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Generation Investments under Uncertainty 

 

Abstract 

We develop a general model for generation investments under uncertainty that considers 

replacing an incumbent product with a new generation product.  We allow for partial (retentions)  

or complete replacement, but also for the possibility that the existence of an incumbent product 

may enhance the value of the new product, or reduce the investment required to develop and 

promote that new product, as is characteristic of movie and book sequels, and other new product 

developments. We provide quasi-analytical solutions for the thresholds that justify new product 

introduction and the real option value of the investment opportunity, considering both incumbent 

and new product value uncertainty, and possible correlation.  The new product thresholds are 

more or less a linear function of the value of the incumbent product sacrificed, even with partial 

retention, but not linear with regard to any enhancement of the new product due to the 

incumbent, or a investment cost reduction.  The real option value sensitivity to changes in these 

factors is far from linear.  
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Generation Investments under Uncertainty 

 

A generational investment is an ordered sequence of individual but associated investment 

opportunities that can be conceptualized as a chain of successive links. Each link represents a 

stage in the chain depicting a single investment opportunity. The links are organized according to 

a particular order that reflects their logically meaningful position in the chain. It specifies which 

one of the various investment opportunities has to be started first, which one completes the 

sequence and is last, and the ordering for those remaining. Except for the two labeled first and 

last, each individual investment opportunity has a single predecessor stage and a single successor 

stage. A chain of ordered links is a useful conception for a set of individual investment 

opportunities whenever there are real economic gains to be made by completing the set as an 

ordered sequence rather than treating each one as independent. Some of the gains from treating a 

set of opportunities as generational may be realized by redeploying any of the assets created by a 

predecessor stage at a successor stage for a cost below the original.  

 

The redeployable asset can be tangible, such as equipment or real estate acquired at a 

predecessor stage that can be redeployed economically at the successor stage owing to scope 

economies. Alternatively, they can be intangibles, such as reputation generated through 

marketing and usage that is leveraged at a successor stage to enhance market volume or reduce 

marketing expenditure, or distinctive competences and proprietary knowledge that are deployed 

in completing the successor stage having been specifically developed at a predecessor stage. 

Illustrations of generational investments abound in several diverse industries. Supermarkets and 

hotel chains typically treat their outlets as generational investments as their operating and 

marketing expertise is shared with new ventures, leading to investment cost reduction and 

subsequent product enhancements, although seldom incumbent replacements due to locational 

advantages. Often, film-makers produce a generation of film creations that achieve economies 

from a shared marketing expense. Software developers continually upgrade their offerings that 

explicitly exploit previously developed code and expertise. Firms in R&D significant industries 

redeploy their organizational competences and past reputation in their endeavours to sustain their 

leading-edge advantage. 
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Bollen (1999) provides a real option model for the demand in a product life cycle.  Hitsch (2006) 

looks at product launch and exit under uncertainty.  Chao and Kavadis (2008) suggest strategic 

buckets of R&D for particular products, based on product maturity and specific requirements. 

Rodrigues (2009) allows for demand to vary by stages, where investment can alter expected 

demand at a particular stage.  Rubera et al. (2012) consider technological innovation effects in 

new products, which result in value enhancement over stages. 

 

Sequels are not uncommon in the movie, publication (and indeed academic) industries, where 

there is “value enhancement” over stages, with also possible high value retention for earlier 

stages, as viewers seek to read (or re-read), view or view again, earlier series when the latest 

sequel appears. Elberse and Eliashberg (2003) examine the dynamics for motion picture sequels, 

Chance et al. (2008) provide a option pricing model for box office revenue, and Gong et al. 

(2011) separate the movie production into four distinct investment stages, where there is the 

possibility of failure reducing over the stages.   

 

Adkins and Paxson (2011) provide a real option model for equipment replacements, where 

revenues decline and operating costs increase over time, but do not allow for any incumbent 

equipment retention, or value enhancement for subsequent stages.  Adkins and Paxson (2013) 

allow for technological progress in new equipment, which does not necessarily depend on the 

incumbent or investment cost at any stage.  Adkins and Paxson (2014) allow for a type of 

incumbent value retention in terms of a stochastic abandonment value, which might be in the 

second-hand market, or alternative use, or scrap value, but do not consider a successor value.   

