θ = −β2

β1
> 0. Since

∂z∗N
∂θ = β1−1

β1P ∗0

∂C∗N
∂θ , we must have

∂C∗N
∂θ > 0. Similarly, Ψ′(z∗N )

∂z∗N
∂v =

β2(β1−1)
β1v2

< 0. Since
∂z∗N
∂v = β1−1

β1P ∗0

∂C∗N
∂v , we must have

∂C∗N
∂v < 0 and therefore

∂C∗N
∂D > 0. Finally, note

that for all P ≤ P ∗0 , F (P ) = (1− θ)F0(P ) and L(P ) = θF0(P ).

Appendix 4.2.2: General Case α > 0. Set X = (1−τc)P ∗
δ , Y = (1−τc)PD

δ , k = −β2D
X and z = Y

X .
Option value and lender’s value can be rewritten

F (P ) = D

(
−(1− τc)β2D

δ

)−β1
HN1(k, z)kβ1−1P β1

L(P ) = D

(
−(1− τc)β2D

δ

)−β1
HN2(k, z)kβ1−1P β1 ,

where

HN1(k, z) = −β2 + (β2 − 1)z + z1−β2 − (v − 1)k

HN2(k, z) = (1− β2)z − (1− αβ2)z1−β2 − k.

The FPC and LPC can be written respectively

−β2 + (β2 − 1)z + z1−β2 − (v − 1)k ≥ 0

(1− β2)z − (1− αβ2)z1−β2 − k ≥ 0.
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The maximization program is equivalent to

max
k≥0,z∈[0,1]

HN (k, z) = H1−θ
N1

(k, z)Hθ
N2

(k, z)kβ1−1

s.t. (FPC) and (LPC).

Special Case: θ = 1. In this case, the maximization program is

max
k≥0,z∈[0,1]

HN2(k, z)kβ1−1

s.t. (FPC) and (LPC).

The interior solution of the maximization program is z∗N = (1 − αβ2)
1
β2 and k∗N = −β2(β1−1)

β1
z∗N , so

that

(1− τc)P ∗N
δ

=
β1D

β1 − 1
(1− αβ2)

− 1
β2

(1− τc)C∗N
r

=
β1(β2 − 1)D

β2(β1 − 1)
.

This is the solution provided that FPC constraint is satisfied. Set Ψ(α) = −β2+(β2−1)z∗N+(z∗N )1−β2−
(v− 1)k∗N . Ψ is an increasing function with Ψ(0) = β2(β1−1)(v−1)

β1
< 0. Thus, the solution is interior iff

v is small enough (large value of D) and if α is large enough. When the FPC constraint is binding,
the option value F is always zero and the maximization program is equivalent to

max
z∈[0,1]

J(z) =
[
β2 + v(1− β2)z − (v − (v − 1)αβ2)z1−β2

] [
−β2 + (β2 − 1)z + z1−β2

]β1−1
,

and the optimal investment trigger and coupon are given by

(1− τc)P ∗N
δ

= − β2(I −D)

−β2 + (β2 − 1)z∗N + (z∗N )1−β2

(1− τc)C∗N
r

= −
(β2 − 1)(I −D)z∗N

−β2 + (β2 − 1)z∗N + (z∗N )1−β2 ,

where z∗N is such that J ′(z∗N ) = 0.

Special Case: θ = 0. In this case, the maximization program is

max
k≥0,z∈[0,1]

HN1(k, z)kβ1−1

s.t. (FPC) and (LPC).

It is easy to see that we cannot have an interior solution and therefore the LPC constraint must be
binding, so V L(P ∗) = D or equivalently (1 − τc)D(P ∗) = D, where D(P ) denotes the market value
of an unsecured debt. This problem is identical to the one solved in section 2.6. after replacing D by
D/(1− τc) or equivalently replacing v by v(1− τc) + τc (see appendix 2.2). Observe that in this case

taxes play no role as both the
(1−τc)P ∗N

δ and
(1−τc)C∗N

r are independent of the corporate tax rate τc.

General Case: θ ∈ (0, 1). Since both x 7→ xθ and x 7→ x1−θ have infinite derivatives at x = 0, we
must have F (P0) > 0 and L(P0) at the maximum. In particular, this implies that 0 ≤ k ≤ (1−β2)z−
(1 − αβ2)z1−β2 ≤ −β2(1 − α)(1 − αβ2)

1
β2 for z ∈ [0, 1] . The objective function HN is continuous so

it attains its maximum at (z∗N , k
∗
N ) on the compact set

[
0,−β2(1− α)(1− αβ2)

1
β2

]
× [0, 1]. Observe
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that if z∗N ∈ {0, 1}, then k∗N = 0, and either F (P ) = 0 or L(P ) = 0, which is impossible. Similarly, if

k∗N = 0, HN (0, z∗N ) = 0 and if k∗N = −β2(1−α)(1−αβ2)
1
β2 , we must z∗N = (1−αβ2)

1
β2 and L(P ) = 0.

Thus we must have an interior solution and the first order conditions are:

β1 − 1

k∗N
− (v − 1)(1− θ)
−β2 + (β2 − 1)z∗N + (z∗N )1−β2 − (v − 1)k∗N

− θ

(1− β2)z∗N − (1− αβ2)(z∗N )1−β2 − k∗N
= 0

(1− θ)(1− (z∗N )−β2)

−β2 + (β2 − 1)z∗N + (z∗N )1−β2 − (v − 1)k∗N
−

θ(1− (1− αβ2)(z∗N )−β2)

(1− β2)z∗N − (1− αβ2)(z∗N )1−β2 − k∗N
= 0.

Thus

k∗N =
(β1 − 1)(1− (z∗N )−β2)((1− β2)z∗N − (1− αβ2)(z∗N )1−β2)

(β1 − 1)(1− (z∗N )−β2) + θ(v − (v − (v − 1)αβ2)(z∗N )−β2)

k∗N =
(β1 − 1)(1− (1− αβ2)(z∗N )−β2)(−β2 + (β2 − 1)z∗N + (z∗N )1−β2)

(v − 1)(β1 − 1)(1− (1− αβ2)(z∗N )−β2) + (1− θ)(v − (v − (v − 1)αβ2)(z∗N )−β2)
.

Observe that for P ∗N to be non-negative, we must have

k∗ ≤ (1− β2)z∗N − (1− αβ2)(z∗N )1−β2 .
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