 

The next section presents a general model, allowing for incumbent retention, successor value 

enhancement, and investment cost reduction.  The middle section provides numerical 

illustrations for base case parameter values, and shows the sensitivity of thresholds and real 

option values to changes in parameter values over ranges.  The final section is a conclusion, 

suggesting some future research. 

 

1 The Model 
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1.1 General Two Stage Generation Model 

A firm in a monopoly position is considering a generational investment opportunity that offers 

the possibility for investing in and benefiting from the next generational offering while 

simultaneously relinquishing part or all of the incumbent. We can conceive of two successive 

stages, where the primary benefits for an incumbent occur only during the current stage, whilst 

those for next generational offering only during the next subsequent stage.  The firm is motivated 

to actively pursue a research policy for developing the next generational offering. The benefits of 

such a policy are only obtainable by sacrificing the present value rendered by the incumbent and 

then expending an investment cost in order to receive contemporaneously the net cash flow 

stream accruing to the next generational offering. In an uncertain world, the present value for any 

generational offering would normally behave as stochastic. If we confine our attention to only 

the current and next stage, then the resulting model for determining the optimal policy for 

terminating the incumbent and its subsequent replacement by the next generational offering 

would be formulated based on two stochastic factors. 

 

The present value for the incumbent during the current stage, stage-1, is denoted by 1V , while 

that for the next generation offering during the subsequent stage, stage-2, by 2V . Both 1V  and 2V  

are stochastic, described by distinct geometric Brownian motion (gBm) processes: 

 d d d for 1,2
II I I V I IV V t V z I    , (1) 

where 
I  denotes the instantaneous drift term per unit of time

1
, 

IV  the instantaneous volatility 

per unit of time, and d Iz  is an increment of the standard Wiener process. Dependence between 

the two stochastic factors is described by the instantaneous covariance term 
1 2V V   where 

 
1 21 2 1 2Cov , dV VV V VV t   with 1   . 

 

The decision to “terminate” the incumbent in favour of the next generational offering is partly 

decided by the value of the option to switch between stage-1 and stage-2. This embedded option 

arises from owning the incumbent with value 1V  during stage-1, but its value is also determined 

                                                 
1
 We assume  for convenience, and these values are not affected by other parameter value changes. 
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by the value 
2V  rendered during stage-2. Denoting the option value by 

12F , then 

 12 12 1 2,F F V V , and its valuation relationship is specified by applying Ito’s Lemma to (1): 

 
2 2

2 2
1 2 1 2 1 2

2 2 2
2 212 12 12 12 121 1

1 2 1 2 1 2 122 2

1 2 1 21 2

0.V V V V V V

F F F F F
V V VV V V rF

V V V VV V
     

    
     

    
 

where the parameters 
1V  and 

2V  denote the respective risk neutral drift terms, and r  the risk-

free rate. From McDonald and Siegel (1986) and Adkins and Paxson (2011),  the generic 

valuation function for the switch option is: 

   11 21

12 1 2 1 1 2,F V V AV V 
 , (2) 

where 1A  is a generic coefficient, and 
11  and 21  are the respective generic power parameters 

for 
1V  and 2V . While 

1 0A  , since an option value is always non-negative, the power parameters 

can be of either sign contingent on the particular context. For a generational opportunity, there is 

an incentive to switch between stage-1 and stage-2 when simultaneously 
1V  is relatively low and 

2V  is relatively high, since the net gain from the switch more than compensates any loss. 

Moreover, the incentive intensifies as 1V  decreases and 2V  increases. Accordingly, we conjecture 

that 11 0   and 21 0  .   

 

The option value (2) satisfies the valuation relationship with characteristic root equation Q : 

 
     

1 2 1 2

1 2

2 21 1
11 21 11 11 21 21 11 212 2

11 21

, 1 1

0.

V V V V

V V

Q

r

           

   

    

   
 (3) 

 

The switch decision depends on the values 1V  and 2V , so we denote by 11V̂  and 21V̂  the respective 

threshold levels that these values have to attain for an optimal switch event to take place. For 

given threshold levels, 11V̂  and 21V̂ , an optimal switch event occurs provided that the prevailing 

1V  and 2V  satisfy the joint condition 1 11
ˆV V  and 2 21

ˆV V . As a trade-off exists between the 

optimal threshold levels, since any increase in 11V̂  can be compensated by a commensurate 

increase in 21V̂ , we need to identify the boundary separating the region indicating a possible 
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viable optimal switch event from that indicating no viable optimal switch event. The boundary 

that we need to identify is characterized by a relationship between 11V̂  and 21V̂ .  

 

The switch from stage-1 to stage-2 is predicated under value conservation for values 
1V  and 

2V  

at their respective threshold levels. The value immediately prior to making the switch is that 

rendered by the incumbent 
1V  together with its embedded switch option 

12F . Immediately 

following the switch, the created value is derived from the next generational offering less the 

assumed constant investment cost, denoted by 
12K , required to obtain the cash flow stream. At 

the exercise event, the incumbent value  11V̂  and switch option value  12 11 21
ˆ ˆ,F V V  are sacrificed, 

and compensated by the net present value for the next generational offering, 21 21V̂ K .  

 

If an allowance is made for partial retention ( of the incumbent, for enhancement ( of stage-2 

value due to existence of an incumbent, and reduction ( of investment cost at stage-2
2
, the 

thresholds and investment cost are:  

 11 21 21
ˆ ˆ(1 ) ,(1 ) ,V V K     

 Accordingly, the value matching relationship becomes:   

 11 21

1 11 21 21 21 11
ˆ ˆ ˆ ˆ(1 ) (1 )AV V V K V          (4) 

 

The smooth pasting conditions associated with (4), for first order optimality, one for each factor  

1V  and 2V , respectively, can be expressed as: 

 11 211

11 1 11 21
ˆ ˆ(1 ) 0AV V   

   ,  (5) 

 11 21 1

21 1 11 21
ˆ ˆ (1 ) 0AV V  

   . (6) 

From (5) and (6), our conjecture on the signs of the two power parameters is corroborated. By 

combining (4), (5) and (6), if =0, we obtain:  

 21
21 21

21 11

ˆ
1

V K


 


 
, (7) 

                                                 
2
 We assume that  and  are not dependent on time, or on the level of or changes in  V1, V2 or K2.  
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 11
11 21

21 11

ˆ
1

V K


 




 
. (8) 

It is observed from (7) and (8) that the value thresholds signifying an optimal switch from stage-

1 to -2 are positively, linearly dependent on the investment cost, so an increase in 
21K  produces 

increases in both 11V̂  and 21V̂  while their ratio 21 11 21 11
ˆ ˆV V     depends on only 

11  and 
21 . 

Further, the stage-2 value 
2V  has to exceed the stage-1 value 

1V  whenever an optimal switch 

between stages is being contemplated, since from (4) the switching gain 
2 21V K  must 

compensate the foregone value 11 21

1 1 1 2V AV V  . This entails that 
21 11   . 

 

The stage-2 generation model is composed of  4 equations, 3, 4, 5 and 6, or alternatively,  

3 equations: (i) and (ii) two reduced form value matching relationships (7) and (8), and (iii) the 

Q  equation (3). From these, it is possible in principle to eliminate the power parameters 11  and 

21  to construct the threshold boundary linking 11V̂  and 21V̂ . In practice, this is achieved 

numerically. 

1.2 Specific Two Stage Generation Models 

Retention 

If does not equal 0, but0, allowing for some retention of the incumbent value upon 

introduction of a new produce, the revised value matching relationship is: 

 11 21

11 1 11 21 11 21 21
ˆ ˆ ˆ ˆ ˆV AV V V V K       

where 0   denotes the proportion of the stage-1 value retained. Then, similarly: 

  11
11 21

21 11

ˆ 1
1

V K



 


 

 
, 21

21 21

21 11

ˆ
1

V K


 


 
 and 

 11 21

11 21

ˆ ˆ1V V

 





. 

Since 11 21 2     and 21 2K K , then: 

 21 11 2
21 21 2

21 11 21 11 21 1 1
K K K

  

    
 

    
 

  21 11 2
ˆ ˆ ˆ1V V V    

Less value to be sacrificed lowers 21V̂  but not sufficiently for 21 2
ˆ ˆV V . 
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Enhancement 

If does not equal0, allowing for enhancement of the new product due to the 

existence of an incumbent, the revised value matching relationship is: 

  11 21

11 1 11 21 21 21
ˆ ˆ ˆ ˆ1V AV V V K       

where 0   denotes the proportional increase in stage-2 value due to the generation effect. 

Then as before: 

11
11 21

21 11

ˆ
1

V K


 




 
,   21

21 21

21 11

ˆ 1
1

V K



 

 
 

 and 
 2111

11 21

ˆˆ 1VV 

 





. 

Since 11 21 2     and 
21 2K K , then: 

 21 11 2
21 21 2

21 11 21 11 21 1 1
K K K

  

    
 

    
 

  21 11 2
ˆ ˆ ˆ1V V V    

More value to be created lowers 21V̂ , 21 2
ˆ ˆV V  provided 11 2

ˆ ˆV V . 

Investment Cost Reduction 

If 0, and0, but  does not equal 1,  allowing for a reduction in the second stage investment 

cost due to the existence of an incumbent (proprietary knowledge, learning effect, economies of 

scale), the revised value matching relationship is: 

 11 21

11 1 11 21 21 21
ˆ ˆ ˆ ˆV AV V V K      

Then as before: 

11
11 21

21 11

ˆ
1

V K



 




 
, 21

21 21

21 11

ˆ
1

V K



 


 

 and 11 21

11 21

ˆ ˆV V

 



. 

Since 11 21 2     and 21 2K K , where 0   measures the proportional investment cost 

reduction, then lower K lowers 21V̂ . 

 

2 Numerical Illustrations 
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Although the model analysis has revealed some useful properties, further insights into the 

behaviour of the models can be gained through the application of numerical simulations. The 

numerical analyses are founded on the base case values presented in Table 1 with variations to 

reflect the parameter of interest. The base case values assume 
1 2V V  , 1, 2 1V V   and 

1 2
0V V   . 

*** Table 1 about here *** 

 

Based on the base case values, the investment threshold boundary is numerically constructed as 

the locus relating 21V̂  evaluated from (3), (4) (5) and (6) for incremental variations in 

11 1 21 2
ˆ ˆ,V V K K  . This reveals a linear threshold boundary linking 11V̂  and 21V̂ , such that 

21 2 11
ˆ ˆ ˆV V V   with 21 2

ˆ ˆ 3.0277V V   for 11
ˆ 1.V   Figure 1 shows that there is a positively 

increasing boundary.  For any increase in the sacrifice of the stage-1 value 11V̂ , there is a 

commensurate and equal increase in the stage-2 threshold 21V̂ .  Incidentally, Figure 6 illustrates 

that there the same linear relationship of the stage-2 threshold 21V̂ to the proportional retention  

of some of  the stage-1 value upon introduction of the stage-2 product. However, the real option 

value of the opportunity to make the second stage investment declines as the incumbent value V1 

increases as in Figure 1, and naturally increases as the retention proportion increases as in Figure 

6, which considers also the possibility that the V1 value might increase as V2 is introduced, as in 

some movie sequels. 

 ***Figures 1 and 6 about here*** 

2.1 Sensitivity of Thresholds and ROV to Changes in Standard Inputs 

The numerical sensitivities to changes in the basic input parameter values below are assumed not 

to affect the basic V1, V2 and K2 values, which is not entirely realistic.  For instance, an increase 

in the interest rate should result in a decline of the present values of future cash flows, but this 

possibility is ignored, and changes in r are only considered in equation 3, the Q function.  

Similarly it is assumed that changes in expected volatility and correlation of V1 and V2 do not 

affect the risk neutral drift rates, which is a heroic assumption. 
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Typically the thresholds and real option values are expected to increase as the V1 and/or V2 

volatilities increase (positive “vegas”) if V1 and V2 correlations are positive, but this is not 

always the result as shown in Figure 2.  Both the optimal threshold and the real option value 

appear to decline as the V2 volatility is increased from a very low 5% to 10% but then eventually 

increase as volatility increases.  This appears to be a peculiar case of a very high correlation 

between the two stage product values.  The usual case where correlation is less than perfect 

shows a more or less continuous increase in both thresholds and real option values as stage-2 

product volatility increases, with the relationship becoming more linear the less positive the 

correlation.   

 

Figure 3 shows that thresholds and real option values decrease with the increase of correlation 

between the products over the two stages, with very high V2 thresholds at very negative 

correlations.  It seems logical if high increases in V2 values are accompanied by decreases in V1 

values, and vice versa, V2 would have to be very high before new product introduction is 

justified.  Such a high negative correlation would indicate that these products are completely 

different, which is not exactly in the spirit of examining “generation” investments. 

 

Figure 4 is not easy to understand, since it is apparent that large negative drifts in V1 values 

results in a high 2V̂  value that justifies introducing that new product (which is assumed in the 

base case to have a nil drift rate).  However, at the other end of high positive drift for V1, there is 

logically little real option value in the opportunity to introduce a new product with a nil drift, if 

the incumbent product drift is so positive, indicating demand is still strong.  

 

Figure 5 is also not easy to understand, since normally a high interest rate results in a high call 

option value.  Note  that it is assumed that changes in r are not accompanied by changes in V1 or 

V2, or in the risk neutral drifts, which is not realistic.  Higher interest rates result in both lower 

thresholds and also real option values, but at a decreasing rate.  

 

***Figures 2, 3, 4 and 5 about here*** 
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2.2 Sensitivity of Thresholds and ROV to Changes in  

Value Enhancement & Cost Reduction 

The greater the enhancement of V2 due to the existence of V1 (reputation, brand image, quality 

perception, habit),  the higher the V2 value that justifies immediate new product introduction, and 

the lower the real option value of that generation investment opportunity as shown in Figure 7.  It 

is not clear that  depends on the continued existence of V1, but the implicit assumption is that 

V2 as an independent product may be worth less than as a sequel to a successful incumbent 

product.  The assumption that this relationship is proportional and constant, especially over time, 

is simple, and could be supplemented by a complex, perhaps quadratic, relationship.  But a time 

varying  would no longer be consistent with the quasi-analytical solution proposed herein. 

 

The greater the investment cost reduction (lower ) due to the existence of V1 (experience, 

learning effect, or investment efficiency), the lower the 2V̂  value that justifies immediate new 

product introduction, and the lower the real option value of that generation investment 

opportunity as shown in Figure 8.  It is clear that  does not depend on the continued existence of 

V1.  The assumption that  is proportional and constant, especially over time, is simple, and 

could be supplemented by a complex, perhaps quadratic, relationship.  But a time varying  

would no longer be consistent with the quasi-analytical solution proposed herein. 

 

***Figures 7 and 8 about here*** 

2.3 Lessons for the Chief Real Options Manager and Investors 

The critical activity for the Chief Real Options Manager (CROM) advising the marketing 

department on the introduction of a new generation product is to view V1, and estimate V2, the 

drifts and volatilities, and correlation, standard real option inputs along with K2. While there 

might be some historical experience on V1, V1 and V1, the inputs for a new product have no 

history, naturally.  Also it may well be that V1 and V1 are time varying, even mean reverting, in 

which case gBm is not an appropriate process as the basis for a model.  In addition, the CROM 
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must estimate the retention, value enhancement and investment cost reduction factors, which 

herein are assumed to be proportional and constant.    

 

Investors may not have sufficient information to estimate whether V2 at the time of a new 

product introduction exceeds  2V̂  given V1 and K2, or whether such an introduction is premature 

and kills the real option value of the introduction opportunity.  Also investors will want to 

consider the real option value embedded as it were in the current incumbent product state, and 

whether the stock market value of a generation investment firm reflects V1+ ROV2 plus other net 

assets/liabilities.  

3 Conclusion 

We develop a general model for generation investments under uncertainty that considers 

replacing an incumbent product with a new generation product.  We allow for partial () 

incumbent product replacement, but also for the possibility that the existence of an incumbent 

product may enhance the value of the new product (), or reduce () the investment required to 

develop and promote that new product, as is characteristic of movie and book sequels, and some 

other new products.   

 

We provide quasi-analytical solutions for the thresholds that justify new product introduction and 

the real option value of the investment opportunity, considering both incumbent and new product 

value uncertainty, and possible correlation.  The new product thresholds are a linear function of 

the value of the incumbent product sacrificed, even at various levels of partial retention, but not 

linear with regard to any enhancement of the new product due to the incumbent, or a investment 

cost reduction.  The real option effects are far from linear.  The ROV increases at an increasing 

rate with regard to increases in , and , in a form similar to the effect of increased new product 

volatility.   Perhaps clever scholars or CROMs will create new names for these effects (NPP 

super deltas, Cost reduction kappas?). 

 

This basic model requires several broad assumptions, and is currently limited to a very basic 

environment.  A major critical extension is to consider several stages, with a first new product 
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stage, and a final stage beyond which no further products are envisioned (new horse carts, or 

perhaps laptop computers may eventually have no immediate similar successors).  Stochastic 

investment cost is possibly a relatively easy addition to the basic model, resulting in solving 

additional equations simultaneously.  Slightly complex functions for  might be designed 

which are still compatible with these quasi-analytical solutions. Competition has been 

completely ignored so far, which is not realistic for most new products.  Finally, we anticipate 

that calibrating the parameter values will be an interesting challenge for the future.  
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Table 1 

    

  

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

A B C D

                                GENERATION INVESTMENTS 

INPUT EQ

V2 1.00

V1 1.00

K2 1.00

V1 0.25
V2 0.25

K2 0.00
V1V2 1.00

r 0.06
V1 0.00
V2 0.00

K2 0.00

 0.00 Portion of V1 retained 

 0.00 Portion of V2 extra value added by V1

 1.00 Portion of lower investment cost due to V1 

OUTPUT

Qh 0.0000 3 0.5*(B6^2)*B23*(B23-1)+0.5*(B7^2)*B24*(B24-1)+B9*B6*B7*B23*B24+B23*B11+B24*B13-(B10)

SP1 0.0000 5 (1-B14)+B23*B25*(B27^(B23-1))*(B26^B24)

SP2 0.0000 6 B24*B25*(B27^B23)*(B26^(B24-1))-(1+B15)

VM1 0.0000 4 (1-B14)*B27+B25*(B27^B23)*(B26^B24)-(1+B15)*B26+B16*B28

SOLVER SUM 0.0000 B22=0, CHANGING B23:B26

 -0.9731

2 2.9462

A1 0.0393

V2* 3.0277

V1* 1.0000 Assume V1*=V1

K2* 1.0000 Assume K2*=K2

ROV2 0.0393 2 IF(B3<B26,B25*(B4^B23)*(B3^B24),(1+B15)*B26-B16*B28-(1-B14)*B27)

NPV -1.0000 (1+B15)*B3-B16*B5-(1-B14)*B3

V1* 1.0000 7 (B23/(B23+B24-1))*B16*B5/(1-B14)

V2* 3.0277 8 (B24/(B24+B23-1))*B16*B5/(1+B15)

V1*(1-)/V2*(1+/2 0.0000 (B31*(1-B14)/-B23)-(B32*(1+B15))/B24
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Figure 1 

 

V2* is the solution to Equations 3,4,5,6, assuming V2=1, K2=1=K2*, V1=V2=.25, 

V1V2=1, drifts are nil, r=.06, =0, =0, =1, ROV2 is from Equation 2, scaled by 10, and 

V1*=V1.  

  

V1* 0.01 0.25 0.5 0.75 1 1.25 1.5

V2* 2.0377 2.2777 2.5277 2.7777 3.0277 3.2777 3.5277

ROV2 *10 2.5055 1.6578 1.0503 0.6496 0.3930 0.2331 0.1357
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             Figure 2 

 

V2* is the solution to Equations 3,4,5,6, assuming V2=1, K2=1=K2*, V1=.25, V1V2=1, 

drifts are nil, r=.06, =0, =0, =1, ROV2 is from Equation 2, scaled by 10, V2 is as specified, 

and V1*=V1=1.   

  

V2 0.05 0.10 0.15 0.20 0.25 0.30 0.35

V2* 2.6449 2.3333 2.3333 2.6449 3.0277 3.4668 3.9636

ROV2 *10 0.1194 0.0089 0.0089 0.1194 0.3930 0.7767 1.2184
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     Figure 3 

 

V2* is the solution to Equations 3,4,5,6, assuming V2=1, K2=1=K2*, V1=V2=.25, V1V2 

as specified, drifts are nil, r=.06, =0, =0, =1,  ROV2 is from Equation 2, scaled by 10, and 

V1*=V1=1.   

  

V1V2 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

V2* 5.2167 4.9004 4.5742 4.2345 3.8750 3.4834 3.0277

ROV2 *10 2.2079 1.9782 1.7270 1.4499 1.1409 0.7916 0.3930
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2.0000

3.0000

4.0000

5.0000
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     Figure 4 

 

V2* is the solution to Equations 3,4,5,6, assuming V2=1, K2=1=K2*, V1=V2=.25, 

V1V2=1, V1 drifts are as specified, V2 drifts are nil, r=.06, =0, =0, =1, ROV2 is from 

Equation 2, scaled by 10, and V1*=V1=1. 

  

V1 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

V2* 3.8088 3.5283 3.2657 3.0277 2.8215 2.6524 2.5208

ROV2 *10 1.0825 0.8319 0.5973 0.3930 0.2330 0.1237 0.0593
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Figure 5 

 

V2* is the solution to Equations 3,4,5,6, assuming V2=1, K2=1=K2*, V1=V2=.25, 

V1V2=1, drifts are nil, r as specified, =0, =0, =1,ROV2 is from Equation 2, scaled by 10, 

and V1*=V1=1. 

 

  

r 0.02 0.03 0.04 0.05 0.06 0.07 0.08

V2* 4.2553 3.6667 3.3570 3.1626 3.0277 2.9277 2.8501

ROV2 *10 1.4674 0.9560 0.6783 0.5072 0.3930 0.3127 0.2538
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Figure 6 

 

V2* is the solution to Equations 3,4,5,6, assuming V2=1, K2=1=K2*, V1=V2=.25, 

V1V2=1, drifts are nil, r=.06, ={0, 1.2}, =0, =1, ROV2 is from Equation 2, scaled by 10, 

and V1*=V1=1.  

  

NPV -1.0000 -0.8000 -0.6000 -0.4000 -0.2000 0.0000 0.2000

 0.00 0.20 0.40 0.60 0.80 1.00 1.20

V2* 3.0277 2.8277 2.6277 2.4277 2.2277 2.0277 1.8277

ROV2 *10 0.3930 0.5885 0.8690 1.2645 1.8106 2.5475 3.5162
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Figure 7 

 

V2* is the solution to Equations 3,4,5,6, assuming V2=1, K2=1=K2*, V1=V2=.25, 

V1V2=1, drifts are nil, r=.06, =0, ={0, 1.2}, =1, ROV2 is from Equation 2, scaled by 10, 

and V1*=V1=1. 

NPV -1.0000 -0.8000 -0.6000 -0.4000 -0.2000 0.0000 0.2000

 0.00 0.20 0.40 0.60 0.80 1.00 1.20

V2* 3.0277 2.5230 2.1626 1.8923 1.6820 1.5138 1.3762

ROV2 *10 0.3930 0.6725 1.0591 1.5696 2.2207 3.0291 4.0111
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Figure 8 

 

  

2V̂  is the solution to Equations 3,4,5,6, assuming 1V̂ =V1=1, V2=1, K2=1= 2K̂ , V1=V2=.25, 

V1V2=1, drifts are nil, r=.06, =0, =0, ={1, .4}, ROV2 is from Equation 2, scaled by 10.   

 

NPV -1.0000 -0.9000 -0.8000 -0.7000 -0.6000 -0.5000 -0.4000

 1.00 0.90 0.80 0.70 0.60 0.50 0.40

V2* 3.0277 2.8249 2.6221 2.4194 2.2166 2.0138 1.8111

ROV2 *10 0.3930 0.3878 0.3799 0.3685 0.3526 0.3306 0.3003
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